
INTERNATIONAL EDITION

SIXTH
EDITION Computer

Organization

Architecture
DESIGNING FOR PERFORMANCE

William Stallings

NEW

• IA-64/Itanium architecture: chapter-length
description and analysis that includes predicated
execution and speculative loading.

• Cache memory: Cache memory is a central element
in the design of high-performance processors. An
entire chapter is devoted to this issue in the new
edition.

• Optical memory: expanded and updated.

• Advanced DRAM architecture; more material has
been added to cover this topic, including an
updated discussion of SDRAM and RDRAM,

• SMP's, dusters, and 141)MA systems; the chapter
on parallel organization has been expanded and
updated.

• Expanded instructor support: the book now
provides extensive support for projects with its
new website,

*Pedagogy: each chapter now includes a list of
review questions (as well as homework problems)
and a list of key words.

DISTINGUISHING KEY FEATURES

• Running examples; numerous concrete examples,
especially Pentium 4 and Power PC G4.

• Bus organization; detailed treatment and
evaluation of key design issues.

• RISC broad, unified presentation-

* Microprogrammed implementation: lull treatment
for a firm grasp.

• I/O functions and structures: provides full
understanding and shows interaction of I/O
modules with the outside world and the CPU.

• Unified instructional approach: enables student to
evaluate instruction set design issues.

• Instructors Resource CD-ROM: includes solutions
to homework problems, list of research project-S,
list of simulation projects plus student manual for
both SimpleScalar and SMPCache, and a list of
suggested reading assignments.

Computer Organization
&Architecture
DESIGNING FOR PERFORMANCE

W illiarn Stallings - book provides comprehen-
sive and completely up-to-date coverage of
computer organization and architecture

including memory. VC], and parallel systems. The text
covers leading-edge areas, including superscalar
design, IA-54 design features, and parallel processor
organization trends. It meets students' needs by
addressing both the fundamental principles as well as
the critical role of performance in driving computer
design. Providing an unparalleled degree of instructor
and student support, including supplements and on-
line resources through the book's website, the sixth
edition is in the forefront in its field.

THE AUTHOR'S WEBSITE:

http://www.WilliamStallings.comiC0A6e provides sup-
port for students, instructors and professionals:

• Links to important up-to-date site-related text
materials.

• Provides transparency masters of figures and
tables from the book in PDF format.

• Lists a set of course notes in PDP for handouts.

• Includes a set of PowerPoint slides for lecturing,

Prentice Hall
Upper Saddle River
New Jersey 07458
wwwpreriKall.com

Pearson
Education

ISDN 0-13-04931:17- 14 These are unabridged paperback reprints of established titles widely used
by universities and colleges throughout the world. Pearson Education
International publishes these lower-priced editions for the benefit of students.
This edition rnay be sold only in th e countries to which it is consigned by
Pearson Education International. It is not to be re-exported, and is not for
sale in the U.S.A., Mexico, or Canada.

Prentice Hall International Editions 9

11
49307

9 0 0 0 0

780130

1

http://www.WilliamStallings.comiC0A6e
http://wwwpreriKall.com

THE WILLIAM STALLINGS BOOKS ON COMPUTE!?

DATA AND COMPUTER COMMUNICATIONS, SIXTH lannoN
A comprehensive survey that has become the standard in the field. covering (I) data
communications, including transmission, media, signal encoding, link control, and
multiplexing; (2) communication nchvorks. including circuit- and packet-switched, frame
relay, ATM. and LANs: (3) the TCP/IP protocol suite. including IPv6, TCP. M1MF., and
HTTP: as well as a detailed treatment of network security. Received the 21111) Text and
Academic Authors Association (TAA) award for tong -term excellence in a Computer
Science Textbook. ISBN 0 - 13-084370 -9

CRYPTOGRAPHY AND NETWORK SECURITY, SECOND EDITION
A tutorial and survey on network security technology. Each of the basic building blocks of
network security, including conventional and public-key cryptography, authentication, and
digital signatures, are covered. The book covers important network security tools and
applications, including S/MIME. IP Security, Kerberos, ssums. SET, and Vil19v3, In
addition, methods for countering hackers and viruses are explored. Received the TAA
award for the best Computer Science and Engineering Textbook of 1999.
ISBN 0-13 4;69017-0

OPERATING SYSTEMS, FOURTH EDITION
A state-of-the art survey of operating system principles. Covers fundamental technology as
well as contemporary design issues, such as threads, mierokernels, SIVIPs, real-time systems,
multiprocessor scheduling, distributed systems, clusters, security, and object-oriented design.
Third edition received the TAA award for the best Computer Science and Engineering
Textbook of 1998. ISBN 0 - 13 -03199q41

HIGI I-SPEED NETWORKS AND INTERNETS, SECOND EDITION
A state-of-the art survey of high-speed networks, Topics covered include 'MP congestion
control. ATM traffic management, internel traffic management. differentiated and
integrated services, interne(routing protocols and multicast routing protocols, resource
reservation and RSVP, and lossless and bossy compression. Examines important topic of self-
si milar data traffic. ISBN 0-13413221-0

Prentice Hall ww•.prenhall.com/stallings telephone: /00-52h-0485

AND DATA COMMUNICATIONS TECHNOLOGY

WIRELESS COMMUNICATIONS AND NETWORKS
A comprehensive, slate-of-the art survey. Covers fundamental wireless communications topics,
including antennas Lind propagation. signal encoding techniques, spread spectrum, and error
correclion techniques. Examines satellite, cellular, wireless local loop networks and wireless
LANs, including Biuetooth and 144.12.1L Covers Mobile IP and 'NAP. ISBN 0-13-1:W864-6

LOCAL AND METROPOLITAN AREA NETWORKS, SIXTH EDITION
An in-depth presentation of I he technology and architecture or local and metropolitan area
network, Covers topology, transinksion media, medium access control, standards,
internctworking. Vinci notwork management. Provides an up-to-date coverage of LAN•MAN
systems, including I.ast Ethernet. Fibre Channel, and wireless LANs, plus LAN QoS.
Received the 2001 TAA award tor long-term excellence in a Computer Science Texthimk.
ISBN 0-i:1-012939-9

ISDN AND BROADBAND ISDN, WITH FRAME RELAY AND ATM:
FOURTH EDITION

An in-depth presentation of the technology and architecture of integrated services digital
networks (ISDN). Covers the integrated digital network (I I)N), x.DSL, ISDN services and
architecture. and signaling system no. 7 (SST) and provides detailed coverage of the Ill!-'1'
protocol standards. Also provides detailed coverage of protocols and congestion control
strategies for both frame relay and ATM. ISBN 0;13-973744-5

BUSINESS DATA COMMUNICATIONS, FOURTH EDITION
A comprehensive presentation of data communications and telecommunication from a
business, perspective. Covers voice, data. image, and video communications and applications
technology and includes a number of case studies. ISBN 0-1:;-088263-1

NETWORK SECURITY ESSENTIALS
A lulorial and survey on network security technology. The book covers important network
security tools and applications, including WIMP, IP Security. Kerberos. SSL1TLS, SET,
and X509v3. In addition, methods for countering hackers and viruses are explored.
ISBN t1- 13-016093-8

Prentice Hall www.prenhall.comistallings telephone: 800-526-0.t85

COMPUTER ORGANIZATION
AND ARCHITECTURE
Designing fin' Performance
SIXTH EDITION

William Stallings

Prentice
Hall

Pearson Education International

Th ,1411.1100 Ttlny I !cl ad rill if III 11 1 0,:: LX1L111114::* to which I , C.:111!%1F.(1.Ak hy ... ki wnti.11) lintoTriA II{ OM I,

El IS M 1. 11 ;11111 II is 171!I firAli. in I ho .{11;{),

Vice l 3feuidciIt and Editorial Director. EC'S: !Weida .1. I f orton
k'tthli{Ii r: •.1?4+0 X. Ape

Managa: d'ecke erreir
Ass[}Ui:Ue r 1.5. fledor
P.cli1031.11 Ass.iistanr:
Vice ['resident alud I.nrcci{rr 01 PT4FaLtr. 1111111 4trid ManufacturingfESM: Derthic W. Ric:eon/4'
Executive Managing Editor: Vim O'Brien

Arir..istant Ma naf.zing. Edite Ginn:21f. Tr p.macovw
PrOdiJeCiinl. Edilut: ROM' KPreleet?

Dif OCLCIr {)[Cr eati'vo Services: Parr! nelfarret
C:reative DifeCLOr: Curr)h. Arisen

An Director: firithee CeirLyn'emeii

At Editor; Greg Dudes.
Coyer Designer: firohti. •
Manutieci uring Ttud y Pi.xciotti 7 224 8
Mienurael wring Huiyer: bokveU
Senior Mu rk MOIINgC17 iorteie 61)A

C., 642.sTri
21103 1-5:!.. Pearson Education, Enc. 2003 ifpvor Saddle River. New .Teirsq 1. 1715ff

All right reser...ell. Nei pan c.).1 this ha wk may be reprelalLiCefl, lorm or Fry :illy 11':ens.,

without permission in Writing; 1 .1-151:US the publisher.

The l oLhof and pfiblis her of this hoc 5k have useit their best efloris in preparing this hoc 5k. '1 9 h12S12 1217urk include the
development. fesuaieil, arid I eriaing tof the thee rrit'S. and pre igra m s 1.4F determine Muir einem ive ness.. The fi utile ir and

publisher makeato wa rfart .? cif am kind. expressed or implied, with repard in these prop .uins or the documental
131)111 i cd rn (.his book. he autlfor.and rlilh I ISh12T Sh I] DAt he liahl.12 SI y Yu.'11[l ot incidental 1. 31 LUISS11.11.1ohE

iHrn0Pc,44 ill cdn ncction with, ine 7rising uul of. the furnishing. performance, or use. of /hove pi ciAra ms.

Prfniied in thy: /Jailed States cll . America

10 7 6' 5 4 3. 2 I

ISBN I-13-17149307-4

PiYarSull EdLiciition

rcarson Education Australia PIN. Lirniied
Pearson Education Siiwapore. Pte. Lad.

}'Carson Educalroii North Asia Da

Peiirsein Eclucaiinr Cat c!a. Inc.
Pearson Ed ticaiefo n de Mexico, S.A. de C..V.
Yen rsem Pdilealion—,11;ipfin

Penrson Fclucatinn Malaysia, Pie. Ltd.
armin Eclucalion, tipiwiNewirdif. Nod! Lice,p..,tiy

I: I I

As cilways
For A. T. S.

WEB SITE FOR COMPUTER
ORGANIZATION AND
ARCHITECTURE
Sixth Edition

The Web site at WilliamStallings.conA:0A6c.htral provides sup-
port for instructors and SA LAtTILS using the book. It includes the

elernunVi-

Course Support Materials

The course support materials inciudc

▪ Copies of figures from the book in PDF forma L

▪ Copies of tables from thu book in PDF format
■ A set of PowerPoint slides for use as lecture aids

▪ A set of PDF course noit;.s suitable for student handout
or for use 41.:S viewgrLiphs

• Computer Science Student Resource Si1r2! contains a number
of]inks and documents chat students may find useNI in their
ongoing computer science education. The site inciudesx review
of basic_ rele ,...ant mathematics; adviee on research, writing, and
doing homework problems; links to computer science research
resources, such as report repositories and bibliographies; and
o[11,2r useful links

■ An errata shed I:or the book, updated at most monthly

COA Courses

I he COA.5e Wet) s Le includes]inks to Web sites for eours.cs mught
using the book. These sites can provide lawful ideas about sched-
uling and topic ordering, as well a s a number of useful handouts
and other matcr 41 Es.

Useful Web Sites

The COAfic Web itc includes links to relevant Web sites. The links
cover a broad spectrum Of iopics and will enable students to explore
timely issues in greater depth;

Internet Mailing List

An Internet mailing list is maintained so that instructors using this
book can exchange information, sugge4...lions, and qUO;i1i0m. with
each other and the ittL OOT. Subscription information is provided at
the book's Web sill:.

Simulation Tools for
CA Projects

'ihe Web site includes links to the SintpkSo kir and WPC:ache
Web .rites. These are two software packages that serve is frame-
works for project iniplerncrita1ion. Each site includes downloadable
software and background information. See Appendix C for more
inrOrMatiOn.

CFLAPTER 3

Introduction 3

Organizaticiii -ind Arclitual:tre 4
Structure. and Function 5
Why study Computer OrAani.?..a.tion :and

rch I e:et ate? 10 • .
• ":4.

, .

OLE.0110 ul 1i3C: Book LI
interne,t and Web Resourccs

'CHAPTER 2 Computer Evolution

A Bri(.21 . HiNuor...! of 2. Computers 1(i
Designing ror Perform 77
Pentium Rod PowerPC Evolinion 41
Rucommendcd Re.ading and Web Sits 44
K.c:y k.eview. Ouestion8, and Problems

A ' -.17 op-Levei View of Computer Function
and Interconnection 49

3.3 Computer Components 5(1
3.2 Computer Function 53
3.3 Interconnection Structiii.s
3.4 Bus Interconnection 69
3.3. P('1 79
3.6 Reconimendc4 Reading and Well Sites 89
3.7 Key Terms, Review Quic,tionz;., 4, nd Problems
Appendix 3A: Timinr2. Diagrams 92

Cache Memory 95

4.1 Computer Memory SysLarn Overvivw 96
4.2. Cache Memory Principles. 1{13

4,4
1:.:deE1enIN of CEIChC DOSigri. 106

Poruium 4 rind PowErPC Cache Organizations
4,5 Recommended Rc2adirtg 125

Kcy Terms, Review Questions. and Problcins
Appendix 4A; Puu1'orm41].}ce. Characteristics of

Two-Le•el N1,-,..ral.nes 128

x CONTENTS

CHAPTER 3 Internal Memory 137

5,1 Semiconductor Main Memory 138
52 Error Correction 148
5.3 Advanced DRAM Organization 154
5,4 Recommended Reading and Web Sites 159
55 Kcy Terms, Review Questions. and 2m, 16)(

CHAPTER 6 Exteenal Memory 163

6,1 Magnetic Disk 164
6.2 R,A.II3 174
6.3 Opticai Memory 184
6.4 Magnetic Tape 189
6.5 Reconirncnded Rcading and Web Sites 191
6:6 Key Terms, Review Questions, d Problems 192

CHAPTER 7 Input/Output 195

7.1 Exlernal Devices 197
110 Modules 201

7.3 Programmed I/O 204
7.4 Interrupt-Driven I.10 2.08
7.5 Direct Memory Aecuss 216
7.6 I/O Channels and Processors 220
7.7 The External Interface: FireWirc kind InfiniBand 223
7.8 Recommended Reading and Web Sites 233
7,9 Key '1‘crTns, Review Questions, and Problems 233

CHAPTER 8 Operating System Support 237

8.1 Operating System Overview 28
8.2 Scheduling 250
8.3 Memory Management 256
8,4 Pentium 11 and PowerPC Memory Management 269
8.5 Recommended Reading and Web Sites 277
8,6 Kcy 'Ferms, Revicw Questions, and Problems 278

PART THREE THE CENTRAL PROCESSING
UNIT 281

CHAPTER 9 Computer Arithmetic 283

9.1 The Ariihrne(ie and Logic Unit 284
2 Integer Representation 285

9.3 Integer Arithmetic 29]
9.4 Flooring-Pin Representation 307
9.5 Floating-Point Arithmetic 333
9.6 Recommended Reading and Web Sites 324
9.7 Key Terms, Review Questions, and Problems 325

CO NT

CHAPTER 10 Instruction Sets: Characteristics and Functions 329

Machine Instruction Characteristics 330
10.2 Types or Operands 337
10.3 Pentium anti PocketPC Data Types 339
10.4 Types of Opor;.iiions 341
10.5 Pentium and PowerPC Operalion Types 355
10.6 Asscrnbty Language. 364
10.7 Recommended Reading 366
111.8 Key Terms, Review Questions, and Problems 360
Appendix I0A -, Stacks 371
Appendix 10H.: Little-, Big-, and Bi-Eridian 376

CHAPTER 11 Instruction Sets: Addressing Modes and
Formats 381

11.1 Addressing 382
11,2 Pentium 11-1(1 PowerPC Addressing Modes 359
11.3 Instruction Formats 395
11.4 Pentium and PowerPC Instruction Formats 404
11.5 Recommended Rending 408
11.6 Key 'Terms, Review Questions, rand Problems 409

CHAPTER 12 CPU Structure and Function 411

12.1 Processor Organization 4 [2
12.2 Register Organization 414
12.3 Instruction Cycle 420
12.4 Instruction Pipelining 424
12.5 'The Pentium Processor 440
12.6 The PowerPC Processor 430
12,7 Recommended Reading 457
12.H Key Terms. Review Questions, and Problems 458

CHAPTER 13 Reduced Instruction Set Computers 461

13.1 Instruction 1-:Necution Characteristics 463
13.2 The Use of a Largc Register Fite 467
13.3 Compiler-Based Register Optimization 473
13.4 Reduced Instruction Set Areill Cod 'Luc. 474
13.5 RISC Pipelining 482
13.6 MI PS 84000 486
13.7 SPARC 494
13.8 RISC versus C1SC: Controversy 500
13.9 Recommended Reading 501
13.10 Key Turns, Review Questions, and Problems 502

Xii C',ONTRNTS

CHAPTER 14 Instruction-Level Parallelism and Superscalar
Processors 5O

14.1 Overview 507
14.2 Design Issues 511
14.3 Pentium 4 520
14.4 PowerPC 527
14.5 Recommended Reading 535
14.6 Key Terms, Review Questions, and Problems 536

CHAPTER 15 The 1A-64 Architecture 541

15.1 Motivation 543
15.2 General Organization 544
15.3 Predication, Speculation, and Software Pipelining 546
15.4 1A-64 Instruction Set Architecture 563
15.5 Itanium Organization 568
15.6 Recommended Reading and Web Sites 569
15.7 Key Terms, Review Questions, and Problems 570

PART FOUR. THE CONTROL UNIT 573
CHAPTER 16 Control Unit Operation 575

161 Micro-Operations 577
16.2 Control of the Processor 583
16.3 Hardwired Implementation 594
16.4 Recommended Reading 597
16.5 Key Terms, Review Questions, and Problems 597

CHAPTER 17 Microprogrammed Control 599

17.1 Basic Concepts 600
17.2 Microinstruction Sequencing 609
17.3 Microinstruction Execution 615
17.4 1 1 SW} 627
17.5 Applications of Microprogramming 637
17.6 Recommended Reading 638
17.7 Key Terms. Review Questions. and Problems 639

PART FIVE PARALLEL ORGANIZATION 641
CHAPTER 18 Parallel Processing 643

18.1 rdultiple Processor Organizations 645
18.2 Symmetric Multiprocessors 647
18.3 Cache Coherence and the MESI Protocol 656
18.4 Clusters 663
18.5 Nonuniform Memory Access 670
18.6 Vector Computation 674
18.7 Recommended Reading 687
18,8 Key Terms, Review Questions, and Problems 688

CONTENTS Xiii

APPENDICES
APPENDIX A Digita/ Logic 693

A.1 Boolean Algc4-Fr4i 694
A.2 Gates 696
.A1 Corn binational Circuits 699
A.4 Sequential Circuits 720
A,5 Problems 7:O

APPENDIX B Number Systems 733

B.I. The Decirrml Sp.licui 734
11,2 The Binary System 734
B..3 Converting between Binary and Deein-A 7.3.5
BA I lexackeirmil Notation 73
13.5 Problems 739

APPENDIX C Projects for Teaching Computer Organization
and Architectute 741

C.1 Re.7,.(2. 1rat Projects 742
C.2 Simulation Projects 742
C.3 Reading/Report Assignments 743

GLOSSARY 745

REFERENCES 757

INDEX 773

PECEFACE

••• ..••-:• -4=3:r-2'r • ..."7•4,̀-1:

bOok is about the structure and function of computers. Its purpose is to
present. as clearly and completely as possible, the nature and characteristics
of modern-day computer systems.

rhis task is challenging for several re, sans. l first, there is a tremendous
variety of products that can rightly claim the name of computer, from single-
chip microprocessors costing a tcw dollars to supercomputers costing tens of
millions of dollars. Variety is exhibited not only in cost, but in size. perfor-
mance, and .application. Second, the rapid pace of change that has always
characterized computer technology continues with no letup. These changes
cover all aspects of computer technology, from the underlying integrated cir-
cuit technology used to construct computer components, to the increasing
use of parallel organization concepts in combining those components.

In spite of the ,,.. ariety and pace of change in the computer field. certain
fundamental concepts apply consistently throughout. The application of
these concepts depends on the current state of the technology and the
pricelperformanc.e objectives of the designer. The intent of this hook is to
provide a thorough discussion of the fundamentals of computer organization
and architecture and to relate these to contemporary design issues.

The subtitle suggests the theme. and the approach taken in this book. It
has always been important to design computer systems to achieve- high per-
formance, but never has this requirement been stronger or more difficult to
satisfy than today. All of the basic performance characteristics of computer
systems, including processor speed, memory speed, memory capacity, and
interconnection data rates, are increasing rapidly. Moreover• they are
increasing ait different rates. This makes it difficult to desiv,rn a balanced sys-
tem that maximizes the performance and utilization of all elements. 'Thus,
computer design increasingly becomes a game of changing the structure or
function in one area to compensate for a performance mismatch in another
area. We will see this game played out in numerous design decisions through.
out the book.

xvi PREFACE

A computer system, like any syStem, consists of an interrelated set of compo-
nents. The system is best characterized in terms of structure—the way in which
components are interconnected—and function—the operation of the individual
components. Furthermore, a computer's organization is hierarchical. Each major
component can be further described by decomposing it into its major subcompo-
nents and describing their structure and function. For clarity and ease of under-
standing, this hierarchical organization is described in this hook from the top down:

■ Computer System: Major components are processor. memory. and 1/0.

■ Processor. Major components are control unit. register, A1.1), and instruc-
ti on execution unit.
Control Unit: Major components are control memory, microinstruction se-
quencing logic, and registers.

The objective is to present the material in a fashion that keeps new material
in a clear context. This should minimize the chance t hat the reader will get lost and
should provide better motivation than a bottom-up approach.

Throughout the discussion, aspects of the system are viewed from the points
of view of both architecture (those attributes of a system visible to a machine lan-
guage programmer) and organization (the operational units and their interconnec-
tions that realize the architecture).

EXAMPLE SYSTEMS

..;Ardrd, rr'
 • dr

'Phis hook uses examples from a number of different machines to clarify and re-
inforce the concepts being presented. Many, but by no means all, of the examples
are drawn from two computer families: the Intel Pentium 4, and the IBWMotorola
PowerPC. These two systems together encompass most of the current computer de-
sign trends. The Pentium 4 is essentially a complex instruction set computer (CISC)
with some RISC Features. while the PowerPC is essentially a reduced instruction set
computer (RISC). Both systems make use of superscalar design principles and both
support multiple processor configurations.

PLAN OF THE TEXT

The book is organized into live parts:

Part One—Overview: This part provides a preview and context for the remain-
der of the book.
Part Two—The Computer System: A computer system consists of processor,
memory, and 110 modules. plus the interconnections among these major com-
ponents. With the exception of the processor, which is sufficiently complex to
he explored in Part Three. this part examines each of these elements in turn.

PREFAch xvii

Part Three—The Central Processing Unit: The CPU consists of a control unit,
reaisters, the wirhrricikl and logic unit, the instruction execution unit, and the
interconnections among these components. Architectural issues, such as i nstrue-
lion sot design and data types, are covered, Part Three also]ooks at orLianiy.a-
tional issues, such as pipelining.

Part Four—The Control Unit: The control unit is that part of the processor that
aciivales the various components of the processor. This part looks at the func-
tioning of the control unil and its implementation using microprogramming.
Part Five—Parallel Organization: This final part]ooks at some of the issues
involved in rnuiiiple processor mid vector processing organizations.

The book also includes an extensive glossary. a list of frequcntiv used acro-
nyms, and a bibliography. Each chapter includes homework problems, review
questions, a list of key words, suggestions for further reading, and recommended
Web sites.

A more detailed, chapter-by-chapter summary of each part appears at the
beginning of lhaL part,

INTENDED AUDIENCE
• fry.f.:§‹;;;-*; - -

Ire,..fry• - •rfer•#..-0.1.5p,"3',":•,5•1•
1.4 Xer. eer ere ar

The hook is intended for both an academic and a professional audience. As a text-
book, it is intended as a one- or two-semester undergraduate course for computer
science, computer engineering, and electrical engineering majors. It covers all the
topic-5 in CS 220 Computer .0 .00f:titre, which is one of the core. subject areas in the
EE ErA CM Cr .,pmputer Cr ricrila 2001 PTFOG

For the professional interested in this field, the hook serves as a basic refer-
ence volume and is suitable for self-study.

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS

There is a Web site for this book that provides support for students and insiruetors.
i he wile includes links to other relevant sites, copies of the figures and tables from
the book in Pflb . (Adobe Acrobat) format, and sign-up information for the book's
Internet mailing list. The Web page is 11 WilliamS1allings,eonlICO Me.h1rnl: see
the section, - Web Site for Computer 'Organizaticni and Architecture, Sixth Edi-
tion'', preceding [his Preface, for more information. An Internet mailing list has
been set up so that instructors using this book can exchange information, sug-
gestions, and questions with each other and with the author. As soon as typos
or olher errors are discovered. an errata list for this book will be available at

hiamStallings.com . In addition, the Computer Science Student Resource site, at
WiiliamStallings,corn/StudentSupport.htud, provides dociimun is, information, and
useful links for computer science students and professiona]s.

http://hiamStallings.com

xviii PlKLEACF

PROJECTS FOR TEACHING COMPUTER ORGANIZATION
AND ARCHITECTURE

For army instructors, an important component of a computer organization and
architecture course is a project or set of projects by which the student gets hands-
on experience to reinforce concepts from the text. This book provides an unparal-
leled degree of support for including a projects component in the course- The
instructor's marmil not only includes guidance on how to assign and structure the
projects, but also includes a set of suggested projects that covers a broad range of
topics from the text:

■ Research projects; The manual includes ri series of assignments that instruct
the student to research a particular topic on the Web or in the literature, 4md
write a report.

• Simulation projects: The manual provides support for the use of the two sim-
ulation packages: SimplcScalar can be used to explore computer organization
and architecture design issues. SkIPCache provides a powerful educational
tool for examining cache design issues for symmetric multiprocessors.

▪ Rcadiogireport assignotents: The manual includes a list of papers in the liter-
ature. one or more for each chapter, that can be assigned for the student to
read and then write a short rcport

,

See Appendix C for details.

WHAT'S NEW TN THE SIXTH EDITION

In the three years since the fifth edition of this book was published, the field has
seen continued innovations and improvements. In this new edition, I try to capture
these changes while maintaining Li broad and comprehensive coverage of the entire
field. To begin this process of revision, the fifth edition of this book was extensively
reviewed by a number of professors who reach the ;40 0. In addition, a number of
professionals working in the field reviewed individual chapters. The resell is that, in
many plac.i.:27., the narrative has been clarified find tightened, and illustrations have
been improved. Also, a number of new . 'field-tested' problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, there
have been substantive changes throughout the book. Roughly the N.411TIC chapter
organization has been retained, but much of the material has been revised and new
material has been added. Some of the most noteworthy changes are the following:

▪ 1A-64/I11inium architecture: This new architecture includes such important
Concepts as predicated execution and speculal ive loading. 7 Ills edition features
a chapter-length description and analysis.

l'KEEACE xix

• Cache memory .: Cache memory is a central element in the design of high-
performance processors, and cache detiign has become increasingly complex.
An entire chapter is devoted to this issue in the new edition.

• Optical memory: 'the material on optical memory has been expanded and
updated.

• Advanced I MAM architecture: More material has been added to cover this
topic, including an updated discussion of SDRAM and RDRAM.

• SMPK, clusters. and NUMA systems: The chapter on parallel organization has
been expanded and updated.

• Expanded instructor support: As mentioned previously, the book now pro-
vides extensive support for projects. Support provided by the book Web site has
also been expanded,

ACKNOWLEDGMENTS

This new edition has benefited from review by a number ill people, who gave gen
erously of their time and expertise. .1.'he following people reviewed all Or a large part
of the manuscript: Willis King (University of I louston), Albert Heaney (California
State University), A. S. Pandya (Florida Atlantic University). Yaser Khalifa (Uni-
versity of North Dakota), and Sanjecv Baskiyar (Auburn University).

Thanks also to the many people who provided detailed technical reviews of
a single chapter: Nicole Kaiyan, Terje Mathisen, Daniel M. Pressel, Jeff Deifik, Bill
Todd. Charlie Cassidy, Andy Isaacson, Alex Potemkin, Michael Spratte. Hatem
Yassine. Grzegorz Mazur, Alan. Leholsky. Jonathan Hall. Sophie Wilson, Alan
Alexander, David Vickers. Pete. Smoot, and Erik Seligman.

Professor Cindy Norris of Appalachian State University contributed some
homework problems.

Professor Miguel Angel Vega Rodriguez, Prof, Dr. Juan Manuel SArichez
P6re.e., and Prof. Dr. Juan Antonio Gomez Pulido, all of University of Extremadura,
Spain prepared the SMPCache problems in the instructors manual and authored
the SMPCache User's Guide.

Bezenek of the University of Wisconsin and Janes Stine of Lehigh Uni-
versity prepared I he SimpleScalar problems in the instructors manual, and Todd
also authored the SimpleScalar User's Guide.

BOUT THE A

WI L..1..J.ANI ST.ALLINGS has made a unique contribution to understanding
the broad sweep of Icchnictil developments in computer networking and
computer architecture. l.ic has E3tithored 1.7 tiller, Lin.d.eounting revised edi-
lions, a total of .35 books on various .:]ir pecits. ol' these subjc.ets..1-'or live vt.7,an,
ill ET row.. he has; been the•recipient of the award for the hest Computer Sci-
ence and Prigineering t.c:01),..),..pk of the year from the Textbook kind Acade-
mic Authors Association.

In over 2 years in the field. Dr. Stallings lias heel' a technical contrib-
LItor, ,. technical manager and an executive. with several high-technology firms.
He is an independcill cor.isuhant whose clients have included computer Ei nd
networking rrizmufacturers and custorners.. s.oftm...;ii.c devel opmetit firm..., and
leading.4.2dge government research institutions, He: created and maintains the
Computer Scicficc Student 1-Z. ,...:•source Site it

i I I La m St. a I tin gs.eorniS I 0 de n i S u pport .131m.l.
1)r, Stallings holds a Ph.D. from MIT in computer science. and a . 11!-S.

From Notri.:: .r..)arn.p. in electrical engineering..•__ •__.......__ _._..•.•.
::....,..-;......4.,-,,;.4:::::.,-1:..,,,- -••,... -,....,.:4-..,....,4.-- -_,___..4,- 2.7.kr...i:„..-....,,,,,.:::-..(7....,:.:„.:, •-•.,p...4--4.-0,.:-....,›.- ...r. - • f.:,:........,,,... -.... ,-....r-,.. - ---... -,........-1....,,,, , ,.....,...,-....?...:Jr....., ...;., 4.;.:-,..,,mrr,. L.,.0:,;.•:,.,....f..k.-;,.5...„..;:.:2:.E.04,:::„...w.:4.-0..5,....

..=:-?•--1...,,f--- "--&-1514-----"•.'.----:>"":'::!;:r--- •-::,..-..,..1?•;„."'"7--„,:•_.,--e-r"-fr•fi-li:;":::.:f.:I--"L-gl....-"5•5:1------:-----se-,--,..-:•---'-•:,,..-, -„...1,-.....-..... 1.5,%:-.
.1..Slx.:-..,"...:=-S1,41Z.....-}rjr,S.,...-,..' .fe.3.6..-,...'W.;-:;:q... ...::X-5...".",.." .,.....-',..s. --.'",:s.. - ' '-'•-•:=4:•-....,-,...--.:,-x,:*.K...--....f.4-*-:.::::-...:%:-;-
,--111-:44.-.::::,,,17."'",."-=>%-x."---":::Vf.,-. ...-:.?....:7 - --6"5:-• .-4 6,-.....1:-:.=4.::,-...e..ek:-..;;;...z.-K.-0.13.,,..?..2.,-...:;..sofs...K.5:tsf.sf.-.*:4:;-:§:.-.,,,,..§:of.itlf.:10-
............,%%.,*:„.ff f...1.,......-.... -.fp% .e..' 1:',......... -- -1r.t:H. -,2""f " ...0- - • .f.r.re-- cle:f•r-r.r....,,, .7..{.-..- •• .1....--:,,,,Ii•-•:-1,-Pt-r-.4-SS,',...f....A.---,Xe '

-1...t.e. :.!.r.f.MPtw....3.,,,Z.,,,..Se.,„12:5::.:;.E.10.1.*.A....3.;.r....73-.15.-ry.....5W.,,,r,..r...,:fAl.:_-WI-X,...*:. -...--..r. :".•,.... - -::: - ' .. _ . - _1,...,1,...,1,
.04.1,-;.:' - '

..r:r.k. - -!• , -;+:-.1.1c.-,,
re' :0•1:- ..- ' - - ...X;;I:it.;,- --?;.1...f . Ai....43,14.0;r:::14.5.ilff Pr:: ..1:-

..,.
- .r .-21..X.:.*:::?1F,Fre:6-,....:".;::.!-:.?...-L!:.1,:e..c.!fEi.1.,..;::::41.r._ ...e. :::!;?:.::: .0;11.-..., -.- ...%;.',111... lr." ..Ar.fr.r-tt irr:',-,:":04•• -"•:•4'.- -e.5.:4.6.-:Dr..1.4.-ril - "",!..k..):- e;."-.1.•;•=,"-',-..„) , , ,L,-.1 : : ..'. .0 1 6. .::.: Ytr.f. . . . -.§ --: ..-.•:H. ::,: .-.. : . .• : : .-;r4:. .:.• ..1' :: : -, ... •.::='-':1-S-1,-, •: -.f..., -,,..".%,...,-.-•

• .1,-.01:::::',-X:VOr•-•Pr.r.4:4.1'...1; -SA.,-.1.11,,• -..r.1.1. ,, - .:...' ..--, 1., 1.-"--,...-,....,--..• ,::*-e ::...' ..1.... -••••A:::-.:::::reAr5:rr~ ..:.;.. '"Sr.r.".. f;'.=--,rri: - "S......1".; :e.r_. ?)".-,--,-.5"..14,-..'::-::.X...4:;54:6-
t-...,..-4-..-76.;_-......?-5.3...........-S1:r....7.g..,,,Cr..''.:,..:t-",....1.--%;t2-1:-....0%,:a.1....•..":-a...1-.Z. %Ari.:..,

..., ..-..5....*E.5..s:;....0.:;,;.•=',1$1;',:gr,...?5essLIEF.:..,":::,-4-;.:-:i; •:;..-21-1. ..7..::E1::e.‹.,.*:-:::-...:::.4:!..........X0...*:).s.r.fe..::..........;;,;: *:::41.,.".::„0::::::."-: ::§1:9;;Wr

.. ... • ..- :.• -z-r..... • ..: ...,;..x.."%-:11,:s.--ee....",:fi S. rf rr-

PART
ONE Overview

The purpose of Part One is to provide a background and context for the
remainder of this book, The fundamental concepts of comp u ter organization

. and architecture are presented.

•

Chapter 1 Introduction
Chapter I introduces the concept of the computer as a hierarchical system.
A computer can be viewed as a structure of components and its function
described in terms of the collective function of its cooperating components.
Cach componeni, in turn, can be described in terms of its internal structure
and function. The major levels of this hierarchical view arc introduced. The
remainder of the. book is organized, top down, using these levels,

Chapter 2 Computer Evolution and Performance
Chapter 2. serves two purposes. First, a discussion of the history of computer
technology is an easy and interesting way of being introduced to the basic
concepts of computer organization and architecture. The chapter also
addresses the technology trends that have made performance the focus of
computer system design and previews the various techniques and strategies
that are used to achieve balanced, efficient performance.

CHAPTER

INTRODUCTION

1.1 Organization and Ambitii.eture

1.2 Structure and Function

Function
.StructuDe

1.3 Why Study Computer Organization and Architecture?

1.4 Outline AeBook

1.5 Internet and VVreb Resources

Web Sites rot This Book
Other Web Sites
US EN F.:f Newsgroups

4 CHAPTER 1 / INTRODUCTION

Thi, hook is about the structure and function of computers. Its purpose is to
present, as clearly and completely as possible, the nature and characteristics

 (A . modern-day computers. This task is a challenging one for two reasons.
I.irst, there is a tremendous variety of products, from single-chip microcom-

puters costing a few dollars to supercomputers costing tens of millions of dollars,
Ihat can rightly claim the name computer. Variety is exhibited not only in cost, but
also in size, performance, and application. Second. the rapid pace of change that has
always characterized computer technology continues with no letup. These changes
cover all aspects of computer technology, from the underlying integrated circuit
technology used to construct computer components to the increasing use of par-
allel organization concepts in combining those components.

In spite of the variety and pace of change in the computer field. certain funda-
mental concepts apply consistently throughout. To be sure, the application of these
concepts depends on the current stale of technology and the priceiperformance
objectives of the designer. The intent of this book is to provide a thorough discus-
sion of the fundamentals of computer organization and architecture and to relate
these to contemporary computer design issues. This chapter introduces the descrip-
tive approach to be taken and provides an overview of the remainder of the book.

1.1 ORGANIZATION AND ARCI-11TliCTURE

In describing computers, a distinction is often made between computer archieecture

and computer organizinion. Although it is difficult to give precise definitions for
these terms. a consensus exists about the genera] areas covered by each (e.g., see
[VRANNOI. [SIEW82], and IBELL78a]).

Computer architecture refers to those attributes of a system visible to a pro-
grammer or, put another way those attributes that have a direct impact on the log-
ical execution of a program. Computer organization refers to the operational units
and their interconnections that realize the architectural specifications. Examples of
architectural attributes include the instruction set, the number of bits used to rep-
resent various data types (e.g., numbers, characters), I/0 mechanisms, and tech-
niques for addressing memory. Organizational attributes include those hardware
details transparent to the programmer, such as control signals, interfaces between
the computer and peripherals, and the memory technology used.

As an example. it is an architectural design issue whether a computer will have
a multiply instruction. It is an organizational issue. whether that instruction will be
implemented by a special multiply unit or by a mechanism that makes repeated use
of the add unit of the system. The organizational decision may be based on the antic-
ipated frequency of use of the multiply instruction, the relative speed of the two
approaches, and the cost and physical size of a special multiply unit,

Historically, and still today, the distinction between architecture. and organi-
zation has been an important one, Many computer manufacturers offer a family of
computer models, all with the same architecture but with differences in organiza-
tion. Consequently, the different models in the family have different. price and per-
formance characteristics. Furthermore, a particular architecture may span many
years and encompass a number of different computer models. its organization

1.2 / STRUCTURE AND l'UNCTION 5

changing with changing technology. A prominent example of both these phenom-
ena is the IBM System/370 architecture. This architecture first introduced in
1970 and included a number of models. The customer with modest requirements
could buy a cheaper, slower model and, if demand increased, later upgrade to a
more expensive. faster model without having to abandon software that had already
been developed. Over the years, IBM has introduced many new models with
improved technology to replace older models, offering the customer greater speed,
lower cost, or both. These newer models retained the same architecture so that the
customers software investment was protected. Remarkably. the Systemi370 archi-
tecture, with a few enhancements. has survived to this day as the architecture of
IBM's mainframe product line.

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence
organization but also result in the introduction of more powerful and more complex
architectures. Generally, there is less of a requirement for generation-to-generation
compatibility for these smaller machines. Thus, there is more interplay between
organizational and architectural design decisions. An intriguing example of this is
the reduced instruction set computer (RISO, which we examine in Chapter 12.

This book examines both computer organization and computer architecture_
The emphasis is perhaps more on the: side of organization. I lowever, because a com-
puter organization must be designed to implement a particular architectural speci-
fication, a thorough treatment of organization requires a detailed examination of
architecture as well

1.2 STRUCTURE AND FUNCTION
-

A computer is a complex system; contemporary computers contain millions of ele-
mentary electronic components. How, then. can one clearly describe them? The key
is to recognize the hierarchical nature of most complex systems, including the com-
puter [SIM069]. A hierarchical system is a set of interrelated subsystems, each of
the latter, in turn, hierarchical in structure until we reach some lowest level of ele-
mentary subsystem.

The hierarchical nature of complex systems is essential to both their design
and their description. The designer need only deal with a particular level of the
system at a time. At each level, the system consists of a set of components and
their interrelationships. The behavior at.each level depends only on a simplified,
abstracted characterization of the system at the next lower level, Al each level, the
designer is concerned with Structure and function:

• Structure: The way in which the components are interrelated
• Function: The operation of each individual component as part of the structure

In terms of description. we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the
system into its subparts. Evidence from a number of fields suggests that the top-
down approach is the clearest and most effective [WEIN75].

6 CI-BYTER 1 INTRODUCTION

The approach taken in this book follows from this viewpoint. The computer
system be duscribed from the top down. We begin with the major components
of a computeY, describing their structure and function, mid proceed to successively
tower laycN of the hierarchy. The remainder of this fection provides a very brief
overview of this plan of attack.

F unc tion
Roth the structure and functioning of a computer are, in essence, simple, Figure
1.1 depicts the basic functions thal a computer can perform. In general term, there
are on4 , four:

• Data processing
• Data storage

• Data movement

• C0111-rtg

Operating eirviroxinient
t ,..ourou and destinatiun J datall

III Contra:
mechanisni .11

Figure Li A Functional Victv of thc. Computer

1.2 J STRUCTURE AND FUNCTION 7

The computer, of course, must be able to process data, The data may take
a wide variety of forms, and the range of processing requiretnents is broad. How-
ever, we shall see that there are Only a few fundamental methods or types of data
processing.

It is also essential that computer store do u r. Even it' the computer is pro-
cessing data on the fly data come in and get processed, and the results go out
immediately), the computer must temporarily store at least those pieces of data
that are being worked on at any given moment. Thus, there is at least a short-term
data storage function. Equally important, the computer performs a long-term data
storage function. Files of data are stored on the computer for subsequent retrieval
and update.

The computer must he able to move data between itself and the outside world.
The computer's operating environment consists of devices that serve as either
sources or destinations of data. When data are received from or delivered to
a device that is directly connected to the computer, the process is known as inpur-
ourPlit (1r'O). and the device is referred to as a perfpheral. When data arc moved
over longer distances, to or from a remote device, the process is known as data
commanications,

Finally, there. must be control of these three functions. Ultimately, this control
is exercised by the individual(s) who provides the computer with instructions.
Within the computer, a control unit manages the computer's resources and orches-
trates the performance of its functional parts in response to those instructions.

Al this general level of discussion, the number of possible operations that can
be performed is few. Figure 1.2 depicts the four possible types of operations. The
computer can function as a data movement device t Figure 1.2a), simply transferring
data from one peripheral or communications line to another. It can also function as
a data storage device (Figure 1.21)), with data transferred from the external envi-
ronment to computer storage (read) and vice versa (write). The final two diagrams
show operations involving data processing, on data either in storage (Figure 1.2e)
or en route between storage and the external environment (Figure 1,2d),

The preceding discussion may seem absurdly generalized, it is certainly possi-
ble, even at a top level of computer structure, to differentiate a variety of functions,
but, to quote 1SIEW821,

There is remarkably little shaping of computer structure to fit the function to be
performed. At the root of this lies the general-purpose nature of computers, in
which all the functional specialization occurs at the time of programming and not
at the time of design.

Structure
Figure 1.3 is the simplest possible depiction of a computer. The computer interacts
in some fashion with its external environment, In general, all of its linkages to the
external environment can he classified as peripheral devices or communication lines.
We will have something to say about both types of linkages.

But of greater concern in this book is the internal structure of the computer
itself, which is shown at a top level in Figure 1.4, There are four main structural
components:

8 CI-TATTER 1 / INTRODUCTION

Figure 1.2 Possibl urpui r Op rtxfinns

1.2 STRUCTURE AND FUNCTION 9

Figark: 1.3 The Computer

• Central processing unit (CPU): Coma)Is the operation oI the computer and
performs iEs drug processing functions often simply referred lo as procinaer

• Main memory: Stores data
• 110: Moves daia between the computer and its external cnvironment
• System interconnection]: Some mechanism that provides for communication

among CPU, rmin memory, and I/O

There may he one or more of each of the aforementioned components, Tra-
ditionally, there has htxn just a Singh: CPI:, In recent years, there has been increas-
ing use of multiple processors in a single computer. Some design issues relating to
multiple processors crop up and are discussed as the text proceeds: Part Fire focuses
on such computers,

Each of these components will he examined in some detail in Pad Iwo. How-
ever, for our purposes, the most interesting and in mile ways the most complex
component is the (:13 1„: its structure is depicted in Figure 1_5. Its major structural
components are as follows:

• Control unit: Controls the operation of the CPU and hence the computer
• Arithmetic and logic unit (ALU): Performs the computer's data processing

funct ions
6 Registers: Provides storage inl erna I to the CPU
• CPU interconnection: Some mechanism that provides for communication

among the control unit, ALU, and registers

Each Of these components will be examined in some detail in Part Three. where we
will see that complexib.,.y is added by the use of parallel and pipeiined organizational
techniques, Finally. l]iere arc several apprcmches to the implementation of the con-
trol unit, but the most common is a microprogrammed impiernentation• In essence,

10 CHAPTER 1 / INTRODUCTION .

Fivre 1.4 The Com1)111cr: rop-Lcvel Str LICt LL

microprograrnmed ct Introl 1.111 t operates by executing microinstructions that tkriElo
the functionalily of the control unit, With this approach, the structure of the control
unit can be depicted as in Figure 1.6. This structure will be examined in Part Four.

1.3 WHY STUDY COMPUTER ORGANIZATION . ,
AND ARCHITECTURE?

ThQ1ELESACM Complier Curricula 200] Iii 1, prepared by the Joint Task
Force on Computing Curricula of the lEEH (Institute of Electrical and Electronics
Engineers) Computer Society and ACM (Association for Computing Machinery).
lists computer architecture ari one of the core subjcet!i that should be in the curricu-
lum {,r all students in computer science and computer engineering. The report says
the following:

Arithmetic
mt

logic unit

i WHY STUDY COMPUTER ORGANIZATION AND ARCHITECTURE? ii

The. compuiler lies at the heart or compoling. Without it most or the cornputjng
disciplines today would be a branch of theorotical mathematics. To be a profes-
sional in any field of computing today. one sli .ould not regard the computo . as . inst
a black box That executes programs by magic. All students of computing should
acq uire some and erstandin and appreciation of a cc.kmptiter s} stern's functional
eumponents, their charact4:risties : their perforinanm, and their interactions.
'Fhere are prnctical implications as well. Students aced tik understand computer
iirehitecture irk order trk structure a program so that it runs moire efficiently on a
real machine_ in selecting a system to usu.. Ilicy should is able. to Unilurstand the
tradeoff aniung various componi nts. such as CPI! . clock speed vs. ir n Mice.

I CLEN1001 givG5 the following examples w reasons for studying computer
architecture:

Figure 1-5 The Cendr.ill l'ruc.:c.ssing Unit (CPU)

ontrol unit
r.ogister9 and
decoders

12 CHAPT.EiTt. 1 INTRODLrICTION

Figure l.6 Conirol Unit

1. Suppose a graduate enters the inclus..lry and is asked lo select the namt cost-
effective computer for use throughout a large organization. An understanding
()I' the implications or spending more for various alternatives. such as a largo'
cache or a higher processor clock rare, is essential to making the deciSion.

2. Many processors arc not used in PG or servers but in embedded systems, A
designcr rria:%. , program it processor in C that is embedded in some real-time or
larger system, such as 4i11 intelligent automobile electronics. controller. Debug-
ging the system may require the use of a logic analyzer that displays tic..rela-
tionship between interrupt requests from engine sensors and machine-level code,

3. Concepts used in computer architecture find application in other courses. In
particular, the way in which the computer provides architect ural support for
programming languages and operating system facilities reinforces concepts
Front those areas.

1.5 J IN 1E.I.LNET AND 'WI RESOLTR.CES 13

As can he seen by perusing the table of contents of this book, computer orga-
nization and architecture encompasses a broad range of design issues and concepts.
A good overall understanding of these concepts will he useful both in other areas of
study and in future work after graduation.

1.4 OUTLINE OF THE BOOK

The hook is organized into five parts:

Part One Provides an overview of computer organization and architecture and
looks at how computer design has evolved_

Part Two: Examines the major components of a computer and their intercon-
nections, both with each other and the outside world. This part also
includes a detailed discussion of internal and external memory, and of
I/O. Finally, the relationship between a computer's architecture and
the operating system running on that architecture is examined.

Part Three; Examines the internal architecture and organization of the processor.
This part begins with an extended discussion or computer arithmetic,
Then we look at the instruction set architecture_ The remainder of the
part deals with the structure and function of the processor, including
a discussion of RISC and superscalar approaches, as well as a detailed
look at the IA-64 architecture,

Part Four. Discusses the internal structure of the processor's control unit and the
use of microprogramming.

Part Five: Deals with parallel organization, including symmetric multiprocessing
and clusters_

1.3 INTERNEr AND WEB RESOURCES

There are a number of resources available on the Internet and the Web to support
this book and to help one keep up with developments in this field.

Web Sites for This Book
A special Web page has been set up for this book at WilliarnStallings.comiCOAfie.html.
See the two-page layout at the beginning of this hook for a detailed description of
that site.

An errata list for this book will be maintained at the Web site and updated as
needed. Please e-mail any errors that you spot to me. Errata .sheets for my other
books are at WilliamStallings.com .

/ also maintain the Computer Science Student Resource Site. at
WilliamStallings.comiStudentSupport,htmh. the purpose of this site is to provide
documents, information, and useful links for computer science students and profes-
sionals, Links are organized into our categories:

14 CHAPTER 1 INIRODUCTION

• Math: Includes a basic math refresher, a queuing analysis primer. a number
system primer, and links to useful math Web sites

• Flow-tu: Advice and guidance for solving homework problems, writing tech-
nical reports. and preparing technical presentations

• Research resources; Links to important collections of papers, technical reports,
and bibliographies

• Miscellaneous: A variety of useful documents and links

Other Web Sites

There are numerous Web sites that provide information related la the topics of this
book. In subsequent chapters. pointers to specific Web sites can be found in the
"Recommended Reading and Web Sites' section. Because the URLs for Web sites
tend to change frequently. I have not included these in the book. For all of the Web
sites listed in the book. the appropriate link can be found at this book's Web site.
Other links will be added when appropriate.

,----- The following are Web sites of general interest related to computer orga-
nization and architecture:

• VielleVi Computer Architecture Home Page; A comprehensive index to infor-
mation relevant to computer architecture researchers, including architecture
groups and projects, technical organizations, literature, employment, and com-
mercial information

• CPU Info Center: Information on specific processors, including technical
papers. product information, and latest announcements

• ACM Special Interest Group on Computer Architecture: Information on
SI GA RCH activities and publications

• IEEE Technical Committee on Computer Architecture: Copies of TCAA
newsletter

USENET Newsgroups

A number of US ✓ NKT newsgroups are devoted to some aspect of computer orga-
nif.ation and architecture. As with virtually all USENET groups, there is a high
noise to signal ratio, but it is worth experimenting to see if any meet your needs. The
most relevant are as follows:

• comp.arch.: A general newsgroup for discussion of computer arch iie.ctui
Often quite good.

• comp.arch.arithmetic: Discusses computer arithmetic algorithms and standards.

• comp.arch.storuge: Discussion ranges from products to technology to practi-
cal usage issues ,

• cump.parallcl: Discusses parallel computers and applications.

CHAPTER

COMPUTER EVOLUTION
AND PERFORMANCE

2.1 A Brief History of Computers

The First Gencraiion: Vacuum Tubes
The Second Generation: Transistors
The Third Generation: Integrated Circuits
Later Generations

2.2 Designing for Performance

MR ropro ce ssor Speed
Performance Balance

2.3 Pentium and PowerPC Evolution

PertEium
POWC: r

2.4 Recommended Reading and Web Sites

2$ Key Terms, Review Questions, and Problems

Key Terms
Review Questions
Pi Phi e MS,

16 CHAPTER 2 / COMPUTER EVOLUTION AND P.ERFORMANCE,

KEY POINTS.

♦ The evolution of computers has been characterized by increasing processor
speed, decreasing component size, increasin2.memory . size, and increasing
capacity and speed.

• One factor responsible for the great increase in proc-c.squi - speed is the shrink-
ing size of microprocessor components; this re•duces the distance between
components and hence increases speed. However. the true gains in speed in
recent years have come from the organization of the proeessor, including
heavy use of pipelining and parallel execution techniques and the use of spec-
ulative execution techniques, which results in the tentative execution of future
instructions that ruight he needed. All of these techniques arc designed to
keep the processor busy as much of the time as possible.

• A critical issue. in Computer system design is balancing the performance of the
various elements. so that gains in pernIrmance in one area arc not handi-
capped by a lag in other areas, In particular, processor speed has increased
more rapidly than memory access time. A variety of techniques is used to com-
pensate for this mismatch, including caches. wider data paths from memory to
processor, zind more intelligent memory chips.

Wc begin our study of computers with a brief history. This history is itself
• , interesting and also serves the purpose of providing an overview of corn-

puter structure and function. Next, we address the issue of performance,
A consideration of the need for balanced utilization or computer resources provides
a context that is useful throughout the hook. Finally, we look briefly at the evolu-
tion of the two systems that serve as key examples throughout the book: Pentium
and Power PC,

2.1 A BRIEF HISTORY OF COMPUTERS

The First Generation: Vacuum Tubes
ENIAC

The ENIAC (Electronic Numerical Integrator And Computer), designed by
and constructed under the supervision of John Mauchly and John Presper Eckert
at the University Of Pennsylvania, was the world's first general-purpose electronic
digital computer.

The project was a response to U.S. wartime needs during World War 11. The
Army's Ballistics Research Laboratory (BRL), an agency responsible for develop-
ing range and trajectory tables for new weapons, was haying difficulty supplying
these tables accurately and within a reasonable time frame. Without these firing
tables, the new weapons and artillery were useless to gunners. The [IL employed

2.1 / A BRIPI HIS OF COMPUTERS 17

more than 200 people who, using desktop calculators, solved the necessary ballistics
equations. Preparation of the tables for a single weapon would take one person
many hours, even days.

Mauch a professor of electrical engineering at the[!niversity of Pennsyl-
vania, and Eckert, one of his graduate students, proposed to build a general-purpose
computer using vacuum tubes for the 13111.. - s application. In 1943, the Army
accepted this proposal, and work began on the ENIAC, The resulting machine was
enormous, weighing 30 tons, occupying 1500 square feet of floor space, and con-
taining more than 18.000 vacuum tubes_ When operating, it consumed 140 kilowatts
of power. It was also substantially faster than any electromechanical computer,
being capable of 5000 additions per second.

The ENIAC was a decimal rather than a binary machine. That is. numbers
were represented in decimal form and arithmetic was performed in the decimal
system. Its memory consisted or 20 "accumulators. - each capable of holding a 10-digit
decimal number. A ring of 10 vacuum tubes represented each digit. At any time,
only one vacuum tube was in the ON slate, representing one of the 10 digiEs. The
major drawback of the ENIAC was that it had to he programmed manually by set-
ting switches and plugging and unplugging cables.

The ENIAC was completed in 1946, too late to he used in the war effort,
Instead. its first task was to perform a series of complex calculations that were used
to help determine the feasibility of the hydrogen bomb. The use of the ENIAC for
a purpose other than that for which it was built demonstrated its general-purpose
nature. The EN1AC continued to operate under BRL management until I 955, when
it was disassembled.

The von Neumann Malithium
The task of entering and altering programs fur the EN lAC was extremely

tedious. The programming process could be facilitated if the program could be rep-
resented in a form suitable for storing in memory alongside the data Then. a com-
puter could get its instructions by reading them from memory, and a program could
be set or altered by setting the values of a portion of memory.

This idea, known as the wored-prognan concept, is usually attributed to the
ENIAC designers. most notably the mathematician John von Neumann, who was a
consultant on the ENIAC project, Alan Turing developed the idea at about the
same time, The first publication of the idea was in a 1945 proposal by von Neumann
for a new computer, the EDVAC (Electronic Discrete Variable Computer).

In 1946. von Neumann and his colleagues began the design of a new stored-
program computer, referred to as the lAS computer, at the Princeton Institute for
Advanced Studies. The 1.AS computer. although not completed until 1952. is the
prototype of all subsequent general-purpose computers.

Figure 2.1 shows the general structure of the lAS computer. It consists of the
following:

• A main memor!,/, which stores both data and instructions
• An arithmetic and logic unit (ALU) capable of operating on binary data
• A control unit, which interprets the instructions in memory and causes them

to be exeeuled
▪ Input and output (110) equipment operated by the control unit

18 CHATTER 2 / COMPUTER EVOLUTION AND PER1-VREVLANC:F..

Central processing unit (CP1;)

Arithmetic-
Logic

unit {CAS

Main
MV11310rY

Prugo
cullir01

nawY C('4.'

Figure 2.1 Structure of the I. -XS Computer

This structure was outlined in von Ncurnann's earlier proposal, 'which k Wort h
quotiny at this point IVONN431..

2.2 First Because the device is primarily a computer, it will have to perform the
elementary operations of arithmetic most frequently. These arc addition. subtraction,
multiplication and divisioi . it is therefore reasonable that it should contain specialized
organs for 061 these operations,

It must 1 .1, o1.1..R.rved, however, that while this principle as such is probably sound,
the specific wo.y in which it is realized requires close scrutiny. , . At an rate a 4:cier1'al
arithmetic:el part of 4111: &vice will probably have to exist .and this constitutes the first
vecific pan: (.r1-

2.3 Second: The logical control of the device. that is, the proper sequencing of
its operations. can he most efficiently carried out by a central control organ. if the
device is to be elastic, that is. as nearly . as possible eel.? peapose, then a distinction must
he made between the specific instructions given for and defining a particular T -prob-
tem, and the genefal control organs which see to it that these instructions—no mat-
ter what they are—are carried out. Tilt Cornier i-rsusl he stored in some way., the latter
arc represented by definite operating parts o[the dcvico, Ft the cemtral control we
mean this latter function and the organs which perform it form the second spe-
cific part: CC.

2.4 'Third: Any due ice which is to carry out long and complicated sequences of
operations (specifically of calculations) must have a con iderahlc memory .

(11) The instructions which govern a complicated problem may constitute con-
siderable material- particularly so, if the code is circumstantial (which it is in most
arrarigemcnt9, This inaledal must he remembered

At any rate : the total memory constitutes the third .specifiC pan of the device: M.
2,6111.4...three specific part s CA. CC (together (), and NI correspond to the fr.v.so-

ciative neurons in the 'h uman nervous system. It remains to discuss the equivalents of
the sensory or afferent and the. ?no.ror or elfr.rent nctuxons. These arc the input and ow.
pea organs rrf the device ...

2.1 / A BRIEF lus-rop,y O1 COMPUTERS 19

The device must be endowed with the al -a v 10 maintain input and output (sen-
sory and motor) contact with some specific medium of this type. The medium will he
called the outsides mytreling median of the dm is o: ,

2.7 Fourth: The device must have organs to transfer ... information from R. into
its specific parts C and M. These organs form its input', the Pro.rth specific part: L It will
be seen that it is best to make all transfers from R (.h t into M and never directly
from C

2,8 Fifth: The device must have organs to transfer ream its specific parts (.• and
M into R. These organs form its ortipar, the fifth specific part.: O. It will In. seta, that it
is again hest to make all transfers from M (by 0) into R. and never directly from C.

With rare exceptions, all of today's computers have this same general struc-
ture and function and are thus referred to as von Neumann machines. Thus, it is
worthwhile at this point to describe briefly the operation of the !AS computer
[BCRIc-Itii. Following [HAYE.98I_ the terminology and notation of von Neumann
arc changed in the following to conform more closely lo modern usage the exam-
ples and illustrations accompanying this discussion are based on that latter text.

The mem ory of the lAS consists of 11 UU.1 storage locations, called t.wrds, of 40
binary digits (bits) each. Both data and instructions are stored there. Hence, num-
bers must be represented in binary form, and each instruction also has to be. a binary
code. Figure 2.2 illustrates these formats_ Hach number is represented by a sign hit
and a 39-bit value. A word may also contain two 20- 1-tit instructions, with each
instruction consisting of an s-hit operation code (opcode) specifying the operation
to he performed and a 12-hit address designating one of the words in memory (num-
bered from 0 to 949.

The control unit operates the I AS by fetching instructions from memory and
executing them one at a time. Fo explain this. a more detailed structure diagram is
needed, as indicated in Figure 2.3. This figure reveals that both the control unit and
the ALU contain storage locations, called registers, defined as follows:

Left instruction Hilts instruction

Opoude Address)pc ode Address

(b) instruction word

Figure 2.2 lAS Memory Format s

1
MAR

Input—
output

equipment

A rithmetic-Itigic
circuits

MBR

instructions
and data

1
IttR

Main
memory

AC

Control
circuits Coto col

. signals Addres.ses

20 CIIAPTEP, 2 / COMPUTER EVOLUTION AND PERFORMANCh

Arithmetic-logic unit (ALL)

Program control unit (ALL)

Figure 2.3 Expanded Structure of IAS Computer

• Memory buffer register (MDR): Contains a word to he. stored in memc.)ry. ar
is used to receive a word from memory.

• Memory address register (MAR): Specifies the address in memory of the word
to be written from or read into the NIBR.

• Instrudion register (IR): Contains the 8-hit op-code instruction being executed.
• Instruction buffer register (lBR): Employed acs hold temporarily the right-

hand instruction from a word in memory.
• Program Counter (PC): Contains the address of the next instruction-pair to be

fetched from memory.

2.1 / A BRIEF 1IISTC.MY OF COMPUTERS 21

■ Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-
porarily operands and results of AU! operations. For example. the result of
multiplying two 40-hit numbers is an 80-hit number the must significant 40 hits
are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in
Figure 2.4. Each instruction cycle conskis of two subcycles. During. the fetch cycic,
the opcode of the next instruction is loaded inio the IR and the address portion
is loaded into the. MAR. This instruction may be taken from the 1BR, or it can
be obtained from memory by loading 41 word into the MDR. and then down to the 1BR,
I R, and MAR.

start))

No memory
access
required

Is nod
instruction

in IBR?

IR 4-- IBR (0:7)
MAR 4.— IBR (F1:19)

Lett No Yes
instruction

t uired?

1BR <— MBR (20:39)
1K e- MBR (0:7)
MAR MBR (E4:19)

Fetch
cycle

AC f M(X)

Execution
cycle

Decode instruction in IR

If AC 0 then AC 4— AC + M(X)
go to M(X, 0:19)

IS AC) 0?

Co to M(X, 0:19)

MBR <— M(MARi

MBR M(MAR) I I PC 4-- MAR I

AC <-11.4BR

M(X) = contents of memory location whose address is X
(X = bits X through

Figure 2.4 Partial Flowchart of lAS Operation

MBR (MAR)

Ls,.0 4- AC + MBE

22 CHAPTER 2 COMPUTER EVOLUTION AND 1PERFOR MANGE

Why the indirection? Those operations are controlled by electronic circuitry
and result in the use of data paths. To simplify the electronics, there is only one reg-
ister that is used to specify the address in memory for a read or write, and only one
register to be used for the source or destination_

Once the opcode is in the IR, the ex•cure cycle is performed_ Control circuitry
interprets the opcode and executes the instruction by sending out the appropriate con-
trol signals to cause data to be moved or an operation to be performed by the ALU.

The lAS computer had a total of 21 instructions, which are listed in Table 2.1.
These can be grouped as follows:

• Data transfer: Move data between memory and ALL1 registers or between Iwo
ALE: registers.

• Unconditional branch: Normally, the control unit executes instructions in se-
quence from memory. This sequence can be changed by a branch instruction.
This facilitates repetitive operations.

• Conditional branch: 'Fhe branch can be made dependent on a condition. thus
allowing decision points.

• Arithmetic: Operations performed by the ALU.

• Address modify: Permits addresses to be computed in the ALL' and then
inserted into instructions stored in memory. 'F'his allows a program consider-
able addressing flexibility.

Table 2,1 presents instructions in a symbolic, easy-to-read form. Actually, each
instruction must conform to the format of Figure 2.2b. The opcode portion (first
8 bits) specifies which of the 21 instructions is Lo he executed. The address portion
(remaining 12 bits) specifies which of the 11.M.14.1 memory locations is to be involved
in the. execution of the instruction.

Figure 2.4 shows several examples of instruction execution by the control unit.
Note that each operation requires several steps. Some or these. arc quite elaborate.
The multiplication operation requires 39 suboperations, one for each bit position
except that of the sign bit!

Commercial Cons puters

The 1950s saw the birth of the computer industry with two companies, Sperry
and IBM, dominating the marketplace.

In 1947. Eckert and Mauchly formed the Eckert-Mauchly Computer Corpo-
ration to manufacture computers commercially. Their first successful machine was
the UNIVAC I (Universal Automatic Computer), which was commissioned by the
Bureau of the Census for the 1.950 calculations. The Eckert-Mauchly Computer Cor-
poration became part of the UNIVAC division of Sperry-Rand Corporation, which
went on to build a series of successor machines.

'Die UNIVAC I was the first successful commercial computer. It was intended :
as the name implies, for both scientific and commercial applications. The first paper
describing the system listed matrix algebraic computations. statistical problems,
premium billings for a life insurance company, and logistical problems as a sample
of the tasks it could perform.

2.1 ./ A BRIT' HISTORY OF COMPUTERS 23

Table 2.1 the I AS losiruction ScL

Instruction
7

.1,11e Opcode

Symbolic

Representation Description

DErta transfer 00001010 LOAD VIO . fra usfer contents register MO to
the accumulator AC

04001001 LOAD MO.M X) l'ratisler contents of fn.eMOky lot:11'60n
X CO MO

001 4111)t1 STDR MiX .) libra:lifer mill En LS Ili elixir Llluk tor C O
Tn.:mew!: lomitjon X

I MINK11:01 LOAD KT(X) Tranhcr r‘.1{ X) 145 I ho zieetirmi1m1or
1:00:1(I1.)10 LOAD M(X} Transfer - M(X Li} LhL accurnLIIntor

IKAXIOI/11 LOAD NUN)! TTaa}..1C1 4'.- 111AC!' 01 ;WM to
the au:LnntilE11.(ir

CIODOO t Of) LOAD • I M(X)1 TIonsfer —I47(X) to the :iccumulalui

Unconditional
branch

(1)]01101 JL 1 MP MPC,11:191 THk ncNI insirlieriOn from left halt of
KIVX)

01X100 i 10 ..1 1..1 1,,I13 M(X.20:39) Take next irISITUCLICIa ream rig1-11 half of
!irl(X)

Conditional
branch

1)0001111 31..:MP+M(X.02191 11 ninnber m ihc: necumillMor is
nOnriuFaiive, inSCuocii on
frorn left half 01 MIX)

1-)00i0r.i.10 N•20:119) 11 r in I hc aLLLI nh nhiI oris

aunn Livc. Lake nix I insl ruction

Cron, righi. half 1.)

.Arithme tic 00000101 ADD M(X) Add M(X1 to A (:; put the remit in AC
01)001)11 / ADD '11(X)1 Add IM(X)1 10 AC; pi.v 1 he result in AC
OfX1(JR1 51(} subtrkirt m(x) rivn, AC; put the re41.1.11

in AC
(01:)01.01)0' Si R IM(X) SuhLrael. frorEi AC: TruL ih:

miniinder la AC
40041(}1 I MU]_ Multiply M{X1 by MO: put inosi

significant hitE of result in AC. put
icant bib., in .M.Q

(IOW' LOL) DJV MIX) 1)i %dile hy M(X):: put 1.11i rollout
in ",...1() ;111c1 the ra.maihder ill AC

00411i)(01./ LSH ?v]al iply dEcumul Dior l)?..
2
 0.0.. Shift

!ell. One hil !Imo on1
0001.1111)1 KSI-E Diuidc ..112CLI TUIFacIT by 2 fj.C%, stLiI

rich(one position)

Alkiresr.. modify' 1)0010(110 STDR trli.X.5:19) Retched Icr1 L0dre.5 field at ?41(X:) hti
ri eh i-rnoNt hots of AC

000/01)1 I STOR M(X,2EI:119) Replace right addrccs i kI 4tC M(H) by
[2 right-m(1EL bias arAC

The UNIVAC II, which had greater memori, , capacity and higher TX!rfOrrilaitCC,

than the UNIVAC I, was delivered in the laic 1950s and illustrates several trends
that have rornainc.d characcetistic of the computer indumry_ adviuices in tech-
nology allow Companies 1[3 conlnn1.1 to build larger, more powerful compu ters. Sec-
ond_ each company tries to make its new machines upward compatible with the older

24 CHAP I'M 2 f COMPUTER EVOLUTION AND PERFORMANCE

machines. This means that the programs written for the older machines can be exe-
cuted on the new machine. This strategy is adopted in the hopes of retaining the
customer base: that is, when a customer decides to buy a newer machine, he or she
is likely to get it from the same company to avoid losing the investment in programs.

'Ile UNIVAC division also began devclopment of the 1100 series of comput-
ers, which was to be its major source of revenue. This series illustrates a distinction
that existed at one lime. The first model, the UNIVAC 1103, and its successors for
many years were primarily intended for scientific applications, involving long and
complex calculations. Other companies concentrated on business applications,
which involved processing large amounts of text data. This split has largely dis-
appeared, but it was evident for a number of years.

IBM, which was then the major manufacturer of punched-card processing
equipment, delivered its first electronic stored-program computer, the 701, in 1953.
The 701 was intended primarily for scientific applications IBAS11811. In 1955,
1BM introduced the companion 702 product, which had a number of hardware fea-
tures that suited it to business applications. These were the film of a long series of
70017000 computers that established I HM as the overwhelmingly dominant com-
puter manufacturer,

The Second Generation: Transistors
The first major change in the electronic computer came with the replacement of the
vacuum tube by the transistor, The transistor is smaller, cheaper. and dissipates less
heat than a vacuum tube but can be used in the same way as a vacuum tube to con-
struct computers, Unlike the vacuum tube, which requires wires. metal plates, a
glass capsule, and a vacuum, the transistor is a solid-ware device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched
an electronic revolution. It was not until the late 1950s, however, that fully transisto-
rized computers were commercially available. IBM again was not the first company
to deliver the new technology, NCR and, more successfully, RCA were the front-run-
ners with some small transistor machines. IBM followed shortly with the 7000 series.

use of the transistor defines the second Toleration of computers. It has become
widely accepted to classify computers into generations based on the fundamental hard-
ware, technology employed (Table 2,2), Each new generation is characterized by greater
processing performance, larger memory capacity, and smaller size than the previous one.

TOW 2.2 Computer Generations

Approximate
Generation Dates Tedmology

'typical Speed
(operations per second)

4

S

1946-1957 Vacuum tube
Transi&t.or

1 1.1.65-1971 Small- and
mediunt-scale
integration

1972 .1417 L.arge-geale
intxparion

1975- Very-large-si:ale
integration

40,000
200.000

1 ; (11:41,000

1t1,000,000

100.004000

2,1 / A BRET' HISTORY OF COMPUTERS 25

But there arc other changes as well. The second generation saw the introduc-
tion of more complex arithmetic and logic units and control units. the use of high-level
programming languages, and the provision of system sofiware with the computer.

The second generation is noteworthy also for the appearance of the Digital
Equipment Corporation (DEC). DEC was founded in 1957 and in that year, deliv-
ered its first computer, the PDP-1. This computer and this company began the mini-
computer phenomenon that would become so prominent in the third generation.

The IBM 7094
From the introduction of the 700 series in 1952 to the introduction of the last

member of the 7000 series in 1964, this IBM product line underwent an evolution
that is typical of computer products. Successive members of the product line show
increased performance. increased capacity. andior lower cost.

Table 2.3 illustrates this trend. The size of main memory. in multiples of 2 1 "
36-bit words, grew from 2K (l K = 2 ') to 32K words, while the time to access one
word of memory the memory cycle time, fell from 30 is to 1.4 1,1.s. The number of
opcodes grew from a modest 24 to L5.

The final column indicates the relative execution speed of the central pro-
cessing unit (CPU). Speed improvements are achieved by improved electronics
(e.g., a transistor implementation is faster than a vacuum tube implementation) and
more complex circuitry. For,example, the IBM 7094 includes an lnstruetion Backup
Register, used to buffer the next instruction. The control unit fetches two adjacent
words from memory for an instruction fetch. Except for the occurrence of a branch-
ing instruction, which is typically infrequent, this means that the control unit has to
access memory for an instruction on only half the instruction cycles. This prefetch-
ing significantly reduces the average instruction cycle lime.

The remainder of the columns of Table 2.3 will become. clear as the text proceeds.
Figure 2.5 shows a large (many peripherals) configuration for an IBM 7094.

which is representative of second-generation computers IBELL71a]. Several dif-
ferences from the 1AS computer are worth noting. The most important of these is
the use of data channels. A data channel is an independent I/O module with its own
processor and its own instruction set. In a computer system with such devices, the
C.PU does not execute detailed I/O instructions. Such instructions are stored in a
main memory to be executed by a special-purpose processor in the data channel
itself. The CPU initiates an I/O transfer by sending a control signal to the data
channel. instructing it to execute a sequence of instructions in memory. The data
channel performs its task independently of the CPU and signals the CPU when the
operation is complete. This arrangement relieves the CPU of a considerable pro-
cessing burden.

Another new feature is the multiplexor, which is the central termination point
for data channels, the 03 1._, and memory. The multiplexor schedules access to the
memory From the CPU and data channels, allowing these devices to act independently.

The Third Generation: Integrated Circuits

A single. self-contained transistor is called a discrete componem. Throughout the
1950s and early 1960s, electronic equipment was composed hugely of discrete com-
ponents—transistors, resistors, capacitors. and so on. Discrete components were

Table 2.3 Example Mernhers of the BM 7.1.10/70W Series

Model
Number

Firs!
Dvery

CPU
Tech-

memae

nology
(:yele

Time(p)
Memory

K)

Number
w

°prudes

Number
of Index

Register%

H ardwired
Flua(hig

Poin

.1J0
Overlap

(CM n ne Is)

Instruction

I
Overlap

Speed
(relative
tu 701)

701 1952
vacuum
tu

Fled 10-

NLaLit: LtibeS
24 24 111 .1143 114

744 1955
VaCUUM

tubeS
Core -1-32 !ies. rit) 110 2.5

709 195g
VACUUM

. a>
(kirc 12 32 140 3 ycs. Ye 5 (4(1

TM] 1961-1 Transistor t:ore • zh 169 yi2s yes 11{1. 25

7094 1%2. TransisLor Oafe 32 15 7
ycs
(010131111::

PrCeiSiOn

ytY ycs 3D

71)94 11 '1 %4 Trans:ore! . UNIT: 1.4 3-2 , r
yes

id4pubit
ivrccisiort)

Yes yes 50

CPU Card
punch Data

&lame] Lirt.e
printer]

Card
reader

DrUIT1 o■41.-

. ,1 Data

—1•- 1 Disk

Mag tape
twits

Memory

Data
thanne]

-I
equipmeriti

Disk

: Teleprocessing . , '

Hyper -

ta

Data
charm]

2.1 1 A BRIEF HISTORY OF comPuTERs 27

Figure 15 An 7094 Configuration

manufactured scparaicly, p4icloged in their own conlainen ,.. and soldered or wired
together onto 1113Sonite-like circuit boards, which were then installed in computers,
oscilloscopes. and other electronic equipment. Whenever an electronic device called
fora transistor, a Little tube of medal containing a pinhead-sized piece of silicon had
to be soldered to a circuit hoard. The entire mlinufactuting process. from transistor
to circuit board, was expensive and cumbersome.

.1 1.ese facts of life were beginning to create problems in the computer industry.
Early second-gcncra Lion comptilers con Lammed about 10.000 lransislors. This figure
grew to the hundreds of thousands, making the inanufacture of ncwur,litirrc power-
ful machines increasingly difficult.

In 145K came ibe achievement [hat revolutionized eloetronics and started the
era of microelectronics: the inveri1ion of the iriwgnited cirQui1. IL is. d,: iniegrated
circuit that defines the third generation of computers. In this section we provide a
brief introduction to the technology of integrated circuits. Then we look at perhaps
the two most importni members of the I hird genera Lion. both cif which wcre inlro-
duced at the beginning of that era; the IBM System/360 and the DEC PDP-8.

MierOel ectrouies

Microelectronics means, Literally, "small electronics." Since the beginnings of
electronics and the computer industry, there has been a persistent and con-

sistent trend ii)wurLI Ilic reduction in size of digital electronic. circuits. Bc[orc exkirn-

28 CHAP . TER 2 / C..011/41.PUTER EVOLUTION AND PERFORMANCE

ining the implications and benefits of this trend, we need to say something about the
nature of digital electronics, A more detailed discussion is found in Appendix A.

The basic elements of a digital computer, as we know, must perform. storage:
rin-avement, processing_ and control functions. Only two rundameni al types of com-
ponents are required (FiRure 2.6): gates and memory eel's. A gate is a device that
implements a simple 'Boolean or logical function. such as IF A AND B ARE TRUE
'TI FEN C IS TRUE (AN I) gate}. Such devices are called gales because they control
data [low in much the same way that canal gates do. The memory cell is a device
that can store one hit of data:. that is. the device can be in one of two stable states al,
any time. By interconnecting large numbers of these fundamental devices, we ciin
construe' a computer. We can relate this to our four basic functions as follows:

• Data storage: Provided by memory cells,

• Data processing: Provided by gates,
• Data movement: The paths between componvnis are used to move data from

memory to memory and from memory through gates to memory.
■ Control; The paths between components can carry control signals_ rim exam-

ple, a gate will have one or two data inputs plus a control signal input that acti-
vates the. gate. When the control signal is ON, the gate performs its function
on the data inputs and produces a data output, Similarly, the memory cell
will store the bit that is on its input lead when the WRITE control signal is ON
and will place the bit that is in the cell on Ifs output lead when the READ . con-
in)! signal is ON

Thus, a computer consists of gates, memory cells, and interconnections among
these elements. The gates and memory cells are. in turn, constructed of simple dig-
ital electronic components,

The integrated circuit exploits the fact iliaL such components am transiswrs,
resistors, and conductors can he fabricated froin a semiconductor such as silicon.
It is merely an extension of the solid-state art to fabricate an entire circuit in a

line piece of silicon rather than assemble discrete eomponenLs made from separate
pieces of silicon into the:Name circuit. Many transistors can be produced at the mime

Output boll

Read
Write

Ou tput

Activiat
signal

(a) Gate (10} Merrior±r cLLl

Figure 2.6 Ikuliii-intental Computer Elements

2.1 / A BRIEF HISTORY t.Ni cONILBUTERS 29

Gate

Packaged
chip

Figure 2.7 ReIntiorisltip between Wafer, Chip, and Oate

Rink on a single wafer of silicon. Equally important, these transistors can be con-
necti2d with a process of meiallization to form circuits,

Figure 2.7 depicts the key uoneepts in nn inteunted circuit. A thin ivafer of sil-
icon is divided into a matrix of small areas, each a few millimeters square. The iden-
Lica' circuit pattern i6 fabricated in each area, and the wafer is broken up into claps.
Each chip consi.qs of many gates rind or memory cells plus a number of input and
output attachment points. This chip k then packaged in housing that protects it
and provides pins for attachment to devices beyond the chip. A number of these
packages can then he interconnecied on a printed circuit board to produce larger
and more complex circuits.

Initially, only a few . ates or memory cells could be reliably manufactured and
pact aged together. These early integrated circuits are referred to as small-scale inte-
gration (SSi). As time went on, it became po7,.si ble to pack more nand more compo-
nents on the same chip. This growth in density is illustrated in Figure 2.8: it is ore
of the most remarkable technological trends ever recorded. This figure reflects the
famo us NI core's law, which propounded by (Jordon Moore, cofounder of
in 1%5 IN,1 00R65j. Moore observed that the ntrrnber of trAnsiiitors that could he
put on a single chip was doubling every year and correctly predicted that this pace
would con tin ue into the near future. To the surprise of many, including Moore,
the pace continued ycar after War mid decade 11 -1 r decade. The pace siowod to to
doubling every 18 months in the 19711s. but sustained that rate ever since.

30 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCB

.
I
Pentium IV

Pe tium 111

_.. 486

Pentium
entium Pro

0 PP{'
_

ern iuyn
Pfht: G3

Mi 1

11

386
802.86

•

8086
•

4004

1970 1975 19811 1985 1990 1995 2000 2005

Figure 2.8 “rovv111 in CPI: Transistor Count

The consequences of Moore's law are profound:

1. The cosi ()I' a chip has remained virtually unchanged during this period of rapid
growth in density. This means that the cosi of computer logic and memory
circuitry has fallen at a dramatic rate,

2, Because logic and memory elements are placed closer together on more
densely packed chips, the electrical path is shortened, increasing oper-
ating speed.

3. The computer becomeS smaller, making it more convenient to place in a vari-
ety of environments.

4. There is a reduction in power and cooling requirements.
5. The interconnections on the integrated circuit are much more reliable than

solder connections. With more circuitry on each chip, there are fewer inter-
chip connections.

1B A[System/360
Hy 1964, I f3 M had a firm grip on the computer market with its MOO series of

machines. In that year. IBM announced the Systen060. a new family of computer
products, Although the announcement itself was no surprise, it contained some
unpleasant news for current IBM customers: The 360 product line was incompat-

log

107

Itin c.

10`

II N

110

2.1 / A BRIEF HISTORY OF COMPUTERS 31

Table 2.4 Key Characteristics of the Systerni360 Family

Characteristic Model 30 Model 4(1 Model 50 Model 65 Model 75

Maximum mummy sizq. (bytes) 64K 256K 256K 5121; 512K
Data rate from memory 0.5 0.8 2.0 8.0 16.0

(Mbyte.vs)
Processor cycle Lime (i.Ls) 1.11 0.625 0, 5 0.25 0.2
Relative speed 1 :3.5 10 21 .50
Maximum number of data charmds 3 3 4 6 6
Maxi MUM data rate in uric channel 250 4110)i00 1 2.5t) 1250

(Khytesis)

ible with older IBM machines. Thus, the transition to the 360 would be difficult for
the current customer base. This was a bold step by IBM, but one IBM felt was nec-
essary to break out of sonic of the constraints of the 7000 architecture and to pro-
duce a system capable of evolving with the new integrated circuit technology
[PADE8I, GIFTS?]. The strategy paid off both financially and technically, The
360 was the success of the decade and cemented IBM as the overwhelmingly dom-
inant computer vendor, with a market share above 70%. And, with some modifica-
tions and extensions, the architecture of the 360 remains to this day the architecture
Of IBM's mainframe' computers, Examples using this architecture can be found
throughout this text.

The System1360 was the industry's first planned family of computers. The
family covered a wide range of performance and cost. Table 2.4 indicates some of
the key characteristics of the various models in 1965 (each member of the family is
distinguished by a model number). The models were compatible in the sense that
a program written for one model should be capable of being executed by another
model in the series. with only a difference in the lime it takes to execute.

the concept of a family of compatible computers was both novel arid ex-
tremely successful. A customer with modest requirements and a budget to match
could start with the relatively inexpensive Model 30. Later, if the customer's needs
grew, it was possible to upgrade to a faster machine with more memory without
sacrificing the investment in already-developed software. The characteristics of a
family are as follows:

o Similar or identical instruction set: In many cases, the exact same set of
machine instructions is supported on all members of the family. Thus, a pro-
pram that executes on one machine will also execute on any other. in some
cases, the lower end of the family has an instruction set that is a subset of
that of the top end of the family. This means that programs can move up but
not down,

'The term mainframe is ti.scd for the. lareer, most powerful computers other than supercomptirers.
Typical characteristics of a mainframe are that it supports a large database, has elaborate 110 hardware.
and is used in a cuniral data processing

32 cHAPTE,It 2 COMPUTER EVOLUTION ANI) PERFORMANCE

• Mintier or identical operating system: The same basic oparating system is avail-
able for al] family members. In some cases, additional features are added lo
the higher-end members.

• Increasing speed: The rate of instruei ion execution increases in going from
lower to higher family members.

• Increasing number of 110 ports: In going from lover to higher family members.

• Increasing memory size; In going from lower to higher family members.

• increasing cos: In going . from lower to higher family members.

How could such a family concept be implemented? Differences were achieved
based on three factors: basic speed, sire, and degree of simultaneity [STEV64]. For
example, greater speed in the execution of a given in7iiruction could be gained by
the of more complex circuitry in the AT allowing suboperations io be carried
out in parallel. Another way of increasing speed was to increase the width of the
data path between main memory and the. CPU. On. the Model 30, only 1 byte (8 bits)
could be fetched from main memory al a time, whereas 8 bytes could be fetched
at a time on the. Model 70.

The Systent1360 not only dictated the future course of IBM but also had a
profound impel on the entire industry. Many of its features have become standard
on other large computers.

DEC PUP-8

in the same year that IBM shipped its first Systerni.;60, another momcnious
first shipment occurred: PDP- from Digital Equipment Corporation (DEC). At
a time when the average computer required an air-conditioned room, the PDP-8
(dubbed a minicomputer by the industry, after the miniskirt of the day) WRS small
enough Ihat it could be. placed on top of a lab bench or be built into other equip-
ment. It could not do everything the mainframe could. but at $1 ,0,000. it was cheap
enough for each lab technician to have one. In contrasl. the System/360 series of
mainframe computers introduced just a Lew months before cost hundreds of thou-
sands of dollars.

The [ow cost and small size of the PDP-8 enabled another manufacturer
to purchase a PDP-K and integrate it into a total system fur resale. These other
manufacturers came to be known as original equipment manufacturers OEMs),
and the OEM market became and remains a major segmenl or the computer
marketplace.

The FDP-8 was an immediate hit and made [)HC 's fortune. This machine and
other members of the PDP-8 family that followed it (see Table 2.5) achieved a pro-
duction status formerly reserved for IRM computers, with about 50,060 machines
sold over the next dozen years, As DEC"s official history puts it, the PDP-8 "estah-
iished the concept of minicomputers, leading the way to a multibillion dollar indus-
LTV,' It also established DEC as the number one minicomputer vendor. and, by the
time the PDP-8 had reached the end of its useful life, DEC was the number two
computer manufacturer, behind IBM.

Table 2.5 Evolution of Ow PDF 8 I V(LL

2.1 i A ElkIEF IIISTOky OF Co otipliTERs 33

.M4-xle.1
First

Shipped

co51. of — 4K
12-bi C Words IA Memory

(5.10(105)

D i a Rah?. trom
Memory

Twords!,u.$). (cubic feet)
Ionova t)r)S. ri nd
I rripromri eu [s

PDP-8 4;65 1E1.2 1.26 g.G. A ttLornat:c.wi.rt ...-wcapping
prod ueziot

FL,N.:5 91045 i.'74 D.08. 3.2 Serial i nsiruc!icul
i inpletrie isEat.on

4:fifi 11.6 1.34 8.0 2.]odium - Scale integrated
ci ro.iitis

12 DP-8.:L ii6.5 7.0 1.2 C. 2.0 Snrilk r Cc! b:nrc

PDP ,8113 3:7 I 4.9') 1.32 2.2 Ow it'll/5

PDT KM. 6:72 169 1.52 L8 H ii1f-smt shined wil 1 i I twer

.1.....i k i tints Ni'E

1.75 2./-) 1.34 1.2 Sernicond uc;or trte:Ltury:
CloH Ling-point rill)1:Lssor

In c.0111TaS1 to the central-switched architecture (Figure 2.3) ivied by IBM on
its 700/7000 and 360 gystems, later models of [he MP-8 used a structure that is [low
virtually universal for minicomputers and microcomputers: [lie bus structure, This
is illustrated in Figure 2,9- The PDP-R bus, called the. Omnibus, consists of 96 sepa-
rate sigma[paths. used to carry control, address, and data signals. BeckLIJSC all system
components share a common set ot` i.2 ..rta[pal hs, [heir use must be controlled by the
CPU. This architecture is highly flexible., allowing modules to he plugged into [he bus
to crea I e various contigura lions,

Later Generations

Beyond I he third generation there is less general agrE.crnent on defining generations
of computers. Table 2,2 suggests that then: have been Li fourth and a fifth aenend-
1 i on, based on advances in integraled circuit technology. With the introduction of
large'-scale integration (LSO. more than lOW components can he placed on ,LJ single
integrated circuil chip, Very-Earge-scale integration (VLSI) achieved more than
/0,000 components per chip, and current VLSI chips can contain more than 100,00
components.

FCCOrlaDle

COritraller

 L

CPL

ETILLTTSCI1T

Main I/O
rn)dulc

Omnibus

Figure 2.9 PD P-8 13 us Struci tire

I/O
sic dukt

34 CHAPTER 2 COMPUTER EVOLUTION AND PERFORMANCE

With the rapid pace of technology, the high rate of introduction of new prod-
ucts. and the importance of software and communications as well as hardware. the
classification by generation becomes less clear and less meaningful. It could be said
that the commercial application of new developments resulted in a major change
in the early .1970s and that the results of these changes are still being worked out. In
this section, we mention two of the most important of these results.

Semiconductor Memory
Thc first application of integrated circuit technology to computers was eon-

struction of the processor (the control unit and the arithmetic and logic unit) out of
integrated circuit chips. But it was also found that this same technology could be
used to construct memories,

in the 1950s and 1.960s, most computer memory was constructed from tiny
rings of ferrom welie material. each about a sixteenth of an inch in diameter. These
rings were strung up on grids or fine wires suspended on small screens inside the
computer. Magnetized one way, a ring (called a (.'ore) represented a one: magnetized
the other way, it stood for a zero. Magnetic-core memory was rather fast; it took as
little as a millionth of a second to read a bit stored in memory. But it was expensive,
bulky• and used destructive readout: The simple act of reading a core erased the
data stored in it. It was therefore necessary to install circuits to restore the data as
soon as it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor
memory. This chip, about the sic of a single core. could hold 256 hits of memory.
It was nondestructive and much faster than core. It took only 70 billionths of a
second to read a bit. However.. the cost per hit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor mem-
ory dropped below the price per bit of core memory. Following this, there has
been a continuing and rapid decline in memory cost accompanied by a correspond-
ing increase in physical memory density. This has led the way to smaller, faster
machines with mentor.; sizes of larger and more expensive machines with a time lag
of just a few years. Developments in memory technology, together with develop-
ments in processor technology to be discussed next. changed the nature of com-
puters in less than a decade. Although bulky, expensive computers remain a part of
the landscape, the computer has also been brought out to the "end user," with office
machines and personal computers,

Since 1970, semiconductor memory has been through 11 generations: 1K, 4K,
16K. MK, 256K, 1M, 4M, 16M, ►4M, 256M, and. as of this writing, 1 CT bits on a sin-
gle chip (.1K = 2 1 ". 1 M = 10 = 2n. Each generation has provided four times
the storage density of the previous generation, accompanied by declining cost per
hit and declining access time.

Microprocessors
Just as the density of elements on memory chips has continued to rise, so

has the density of elements on processor chips. As time went on, more and more
elements were placed on each chip. so that fewer and fewer chips were needed to
construct a single computer processor.

2-1 / A BRIEF HISTORY OF COMPUTERS 35

A breakthrough was achieved in 1971, when Intel developed its 4004. Ihe 4004
was the first chip to contain all of the components of a CPU on a single chip: The
microprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addi-
tion. By today - s standards, (he 4004 is hopelessly primitive, but it marked the begin-
ning of a continuing evolution of microprocessor capability and power.

This evolution can be seen most easily in the number of bits that the proces-
sor deals with at a time. There is no clear-cut measure of this, but perhaps the best
measure is the data bus width: the number of bits of data that can be brought into
or sent out of the processor at a time. Another measure is (he number of bits in the
accumulator or in the set of general-purpose registers. Often, these measures coin-
cide, but not always. For example, a number of microprocessors were developed that
operate on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduc-
tion in 1972 of the Intel 8008. This was the first 8-hit microprocessor and was almost
twice as complex as the 404.

Neither of these steps was to have the impact of the next major event: the
introduction in 1974 of the Intel 8080. This was the first general-purpose micro-
processor. Whereas the 4004 and the 8008 had been designed for specific applica-
tions, the 8080 was designed to be the CPU of a general-purpose• microcomputer.
Like the 8008, the 8080 is an 8-bit microprocessor. The 8080, however, is faster, has
a richer instruction set. and has a large addressing capability.

About the same li me, 16-bit microprocessors began to he developed, How-
ever. it was not until the end of the 1970s that powerful, general-purpose 16-bit
microprocessors appeared. One of these was the 8086. The next step in this trend
occurred in 1481. when both Bell Labs and I It:Men - Pack ard developed 32 - bit,
single-chip microprocessors. Intel introduced its own 32-bit °processor, the
80386, in 1985 (Table. 2.6),

Table 2.6 Evolution of Intel Microprocessors

fat 1970s Processors

4004 8008
1

8080 8086 8088

Introduced 11:15:71. 4102 4:104 OW75 6i4:79

Clock speeds ltN KHz 108 KHz
5 MHz, S MHz,

2 MEI./ LO MHz 5 MHz, 8 MHz

Bus width 4 hits. 8 bits 8 bits, 16 bits 8 His

Number 41t. transistors
(ibierrins)

2300
3500 (10)

&KID
(6)

29.0011
ci../

29 (%10
{3)

Addressable memory 640 bytes l b kByLcs 64 K Bytes 1 MB 1 MB

Virtual memory
—

— —

luir.r5ctuceil

Clack speeds

Bus wOlri

Number 61
SiOrS(microns.)

Addressable MUrnofy

Virtuill memory

Pentium III

r)6:99

4.5D-660 MHz

64 bits

X15 millinn
(0.19)

64 14tgul',.01.1L.s

ii4 terultytes

Pentium 4

1.1.:2.01X1

1.3-1,8-1.31-1z

64 bits

42 ru alio a

64 g .tilabytes

64 terabytes

Table 2.6 ',coot lituz4rti)

111) Milk Processors

1i02146 386111 DX 386TM SX 486TM DX CPI;

rothieetl. 211. tit (.1."1 7N5 6:16111g 410189

Clock speeds
6 MHz
12.c MHz']6 MHz-33 1 11-17. t6 MHz--33 '241-17. 25 MHz-51) MHz

rius width 16 hill 32 bits 16 bits 32 114;

Number of transistors
(micronsl.

134,000
(1.9

275,000
{L)

275,000
(1-.)

1.2 rniliigh

Addressabk incrriory 16 rnetabytes 4 .i.4iti.ikbytes 4 gipbytes 4 .7i p,abytes

Virtual rinerrsors.. 1 t.6p.abyLe 61 terabytes 64 tcrabyles 64 liz.TH1-):,..Leg

(el 1991111s PrOM.SuirS

486TM SX Pentium Pentium Pentium U

In t rrOuced 412219 . 1 3122;93 1 1.:01195

Clock spec ds
14H7.—

133 MT-1
430 MI-12.-
L61110142

150 MHz-.
200 MHz

2011 h1 Hz-
3(J MHz

Bus width 32 bits 32 bit5.. 64 bitii 64 bits

Number of
transistors (Microns)

1.1g5
O.)

:i.1 rrssllii 5rr
(A)

5.5
(0.6)

milflic m
(0.35)

Addr,7,155.21-11 c merrhiry 4 gi.githylMs 4 gigabys es 64 k6gabyLes 64 '..i gabyt.:;:s

Virtual memory 64 ',erg- 3.1v 64 terabytes 64 1 eraN. Les Lerakaes

(id) Recent PmeesSors

11110; Ci'irp. ILL T:11
WWW.j111. 111.rorrAnrOlilnuReuma 5annilltiae.' Brx .n.htm

36

2.2 / DESIGNING FOR PERFORMANCE 37

2.2 DESIGNING FOR PERFORMANCE, -••Wer ••••••••; ',Wen
.r..7-•FaVer 'Ve•

 • 'er4e:'• 0.5":4.4'

Year by vear, the cost of computer systems continues to drop dramatically. white
the performance find capacity of systems continue to rise equally dramatically.
Al. 4i 104AI wm -chOUSe club, you can pick up a personal computer for Less than 0f}0
that packs the wallop of an IBM rmiinfrome from 10 years ay.o. Inside that personal
computer, including the microprocessor and memory and other chips, you get Ms
of millions of transistors, You cannot buy [Iii) million of anything else for so little.
That many sheets ,,r toilet paper would run more than $100,000.

Thus, ,rve have virtually "free" computer power. And this continuing techno-
logical revolution has enabled the development of applicalions of astounding com-
plexity and poker- 1-err example, desktop 4i pplicw ions that require the great power
of today's microproce.ssor-based systems include

• image processing
• Speech recognition
• Videoconlereneing

• Multimedia authorina
• Voice ;'Ln d video annotation of riles

• Simulation modeling

'Workstation systems now support highly .,ophisi ieated engineering and scien-
tific applications, as well as simulation systems, and ha ,.•e the abilit!,. , to support image
and video applications. In addition. businesses are relying on increasingly powerful
s avers to handle. lransaction and &Lila base processing and to support nmssivc
clientiserver networks that have replaced the huge mainframe computer centers of
yesteryear.

What is fascinating abou I all this from the perspective of computer organiza-
tion arid architecture is that, on 1hc (me hand. the basic buildin, Mocks for today's
computer miracles are virtually the same as those of the IAS computer from over
50 years ago, while on the other hand. the techniques for squeezing the last iota of
pCrIbrmnce IAA or I tic malt:11211s at hand have become increasingly sophisticated.

This observai ion serves as. a guiding principle ['or the presentation in this hook.
As we progress through the various elements and Components of a computer, two
objeetives are pursued, First, the book explains the fundamental f unetionali y in
each area under consideration, and .second, the hook explores those techniques
required to achieve maximum perfortnance. In the remainder of this section, we
highlight some of the driving factors behind the need to design for performance.

cropro ces or Speed
What gives the Pentium or the PowerPC such mind-boggling power is the relenilc.ss
pursuiI,)r speed by processor chip manufacturers. 'L'hc evolulion of these niklehi[ICS
continues to hear out Moores Law. mentioned previously. So long as this law holds,
chipmakers can unleash a new generation of chips every three years—with four
times as many transistors. In mcrhory chips. this hum y uadruliled [he capacity if

38 CHAPTER 2 f COMPUTER EVOLUTION AN!) PERFORNLANCE

dynamic random-access memory (DRAM), still the basic technology for computer
main memory. every three years. In microprocessors, the addition of new circuits,
and the speed boost that comes from reducing the distances between them, has
improved performance four- or five fold every three years or so since Intel launched
its x8ti family in 1978,

But the raw speed of the microprocessor will not achieve its potential unless
it is fed a constant stream of work to do in the form of computer instructions. Any-
thing that gets in the way of that smooth flow undermines the power of the proces-
sor. Accordingly, while the chipmakers have been busy learning how to fabricate
chips of greater and greater density, the processor designers must come up with ever
more elaborate techniques for feeding the monster. Among the techniques built into
contemporary processors are the following:

• Branch prediction: The processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups of instructions, arc likely
to be processed next. If the processor guesses right most of the time, it can
prefetch the correct instructions and buffer them so that the processor is kept
busy, The more sophisticated examples of this strategy predict not just the next
branch but multiple branches ahead, Thus, branch prediction increases the
amount of work available For the processor to execute,

▪ Data now analysis: The processor analyzes which instructions are dependent
on each other's results, or data, to create an optimized schedule of instructions,
In fact, instructions are scheduled to be executed when ready, independent of
the original program order. This prevents unnecessary delay.

• Speculative execution: Using branch prediction and dal a flow analysis, some
processors speculatively execute instructions ahead of their actual appearance
in the program execution. holding the results in temporary locations. This
enables the processor to keep its execution engines as busy as possible by exe-
cuting instructions that are likely to be needed.

I'h csc and other sophisticated techniques are made necessary by the sheer power
Of the processor. They make it possible to exploit the raw speed of the processor.

Performance Balance
While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance
balance: an adjusting of the organization and archil eel ore to compensate for the
mismatch among the capabilities of the various components,

Nowhere is the problem created by such mismatches more critical than in the
interface between processor and main memory: Consider the history depicted in
Figure 2. ID. While processor speed and memory capacity have grown rapidly. the
speed with whieh data can be transferred between main memory and the processor
has lagged badly. The interface between processor and main memory is the most
crucial pathway in the entire computer, because it is responsible for carrying a con-
stant flow of program instructions and data between memory chips and the proces-
sor. If memory or the pathway (ails to keep pace with the processor's insistent
demands. the processor stalls in a wait state, and valuable processing time is lost.

2.2 DESIGNING FOR PERFORMANCE 39

I I

13.:Irrannie RAN] density

1 ,14Lcev/rir ;peed

Dynamic RAM speed

rillimm- !Do —

51111 —

200 —
L.
13 100 —
,E
-6 5.0 ,..
E ,.
;.-
•

•

24) _ .7,
E

10 —

2 —

i m0 19.85 I9911 1995 1995

Figure 2.10 Evolution of DRAM and Processor Characteristics

The effects of these trends are shown vividly in Figure 2.11. The amount of
main memory TIC.C.6.:(1 is going up, hill DRAM density is going up faster. The net
result is that : on average, the number of DRA rs,..k per system is going down. The
solid black lines in the figure show that, for a fixed-size rnemort ,, the number of
DRAMs needed is declining. But this has an effect on transfer rates, because with
fewer DRAMs, there is less opporlunily for parallel transfer of data, The shaded
hands show that for It particular type of system, main memory si;5e has slowly in-
creased while the number of DRAMs has declined.

There are a number of ways that a system architect can attack this problem,
all of which are reflected. in con L'orri poniry computer de signs. Examples include
the following:

• Increase the number 411' hit Lhai are retrieved at one time by making DRAMs
"wider" rather than "deeper" and by using wide bus data paths,

• Change the DRAM inierfaec to make i1 more efficient by including a cache
or other buffering schelrie on the DRAM chip.

• Red LIW the frequency of memory access by incorporating increasingly com-
pLex and efficient cache structures between the processor and main memory.
This includes the incorporation of one or more caches on the processor chip
as well as on an off-chip cache close to the processor. chip.

■ Increase the interconnect Hridwidth between proecssurs Lind memory by
using higher-speed buses and by using a hierarchy of buses to buffer and
sirucl ore data flow,

40 CHAPTER 2 / CO1v1PU TER EVOLU LION AND PERIORMANCE

256

1 28 —

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1999

Technology
Required Bandwidth

I Mbytesis)

2d - hit color 30

100 BASEX or FDD1 12

SCSI or P1351 4 10

11.124 . 768@.30 fps 67-i.

Othcr r31sc4.-I1aneous 5+

Peripheral

Graphics

Local rirca

Disk controller

Full-tootion video

110 peripherals

DRAM
z l N

.411 ,.fl t Nll) ii. 16 MN(6.111"111 4I 1111-41=thit

Predominant I M x 1
organizations 256K x 4

I M x 4 4M x4
2M x8

??? ???

Figure 2.11 Trends in Drain Use [PRZY94]

Another area of design focus is the handling of I/O devices. As computers
become faster and more capable, more sophisticated applications are developed that
support the use of peripherals with intensive 110 demands. Table 2.7 gives some
examples of typical peripheral devices in use on personal computers and work-
stations. 'These devices create tremendous data throughput demands. While the
current generation of processors can handle the data pumped out by these devices,
lhere remains the problem of getting that data moved between processor and
peripheral. Strategies here include caching and buffering schemes plus the use of
higher-speed interconnection buses and more elaborate structures of huses. In addi-
tion, the use of multiple-processor configurations can aid in satisfying 110 demands.

Table 2.7 Typical Bandwidth Requirements for Various Peripheral Technologies

2.3 / PENTIUM AND POWERPC EVOLUTION 41

The key in all this is balance. Designers constantly strive to gallants the
throughput and processing demands of the processor components. math memory,
110 devices, and the interconnection structures. This design must constantly be
rethought to cope with two constantly evolving factors:

• The rate at which performance is changing in the various technology areas
(processor, buse=s, memory, peripherals) differs greatly from one type of cle-
ment to another.

• New applications and new peripheral devices constantly change, the na.trri.•
of the demand on the system in ierms of typical instruetion profile:and ihc data
access patterns.

Thus, computer design is a constantly evolving art form. This book atturopts
to present the fundamentals on which this an form is based and to present a suney

ale current state of that art.

23 PENTIUM AND POWERPC EVOLUTION
.. ,erejbl-rrfk,rrt-

eprr -;;Fr

Throughout this hook. we rely on many concrete examples of compuler design and
implementation to illustrate concepts and to illuminate trade-offs. Most of the time,
the book relies on examples from two computer families: the Intel Pentium and the
ri5werPC. The Pentium represents the results of decades of design effort on com-
plex instruction set computers (CI CO, Ii incorporates the sophisticated design
principles once found only on mainframes and supercomputers and serves as an
excellent example of CISC design. The PowerPC is a direct descendant of the first
RISC system, the IBM S01. .11-ut is one of the most I:rowel-1111 and hest-designed
RISC-based systems on the market,

In this section, we provide a brief overview of both systems.

Pentium
In terms of market share, Into] has ranked as the number one maker of micro-
processors for decade t, a posilion it seems unlikely to yield. The evolution of its Hag.-
ship microprocessor product serves as 21 good indicator of the evolution of computer
technology in general.

Table 2.6 shows that evolution. Interestingly, as microprocessors have grown
faster and much more eomplex, Inlcl has actually picked up the pace- In Lel used
to develop microprocessors one after another, every four years. But Intel hopes to
keep rivals at bay by trimming a year or two off this development time, and has done
so with Wu most recent Pentium generalions.

It is worthwhile to list some of the highlights of the evolution of the. Intl
product tine.

▪ 80S0: The world's first general-purpose microprocessor. This VC:IN
machine, with an 8-bit data path to memory. The 8080 was used in the first
personal computer, the Altair.

42 CHAPTER 2 / COMPUTER EVOLLTTON AND PERFOttlel ANCE

• 8086: A far more powerful, 16-bit machine_ In addition 10 a wider data path
and larger registers, the 8086 sported an instruction cache, or queue, that
prefetches a few instructions before they are executed. A variant of this
processor, the 8088, was used in IBM's first personal computer. securing the
success of Intel,

• 80286: This extension of the 8086 enabled addressing a I6-MByte memory
instead of just 1 MByte,

• 80386: Intel's first 32-bit machine, and a major overhaul of the product. With
a 32-bit architecture, the 80386 rivaled the complexity and power of mini-
computers and mainframes introduced just a few years earlier, This was the
first Intel processor to support multitasking, meaning it could run multiple
programs at the same time.

• 80486: The 80486 introduced the use of much more sophisticated and power-
ful cache technology and sophisticated instruction pipelining. The 80486 also
offered a built-in math coprocessor, offloading complex math operations from
the. main CPU.

• Pentium: lAYith the Pentium, Intel introduced the use of supersca]ar tech-
niques. which allow multiple instructions to execute in parallel.

• Pentium Pro: The Pentium Pro continued the move into superscalar organi-
zation begun with the Pentium, with aggressive use of register renaming.
branch prediction, data flow analysis, and speculative execution.

• Pentium II: The Pentium 11 incorporated Intel MMX technology, which is
designed specifically to process video, audio, and graphics data efficiently.

• Pentium 111: The Pentium III incorporates additional Floating-point instruc-
tions to support 3D graphics software.

• Pentium 4: The Pentium 4 includes additional floating-point and other en-
hancements for multime.dia.'

• Hank= This now generation of Intel processor makes use of a (4-hit organi-
zation with the IA-64 architecture, which is discussed in detail in Chapter 15.

PowerPC

In 1975, the 801 minicomputer project at IBM pioneered many of the architecture
concepts used in RISC systems. The 801, together with the Berkeley RISC I pro-
cessor, launched the RISC' movement, The 801. however, was simply a prototype
intended to demonstrate design concepts. The success of the 801 project led IBM
to develop a commercial RISC workstation product, the RT PC. The RT PC, intro-
duced in 1986, adapted the architectural concepts of Lfic 801 to an actual product.
The RT PC was not a commercial success, and it had many rivals with comparable
or better performance. In 1990, IBM produced a third system, which built on the
lessons of the 801 and the RT PC. The IBM RISC System/6000 was a RISC-like
superscalar machine marketed as a high-performance workstation; shortly after its
introduction, IBM began to refer to this as the POWER architecture.

' With ihc Pentium 4. Thiel switched from Roman numerals to Arabic numerali, for mixicl numbers.

2,3 / PEN flUNI. AND POWERPC EVOLUTION 43

For its next step, IBM entered into an alliance with Motorola, developer of
the M000 series of microprocessors, and Apple, which used the Motorola chip in
its Macintosh coroptilcrs. r iIte result is a series or machines that implement the
PowerPC architecture. •1 his architecture is derived from 1.he POWER arcbiteel Life,
Changes were made to add key missing features and to enable more efficient im-
plementation by eliminating some instructions and relaxing the specification to
eliminate sonic troublesome speci411 eases. The resuhing PowerPC architecture is
a superscalEu. RISC system, The PowerPC is used in millions of Applc Macintosh
machines and in numerous embedded chip applications. An example of the lat-
ter is II- M' family of network management chips, which can be embedded in net-
work equipment to provide eornmon Infinal,comeni .Lee os:s fOr users with rnultiVilndor
platforms.

The Following are the principal members of the PowerPC family (Table 2.8):

• 601: The purpose of the 6.01 was to bring the PowerPC;.irehitcciurc. to the mar-
ketplace as quickly as possible. The 601 is a 32-bit r»achine.

• 603: Intended for low-end desktop and portable computers, II is also a 32-bit
machine, comparable in performance with the 601, but with lower cost and a
more efficient implementation.

• 604: Intended for desktop computers and low-cnd servers, Again, ihis is a
32-hit machine, but it uses much more advanced superscalar design techniques
to achieve greater performance,

• 620: Intended for high-end servers. The first member of the PowerPC family to
implement a full 64-hit architecture, including 64-bit registers and data paths.

• 740/750; Also known as the (33 processor. This processor integrates two lcvelS
of cache in the main processor chip, providing significant puforrriance
improvement over a comparAle machine with off-chip cache organi2ation.

• G4: processor increases the parallelism and internal speed of rhe pro-
cessor chip.

bihit 2.8 PowcrPC Processor Summary

601 6031603e 6041604e 7401750 (G3)1 G4

Fast skup dace 1993 L994 1494 1997 199'9

Clock speeds
(MEir./.) 50-120 30LI. 1.6.6-350 2.00-36.6

1_I cach;.:
I[: 1Chv1 hist

dmra
32 Khne inst
32 Kbytc dam

32 Kbyt,?.. insrr
7-•!2 Khym data

kbyre instr
32 gbycc data

1iricksi(1.2 1.2 cachc.
support

256 Kbyte -]
Mbyte

256 Kbyte••]
Mbyte

Nurnher of
2.8

I I H 11 SE.; I C) if-. I
I .6-2.t) 6.35

44 C•AP -CP.1-k. 2 f COMPUTER EVt.NITTION AND PERNORMANCE

2.4 RECOmMENDED READING. AND 11,--ifr<V454:.;4. Fr. ary:Wier]..A.War ' 111A 4 0:1•••••

A description of the IBM 7041)0 series can he found in IBELL714. 'There is good cowl
-ay. of

the IBM 3W) in [SIEWEJ and of the PI)P x and other DEC machines in [BELL78a1. Thew.
three hooks also contain numerous &talk:LI examples of other computers spanning the his-
tory of computers through the earls/ 1 ,.?:-;tis, A more recent book that includes an eNctlierit
set of ease studies of historicat machines is [BLAA97]. A good hist my of the mieroproces-
sbr is [BETK971.

One of the best 1.rcaiinents of the Pentium is ISHA N981. The Intel, docunne.imation itself
is alsu good [INTL(.111- IEftREV001 provides a good survey of the Intel microprocessor line,
with emphasis on the ;i.2-bit machines.

LI1494] is a thorough treatment i he PowerPC architecture- ISHAN951 pro-
vides similar coverage. [WEI594.1 Ireats I'oth the POWER and Power.PC architectures.

For interesting discussions of Moore's law and its consequences, see •IU1C961.
[SC'HA.97 J, and 1BOH R981.

HEI.1.31a. Bell, C.4 and Newq111,. A. Cornpulep SiructRres.- Readings and En..unpin New
York: MeCiraw-Ili11,

BELL78a Bell. Mlidge,l, and McNamara, J. Engi.Fremringf A 1)EC Vim.s: of
Hardware. Bedford, MA: Digital Press. 1978.

IRETK97 113e.Lker, ['ern:Ando, J.. and %V W ell, S. "The Hislory the MieroprocesscPC
ne.211..ribs Irrilaricaf Journal, Autumn. 199 -1.

IILAA,97 Binauw, G., and Brooks.. P. (..omiquer Architecture: Cord.cepti add Evethvion.
Reading- MA: Addison-Wesley, 1997.

1101-11198 Bohr, M. 'Silicon 'fiends and Limits for Adk.tiaxecd MieroprocesscFri.. - COM-
MliniCaliONS of the ACM . 7litirch 1998-

BRE'r1X1 Titd: Intel .19 irpopp.r.rcmors: 808.6.490.66, .10,786/801 88, 802.96, 80336.
80486, Pitp.inen, liotTheni Pro and PcrnrirzoF 11 Proccssars. Uppcc Sttddte River, NJ;

FICTC96 Hutcheson : and I Ititchesan..1. "'Technology and Economics in the Send-
e.i. .inductor Industry." Scienrifk Arrwricaid, January 19%.

11-1M94 International Busine.s,s Machines, Inc. The Powe.,f'<' 41 chireertere.- rl Spe,ciritogoot
for a Neg... Enmity 1?.M:' j" r494:ussom. San Francisco.. CA,: 1organ Kaufmann", 1994.

INTE01 bid Corp. Merl iirchitectrov ScOvar.e. Deueloper'..r. Manual volumes).
Document 24.5470 and 14547.1. Aurora. CO. 2000.

SCIIA97 Schaller. R. "Moores Law; Past, Ptesorrt, and Future."' Sprvirten. Jane
194r1.

SHAMS Shaulcy, T. 1'ovi...(71 1 (.' Syvirrn t A n'hiter.e.rwe. Reading. NIA.; Addison rWailey, 1095.

SHAN98 Pro and Pentium 11 Sy y.rem ei.r.chire.crakre. Rai:R.411g% MA:
Addison-Wesiey. 1998.

SIEW82 Siewiorek. D.; Boll. C.: and A. Crm puter Srrrrclures, PrinCiPleS and
1-..5rample.v. New York: 1982.

WII.:IIS94:1 Weiss,-S-, cud Sruidi, J. POWER road Poli:erPC San PairicisN): rdorgail lCaral-
rnann,

2.5 f KEY REVIEW QUE'ST1ONS, A.NID PRODI EMS 45

Recoinmentied Web Sites:

s Intel Developer's ['loge: Intel's 11,Ve1.3 page for developers! provides a starting point for
accessing Pentium informarion. Also includes the Technology .Tournal.

■ PoTherPC: Two likb. tine by rvlo1orola kirril one. by [BM. roc the PowerPC.

■ Top501111 Supercomputer Site: Prcrvides brici description of architeclure and organiza-
tion of current supercomputer products, plus comparisons.

■ Charles BabliPsige PreivideE, 'Mks 10 a number of Web sites dealing with the
hisiory of computers.

2.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Tering

accurnulaior (AC) nisi ruction register (I1{) OpcoJe
arithmetic and Logic inStrUctiC , II ParikliBB equipinom

unit (ALL) integrated eircuil. (IC) manufacturer (0E:1/4,1)
chip memory program control unit

I EIenlciry a ddress 1nro)2rant cottritcfr (PC)
execute cycle register (MAR) program coinputur
fetch cycle rrrcrnc Fry btiffer iipward COM patible

(I/0) re i.,tcc (MI3R) 11I Neltimnit machine
instructic buffer microprocessor water

register (111(?). multiplexor word
inurniction cycle

Review Questions
2.1 What is a stored program computer?
2,2 What are the four main compunents ulrtiny general -purpose computer?
2.3 At the integrated circuit level. what are the1hree principal constituen ts at a computer

syster0
2.4 Explain Moores law.

Lisl and 111; kcy chaructcrislics of a coniputor
2. What is the k.Ly distinguishing feature of a microprocessor?

Problems
11e1 A = All), A(2), A(.1.00,0) and P = B 1), B(2) B(10(f0) be two vector.;
(one-ditmnsiontil arrays) 4.:41rnprising 1000 numbers each (hal aro to be added to
form an array C such alai C(L) = A(1) + It I for = 1. 2 1.0%. Using the TA;
instruclion sot, write a program For this problem.

2.2 In the IBM 3.60 Models 65 and 75, addresses arc striocred in two separate ma in
memory units (e.g., all even-numbered words in onc unit and all odd -numbered words
in ki nolher). Vilhat might be the purpose or this technique?

PART
TWO uter System

• .• •••"• . •

A cCaliputar systetn COn'sists of processor, m or emy, 170, miercon-
nections among these major components, With I he t;..'1.c,t2.PkiUlli ut 111, proc.cN-
sor. which is suFficienily compkx to (Acyclic Piti . t. lho.c...to..it.$,...s tidy, Vaal -r.:wo

oft .te.1;: Oip JiI for
, ...Ar'r

40:4-1.17$44r4e:414:C...-

Chapter 3 A View of Computer Function
and Interconnection • • ':•-
At a top level, a computer Con its of ü process6r. memory. .t..firrd il acornpo-
'lents. The functional behavior of thc.ziystern con;,isrsof the ex.cillmge of data
a rid C4 ini.F.o[si ot[s among ihesc componettts. To opal this cxchango, these
components must be interconnected. C:hapter 3 1. -pogins with a brief examina-
tion of the computer's components and their inpui-oniput re tirni nt, Thu
chaplxr then look , at key issues that . affect interconnection design, especially
the need to support intert.upts. The bulk of the chapictr is devoted to a siudy
of the. tn95t co MD1011 approack - tg.: in.te.r.connectign; the use. of A . s,trg.e4tirr.:
L2J.J$e• .;

CThapter 4 Cache Memory
Computer merriory exhibilIF. a wide range or type, 1cehno1ogy, organization,
perform:la [tee. tau] cost. The typical computer system is equipped with a
hierarchy of memory subsystems. sortie internal (dircei Ey ziccessi Mc by the
procesNor) mid some (Nicrrial (acees..siblc by the proccs.sor ir'w an 110 mod-
u[). Chapter 4 begins with an overview of this hiorarchy. Next, the ehapiet

48. PART THE COMPUTER SYSTEM

deals in detail with the design of cache memory, including. separate. code and data
caches and two-level caches.

Chapter 5 Internal Memory

The design of a main memory system is a never-ending battle among three com-
puting design requirements: large storage capacity. rapid access lime, and low cost_
Asmemory technology evolves. each of these three characteristics is changing, so
that the design de.cisions in orgzmizing main memory must he revisited anew with
each new implementation. Chapter 5 focuses on design issues related to internal
memory, First. the nature and organization of semiconductor main memory is exam-
ined. Then, recent advanced DRAM memory organizations are explored.

Chapter 6 External Memory
For truly large storage capacity and for more permanent stora2e than is available
with main memory, an external memory organization is needed. The most widely
used type- of mini memory is magnetic disk, anti much of Chapter 6 concentrates
on this topic. first. we look at magnetic disk technology and design considerations_
Then_ we look at the use of RAID organization to improve disk mernory perfor-
mance. Chapter 6 also examines optical and tape storage.

Chapter 7 Input/Output
1.10 modules arc interconnected with the processor and main memory, and each
controls one or more external devices. Chapter 7 is devoted to the various aspects
of organization, This is a complex area, and less well understood than other
areas of computer system design in terms of meeting performance demands. Chap-
ter 7 examines the mechanisms by which an 110 module. interacts with the rest of
the computer system, using the techniques of programmed PO, interrupt 1/0. and
direct memory access (DMA). The interface between an lit) module and oNlyrnal
devices is also described.

Chapter 8 Operating System Support
A detailed examination of operating systems ((As) is beyond the scope of this book.
However. it is important to understand the Nisk. [unctions of an operating system
and how the OS exploits hardware to proVidt• the desired performance. Chapter -

describes the. basic principles of operating systems and discusses the specific design
features in the computer hardware intended to provide support for the operating.
system, The chapter - begins with a brief history; which serves TO identify the major
types of Operating systems and . to motivate their use Next, multiprogramming
is explained by examining the long-term and short-term scheduling functions.
Finally, an examination of memory management includes a discussion of segmen-
tation, paging. and virtual memory.

CHAPTER

A TOP-LEVEL VIEW
OF COMPUTER FUNCTION
AND INTERCONNECTION

3.1 Computer Components

32 Computer Funetiiui

Instruction Fetch and Execute
Interrupts
110 Function

3.3 Interconnection Structures

3.4 Bus Interconnection

Bus Structure
Multiple-Bus Hierarchies
Ylc ren ts of Bus Design

33 PCI

Bus Structure
PCI Commands
Data Transfers.
Arbitration

3.6 Recommended Reading and Web Sites

3.7 Key Terms, Review Quesiions, and Problems

Key Icrms
Review Questions
Problems

Appendix 3A Timing Diagrams

KEY POINTS

♦ An instritelion cycle consists of art instruction fetch, followed by zero or snore
operand fetches, followed by zero or more operand stores, followed by an
interrupt check (if intermpts are enabled).

• The major computer VS Lern components (processor, main memory. 1../0 mod-
ules) need to be interconnected in order to exchange data litad control signals.
'Flee most popular means of interconnection is the use of a shared system bus
consisting of multiple lines. In contemporary systems, there typically is a hier-
archy of buses to improve performance..

• Key design el ements for buses include ii . bitrat ion (whether permission to send
signals on bus lines is Controlled centrally or in a distributed fashion); liming
(whether signals on the bus are synchronized to a central clock or are sent
4iti ptchronously based on the most recent transmission); and width (number
of address Lines and number of data lines).

SO CHAPTER. 3 I A VFW OF COMPUI ER. I'L:NIC.TION AND INTERCONNECTION

A t, top level, a computer consists of CPU (central processing unit), memory.
. iiicl 1/0 components, with one or more modules of each type. These com-

ponents are interconnected in some fashion to achieve the basic function of
flit: Loin puter, which is to execute programs. Thus, at a top level. we can describe
a computer system by (I) describing the em erna I behavior of each component. that
is, the data and control signals that it exchanges with other components; and (2)
describing the interconnection structure and the controls required to manage the
use of the interconnection structure.

This top-level view of structure and function is important because of its
explanatory power in understanding the nature of a computer. Equally important is
its use to understand the increasingly complex issues of performance evaluation. A
grasp of the top-level structure and function offers insight into system bottlenecks,
alternate pathways. the magnitude of ,,>.stem failures if a component fails, and the
ease of adding performance enhancements. In many cases, requirements for treater
system power and fail-safe capabilities are being met by changing the design rather
than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component
interconnection. As background, the chapter begins with a brief examination of the
basic components and their interface requirements. Then a functional overview is
provided. We are then prepared to examine the use of buses to interconnect system
components.

3.1 COMPUTER COMPONENTS

As discussed in Chapter 2. virtually all contemporary computer designs are based on
concepts developed by John von Neumann at the institute for Advanced Studies,

3.1 / COMPUTER COMPONENTS Si

Princeton. Such a design is referred to as the von N nano no a all i etcare and is based
on three key concepts:

• Data and instructions are stored in a single read—write memory,
• The contents of this memory are addressable by location, without regard to

the type of data contained there.
• Execution occurs in a sequential fashion (unless explicitly modified) frail-Lone

instruction to the next.

The reasoning behind these concepts was discussed in Chapter 2 but is worth
summarizing here. 'There is a small set of basic logic components that can be com-
bined in various ways to store binary data and to perform arithmetic and logical
operations on that data. If there is a particular computation to be performed, a con-
figuration of logic components designed specificativ for that computation could be
constructed. We can think of the process of connecting the various components
in the desired configuration as a farm of programming. The resulting "program" is in
the form of hardware and is termed a ha rilw red program.

Now consider this alternative. Suppose we construct a general-purpose con-
figuration of arithmetic and logic functions. This set of hardware will perform vari-
ous functions on data depending on control signals applied to the hardware. In the
original case of customized hardware, the system 4icuci-Pb.; data and produces results
(Figure 3.1a). With general-purpose hardware, the system accepts data and control
signals and produces results. Thus., instead of rewiring the hardware for each new
program, I he programmer merely needs. to supply a new set of control signals.

Flow shall control signals be supplied? The answer is simple but subtle. The
entire program is actually a sequence of steps. At each step, some arithmetic or log-
ical operation is performed on some data. For each step, a new set of control signals
is needed. Lc1 us provide a unique code for each possible set of control signals, and
let us add to the general-purpose hardware a segment that can accept a code and
generate control signals (Figure :Lib).

Programming is now much easier. Insiead of rewiring the hardware for each
new program, ail we need to do is provide a new scqucncc of codes. Each code is,
in effect, an instruction. and part of the hardware interprets each instruction and
generates control signals. To distinguish this new method of programming. a
sequence of codes or instructions is called Nernware..

Figure 3.1b indicates two major components of the system: an instruction
interpreter and a module of general-purpose arithmetic and logic functions. These
two Constitute the CPU. Several other components are needed to yield a function-
ing computer. Data and instructions must he put into the system. For this we need
some sort of input module. This module contains basic components for accepting
data and instructions in some form and converting them into an internal form of sig-
nals usable by the system. A means of reporting resulls is needed, and this is in the
form of an output module. Taken together, these are referred to as //C) CO/Hp:Men M.

One more comroiwnt is needed - An input device will bring instructions and
data in s.ccittenlially. But a program is not invariably executed sequentially; it may
jump around (e.g., the 1AS jump instruction). Similarly, operatiouN on data may
require access to more than just one element at a time in a predetermined sequence.

instruction
codes

Instruction
Interpreter

General-pupae
arithmetk
and logic
functions

Data

52 CHAPTER 3 / A VII -0.X1 OF COMPUTER FUNCTION ANL) INTERCONNECTION

Data —

Sequence of
arithmetic
and logic
functiOLIS.

Results

rat Programming in hardware

Results

Control
signals

hi Programming in software

Figure 3.1 Hardware and Software Approaches

Thus, there must be a place to store temporarily both instructions and data. That
module is called memory, or main memory to distinguish it from external storage or
peripheral devices. on Neumann pointed out that the same memory could he used
to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interactions
among them. The CPU exchanges data with memory. For this purpose, it typically
makes use of two internal (to the CPU) registers: a memory address register
(MAR), which specifies the address in memory for the next read or write. and a
memory buffer register (NeIBR), which contains the data to be written into memory
or receives the data read from memory. Similarly, an 110 address register (I/0AR)
specifies a particular device. An buffer register (.110BR) is used for the
exchange of data between an module and the CPU.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a binary number that can be interpreted as
either an instruction or data. Anil() module transfers data from external devices to
CPU and memory, and vice versa. It contains internal buffers for temporarily hold-
ing these data until they can be sent on.

having looked briefly at these major components, we now turn.to an overview
of how these components function together to execute programs.

Buffers

110 module

Program counter
Instruction register
Memory address register
Memory buffer register

I/O AR = 111[mi/output address register
I/O BR = Input/m.4pol buffer register

PC =
IR =
MAR =
MBR =

3.2 COMPL:TER. FUNCTION 53

CPU

System
bus

0
1
2

Main memory

•

Instruction
Instruction
Frisii-aciion

•

•
•

Data
Data
Data
Data

.

.
— 2
— I

Figure 3.2 Compute.r C(irlivonc[thi; -Fop-L4.2vel Vi 12. W

3.2 C6MPUTER ---<?-0,efr-rg-X-rxrrze:, arreefead. ,

The bask function performed by a computer is execution of I, progrtml, which con-
sists of a set of instructionz ,. slorcd in memory. The processor does the actual work
by executing instructions specified in the pmgram. This section provides an
overview or the key elements of program excuution. In its 7:limplc.s1 fc..1rni. instruction
processing consists of two steps: The processor reads (reicher.v) instructions from
memory one at a time and executes each instruction. Program execution consists of
repeating the prof.:(3ss of instruction fetch and instruction execution, r]'he instruction
execution may involve several operations and depends on the nature of the instruc-
tion (see, for example, the iLhicr portion of Figure 2.4).

54 CHAPTER. 3 / A VIEW el- COMPU ['ER FUNCTION AND IN

Thu processing required for a single instruction is called an instruction cycle.
Using the simplified two-step description given previously. the instruction cycle is
depicted in Figure 3,3. The two step RTC referred to as the fetch cycle and the
execute cycle. Program execution halts only if the machine is turned off, some sort
of LUITCce verablQ. error occurs, or a program instrucl ion nal halts the computer is
encountered,

Instruction Fetch and Execute

Ai the beginning of each nisi ruction cycle, the processor fetches an instruction
from memory, Ina typical processor. a resister called the program am-Later (PC)
holds the address of the instruction to be fetched next. Unless told otherwise, the
processor always increments the PC after each instruction fetch so that it will fetch
1 he next instruction hi sequence (i.e., the instruction located at the next higher mem-
ory address). So. for example, consider a computer in which each instruction oecu-
pies one 145-bil word of memory, Assume that the program counter is set to location
300. The processor will next fetch the instruction at location 300. On succeeding
instruction cycles,. it will fetch instructions from locations 301. 302. 303, and so on.
This sequence may be altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as
the instruction regisier (I R). The instruction contains bits that specify the action lhe
processor is to take. The processor interprets the instruction and performs the re-
quired action. In general, these actions fall into four.eategorics:

• Processor-meroory: Data may be transferred from processor to memory or
from memory to processor.

• Proceskor4/0; Data may he transferred to or from a peripheral device by
transferring between the processor and an 1 0 module.

• Data processing; The processor may perform some arithmetic or logic opera-
ti on on data,

• Control; An instruction may specify that the sequence of execution be alicred.
For example, the processor may fetch an instruction from loetition 149, which
specifies that the next instruction be from location 182. The processor will
remember this fact by setting the program counter to 182. Thus, on the next
fetch cycle, the instruction will be fe1ched from location 182 rather than 150.

An instruction's execution may involve a combination of these actions.

Fetch c21:cle Execute cycle

Fipire 3,3 Basic hisEruction Cycle

3 i5

Address

3.2 COMPUTER FUNCTION 55

(a) Instruction format

Magnitude

15

4.b) Integer format

Program counter CPC b = A dtlrexs cFt instruction
instruction rr2. g (JR 1 = oNlroction being xcruted
Ac uniitialor 4. AC) = Temporary storage

Internal CPU registers

MD I = Load. AC From
= Siort. .AiC lo memory

0101 = Add to AC from memory

111) P'arnal of oracles

M C'haracieristics of a Hy poihetieal Machina

COnsickT a simple example using a hypothetical machine that includes the
characteristics listed in Figure 3.4, The processor contains a single data register.
called an accumulator (AC). Both instructions and data are 1.6 bile long- Thus, it is
convenient to organize memory using 16-bit words. The instruction format provides
4 hits for the c)peode, so that there can be as many as 2 4 — lb different opcodes, and
up to 2' = 4096 (4K). words or memory can be directly acldressed.

Figure 3.5 illustrates a partial program exeCuLion, showing ihu rcluvant por-
ti ons or memory and processor reRisters. The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter to Three instructions, which can
be described as three fetch and three execute cycles, are required:

1. The PC contains 300 : the address of 1he rinst instruction. This instruction (the
value 1940 in hexadecimal) i loaded into the instruction register IN. and 1hc
PC is incremented, Note that this process involves the use of a memory
address register (Nel AR) and a memory buffer recister (MBR). For simplicity,
these intermediate registers are ignored.

I HAkitlucirli;t11101:Jlion ik IHLN.I. in which cad] digit represents 4 bits. This is the most convenient notation
for rcpmEenling the corslcitts of ttlemory ki nd rlfgird.vrs when Llic word length is a multiple or 4 - See
Appendix ri rcircsiler on number Eystoras Wedmal. binary. hexadecimal).

56 CHAPTER 3 / A VIEW OF COMPUTFR FUNCTION ANT) INTERCONNFCTION

30]'
3112

Memory
300nc)i4

5 9 4
2 9 __..

6
1
E

--,
'
Li.

C11.: register

AC
IR

300
30]
302

Memory

...-÷
:

CP1.. registers

AC
 D.

3 0 0, PC 1 9 4 0
I

3 0] • PC
5 9 4 0 0 0

3

1 9 4 0 2 9 4 I 1 9 40

9401 0 0 0 3: 040.0 00 3L
94 i LO 0 2. 941,0 0 0 2

S1Lp I SILT 2

Meilifiry CPU registers Mernur.F CPU registers

300 1 9 4 01 1_3 0 11I'C 301! 9 4 C) I37nfi iv .
301 . 5 . _ .9 4 11—, AC soi 3 9_4) c {) 0 0 AC
302 j 1-4.

0 0 pl
:5. 9 ii 1 IR 302 2 9 4 1 ' 5 9 *1 IIV

940R)45,:e 31 94007) 3 -'. ' 2 5--)
94110 0 0 21 94 i 10 0 0 2 -----

 1

Step 3 Step 4

Memury CPU registers Memory CPU registers

3001--q40: 3 0 22'' 30o . 1 9 4 01 ' 3 0 31PC
301 5 94 T . 0 0 0 5- AC 301 5 9 4 1 ,.- 0 0 0 T. AC
302 2 9 4 1 0 4 1 1R. 02; 2 0 4 1 :

1 ,
.2 9 4 1 ER • 10.1 2

, .
940 0 0 0 3 9401. 0 0 0 31 j

i
941 0 0 0 2 941 0 0 5 [41--'

Stop 5 Step 6

Figure 3.5 EXaillpL of Program Executinn (contents of memory and
registers in Imaidecimal)

2. The first 4 bits (first hexadecimal digit} in the IR indicate tali the AC is to be

loaded, The remaining 12 hits (three hexadecimal digits) specify the address
(940) from which LI4.iia ate to.be loaded.

3. The next instruction (504 I) is fetched from location 301 and the PC is incremented.

.4. The old contents of the AC and the contents of location 941 are added and the
result is stored in the AC.

5. The next instruction (2941) i fetched from location 302 and the PC is incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, eHch consisting of at fetch cycle and
an execute. cycle. are needed to add the contents of location 940 to the contents of
941. With a more compiex set of insiructions. fewer eyeios would he needed. Some
older processors. for example, included instructions that contain MOrC than one
memory ztCidress. Thus the execution cycle for a particular instruction on such
processors could involve more than one reference. to memory. Also. instead of mem-
ory referancg!,_ an instruction may sped[) an Li0 operation.

Fur example. the P1.)P-11 instruction expressed symbolically as ADD fi,A
stores the sum of the contents of memory locations B and A into memory location
A. A single inslruction cycle with the roilowina steps occurs:.

Return for.ctri ng
or vector data

ilS[rtietion coenpl v[t,
1,11. 01 I1 xl mstrucc

Operand
filch

A

Mtil Ci rc . tria[Lipte
:i perands r nad tS

Ire.itruction
add retiA
calculation

titcrr
ciperatinal I I adciress
decoding // tixlcuhYtiSYu

Opurand

acfrlveis
cuicals don

Figure 3.6 Insrruction (. 9yelc Statv. Di.4rrair

.2 COMPUTER FUNCTION 57

• Fetch the ADD instruction.
• Read the contents of memory location A into the. processor.
• Read the contents of memory location 13 inlo the processor. In order ihai

contents of A are not lost. the processor must have at least two registers for
storing memory values. rather than a single accumulator.

• Add the two values.

• Write the rctsutl, from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more Hum
one reference to memory. Also. instead of memory references, an instruction may
specify an 110 operation. I hcse ilddilional considerations in mind, Figure 3.6
provides a more detailed look at the basic instruction cycle of Figure. 3.3. ' MI .,:

figure is in the form of a state diaaram. For any given instruction cycle, some states
may be null and others may be visited more than once. The states can be described
as follows;

• Instruttion address calculation (lac): Determine the address of the next
instruction to be executed. Usually, th is invoivcs adding a fixed number 10 the
address of the previous instruction. For example, if each instruction is I6i bits
long wi nd memory is organized into .1 6-bit words, then add 1 to the previous
address. IL instead, memory is organized as individually addressable 8-bit
bytes, then add 2 to the previous address,

• Instriroimi Fetch (if): Read instruction from its memory location into the
processor.

• iristruction operation decoding (100 Analyze instruction to determine type
of operation to he performed and operand(s) to be used.

• Operand address calculation (oac): If the ope raLion involves 1'12 le rencc to
rill (Tumid in memory or available via UO, then determine the address of the
operand.

58 CHAPTER 3 1 A VIEW OF COMPUTER FUNCTION AND INTERCONNECTION

• Operand fetch (of): 1:etch the operand from memory or read it in from I/O,
• Data operation (do): Perform the operation indicated in the instruction.

• Operand store (os): Write the result into memory or out to If0.

Stales in the upper part of Figure 3.6 involve an exchange between the proces-
sor and either memory or an 110 module, States in the lower part of the diagram
involve only internal processor operations. The oac slate appears twice, because an
instruction may involve a read, a write, or both, However, the action performed
during that state is fundamentally the same in both cases, and so only a single state
identifier is needed.

Also note that the diagram allows for multiple operands and multiple results,
because some instructions on some machines require this. For example, the P.DN- 1 1
instruction ADD A,B results in the following sequence of states: iac, if. iod, oac, of,
oac, of. do, oac, os.

Finally. on some machines, a single instruction can specify an Operation to
be performed on a vector (one-dimensional array) of numbers or a string (one-
dimensional array) of characters. As Figure 16 indicates, this would involve repet-
itive operand fetch and/or store operations.

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O. mem-
ory) may interrupt the normal processing of the processor, Table 3.1 lists the most
common classes of interrupts. The specific nature of these interrupts is examined
later in this book, especially in Chapters 7 and 12. However, we need to introduce
the concept nov+. to understand more clearly the nature of the instruction cycle and
the implications of interrupts on the interconnection structure. The reader need
not he concerned at this stage about the details of the generation and processing
of interrupts, but only focus on the communication between modules that results
from interrupts.

Interrupts are provided primarily as a way to improve processing efficiency.
For example, most external devices are much slower than the processor. Suppose
that the processor is transferring data to a printer using the instruction cycle scheme
of Figure 3.3. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
hundreds or even thousands of instruction cycles that do not involve memory.
Clearly, this is a very wasteful use of the processor.

Table 11 Classes of Interrupts

PrOgralla cknerauld try some condition that occurs a8 u mule of an instruction execution,
such as arithim tic (werflo•, division by tern, attempt in exccole an illegal
machine instrUclion, im reference outndk a ilSe.T'S irmnory space,

Timer Gen orDi tl liy liTrH2r Wlfltln !he proveNsur. 0142 operating system
to perform Certain Functions on a retrular

VO Generated by an 110 controller, to signiii normal etimpletion nt tin Opc1aLiOn

OT to qigi Lill. :1 calie rY I . CrTor hdiLiCin..S.

Hardware failure 001Cla by a laiiuro Such in, power failure or mentor parity error.

3.2 coMPUTER. FUNCTION 59

Figure 3.7a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. Code segments I. 2, and 3 refer to
sequences of instructions that do not involve I/O. The WRIT I-i calk are to an
program that is a system utility and that will perform the actual I/O operation - The
110 program consists of three sections:

■ A sequence of instructions, labeled 4 in the figure, to prepare. for the actual
I.10 operation. This may include copying the data to he output into a special
buffer and preparing the parameters for a device command.

• The actual I.0 command. Without the use of interrupts, once this command is
issued, the program must wait for the I/0 device to perform the requested func-
tion (or periodically poll the device). The program might wait by simply repeat-
edly performing a test operation to determine if the 1/0 operation is done.

• A sequence of instructions, labeled 5 in the figure.. to complete. the operation.
This may include setting a flag indicating the success or failure of the operation.

Because the 1/0 operation may take a relatively long time to complete, the 110
program is hung up waiting for the operation to complete; hence. the user program
is stopped at the point or oh: WRITE call for sonic considerable period of time.

Interrupts and the Instruction cycle

With interrupts, the processor can be engaged in executing other instructions
while an 1.0 operation is in progress, Consider the flow of control in Figure 3.7b.
As before, the user program reaches a point at which it makes a system call in the
form of a WRITE call. 'I program that is invoked in this case consists only of
the preparation code and the act ind I/O command. After these few instructions have
been executed, contral returns to the user program, Meanwhile, the external device
is busy accepting data from computer memory and printing il. This 1/0 operation is
conducted concurrently with the execution of instructions in the user program,

When the external device becomes ready to be serviced, that is, when it is
ready to accept more data from the processor, the module for that external
device sends an interrupt request signal to the processor, The processor responds by
suspending operation of the current program, branching off to a program to service
that particular 1.10 device, known as an interrupt handler, and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by an asterisk in 1•igure 3.7b.

From I he point of view of the user program, an interrupt is just that: an inter-
ruption of the normal sequence of execution. When the interrupt processing is
completed, execution resumes (Figure 3.g), Thus, the user program does not have
to contain any special code to accommodate interrupts; the processor and the oper-
ating system are responsible for suspending the user program and then resuming it
at the same point.

To accommodate interrupts, an i nterrtpt cycle is added to the instruction cycle,
as shown in Figure 3.9. In the interrupt cycle. the processor checks to see if any
interrupts have occurred. indicated by the presence of an interrupt signal. If no
interrupts are pending, the processor proceeds to the fetch cycle and fetches the
next instruction of the current program. If an interrupt is pending, the processor
does the following:

User
program

I

,./ f
.. i r r i

/ i
I

1 I
/ 1

''-.
I

.... 1....
,

/

, i
/

170
orograrn
'

User
program

, i
I
I

• ,
j

‘
I

i rr,

I/O
program

(:)

I -vcr
pruvrain

1/0
program

0
re

0...

,
1"7.7„.
w 0

A
ifri

® 'Fir I
."

0
4 ®I

Li-
.er / 1 I

z i ji , i
O''' -- f

0

TIO
COJ onrand an

Inierforit
handler

N

orl

U0
Command

Unerrupi
handler

...,
WHITE / W HITE ir .— — --/ I

/ Z

.•.- ""i
r''' , -.' ,

WRTTE — ' I. i• .0

-
0

CI

I
-...../

/
1

i

i
/

1 /
/ /

I/ i

CD

CD

/ 1
) i

/ 1
.9, ..4 I
Ix f -
1 '> -.' .9%. I , I 1 1

0

f /
1 i
i ,

f i
f jr

I i
f /

f /
II i —\ — -L' — -1 --

END

\I
CD 6 i

WRITE i
I

W
le i

RITE /
1 /

/ I]

,.L — 'I
WRI1E — I— _ /1 I

— i- -L. 1 _

0

I
1
I

I,
I
I

+

(ID

IC)

/
I i z

. e .
, z ,
1/ '
r®
I

1
+

END

0

I I 1
I 1 /
1 , ,
f / f
I 1 i
! 1 1
I i /
lif
V f

EN D

WRI WRITE
i

WRITE. It*

(a) No hive rru p Ls (h) Interrupts; shizirt UO wait 11..) Lauf-opts: lon2 1/0 wait

figure 3.7 Program Flow of Cuntli:11 withom and with Iniefropts

3.2 l COMPUTER FUNC I ION 61

User program Enre.rrup(.112.pdkr

Interrupt
occurs huc 1

M •

Figure 18 Transfer of C'ontroll. via Inte.rrupis

* It suspends execution of the current program being executed and saves its
context. This niearm solving i he otidress or Ihe next inslruclion to be executed
(current contents of the prognim counter) and any other data relevant to the
processor's current activity.

▪ It sets the pro gram counter to the starting address of an 161 21'07010 handler to

The fare cc.ssor now proceeds lo lie fetch cycle and fetches Ihe first instruc-
tion in the interrupt handler program, which will service the inie mpt. The inter-
rupt handler program is generally part of the operating system. Typically, this
program determines the nature of the interrupt and performs whatever actions
are needed. In th.c cxample 'se have been using, the handler determines which

Fetch cycle Execute cycle Interrupt cycle

Figure 3.9 Instruction Cycle. with Interrupts

62 CHAIrTER 3 A VIEW OE COMPUTER FUNCTION AND INTERCONNECTION

1; 0 module generated the interrupt, and may branch to ,o program that will write
more data out to that 1;0 module. When the interrupt handler routine is com-
pleted, the processor can resume execution of the user program al the point of
inter r u pti

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the
interrupt kind to decide on the appropriate action. Nevertheless, because of the rel-

large amount of time that would he wasted by simply waiting on an 110 oper-
ation, the processor can be employed much more efficiently with the use of
interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing dia-
gram based on the Mow of control in Figures 3.7a and 3.7b. Figures 3.7b and 310
assume that the lime required for the 110 operation is relatively Short. less than the
ti me to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is that

Pintie

o
With irsit.irrupv,

LJ

0

Pivcc.skor
wait

0

0

Processiir
wait

0

0

I
1/0

urix.radon

I
L/O

operntio.n

I
1/{)

operulion

I TiC)
operation

CD

la) Without interrupts

Figure 3.10 Progrnrn Timing... Short .1.+0 Wait

0

0

Primessoi-

wnii

rroc:Ls..am .

LJ

0

/0

operation operation

1:9WT4L 'UM

I/6
operation

Operation

0
0

0
0

0
(h) With internipts

3.2 / (.."..OMPUTER 1:1--.NCTION 63

the 1/C) operation will take much more time than executing a sequence of user
instructions. Figure 1.71: indicates this state of affairs. In this case, the user pro ram
reaches the second WRITE call before !he I/O operation spawned by the first call
is complete:. The result is that the user program is hung up at that point. When the
pyeceding 1/0 operation is completed, this new WRITE. cal! may be processed, and
a new 1.10 operation moy he started. Figure 3,11 shows the timing for this situation
with and without the use of interrupt_ We can sec shat there is still a gain in effi-
ciency because part of the time durin.g which the I/0 operation is underway over-
iaps with the execution or user instructions.

Tirrh.

(k. 0 Withow

Figure 3.11 PI- 1.1.4,10 in Timing: Long 1.0 Wait

64 CI IAFTER 3 / A \'WW OF COMPUTEP, l'UNCTION AND 1N8RCONNECTION

Figure 3.12 shows a revised instruction cycle state diagram that includes inter-
rupt cycle processing.

Multiple Interrupts

The discussion so far has focused only on the occurrence of a single interrupt_
Suppose, however, that multiple interrupts can occur, For example, a program may
be receiving data from a communications line and printing results. The printer will
generate an interrupt every time that it completes a print operation. The communi-
cation line controller will generate an interrupt every time a unit of data arrives. The
unit could either be a single character or a block, depending on the nature of the
communications discipline. In any case. it is possible for a communications interrupt
to occur while a printer interrupt is being processed.

Two approaches can be taken to dealing with multiple interrupts. The first is
to disable interrupts while an interrupt is being processed_ A disabled interrupt sim-

ply means that the processor can and will ignore that interrupt request signal. If an
interrupt occurs during this time. it generally remains pending and will be checked
by the processor after the processor has enabled interrupts_ 'Thus, when a user pro-
gram is executing and an interrupt occurs, interrupts are disabled immediately.
After the interrupt handler routine completes, interrupts are enabled before re-
suming the user program, and the processor checks to see i1 additional interrupts
have occurred. This approach is nice and simple, as interrupts are handled in strict
sequential order (Figure 3.13a).

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input_ If the first batch of input has not been processed before the second batch
arrives, data may be lost_

A second approach is to define priorities for interrupts and to allow an in-
terrupt of higher priority to cause a lower-priority interrupt handler to be itself
interrupted (Figure 3.13b). As an example of this second approach, consider a sys-
tem with three 110 devices: a printer, a disk, and a communications line, with
increasing priorities of 2, 4, and 5, respective]y. Figure. 3_14 illustrates a possible
sequence. A user program begins at r = 0. At t = 10, a printer interrupt occurs;
user information is placed on the system stack and execution continues at the
printer interrupt service routine (ISIS). While this routine is still executing, at
t = 15, a communications interrupt occurs. Because the communications line has
higher priority than the printer, the interrupt is honored. The printer ISR is inter-
rupted, its stale is pushed onto the stack. and execution continues at the commu-
nications !SR_ While this routine is executing, a disk interrupt occurs (r = 20).
Beeau ,,e this interrupt is of tower priority. it is simply held, and the communica-
tions ISR runs to completion.

When the communications 1SR is complete (t 25). the previous processor
state is restored. which is the execution of the printer 'SR. However, before even
a single instruction in that routine can be executed, the processor honors the
higher-priority disk interrupt and control transfers to the disk ISR. Only when that
routine is complete (t 35) is the printer ISR resumed_ When that routine com-
pletes (r — 40), control finally returns to the user program.

R,H rri for sizing
or vector data

I ij.11 1,;01Mpiere_

Frick next instmetiori

Opem rid

fel di

A

operands results

iriskruction losiruiztion
11,\arldrev,

CaTcutation
operation
tiet:oding

Figure 11-2 Distruetiod Cyck State Diagram, with Toternios

66 CHAPTER 3 A VIEW OP COMPUTER FLINci ION AND INTERCONNECTION

Interrupt
IJcer program handler X'

Interrupt
hnrullyr Y

9--

.19

la I. Sequential inierrupt processing

Interrupt
II. ser program handler X

lnterrupt
.9, handler V

.1,11 Nested interrupt processing

Figure 3.13 'Transfer of Control with Multiple Intcrrupts

I/O Function

Thus far, wu have discussed the operation of the computer as controlled by the
processor, and we havc hacked primarily at the interaction of processor and mem-
ory, The discussion has only alluded Its dill role of the I/O component. This ro[e.k
discuss.cd in detail in Chapter 7, but a brief summary is in order hero.

INTERCONNECTION STRUCTURF.S 67

1U.ser program Printer 1S1E Communication LSU

r = 0

fl Lsk ISR

Mime 1,14 Example Time Sequenec. of Multipk. Interrupts ITANE90]

An I/O module (e.g., i disk conl roller) can exchange data directly with the
processor. Just as the processor can initiate.a read or write with memory, designat-
ing Ihe address of a specific location, the processor can also read data from or write
data to an 1K) module. In Lhk 1+1t1t2r case, lhe processor identifies a specific device
that is controlled by a particular 110 module, Thus, an instruction seque.ncc. similar
in form to that of Figure 3.5 could occur, with I/O instructions rather than memory-
refe re (lc i T1 g. inst ructions.

In sonic cases, it is desirable to allow IhO exchanges 10 occur directly with
memory. In such a case, the processor grants to an 110 module the authority to rcmd
from or write to memory, so that the 1/0-memory transfer can occur without tying
up the processor. During such a transfer, the module issues read or write com-
mands to memory, relieving the processor or rc ,,pomihility for the exchangc . ,
operation is known as direct memory access (DMA) and is examined Chapter 7.

3d„

7=f; 4.fr
rrr"Efric.4: ers-n

A computer Consists of a SUL Of COmponuilE; or modules of three basic types (proces-
sor, memory, I10) that communicate with each other. In effect, a computer is a nel-
work of basic modules. Thus. there must be paths for connecting the modules.

The collection or paths connecting the various modules is called the inrercon-
trection srraiclurr. The design of this Alruclure will depend on the UNUhanges that
roust be made between modules.

Figure 115 suggc4;is the exchanges that are needed by indicating the
major forms of input and output for each module type:

Memory

A' words
o =1:LL1)

-1 E1T-7E.71

Read

Add

Figury 3.1.5 Computer hielodulcs

68 CHAPTER 3 r A VIEW OF COMPUTER FUNCTION AND INTERCONNECTION

■ Memor: 'Typically, a memory module will consist of N words of equal length.
Lach word is assigned a unique numerical address (l1, I VV — 1)„A word
of data can be read from or written into the memory. The nature of the oper-
ation is indicated by read and write wriirol signals. The location for the oper-
mion is specified by an address.

■ I/O module: From an internal f to the computer system) point of view, 1/0 is
Itinoionallv similar to memory. ' l'hcre arc two operations, read and write. Fur-
ther, an I/O module may control more than one external device. We can refer
to each of I he interlaces to an external device as a port and give eac h a unique
address (e.g (I 1. l }, In addition, there are external data paths fur
the input and outpul cif dada with an external dcvice. Finally, an 1/C) module
malt. be able to send interrupt signals to the processor.

Rvad

Address

rule

dni
External

cliit:i

1/0 moduk

111[121.1] l
data

M ports

kaixsIsal
data

111111, MIrli
higmds

3.4 BUS INTERCONNECTION 69

* Processor: The processor reads in instructions and data, writes out data alter
processing, and uses control signals to control the overall operation of the sys
tent It also receives interrupt signals.

The preceding list defines the data to he exchanged. The interconnection struc-
ture must support the following types of transfers:

■ Memory to processor: The processor reads an instruction or a unit of data
from memory.

• Processor to memory: The processor writes a unit of data to memory.
• I/O to processor: The processor reads data from an 110 device via an 110 module.
• Processor to 110: The processor sends data to the 110 device.
■ 1/0 to or from memory: For these two cases, an I/0 module is allowed to ex-

change data directly with memory. without going through the processor, using
direct memory access (DMA).

Over the years., a number of interconnection structures have been tried. By far
the most common is the bus and various multiple-bus structures. The remainder of
this chapter is devoted to an assessment of bus structures.

3.4 BUS INTER. CONNECTION

A bus is a communication pathway connecting tvvo or more devices. A key charac-
teristic of a bus is that it is a shared transmission medium. Multiple devices connect
to the bus, and a signal transmitted by any one device is available for reception by
all other devices attached to the bus. If two devices transmit during the same time
period, their signals will overlap and become garbled. Thus. only one device at a
ti me can successfully transmit.

Typically., a bus consists of multiple communication pathways. or lines. Each
line is capable of transmitting signals representing binary 1 and binary U. Over time,
a sequence of binary digits can be transmitted across a single line. Taken together,
several lines of a bus can be used to transmit binary digits simultaneously (in par-
allel). For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways
between components at various levels of the computer system hierarchy. A bus that
connects major computer components (processor. memory, 110) is called a system.
bus. The most common computer interconnection structures are based on the use
of one or more system buses.

Bus Structure

A system bus consists, typically, of from about 50 to hundreds of separate lines_
Each line is assigned a particular meaning or function. Although there are many dif-
ferent bus designs, on any bus the lines can be classified into three functional groups

Cuninil Jinn

.A.c]ireLis lines

Data lines.

1.i :Dirt. 3.16 Bus interconucction 5clrwrn±

70 CHAPTER 3 i A VIEW OE COMPUTER FUNCTION AND IN TER CONNECTION

(Figure 3.16)7 data, address, and control In addition, there may be power dis-
iribution lines that supply power to the attached modules.

The arena fines provide 4 path for moving data between system modules. These
lines, collectively ., an called the dear bus, The data bus may consist of from 32 to
hundreds of separate lines. the number of lines being referred to as the width of the
data has. Because each line can carry only t bit at a time, ihe number of lines deter-
mines how many His can he transferred at a time-The. width of the data bus is a key
facl or in determining overall system performance. For example. ii the data bus is
8 bits wide and each instruction is 16 bits long, then the processor must access the
memory module twice during each instruction cycle.

The adiiresA lines are used to designate I he source or destination of the data on
the data bus. For example, if the processor wishes to read a word (S, 16, or 32 bits)
of data from memory, it puts the address of the desired word on the address lines.
Clearly. the wichh of the address has determines ihe Maid rnum possible nicrnor!,. ,
capacity of the system. Furthermore, the address lines are genera Ely also used to
address 1.0 ports. Typically, the higher-order bits are used to select a particular
module on the bus, and the Lower-order bits se]ecl a memory location or I/0 port
within the module. For example, on an 8-hit address bus, address 011 HI 1 1 and
below might reference locations in a memory module (module 0) with 128 words of
memory, and address 10000000 and above refer to dev IL:es attached to an mod-

ule (module
rile control lines are used to control the access to and the use of the data and

address lines. Because the dal a and address lines are shared by a]1 components,
there must be a means of controlling their use, Controi signals transmit berth com-
mand ;ind timing information between system modules. Timing signals indicate the

of data and address information. Command sign Elk specify operations Lo he
performed. Typical control lines include the following:

• Memory write: Causes data on the bus to be written into the addressed location_

▪ menrkory read: Causes data from [he addressed location to be placed on the bus.

• I/O write: Causes data on t he huN to be output to the addressed VC) port,

•

I/O read: Causes data from the addressed 110 port to be placed on the bus.

▪ Transfer ACK: indicates lhat data have been accepted from or placed on the bus.

• Bus request: Indicates that a module needs lo gain control of the bus.

3.4 / BUS INTERCONNECTI{)N 71

• Bus grant: Indicates that a requesting module has been granted control of the bus.
• Interrupt request: Indicates that an interrupt is pending.
• Interrupt ACK: Acknowledges that the pending interrupt has been recognized.
▪ Clock: Used to synchronize operations.
• Reset Initializes a]] modules.

The operation of the bus is as follows. If one module wishes to send data to
another, il must do two things: (I) Obtain the use of the bus, and (2) transfer dal a
via the bus. If one module wishes to request data from another module. it must (i
obtain the use of the bus. and (2) transfer a request to the other module over the
appropriate control and address lines. It must then wait for that second module to
send the data.

Physically, the system bus is actually a number of parallel electrical conduc-
tors. In the classic bus arrangement, these conductors are metal lines etched in a
card or board (printed circuit board)..f'he bus extends across all of the system com-
ponents, each of which taps into some or all of the bus lines. The classic •physical
arrangement is depicted in Figure 3.17. In this example. the bus consists of two ver-
tical columns of conductors. At regular intervals along the columns, there are
attachment points in the form of slots that extend out horizontally to support a
printed circuit board. Each of the major system components occupies one or more
boards and plugs into the bus at these slots. The entire arrangement is housed in a
chassis. This scheme can still he used for some of the buses associated with a com-
puter system. However, modern systems tend to have all of the major components
on the same board with inure elements on the same chip as the processor. Thus, an
on-chip bus may connect the processor and cache memory. whereas an on-board bus
may connect the processor to main memory and other components.

Bus

&Dards

Figure 3.17 Typical Physical Realization
of a Bus Architecture

72 CHAIrf ER 3 / A VIEW OF COMPUTER FUNCTION AND INTERCONNECTION

This arrangement is most convenient. A small computer system may be
acquired and then expanded later (more memory, more I/O) by adding more boards.
if a component on a board fails, that board can easily be removed and replaced.

Multiple-Bus Hierarchies

if a •great number of devices arc connected to the bus, performance will suffer.
There are two main causes:

I. In general, the.more devices attached to the bus, the greater the bus length
and hence the greater the propagation delay. This delay determines the time
it takes for devices to coordinate the use of the bus. When control of the bus
passes from one device to another frequently, these propagation delays can
noticeably affect performance.

2. The bus may become a bottleneck as the aggregate data transfer demand
approaches the capacity tit the bus. This problem can be countered to some
extent by increasing the data rate that the bus can carry and by using wider
buses (e.g., increasing the data bus from 32 to 64 bits). l lowever, because the
data rates generated by attached devices (e.g., graphics and video controllers,
network interfaces) are growing rapidly, this is a race that a single bus is ulti-
mately destined to lose..

Accordingly, most computer systems use multiple buses, generally laid out in
a hierarchy. A typical traditional structure is shown in Figure 118a. There is a local
bus that connects the processor to a cache memory and that may support one or
more local devices. The cache memory controller connects the cache riot only to this
local bus. but to a system bus to which arc attached all of the main memory mod-
ules. As will be discussed in Chapter 4, the use of a cache structure insulates the
processor from a requirement to access main memory frequently_ I knee, main
memory can be moved off of the local bus onto a system bus, In this way, trans-
fers to and from the main memory across the system bus do not interfere with the
processor's activity.

It is possible to connect controllers directly onto the system bus. A more
efficient solution is to make use of one or more expansion buses for this purpose,
An expansion bus interface buffers data transfers between the system bus and the

controllers on the expansion bus. This arrangement allows the system to sup-
port a wide variety of I/O devices and at the same time insulate. memory-to-proces-
sor traffic from 1.10 traffic.

Figure 3.18a shows some typical examples of 110 devices that might be
attached to the expansion bus. Network connections include local area networks
(LANs) such as a 10-Mbps Ethernet and connections to wide area networks (WA Ns)
such as a packet-switching network. SCSI (small computer system interface) is itself
a type of bus used to support lucid disk drives and other peripherals_ A serial port
could he used to support a printer or scanner_

This traditional bus architecture is reasonably efficient but begins to break
down as higher and higher performance is seen in the 1/0 devices. In response to
these growing demands. a common approach taken by industry is to build a high-

Video LAN

Serial

Local hus Cache
•Processorl■Now Amidge

NO.'S! l+'i re.%%' ire
•

Graphic

high-spud bus

1

1111h 1111.4.TraCU

Expansion

Modem

Processor Local bus Cache

3.4 / 1:51,75 iNTFRCONNECTION 73

Main
memory

Loral 111)
controller

.SysOM la us

Network pWIN11.111

SCSI 1)116 111411.114)ce I 11
1.111111`111

Syria!

Exktin§km bus

la) Traditional bus architecture

memory

thd. II U-perforinance architecture

Figure 3./8 Examplc Fie Configurations

Type

Method of Arhitrailoa

l)istiihutucl
1 buing,

Synchr4.511111.1.$
Asynchronous

Bum Width
Addres3
Data

1) ta Transfer 1-3.-pe
Read

Read-noeliiy-uri Lc

FilOCk

74 CHAPTER 3 I A VIEW OF COMPUTER FUNCTION AND INTERCONNECTION

speed bus that is closely integrated with the rest of the system, requiring only a
bridge between the processor's bus and the high-speed bus. This arrangement is
sometimes known as a mezzanine architecture.

Figure '_l lib shows a typical realization of this approach. Again, there is a local
bus that connects the processor to a cache controller, which is in turn connected to
a system bus that supports main memory. The cache controller is integrated into a
bridge, or buffering device. that connects to the high-speed bus. This bus supports
connections to high-speed LANs, such as Fast Ethernet at 11I(Mbps, video and
graphics workstation controllers, as well as interface controllers to local peripheral
buSes, including SCSI and FireWire. The latter is a high-speed bus arrangement
specifically designed to support high-capacity I/O devices, Lower-speed devices are
still supported off an expansion bus, with an interface buffering traffic bet wcen the
expansion bus and the high-speed bus.

The advantage of this arrangement is that the high-speed bus brings high-
demand devices into closer integration with the processor and at the same time is
independent of the processor. Thus, differences in processor and high-speed bus
speeds and signal line definitions are tolerated. Changes in processor architecture
do not affect the high-speed bus, and vice versa,

Elements of Bus Design
Although a variety of different bus implementations exist, there are a few basic
parameters or design elements that serve to classify and differentiate buses. Table
3.2 lists key elements.

Bus Types

Bus lines can be separated into two generic types: dedicated and multiplexed.
A dedicated bus line is permanently assigned either to one function or to a physical
subset of computer components.

An example of functional dedication is the use of separate dedicated address
and data lines, which is common on many buses. However, it is not essential. For
example, address and data information may be transmitted over the same set of lines
using an Address Valid control line, At the beginning of a data transfer. the address
is placed on the bus and the Address Valid line is activated. At this point, each mod-
ule has a specified period of time to copy the address and determine if it is the

Table 3.2 Eicnivilts of Bus Design

3.4 / BUS INTERCONNECTION 75

addressed module. The address is Ihcn removed from the bus, and the same bus
connections are used for 1,11c Submgium read or write data transfer. This method of
using the same lines for multiple purposes is known as rime tradriplexing.

The advantage of limo multiplexing is the use of fewer]ine s, which saves space.
and, usually, cos. The disadvanl age is 1hat more complex cireuiiry is needed within
each module. Also, there is potential reduction in performance because certain
events that share the same lines cannot take place in parallel.

Physical dedicatim refers lo ihe use ot multiple buses, it4i.e.tt of which connects
only a subset of modules. A typical example is the use of an IX) bus to interconnect
all 110 modules this bus is then connected to the main bus through some type of
I/ O adapter module, The potential advantage of physical dedication is high through-
pul, because al L'n:. is less bus contention. A disadvantage is the increased the and
cost of the system.

Method of Arbitration
In all but the simplest systems, more than one module may need control of the

bus. For example, an 110 module may need 10 read or writc direeFly 10 memory,
without sendimz the data to the processor. Because only one unit at a time can suc-
cessfully transmit over the bus, some method of arbitration is needed. The various
methods can be roughly classified as being either ccal tra izizd or distributed. In
1ra Hod scheme, a single I- hrdwarc device, referred 10 ax a controller or athifer,
is responsible for allocating time on the bus, The. device may be a separate module
or part of the. processor. In a distributed scheme, there is no central controller-
Rather, each module contains access control logic and the modulczi act together to
share the bus. With both methods of arbitration, the purpose is to desianate one
device. either the processor or an I/O module. as master. The master may then
li me a data Iranster read or write). with some other device, which fie[s AS siave
for this particular exchange.

Timing
Timing refers Lo the way in which events arc coordinated Oh the bus. Buses

use either synchronous timing or 4ts.!...nchronouz, tin ing-
With synchronous timing, the occurrence of events on the bus is determined

by a clock. The bus includes a clock line upon which a clock transmits a regular
sequence Of alternating Is and tlx of equal duration. A single :L-0 transmission is
referred to as a dock cycle or bus. cycle and defines a lime skit. All other devices
on the bus can read the clock line. and all cYcrils sl ari a,L the be ;inning of a clock
eyeie. Figure 3.19 shows a typical, hill simplified, tinning diagram for synchronous
read and write operations (see Appendix 3A for a description of timing diagrams).
Other bus signals may change at the leading edge of the clock signal (With a slight
reaction delay), Most events occupy a single clock cycle,. In this simple example,
the processor plaices a memory address on the address lines during the first clock
cycle, and may assert various status]ines. Once the address Lines have siabilized,
the processor issues an address unable signal. For a read operalion, the processor
issues.a read command at the start of the second cycle. A memory module reco2-
nizes the address and, after a delay of one cycle, places the data on the data

http://it4i.e.tt

76 CI IA.PTER 3 / A VIEW OF COMPUTER FUNCTION AND INTERCONNECTION

i I i i

i i 1-41---'1' --11-4--'1',--/-4--T,---0- 1 1 i 1 1
1 I 1

l—s ii—_/—ie

I I I

Status Status signals
I i nes

Address < -)--- lines
Stable address

I I i
Address

/
i

s\ enable — i I
I I i

Data
lines

Read

--r--ji---<Valid data in
I I

■ : "/
1

I

1 I

Data !<
lino 2

I
,. Valid data MP I

Write 1 {

i
ssL_

i
1 1

I I

Figure 3.19 Timing of Synchronous Bus Operations

For a write operation, the processor puts the data on the data lines at the start of
the second cycle, and issues a write command after the data lines have stabilized.
The memory module copies the information from the data lines during the third
clock cycle.

With asynchronous timing, the occurrence of one event on a bus follows and
depends on the occurrence of a previous event. In the simple read example of Fig-
ure 3.20a, the processor places address and status signals on the bus. After pausing
for these signals to stabilize, it issues a read command. indicating the presence of
valid address and control signals. The appropriate memory decodes the address and
responds by placing the data on the data line. Once the data lines have stabilized,
the memory module asserts the acknowledged line to signal the processor that
the data are available. Once the master has read the data from the data lines, it
&asserts the read sienal. This causes the memory module to drop the data and
acknowledge lines. Finally, once the acknowledge line is dropped, the master re-
moves the address information.

Figure 3.20h shows a simple asynchronous write operation. In this case, the
master places the data on the data line at the same lime that is puts signals on the
status and address lines. The memory module responds to the write command
by copying the data from the data lines and then asserting the acknowledge line.
The master then drops the write signal and the memory module drops the acknowl-
edge signal.

Clock

Read
cycle

Write
cycle

14 / BUS INTERCONNECTION 77

StaliPq
lines

Address
lines

K

Status signals

Statile address

Heart

balsa
lines Valid data -‹

Acknowledge

(a) System bus rend cynic

SLitus -(- 7t2i=ts signals
lines

Address
lines Stable adtin.ss

Valid data

Ackno*Jedge

ill) System Luis write CYCle

3,2411 Timing c Aqynchronnus Bus Operations

Synchronous timing is z.;iinpler to implement and test. However, it is loss flex-
ible than asynchronous timing, Because ME devices on a synchronous hus..urr2 tied to
a fixed clock rate. the system cannot take advantage cyf advanen in device. perfor-
IlliffiQc. With asynchronous liming, 41 mixture of alien and fast devices, using ()Eder
and newer technology, can share a bus-

B us Width

We have already addressed the concept of his width. The widl.h of the data
bus has an impact on system performance; The wider the data bus. the greater the
number of hits transferred ;0 a ntic ti me. The width of the address bus has an impact

78 CI IAPTER 3 / A VIEW OF COMPUTTR FUNCTION AND INTERCONNECTION

on system capacity: The wider the address bus, the greater the range of locations
that can he referenced.

Data Transfer Type

Finally, a bus supports various data transfer types, as illustrated in Figure
3.21. Al] buses support both write (master to slave) and read (slave to master)
transfers. In the case of a multiplexed address/data bus. the bus is first used for
specifying the address and then for transferring t h e data. For a read operation,

there is typically a wait while the data is being fetched from the slave to be put on
the bus. For either a read or a write, there may also be a delay 11 11 is necessary to
go through arbitration to gain control of the bus for the remainder of the opera-
tion (i.e., seize the bus to request a read or write, then seize the bus again to per-
form a read or write).

Time 'fin, 6'

Address Address
i 1st cycle) (2nd .eyele_i

Write multiplexed) operation

L Address Data and arldrem
sent by master
in same cycle over
separate bus lines.

Write I non-nt u itiplexed) operation

Address t lute Data

Read (multiplexed I operation Time

Address

Data IData 1
rend write

Read-modify-write operation

n ta

Read I non-multiplexed) operation

Address

Address write read

Read-after-write optration

Data

1_ Add l'etiS Data Data Data

Block data transfer

Figure 3.21 Bas Data Transfer Types ICIOOR89I

3.5 PCT 79

In the case of dedicated address and data buses. the address is put on the
address bus and remains there while the data are put on the data bl/S. For a write.
operation, the master puts the data onto the data bus as soon as the address has
stabilized and the slave has had the opportunity to recognize its address, For a read
operation, the slave puts the data onto the data bus as soon as it has recognized its
address and has fetched the data.

There are also several combination operations that some buses allow. A read-
modify-write operation is simply a read followed immediately by a write to the same
address. The address is only broadcast once at the beginning of the operation. The
whole operation is typically indivisible to prevent any access in the data element by
other potential bus masters. The principal purpose of this capability is to protect
shared memory resources in a multiprogramming system (see Chapter 8).

Read-after-write is an indivisible operation consisting of a write followed im-
mediately by a read from the same address_ The road operation may be performed
for checking purposes.

Some bus systems also support a block data transfer. In this ease. one address
cycle is followed by n data cycles. The first data item is transferred to or from the
specified address; the remaining data items are transferred to or from subsequent
addresses.

The peripheral component interconnect (PCI) is a popular high-bandwidth,
processor-independent bus that can function as a mezzanine or peripheral bus.
Compared with other common bus specifications, PCI delivers better system per-
formance for high-speed 1.0 subsystems (e.g., graphic display adapters, network
interface controllers, disk controllers, and so on), Thc current standard allows the
use of up to 64 data lines al fifi MHz, for a raw transfer rate of 526 .MBytels, or 4.224
Gbps. But it is not just a high speed that makes PCI attractive_ PC1 is specifically
designed to meet economically the 110 requirements of modern systems; it requires
very few chips to implement and supports other buses attached to the PCI bus.

Intel began work on PC'i in 1990 for its Pentium -based systems. Intel soon
released all the patents to the public domain and promoted the creation of an indus-
try association, the PCI SW, to develop further and maintain the compatibility of
the PC1 specifications_ The result is that PO has been widely adopted and is find-
ing increasing use in personal computer, workstation, and server systems, As of this
writing, the current version is PCI 2.2. Because the specification is in the public
domain and is supported by a broad cross section of the microprocessor and periph-
eral industry. PCI products built by different vendors are compatible.

PCI is designed to support a variety of microprocessor-based configurations.
including both single - and multiple -processor systems. Accordingly, it provides a
general -purpose set of functions. It makes use of synchronous timing and a central-
ized arbitration scheme.

Figure 3.22a shows a typical use of PCI in a single-processor system. A com-
bined DRAM controller and bridge to the PCI bus provides tight coupling with the

Haw I/O
devices

Expansion
Pius bridge

LAN SCS I

Processor/
cache

DRAM
Memory
controller

Processor/
cache

Expamdon bus

I IC ; raphics

.(n) Typical desklop system

80 CHAPTER 3 / A VIEW OF COMPUTER FUNCTION AND INTERCONNECTION

Processor

Bridge/
mentor:"

wontroller
—1 DRAM

Audio
trIotion
video

■■=.1

PCI bus

System bins

HON t bridge Hos, bridge

PCI bus PC1 bos

I ...xlionsion Expansion SCSI LLAN I
1111s bridge bus bridge

p(;l to PC1
hrid

lb) Ty piral server s2.51c.ni

Figure 122 Example PCI Conagurations

I 3.5 / PCI 81

processor and the ability to deliver data al high speedzs. The bridge aets as a data
buffer so that the speed of the PC.I bus may differ from that of the processor's
capability. In a multiprocessor system (Figure 3.22b), one or more PCI configura-
tions rruiy be connected by bridges to the processor's system bus. The system bus
supports only the processoricaehe units, main memory- and the PO bridges. Again.
the use of bridges keeps the PCI independent of the processor speed yet provide.1 ,.
the a313iIi1y to receive and deliver data rapidly.

Bus Structure

PC:l may be configured its it 32- or 64-bin bus. Table 3.3 defines the 49 mandatory
signul lines for PC'1. These are divided into the following functional groups:

■ System pins: Include the clock and reset pins.
■ Address and data pins: include 3.2 hoc ,. ! hat are 1 irne multiplexed fc.lr addresses

and data. The other lines in this :group tux used to interpret and validate the
signal Lines that carry the addresses and data.

■ Interface control pins: Control the liming of tr;irkwctionF.; anal provide coorcli6:
nation among initiators and targets.

• Arbitration pinN: Unlike the other PCI signal lines, these arc riot shared lines.
Rather. each PCI master has its own pair of arhiira [ion lines I hat connect it
directl!, , to the PCI bus arbiter.

• Error reporting pins: Used to report parity and other errors.

In addition. the PCI specification defines 51 optional sigitpl lines (fable 3,4),
di iced in 10 the following functional groups:

• Interrupt pins: These are provided for PCI devices that must generate requests
for service. AS with the arbitration pins, these are not shared lines. Rather,
e;ic]1 PC[device has its own interrupt line or lines to an interrupt controller.

• Cache support pins: These pins are needed to support a memory on PCI that
can lie ckiched in the processor or anol her &vice- These pins support snoopy
cache protocols (see Chapter 18 for a discussion of such protocols).

• 64-bit bus extension pins: include 32 lines that arc time multiplexed for ad-
dresses ;ind dah'i and than are combined with the mandatory address data lines
to form a 64-hit address/data bus. 01 her lines iIa this group arc used to inter-
pret and validate the signal lines that carry the addresses and data.
there are two lines that enable two PCT devices to agree to the. use of the
64-bit capability.

• JTAGibonndary scan pins: These signal lines support testing proced u res
defined in IEEE Standard 114Q].

PCI Commands
Bus activity occurs in the form of transactions between an initiator, or master. and
a target. When a bus master' acquires control of the bus. it determines the type of

82 CHAPTER 3 / A VIEW OF COMPUTER FUNCTION AN!) INTERCONNECTION

Table 3.3 Mandatory PC' Signal Lines

I
Designation Type Description

System Pins

CIA in Provides timing for all transactions and is sampled by all inputs on the rising
edge. Clock rates up to 33 MHz are supported_

RST# in Forces all E'Cl.specific registers. sequencers, and signals to an initialized state.

Address and Data Pins

AD I: t :Al tis Multiplexed lines used for address and data.

OBE[3::010 [Is Multiplexed bus command and byte enable signals. During the data phase. the
lines indicate which of the four byte limes carry meaningful da ta_

PAR Us Provides even parity across AD and OSE lines one clock cycle later. The
master drives PAR for address and write data phases: the target drive PAR for

read data phases.

interface Control Pins

FRAME* I sAis Driven by current master to indicate the start and duration of a transaction.
It is asserted at the start and deasserted when the initiator is ready to begin the
final data phase.

1RDY, sitis• Initiator Ready. Driven by current bus master ;initiator of transaction), During
a read. indicates that the master is prepared to accept data: during a write, indi-
cateS that valid data are present on AD.

TRDY-FF sits Target Ready. Driven by the target (selected device). During a read, indicates
I hat valid data are present on AD; during a write, indicates that target is ready

to accept data_

STOPS kik.'s Indicates that current target wishes the initiator to stcup.the current transaction.

I DSEL in Inicialierition Device Select. Used as a chip select during configuration read and

write transactions.

DEVSF.I ,t4

I_

in Device Select. Asserted by target when it has recognized its address. Indicates
to current initiator whether any device has been selected.

Arbitration Pins

REQo L's Indicates to the arbiter that this device requires use of the bus, This is a device-

specific point•tO-prune line.

ONTA tis Indicates to the device that the arbiter has granted bus access. This is. ii device-
. specific point-to-point line.

Error Reporting Pius

PERR# sills Parity Error. Indicates a data parity error is detected by a target during a write
data phase or by an initiator during a read data phase.

SERRff old System Error. May he pulsed by any device to report address parity errors and
critical errors other than partly.

PCI 83

-rabic 14 Optional Fti Signal Lints

Designation 19±, pe Description

Interrupt Pins

TNTA# I (1.:a used to n2CIL.LESI an interrupt.

I NTI:i old Used In TcgLicRI, ;in in V2Tr upl.: c nil y Iii 1114:216.11g un a inuttifuniction device.

I. TC',a ad Used to request an inierrupt: only has nicnn mg on ;..1 I-fl annel:Lan device.

INTD.: 419'11 Used to requerd an interrupt! only has meaning on inulltfunclion iin..ice..

Cache Support MIS

SBON infout Snoop Back ell Indicalcs a hil to .3 rricidifiLd. line.

SDQNE irIkrUL Snoop Done. Indicates (lie 31.aras ot. 11.1C Nnoop For she current acc&nt. Asseriled
wile.'" snoop has been completed.

64 -bit HIPS Extension Pins

A11, [63;;34 L/.5 Multiplexed linuh used for kithirc.v rind data 1.0 enend hus LC. M bits.

Ci]3E[7ii4l L.S Multiplexed bus command and byte. c Ra IA 12 Niglvl I s . During the: rates phase.
the lines provide additional bus commandri. During LFIE Haiti phase, the lines
indicate wluch or the lour e.xtcu.de .d hyl la ri.;:s cury 11.1CLInirpjul data.

REQ64 sills Used to request 64-bit transfer.

ACk64.100
... _

.PAR64

sith, Midi cul6s l a rger is w:illinj..:: to perform 64 -bit transfer.

r/S Provides .: .: ,....:n 1 -..irri:... ACTI MS i2xientlEd AD and OBE lines' one clock cycle liter,

ITAC/Boundury Simi Pins

ICI(in Test Clod.... 1..:s42d Lci. dockf ..11.t. inionnation and i t data into aric.I out of Ulu
du vicc durin .F hcrundmy WWI.

MI hi 1'.......st Input. Used to .scriiilly shill le .q. IILL a aitd insbuctions into the device.

TDO out Test Out put. L:sed to serially shift ic.sl. data and instructiuris out of the device.

MIS. in Test l'vlode Select. Used t CCI nisei! state of te51 a CCC35 pint control! LT:

TRSTfF in Test Resut. I.IECti to ill iLiali2e: test access port c\-5ittrallu•

in lnput-only signal
tiut Output-only signal

signal

SuLained id-state signal driven by only on. owne r
rr t1 Open dniiii: multiple destiCei to share a 3 a wire -OR

#I 0 i5.1! sI M occurs ak. Inw vollavg

84 CHAPTER 3 A VIEW OF COMPUTER FUNCTION ANT) INTERCONNECTION

transaction that will occur next. During the address phase of the transaction. the
OBE lines are used to signal the transaction type. The commands arc

• Interrupt Acknowledge
• Special Cycle
• I/0 Read
• 110 Write

• Memory Read
• Memory Read Line

• Memory Read Multiple
• Memory Write

• Memory Write and Invalidate
• Configuration Read
• Configuration Nkrrite
• Dual Address Cycle

Interrupt Acknowledge is a read command intended for the device that func-
tions as an interrupt controller on the PCI bus. The address lines are not used dur-
ing the address phase- and the byte enable lines indicate the size of the interrupt
identifier to be returned,

The Special Cycle command is used by the initiator to broadcast a message to
one or more targets.

The Read and Write commands are used to transfer data between the ini-
tiator and an 110 controller. Each I/0 device has its own address space, and the
address lines are used to indicate a particular device and to specify the data to be trans-
ferred to or from that device. The concept of I/O addresses is explored in Chapter 7.

The memory read and write commands are used to specify the transfer of a
burst of data. occupying one or more clock cycles. The interpretation of these com-
mands, depends on whether or not the memory controller on the PCI bus supports
the PCI protocol for transfers between memory and cache. If so. the transfer or data
to and from the memory is typically in terms of cache lines, or blocks,'

. 1.-he three
memory read commands have the uses outlined in Table 3.5, The Memory Write
command is used to transfer data in one or more data cycles to memory_ The Mem-
ory Write and Invalidate command transfers data in one or more cycles to memory.
In addition, it guarantees that at feast one cache line is written. This command sup-
ports the cache function of writing back a line to memory.

The two configuration commands enable a master to read and update config-
uration parameters in a device connected to the PCI, Each PC1 device may include
up to 25 ► internal registers that are used during system initialization to configure
that device.

'The funda menial principles of cache memory are described in Chapter 4; bus based cache prolocols are
described in Chapter 1K

3.5 PCI 85

Table 3.5 Interpretation of PCI Read Commands

held Command For Cgichnhie
manure For Nonesichahle Memory

MC111CITV RCM' unc-half or 1 ,2!-.ti

fi C2Cht

Me111CITV Redd. MCF1'12 tIrdu or:L.-11;1ft

Line a tf,chr line 1. 4.1 C411:E).2. Ines

Me11.1CITy Rcad. Bursling rricivu

Multiple Lachc hues

Busting 2 <lath transfuc....clos IV. '.('S`;

Bursting 3 to 12 data srN nsirrw

Burstiag more than 1,7 dm,' trmisfc.rs

The Dual Address Cycle command is used by an initiator to indicate that it is
using 64-bit addressing.

Data Transfers
Every data transfer on the ['CI bus is n Irmisaell ion consisting of one address
phase and one or inore ryhases. in this discussion, we illustrate iI typical read
operation; a write operation proceeds similarly.

Figure 3.23 shows the timing of the read transacLlon.. All events are synchro-
nized to [he falling transitions 01 the: clock, which occur in the middle of each clock
cycle- Bus devici2S sample the bus lines on the rising edge at the beginning of a bus
cycle. The followina are the significant events, labeled on !he diagram:

a. Once a bus master has gained control of the bus, it may begin the [tons-
action by asserting FRAME. This line remains Laili I the initiator
is ready to complete the, last dota phase. '1 . 111,2 initiator also puts the start
address on the address bus, and the read command on the CIBE lines.

b. At the start of clock 2, the target device will recognize its .iddrcss on the
AD lines.

c. The initiator ceases driving the AD bus. A turnaround cycle. Ondiented
by the.two circular arrows) is required on all signal lines That 'nay be dri-
ven by more lhan one device, so that the dropping of the address signal
will prepare the bus for use by the target device. The initiator chongcs
the information on the CiBE lines to desigru which Al) lines are to be
used for transfer for the currently addreAsed Clfi La to 4 bytes),

iniLia tor also 4i;iscil:s 11-Z17Y Lo indicate that it is ready for the first
data hum.

d. selected target asserts DEVSEL to indicate that it has recognized its
address and will respond. IL phIces the re vested data on the AD lines and
asserts T'RDY to indicate that valid data is present on the bus.

e. The initiator reads the dab+ al the beginning of clock 4 and changes the
byte enable lines m; ni;cdcd in preparation for the next read.

1 1

CLK

FRA Mb:4

AD

IRDY#

IRDY#

DEVSEIA#

I I I I I I

r\ I I I I I I
._} 1 \ 1 I 1

I 1

,J
i 1
-; — U: I

1 ; r\ i
i --\—g

.--''n
I 1;

I I I I C i 1 I
(Th

—T' ..M---\ l I I I I /—r!

4, • SP -41 ►
Address phase Data phase Data phase Data phase

Wait state Wait state 1,Vai1 state

Bus transaction ■
Figure 3.23 PC1 Read Operation

3.5 I PCI 87

V

PC1 arbiter

Figure 3.24 FC1 Bus Arbiter

r. In this example, the target needs some time to prepare the second block
of data for transmission_ Therefore. it deasserts TRI)Y to signal the ini-
tiator that there will not be new data during the coming cycle. Accord-
ingly, the initiator does not read the data lines at the beginning of the fifth
clock cycle and does not change byte enable during that cycle. The block
of data is read at beginning of clock 6.

g. During clock 0, the target places the third data item on the bus- However,
in this example. the initiator is not yet ready to read the data item (e.g., it
has a temporary buffer full condition). It therefore deasserts IRDY. This
will cause the target to maintain the third data item on the bus for an extra
clock cycle,

h. The initiator knows that the third data transfer is the last, and so it de-
asserts ll-Z.AME: to signal the target That I his is the last data transfer. It
also asserts IRDY to signal that it is ready to complete that transfer.

i. The initiator deasserts fRDY, returning the bus to the idle state, and the
target deasserts 'I'RDY and DEYSEL.

Arbitration

PC 1 makes use of a centralized, synchronous arbitration scheme in which each mas-
ter has a unique request (REQ) and grant ((NT) signal. These signal lines are
attached to a central arbiter (Figure 3,24) and a simple request-grant handshake is
used to grant access to the bus.

The I'C'I specification does not dictate to particular arbitration algorithm. The
arbiter can use a first-come-first-served approach, a round-robin approach, or some
sort of priority scheme. A PCI master must arbitrate for each transaction that it
wishes to perform, where a single transaction consists of an address phase followed
by one Or more contiguous data phases .

Figure.3.25 is art example in which devices A and B are arbitrating for the bus.
The following sequence occurs:

a. At some point prior to the start of clock 1, A has asserted its REQ
The arbiter samples this signal at the beginning of clock cycle 1.

h. During clock cycle 1. B requests use of the bus by asserting its RI X) signal.

CLK

REQ#-A
1

REQ#-B

GNT#- A

GIN T#-B

I

I I

AD

IRDY#

-41I-Access A-111-

Figure 3.23 Ft:113m Arbitration between Two Masters

RF.C:OMMENDED REAPING AND WEB SITES 89

c. At the same time, the arbiter asserts oNT-A to grant bus access to A.

d. Bus master A samples CiNT-A at the beginning of clock 2 and learns that
it has been granted bus access. It also finds IRI)Y and TROY deasserted,
indicating that the bus is idle. Accordingly, it asserts FRAME and places
the address information on the address bus and the command on the CBE
bus (not shown). It also continues to assert RF.Q-A, because it has a sec-
ond transaction to perform after this one.

e. The bus arbiter samples all REQ lines at the beginning of clock 3 and
makes an arbitration decision to grant the bus to B for the next trans-
action. It then asserts GNT-B and deasserts CNT-A. B will not be able to
use the bus until it returns to an idle state,

1. A deasserts FRAME to indicate that the last (and only) data transfer is in
progress. It puts the data on the data bus and signals the target with I R I)Y_
The target reads the data al the beginning of the next clock cycle.

g. At the beginning of clock 5, B finds IRI)Y and FRAME deassertect and
so is able to take control of the. bus by asserting FRAME.. It also deasserts
its REQ line, because it army wants to perform one transaction.

Subsequently, master A is granted access to the bus for its next transaction_
Notice that arbitration can take place at the same time that the current bus

master is performing a data transfer. Therefore, no bus cycles are lost in perform-
ine arbitration. This is referred to as hidden arbitration,

3.6 RECOMMENDED READING AND WEB SITES

rhiL litL.rature on buses and other interconnection structures is, surprisingly, not very exten-
sive. ALE 93J includes an in-depth treatment of bus structures and bus transfer issues,
including accounts of se v era specific buses.

The clearest buck -Icrw ri description of PCI is NIIAN951. IARBOGOI also contains a
lot of solid information on PCl.

ABB000 Abbot, D. PC! Bros Demys.afied, Eagle Rock, VA: LI .Ft Technology Pohlish-
ing, 2000,

ALF.X93 Alexandridis, N. Desiv? Micropwccs.vor-Based Systems. Englewood Cliffs,
NJ: Prentice Hall, 1993,

SIIAN95 Manley, and Anderson. D. PC.1 Sysiemy Ayritifeerttre. Richarclsou, TX:
Mindshare Press, 1995.

Recornmoaded Web Sites:

• PC Special Interest Group: Informal ECM about I'C'I specifications and products.

• PCI Pointers: I .inks to PCI vendors and other sources of information.

90 cumATER 3 Vii W OF COMPUTER 1-4,:NCTInN AND INTERCONNECTION

3,7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS •

Key Terms

address bus
asynchronous Lintilig
bus
bus 4ir bitratiim
bus width
CQ1111:111iZOCI arbitration
data bus
disablei.1 interrupt

distributed arhittation
instructiiin cycle.
41 1ti1rLuction CkCCUre
ills !suction te' tcic
interrupi
inif rrupl. handler
intrrupt service routine

tiicri-lory address rt'E,rislxz
(MAR)

memory butter rc.gister
(AM).

r.riptseral. COInp47 1 110E1

into rwikaect (PC1)
svmlironous
gystern bus

Review Questions
3.1 What general categories of function% are specified by computer instructions?

3,2 List and briefly define the possible stales I hat define an instruction execution.
3.3 List arid briefly define two .i .ipproadies to dealing with multiple

3,4 What lypes of transfers must a computer's interauniection structure (e.g.. bus) sollilore
3,5 What is the benefit of using a multiple-bus architecture compared to a single-bus

architecture''
3.6 List and brictly define ale functional groups 411: signal lines for P.C.1.

Problems
3.1 The hypothetical ma tine of Figure 3.4 also has two 1110 instructions;

0011 — Load AC from I.10
01 I I — Store AC to I/O

In these eases. the 12•bil address identifies a particular 110 device. Show tlic. program
cxeciii lien (itsing the format of Figure 3.5) for the followinn program!
L Load AC from deviec 5.
1. Acid contents of IT1611143ty 14.1CatiCM 1440.

3. Store AC to device 6.
Assume that the next value retrieved from dkivice 5 is 3 and that location 940 contains
a value of 2.

3.2 The proir,rain execution or Figure 3.5 is described in the text using six steps. Expand
this description Lo show the use of the MAR and MBR.

3-3 Consider a hypothetical 32-bit microprocessor having instructions composed
of two fields: . 1. 'he first hvie contains the sirode and the remainder the humodiate
operand or an operand address.
a, What is the maximum. directly addressable inerm-iry capacity' in bytes)?
h. Disct-s file impact on the system speed if the microprocessor bus lac

1, a 32-bit local address bus and a 16i-bit local data bus, or
2, a 1.6-bit local address bus and a hit loon data buis.

c, How many hits are needed for the progr;ini countor and the instruction ree,ister?
,Sr drrce; [AIJ iX93]

RPRN UPRO
(Lowest priority)

tvla5ter 3

3.7 r KEY TERMS, REVIEW QUFSTION5„ 4..ND PROBLEMS 91

3.4 Consider a hypothetical microprocessor generating a 16-bit adcirvis (foi' example,
assume that the program counter and the address registers are l6 bits wide) and hav-
ing a 16. bit data bus.
a. What is the maximum memory addross•space that the processor earl Fi =ss directly

if it is connected to a "16-bit memory"?
k What is the maximura memory address space that the processor can access directly

if it is connt.cted to an "8-bit memory"?'
c. What architectural teal tires will allow this microprocessor to access a separate

•• apace."?
d. If an input and an output instruction can specify an ti-hit 1.0 port number, how

many 8-bit PO ports can Ihe microprocessor support? 110Y.' inany 16-bit I/O Boris? .
Explain.

Source;
3.5 Consider a 32-bit microprocessor, with a 16-hit external data bus. tiriveil by an 8-.N.T1Le

input clock. Assume that this microprocessor has a has cycle whose minimum dura-
tion equals four input clock cycles, What is the maximum clam 11;111!nh2r Tats that this
microprocessor can sustain? To increase its performance. would it lie beitr to make
its eat:A -nal data bus 32 hits or to double Ilitt eN1ernal clock ireqwency supplied to the
microprocessor? State any other assumptions you make, and explain.
Source: 1AL EX931

3.6 Consider .k1 coniputer system that contains an PO module controlling a si mple key-
boardiprinler teletype. The following coritainod in the processor and
wrinomd directly to the Aysleru bus:

11‘,;Pk! Inpul Re.2,ister, f hiss;
OUTR: Output Register, 8 hits
Hic; Inpul Flag, 1 bit
MO: Output Flag, 1 bit
TEN: Interrupt Enable. I bit

Keystroke input front the (eietype and printer output to the teletype are controllcd
by the 110 oic ulti le. '1 he ieletype is able to encode an alphanumeric symbol to an
t hit word dad deeialc an 8-bit word into an alphanumeric symbol.
a. Describe how the processor. using.the first four registers listed in this problem, can

achieve. TIO with the teletvp...
b. Descrik how the Function Can lie performod more efficiently by also e mploying TEN.
Figii ini11122HL.N rikiii.a] arbitration scheme that can be used with an obsu-
i,th• as Midi thus T. Agents are daisy chained physically in prior-
ity wile'. left-most agent in the diagram receives a constant but, prioriiy /it
(BPR\) signal indicating that no highcr-priorily agent desircs• the bus. If the agent
does not wish the bus. it asserts its bus priority BPRO) I.iu e. At thm beginning of

LiLiSY
Bus

motor

4
1-5.PRN BPRO

(Highest priority)

Master 1 I

1.q."K.7.4

Master 2

Bug

termi-
nator

Figure 3.26 Mtillilnp, I 1) Jaributea Arbitration

92 CHAPTER 3 I A VIEW Op COMPUTER FUNCTION AND INTERCONNECTION

a clock cycle. any agent can request control or the bus by lowering 131 1R0 line.
This lowers the BPRN line of the next agent in the chain, which is in turn required
to lower its BPRO line. 'f'hus, the signal is propagated the length of the chain. At the
end of this chain reaction, there should be only one agent whose BPRN is asserted
and whose BPRO is not, This agent has priority. lf, the beginning of a bus cycle.
the bus is not busy (BUSY inactive), the agent that has priority may seize control
of the hus by asserting the BUSY line,

It lakes a certain amount of time for the BPR signal to propagate from the high-
est-priority agent to the lowest Must this time he less than the clock cycle? Explain,

3.? The VAX SIEff bus uses a distributed, synchronous arbitration scheme-. F:ach SBI
device (i.e., processor, memory. 1.0 module) has a unique priority and is assigned a
unique transfer request (TR) line. The SBI has 16 such lines (TRO, TR1, _ TR15),
with TR(} having the highest priority. When a device wants to use the bus, it places a
reservation for a future time slot by asserting its 'T R line during the current time slot,
AL the end or the current time slot, each device with a pending reservation examines
the TR lines; the highest -priority device with 7 reservation uses the next time slot,

A maximum of 17 devices can be attached to the bus. The device with priority 16
has no TR line. Why not?

3.9 Paradoxically, the lowest-priority device usually has the lowest average wait time. For
this reason. the processor is usually given the lowest priority' on the SBI. Why does
the priority 16 device usually have the lowest average wait time? Under what cir-
cumstances would this not he true'?

3.10 Draw and explain a timing diagram for a PCI write operation (similar to Figure 3.23),

APPENDIX 3A TIMING DIAGRAMS

In this chapter. ti ming diagrams are used to illustrate sequences of events and
dependencies among events. For the reader unfamiliar with timing diagrams, this
appendix provides a brief explanation.

Communication among devices connected to a bus takes place along a set of
lines capable of carrying signals. Two different signal levels (voltage levels), repre-
senting binary 0 and binary 1, may he transmitted. A timing diagram shows the sig-
nal level on a line as a function of time (Figure 3.27a). By convention, the binary I
signal level is depicted as a higher level than that of binary 0. Usually, binary 0 is the
default value. fhat is, if no data or other signal is being transmitted, then the level
on a line is that which represents binary 0. A signal transition from 0 to 1 is fre-
quently referred to as the signal's leading edge: a transition from l to 0 is referred
to as a trailing edge_ Such transitions are not instantaneous, but this transition lime
is usually small compared with the duration of a signal level. For clarity, the transi-
tion is usually depicted as an angled line that exaggerates the relative amount of
time that the transition takes. Occasionally, you will see diagrams that use vertical
lines, which incorrectly suggests that the transition is instantaneous. On a timing dia-
gram, it may happen that a variable or at least irrelevant amount of time elapses
between events of interest. This is depicted by a gap in the . time.

Signals are sometimes represented in groups (Figure 3.27b). For example. if
data are transferred a byte at a time, then eight lines are required. Generally, it is.
not important to know the exact value being transferred on such a group, but rather
whether signals are present or not

APPENDIX 3A 1 TIMING DLkGRAIVIS 93

Binary I

BiJiary

(a) Signal as a function of time

All lines Each line may All lines
at Ik hi. 0 EP r at 0

Croups (if line.,

Command

Re4pcinsi.

{c) Cause-and-effect dependencies

Id) Cluck signal

Figure 3.27 liming Diagrams

A signal transition on one line may trigger an attached device k 'slake sinal
changes on other lines. For example.. if a memory module di,:tects a read control sig-
nal ((l or 1 traniLion), it will place data signals on 1he data lines. Such eau:94-41nd-
effc.ei re14itionships produce. sequences of events. Arrows are used i H1 Inning

diagrams to show these dependencies (Figure 3.27c).
In Figure 3.27c, the overbar over the signal name indicates that the signal is

active [ow ws shown, For example, Command iS ,icEive, or asserted, at 0 voIts. This
means drat Command = is interpreted as logical 1, or true,

A clock line is often part of a system bus. An electronic clock is connected to
the clock Lint:. and provides a repetitive, r ul,ir sequence of transitions (E"igure
3.27d). Other events may he synchronised to the clock signal.

. ..."."' 0 ...A*
2.?...."" _..e. , -''' .:•rre," ". .9"0.7.F9(14. 0 "rPrSr a" -.• :,...1....V. +41.a....1..." ...:/..."1::. 1,1../in• :".. e..1P .1../..4......1.0../........11. ..:." A.

 .".. .../...7"r5:4°.. -'
.." ..,

:"....r..... .r.er .rer, area/ all., • 4" .

....•:‘,..1.1.../..1.1.P...47 ..S..........e.2.2.../....
,f..':.... 1. ...1"

 ..Z."F'' ./.../... .-
..'. 17Vf•-... :e..4.if ere." ar'y 41 ' 114.0.4

Xe....91
1

 .o.,..1.0... ...V.,....0p. ..!..;

'ire '.1..e.y:rfr'rrEf•-4..;...;4: 5.1.:07' .''''''. "A.S'1. .0. "11

.f4.:fifer5;frlit 4:
,,,W '4;.1''

Computer Memory SyNtern Overview -

i I L.:vs Systcms •
The Memory fiierarchy •

4.2 Cache Memory Principles .
•F;;;e7

 x.r.;

4.3 FIeiiiiit f Cache Design
..rre

Cache Size--7<1*?-...--°'
Nlapping Function ••...‹,
RL..placerriunt
WriLe Pohey
Line Size.
Number of Cildic....7;

4.4 Pentium 4 and PowerPC Cache Organizations

Pentium 4 C.-..achc
PowcrPC CcIiE Organizatiot

4.5 Recommended Reading

4.6 Key Terms, Review Quetions, and Problerns

Term; ;-;
Rovic..w Ouestion
Probl

Appendix 4A Performance Characteristics of Two-Level Memories

LocEdily
operaLion of Two-Leel Memory
Pe.rformanco

4.1

96 CHAPT ER 4 / CAC:HE NI EN1(

KEY POINTS

• Computer memory is organized into a hie-ravehy. At the highest level (closest
to the processor) are the processor registers. Next comes one or more levels
of cache. When multiple leve15., are used, they are denoted LI. L2, etc. Next
comes main memory, which is usually made out of dynamic random-access
memory (DRAM). All of these a ►re considered internal to the.computer sys-
tem. The hierarchy continues with external memory, with the next level typi-
cally being a fixed hard disk, and one or more levels below that consisting of
removal* media such as ZIP cartridges, optical disks. and tope.

• As one goes down the memory hierarchy, one finds, decreasing cosi/bit,
increasing capacity, and slower access time. .11 would be nice to use only the
fastest memory, but because that is the most expensive. memory, we trade off
access time for cost by using more of the slower memory. The trick is to orga-
nize the data and programs in memory so that the memory words needed are
usually in the faster memory.

♦ In general. it is likely that most future accesses to main memory by the proces-
sor will be to locations recently So the cache automatically retains a
copy of some of the recently used words from the DRAM. If the cache is
designed properly, then most of the time the processor will request memory
words that ace already in.the cache.

A• fthough seemingly simple in concept, computer memory exhibits perhaps
the: widest range of type. technology, organization. performance, and cost
of any feature of a computer system. No one technology is optimal in satis-

fying the memory requirements for a computer system. As a consequence, the typ-
ical computer system is equipped with a hierarchy of memory subsystems, some
internal to the system (directly accessible by the processor) and some external
(accessible by the processor via an 110 module).

'I bis chapter and the next focus on internal memory elements, while Chapter
6 is devoted to external memory. To begin, the first section examines key charac-
teristics of computer memories. The remainder of the chapter examines an essen-
tial clement of al] modern computer systems: cache memory,

4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The. complex subject of computer memory . is made more manageable if we classify
memory systems according to their key characteristics. The most important of these
are listed in f able 4.1,

4.1 COMPUTER MEMORY SYSTEM ONT_RVIEW 97

Table 4.1 Key' Characteristiai of C:{riptitt..1 Mernoty Sysients

1.04.-ation lierformitriee
Procussa. Access time
fritt•rna.1 CyCie. tI me
ExcerItal (secorklar:Ii.) 'fraosfer rile

Capiicity Physical 'type
word size SQmiconductor
Number of words Magnetic

[Jai of Transfer
.M.HgooLo -op/ i

Block Physical Characteristics
Access Method lerolatileirionvolaLile

ErasnbleinorLerusable
tlrgaitizatiort

Rand noi
t

The term location in Table 4.1 refers to -whether memory is internal and exter-
nal to the computer. Internal memory is often equated with main memory_ But there
are other l'orms of internal memory. The processor requires its own local memory,
in the form of registers (e.g., see Figure 2.3). Further. as we shall see, the control
unit portion of the processor may also require its own internal memory. We will
defer discussion of these latter two types of internal memory to later chapters.
Cache is another form of internal memory. External memory consists of peripheral
storage devices, such as disk and tape, that arc accessible to the processor via I/O
conirollus.

An obvious characteristic of memory is its capacity. For internal memory, this
is typically expressed in terms of hyles (I byte- = ii bits) or words. Common word
lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in
terms of bytes.

A related concept is the unit of transfer, For internal memory, the unit of
transfer is equal to the number of data lines into and out of the memory module.
This may be equal to the word length, but is often larger. such as 64. 128, or 256 bits.
To clarify this point, consider three related concepts for internal memory:

• Word: The "natural" unit of organization of memory. The size of the word is
typically equal to the number of bits used to represent a number and to the
instruction length. Unfortunately. there are many exceptions. For example,
the CRAY C90 has a 64-bit word length but uses a 46-bit integer representa-
tion. The VAX has a stupendous variety of instruction lengths, expressed as
multiples of bytes. and a word size of 32 bits.

• Addressable units: In some systems, the addressable unit is the word. How-
ever, many systems allow addressing at the. byte level_ In any case. the rela-
tionship between the length in bits A of an address and the number N of
addressable units is = N.

98 CHAPTER 4 / CACHE MEMORY

• Unit of transfer; For main memory, this is the number of hits read out of or
written into memory at a time. The unit of transfer need not equal a word or an
addressable unit. For external memory, data are often transferred in much
larger units than a word, and these are referred to as blocks_

Another distinction among memory types is the method of accessing units of
data. These include the following:

• Sequential access: Memory is organized into units of data, called records.
Access must he made in a specific linear sequence. Stored addressing infor-
mation is used to separate records and assist in the retrieval process. A shared
read/write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record.
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access,

■ Direct access: As with sequential access, direct access involves a shared
read—write mechanism_ However, individual blocks or records have a unique
address based on physical location. Access is accomplished by direct access to
reach a general vicinity plus sequential searching, counting. or waiting to reach
the final location. Again, access time is variable. Disk units, discussed in Chap-
ter 6. are direct access.

■ Random access: Each addressable location in memory has a unique, physically
wired-in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location
can be selected at random and directly addressed and accessed. Main memory
and some cache systems are random access.

• Associative: Ch is is a random-access type of memory that enables one to make
a comparison of desired hit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrie ved e- h OD a
portion of its contents rather than its address. As with ordinary random-access
memory. each location has its own addressing mechanism_ and retrieval lime
is constant independent of location or prior access patterns. Cache memories
may employ associative access.

From a user's point of view, the two most important characteristics of mem-
ory are capacity and performance. Three performance parameters arc used:

• Access time (latency): For random-access memory, this is the time it takes
to perform a read or write operation. that is, the time from the instant that
an address is presented to the memory to the instant that data have been
stored or made available for use. For non-random-access memory, access
ti me is the time it takes to position the read—write mechanism at the desired
location.

■ rti e mo ry cycle time: This concept is primarily applied to random-access mem-
ory and consists of the access time plus any additional time required before

4.1 f COMPUTER MEMORY SYSTEM OVERVIEW 99

a. second access can commence_ This additional time may be required for
transients to die out on signal lines or to regenerate data if they are read
destructively. Now that memory cycle time is concerned with the system bus,
not the processor_
Transfer rate: This is the rate at which data can he transferred into or out of a
memory unit_ I tor random-access memory, it is equal to 11(cycle time).

For non-random-access memory, the following relationship holds;

rV = - —

R
where

T. = Average time to read or write N bits
Average access time

N = Number of hits
R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory. magnetic surface memory, used for disk and
tape, and optical and magneto-optical.

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or ii lost when electrical power is switched
off_ In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion_ Magnetic-surface memories are nonvolatile. Semiconductor memory may he
either volatile or nonvolatile. Nonerasable memory cannot be altered, except by
destroying the storage unit. Semiconductor memory of this type is known as read-
only memory (ROM). Of necessity, a practical nonerasable memory must also he
n onvolatil e.

For random-access memory, the organization is a key design issue. By organi-
zarion is meant the physical arrangement of bits to form words, The obvious ar-
rangement is not always used, as will be explained presently.

The Memory Hierarchy

The design constraints on a computer's memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there.
applications will likely be developed to use h. The question of how fast is, in a sense.
easier to answer_ To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical sy stern , rhocost of memory must
be reasonable in relationship to other components.

As might be expected. there is a trade-off among the three key characteristics
of memory: namely, cost, capacity..and access time. At any given time, a variety of

10.0 CHAPTER...I. Cis.CHE rketErvaiRY

ieetinologies are. used to implerncut memory systems. Across this spectrum of kcch-
riologies, the following relationships hold:

* FasLer access time, greater cost pi2r hit
• Oreatercapacity, smaller cost per hit
• Cireater capacity, s l ArkL # time

'Clic dilemma facing the designer is clear. The designer would like to use 111Qm-
ory technologies abut provide for lare-capacit!,. , mcmory. both because ihc capacity
is. needed 4i nd because the cosi per bit is low, How to meet periormance
rcquirerri4,:nt, the designer neeth I o Lin expinisive, relatively lower-capacity memo

s with short access times.
The way out of this diluriima is riot to rely on a :iiagje memory compon'ent or

technology, hui Lo employ a mpiory hierarchy. A typical hierarchy is illustrated in
Figure 4.1...AN one goes down lhc hierateliv, the following occur!

41. Beercasing cost per bit

b. Increasing capacity

ligurc 4.1 The Mu.r[14..ir .s..' .1.1iCcarchy

4.1 COMPUTER MEMORY SYSIEM ovERvaw 101

T 1 + T.,

ai

1;

7 .

1
1-raLtion of accesse5, involving only level 1 (hit ratio)

Figure 4.2 Performance of a Simple Two-Level Memory

C. Increasing access time
d. Decreasing frequency of access of the memory by Lift processor

Thus, smaller, more expensive., faster memories are supplemented by larger,
cheaper, slower memories. The key to the sulLES!..ti of this organization is item (d):
decreasing frequency of access. We examine this concept in greater detail when
we discuss the cache. later in this chapter, and virtual memory in Chapter 8. A brief
explamilicin is provilticAl a1 this pc..)inl.

Suppose.: that the processor has access to tw.o levels of MCMOly. Level 1 con-
tains 1000 words and has an access time of 0.01 level 2 contains 100,000 words
and has an access time of 11.1 Ills. Assume, that if a word to be accessed is in level L
then the processor ac,cesses it directly- If is in level 2, then the word is first trans-
ferred to level 1 and then accessed by the processor. For simplicity, we ignore the
ti me required for the processor to determine. whether the word is in level 1 or level
2. Figure 4.2 shows the general shape of the curve that covers this situation. The
figure shows the average access time to a two-level memory as a function of the hit
ratio H, where

1/ = fraction of all memory accesses that are found
in the faster memory the cache)

1 .
1 = access Lime 10 level

T, = aceem time to level 2

As can he seen, fur high percentages of level I access, the average total access time
is much closer to that of level 1 than that of level 2.

102 CHAPTER 4 / CACHE MFMORY

In our example, suppose 95% of the memory accesses are found in the cache.
Then the average time to access a word can be expressed as

(0,95) (0.01 p.$) + .(0.05) (0,01 µs 4- 0.1 n.$) = 0,0095 — 0.0055 = 0,015 is

In this example, the average access time is much closer to 0.01 1.i.s than to 0.1
n.s, as desired, The use of two levels of memory to reduce average access time works
in principle, but only if conditions (a) through (d) apply. By employing a variety of
technologies, a spectrum of memory systems exists that satisfies conditions (a)
through (c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference I1)ENN681. During the course of execution of a program, memory refer-
ences hy the processor, for both instructions and data, tend to cluster, Programs
typically contain a number of iterative loops and subroutines, Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions. Sim-
ilarly, operations on tables anti arrays involve access to a clustered set of data words.
Over a long period of lime, the clusters in use change, but over a short period of
ti me, the processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-level example already presented. Let level 2
memory contain all program instructions and data, The current clusters can be
temporarily placed in level 1, From time to time, one of the clusters in level 1 will
have to he swapped back to level 2 to make room for a new cluster coming in to
level 1. On average, however. most references will be to instructions and data con-
tained in level 1.

1 his principle can be applied across mote than two levels or memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Skipping down two levels. main memory is the principal inter-
nal memory system of the computer. Each location in main memory has a unique
address. Main memory is usually extended with a higher-speed, smaller cache. The
cache is not usually visible to the programmer or, indeed, to the processor. It is a
device for staging the movement of data between main memory and processor reg-
isters to improve performance.

The three forms of mernory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory conics in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk. tape, and optical
storage. External. nonvolatile memory is also referred to as secondary or auxiliary
memory, These are used to store program and data files and are usually visible to
the programmer only in terms of files and records, as opposed to individual bytes or
words, Disk is also used to provide an extension to main memory known as virtual
memory, which is discussed in Chapter R.

4.2 CACHE MEMORY PRINCIPLES 103

Other forms of memory may be included in the hierarchy. For example, large
IBM mainframes include a form of internal memory known as Expanded Storage.
This uses a semiconductor technology that is slower and less expensive Than that
of main memory. Strictly speaking, this memory does not fit into the hierarchy but
is a side branch: Data can be moved between main memory and expanded stor-
age but not between expanded storage and external memory. Other forms of sec-
ondary memory include optical and magneto-optical disks. Finally, additional
levels can he effectively added to the hierarchy in software. A portion of main
memory can he used as a buffer to hold data temporarily that is to be read out to
disk. Such a technique_ sometimes referred to as a disk cache.' improves perfor-
mance in two ways:

• Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

• Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data is retrieved rapidly from the software
cache rather than slowly from the disk.

Appendix 4A ex-amines the performance implications of multilevel memory
structures,

4.2 CACHE MEMORY PRINCIPLES

Cache memory is intended to give memory speed approaching that of the fastest
memories available, and at the same time provide a large memory size at the price
of less expensive types of semiconductor memories, The concept is illustrated in Fig-
ure 4,1 There is a relatively large and slow main memory together with a smaller,
faster cache memory. The cache contains a copy or portions of main memory. When

Block transfer
Word transfer

Main ruernory

Figure 43 Cache. and Main Memory

' Disk cache is generally a purely software technique and is not examined in ihk ho4.51. -.. Sec ISTALUI] for
a discussion

-

Line
tiumbrr

0

C I

13 Loa

Bieck 1.11 . 11.

;al Ca‘-he

104 CHAPTER 'I cax,HE MEMORY

Block }

(K words)

NV. f d
!?

(hi:. Main memory

Figure 4A Caeheavlain Memory Structure

the processor attempts to read a word of memory, a check is made to determine if
the word is in the cache. If so, the word is delivered to the processor. If not, a block
of main memory, consisting of some fixed number.of words, is read ink) the cache
and then the word is delivered to the processor. Because of the phenomenon of
locality of reference., when a block or data is fetched into the cache to satisfy a sin-
gle memory reference, it is likely that there will he future references to that same
unemor?,/ location or to other words in)lie block.

Figure 4.4 depicts the structure of a cacheimain-memory system. Main mem-
ory consists of up to 2' addressable words, with each word having a unique n-hit
address. For mapping purposes, this memory is considered to consist of a number
of fixed-length blocks of K words each. That is, there are M = TIK blocks. Cache
consists of Clines of K words each. and the number of lines is Considerably less than
the number of main memory blocks {C « Ai). At any time, some subset of the
blocks of memory resides in lines in the cache. if a word in a block of memory is
read, that block is transferred to one of the lines of the cache. Because there are
more blocks than lines, an individual line cannot be uniquely and permanently ded-
icated to a particular blmk. Thus, each line includes a tag that identifies which par-
ticular block is currently being stored_ The tag is usually a portion of the main
memory address, as described later in this section.

/ CACI-JR MEMORY PRINCIPLES 195

Figure 4.5 illustrates the read operation. The processor generates the address,
R A, of a word Io be read. if the word is contained in the cache, it is delivered to the
processor. Otherwise, the block containing 1haR word k Ic..padcd into the cache:, and
the word is delivered to the processor. Figure 4.: 7i shows these Last two operations
occurring in parallel and reflects the organization shown in Figure 4.45, which is typ-
ical of contemporary cache organizations_ In this organization, the cache connects
to the processor via data, control, and address lines. The data and address lines also
attach to data and address buffers, which attach to a system bus from which main
memory is reached. When j cache hit occurs, the data and ii114.1ress buffers are dis-
abled and communication is, only h.clveccn pre cc5,scii- aril unche_ with no system bus
traffic. When a cache miss occurs, the desired address is Loaded onto the system
hus. and the data are returned through the data buffer to both the cache and the
processor. In other organi .fations, the cache is physically interposed between ihe pro-
cessor and the main memory for all data, address, and control lines. In this latter
case, for a cache miss, the desired word is first read into the cache and then trans,
ferred from cache in processor.

S'fAR'f•

R micircs!‘
RA hum CP1 -

(

Is
containing RA

cnrhe''
e21;5P7:--'7)5=7",7"...Pree•

Auczsii inaill
memory for block
cr)ntainine RA

-ere.

Fesch
and dcliyr r

AllocaL6cathe
line for main
memory bini' k

Load Main.

Mcmor) block;
muzi cache Jim.:

1)()ICE

Figure 4.5 •;IL1142 1-Ze.o41 0[vratin

106 CHAPTER 4 CACHE MEMORY

Processur

lgure 4.6 Typical Cacho:. ()rpm i7.2rLion

A discussion of i he performance parameters related to cache use iscontained
in Appendix 4A,

4.3 FLENIENTS OF CACHE DESIGN

This .section provides an overview of cache &sign parainetcrs and reports some
typical resuli.s NT'Ve ocensionaJly refer to the ILI SQ of cad-i n in high-performance com-
puting (l-IPC). HPC. deals with supereomputcrs and supercomputer SOftwEirc, espe-
cially for scientific applications that involve large amounts of data, vector and
matrix computation, and the use of parallel o lgorithms. Coehe design for HPC is
quite Jirroreat thFin for ol her hardware platforms mid applications. indeed., many
researchers have found that MK:applicairions perform poorly on computer archi-
tectures Thai employ caches [RA IL931. Other researchers have since shown [h
mclie hicrorchv can be useful in. improving performance if theapplication software
is tuned to exploit the cache IWANC199, PRES011. 2

Although [here are a Large number of cache implementations, thcre are a few
basic design elements that SC.re to classify and differentiate cache architectures.
fable 4,2 Lists key elements.

'Fo a ?erwral dsscussitni. of Hi-x7 : 1.1))WDLhil.

4.3 / ELEMENTS OF CACHE DESIGN 1107

Tabl• 4.2 Eleineriis txf Cac-IIL. I] wtQil

Cache Size
:Mapping Function

Dircct
Associ:k I i vc

rl ms,aicia.tik,;.%.
Replicernemt ANorithm

roxritly uzie.4.1 a.Rif
First in first out (FIFO)

ul.:1211;1.F1.:j
Rilvidurn

Write Pohc
Wilie [hrouRb
Write hack
Writc ono.:

Line gixe
Number of emlies

S11101.1 iwo
1 1 16ilied ur

Cache Size

The first element, cache size, has already been discussed. We would like the size of
the c4whe to be small enough so that the overall average cost per hit is close to that
of main mentor). alone and large enough KO I hat the overall access lime is
close to that of the cache alone. There are several other motivations for minimizing
cache size, The larger the cache, the larger the number of gates involved in address-
ing the cache, 'Fite resu!L is Thal large caches Lend to be slightly slower than small
ones—even when built with the same integrated circtti I Icchnoiogy and put in Ike

same place on chip and circuit board, The available chip and board area also limits
cache size. Because the performance of the cache is very sensitive lo the nature of
the workload, n ix i mpossible irrive at singly •Loptimurn - eaehe size. 'fable 4.,1.
lists the cache sizes of some current and past processors.

Mapping Function

Because there are fewer cache lines.than main memory blocks, an algorithm is needed
for mapping main memory blocks into cache lines. Further. a means is needed for
deterrnininy, which main memory block ei1 moLy occupies as cache li ne. The choice
of the mapping function dictates how the cache is organized. Three techniques can
be used: direct. associative, and set associative. We examine each of these in turn.
In each (2;i2“;, we Look at the general structure and then a specific example. For xII
three cases_ the example includes the following elements:

■ The cache can hold 64 '<Bytes.
• Data is Iransferred between main memory and the cache in blocks of 4 bytes

each. This means that the cache is organiAed = 2 14 161‹. li nos ol'4 hyLcs

• The main memory consists of If) Mbytes, with each byte directly addressable
by a 24-bit address (2' 4 = lev1). Thus, for mapping purposes., we can consider
math memory to consist of 4N1 blocks of 4 bytes each.

l he simplest technique, known as direct mapping, maps each block . or main
memory into only one possible cache line. Figure 4:7 illustrates the genera] mecha-
nism. The mapping is expressed as

r Processor

366t5

PD13 -11170

VAX 11.7143

111. kr 31)33

LB .304KI

Intel 9)486

Pentium
Powio.PC.60)

Power PC 620

PowerPC 04

113M S1391) .C.34

IBM S31)0 G6

H
. 'Pentium 4

]IBM SP

HRAY NITA"

a Ili WU

256 Lo 512 KTh

—I— -- —I

2513 K13 ici I N113 2 NIB I
256 KB 2 MB

S MEI

)5(3 KB

A MB

9.6 KB •I 1113

96 kB I 4 MB

1989 KB

N: 1993 KBIA KB.

Pr:

PC

F C is. ET ve

Mairi[Tarn.;

Mainframe

PC-r5 mer
High-end lel r.
supeLcompuier

PC/xurver

190

1994

1999

19'7

1. 999

2uoo

2001 1

2001

32 KB

KEV32 KB

KB.'32 K[3

32

256 KB

#4, KM'S KE-S

64 KB, 62 KB

16 K13d115 KB

POs,3rwcr 21101 I [6 KB116 KB

108 CHAPTER. 4 r CAGE iE .1v1P.M.C1Y

Table 43 Cache Sizes iJE Sonic. Processors

Type
Year of

Introduction

—E-

L] cache' cache

rame L9M

1975

to.32 KB

1 KB MhucarripLi ter

minicnnytorer I91A

1 L)7S

16KB

M K13 tramt2

Mai n framc 128 so 2.56 KB

SG1 Origin 201)1 I Firah-end 20tH 32 K13.Y2 KB MB

N.. a sl.a0 !du)ng -.Tuv.itYr, and data cadIZE

'Run, ulchus ire inqruciii)n tsr1y ; ludeLawatiIin.

modulo .Fn

whrre

= cache Fine number
I .= main memory block number
Pk1 = DILISiber or lines iii the cache

of cache access. ekieli main memory address can be viewed as consisting of
Th• mapping function easily impkcrdcntcd using the address. For purposes

three fields, The least significant iv bits identify i unique word Or byle within a
block. of main memory; in most con Lanporar .,.

, machine, the - aldress is at the hyle

Level The remaining s bits specify one, or the blocks of Main 1I10mOry• The cache

logic interprets these. s hits as a tag of s — r bits (most significant portion) and a

li ne field of r biLs. This bitter field identifies one or the on = 2' !Ines of the cache.

To summar ize.

Line V 7(In]

Main memory

wo
W2
VV3

I
•

1 •

•

I I

+ 3)

•
•

Cache
Tag Data

W

I (ompare

in cache)

I • I

•
•
•

lti

cache)

W(4/ + 1)
12 ■ W(4, -, I 2)

Nicrnory address

Figure 4.7 Direct-!Mapping Cache organitation [FEW AN931

110 CHAPTER 4 CAGHE MEMORY

• Address length = (s + w) bits

• Number of addressable units — words or hyl cw

• Block size = line size = 2 words or bytes

• Number of blocks in main memory — 7,7,7 = 2'

• Number of lines in cache = 2'

• Size of lag = (5 • r) hill

The. effect of this mapping is that blocks or main memor!,. , are assigned to lines
of the cache as follows;

- Cache line Main memory blocks assigned

u C: yyr. 29.n.. .. 2' on

I 1 : m -. L 9 2.117 - 1 9 . . 2` m • I.

-

•

.

•

roo -- I Ai - I. 2x7•3 - I. 3m - I... . . 9 2'

Thus, the use of a portion of the address as a line number provides a unique
mapping of each block of main memory into Inc cache- When a block is actually
read into its assigned Line, it is nceessary to tag the data to distinguish ii from other
blocks that can fit into that line. The most significant s r bits s.erve this purpose.

Figure 4.8 shows our example system using direct mapping,' In the example,
rrd = 2." and i = modulo 2 .4 . The mapping becomes as follows;

Cache lime Starting memory address of block

4 1}00/.300. 010000- . ..1-12001)(1

1 DO41]04. 010004 9 . . . 9 FF001.4

,
.

•
-

2 - 1 00FFFC.1.111-11-q.".. . .. FI:FFFC

Note that no Iwo blocks. I hill map into the same line number have Lhc same Lag
number. Thus, blocks Willi' starting addresses 000000, 010000 FF01100 have tag 1111R1-

hers 00, 01, FF. respectively.
Referring back to Figure 4.5, a rea d operation works as follows. The cache sys

Lem i ptcwn14.H1 with a 24-hit address. The 14-hit line number is used as an index
into the cache to access a particular line. if the s-bit lag number matches the tag

r

In khl and subsciimiik fieures. And m.r2111(3ry V:11L1122% Hit ru15rusatted . h.i. lic!xadecirnal noEnlion. Sec
A pp.! n fi5r.a basic rt.fresher on nunther systems (decimal, hinare.

Lux -F

Tag t.vord.

COL71/..

Data

4-0

ELEMENTS O1 LACHB DESIGN 111

4111-0.
32 it

1

I
I

I

6

r -

Dal it

-4-0-41-10
Bits 32 Flits

ti-Kword cache

16-Mbyte main memory

Tug Word

Mil; memi-iry — I g 14 — 1 2 I

Figure 4.8 Direct Mapping Example

number currently stored in that hoe, then the 2-bit word number is used lo select
one of the four bytes in that line. Otherwise. the 22-bit tag-plus-line field is owed
feta block from main rnemod-. Tht: icidress that is used for the fetch is the
22-bit tag-plus-line concatenated with two El bits, so that 4 bytes are fetched starting
on a block boundary.

the clirccl mapping icchniquc is simple and inoxpensive to implement. Its
main disadvantage is that there is a fixed cache location for any given block, Thu s .

112 CHAPFER 4 / CACHE. MEMORY

if a program happens lo reference words repeatedly from two different blocks that
map into the same line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low (a phenomenon known as thrashing),

Associative mapping overcomes the disadvantage of direct mapping by per-
mitting each main memory block to he loaded into any line of the cache. In this case,
the cache control logic interprets a memory address simply as a tag and a word field.
The tag field uniquely identifies a block of main memory_ To determine whether a
block is in the cache. the cache control logic must simultaneousl!. , , examine every
line's tag for a match. 1 7igure 4.9 illustrates the Logic. Note that no field in the address
corresponds to line number, so that the number of lines in the cache is not deter-
mined by the address format. To summarize,

• Address length — w) bits

• Number of addressable units = 2 .. words or bytes

• Block size. = line size = 2" words or bytes

• Number of blocks in main memory — =

• Number of lines in cache = undetermined

• Size of tag = s hits

Figure 4.1.0 shows our example using associative mapping. A main memory
address consists of a 22-hit tag and a 2-bit byte number, 'Ite 22-bit tag must he stored
with the 32-bit block of data for each line in the cache. Note that it is the leftmost
(most significant) 22 bits of the address that form the tag.' Thus, the 24-bit hexadec-
imal address 16339C has the 22-bit tag 058CE.7 . This is easily seen in binary notation:

memory address 0001 0110 0011 0011 1001 1100 (binary)
1 6 3 3 9 C (hex)

tag (leftmost 22 hits) 00 0101 1000 1100 1110 0111 (binary)
0 5 8 C E 7 (hex)

With associative mapping, there is flexibility as to which block to replace when
a new block is read into the cache. Replacement algorithms, discussed later in this
section, are designed to maximize the hit ratio. The principal disadvantage of assc.)-
eiative mapping is the complex circuitry required to examine the tags of all cache
lines in parallel.

Set associative mopping is a compromise that exhibits the strengths of both

the direct and associative approaches while reducing their disadvantages. In this
ease, the cache is divided into v sets, each of which consists of k lines. The rela-
tionships arc

•IIrt Figure 4.11). the 2,2-bil 1.;15.1 is re.prochsc:d by a 6-digit licxadeciinal number. The most significant hexa-
decimal digit in fact ih milk. 2 hits in length.

S

Memory address

Cache
Tag Data

Tag Word

V
•
•
S

• E.

Compare •
(Ilit in cache)

7

(Miss in cache) -

Figure 4.9 Fully Associative Cache Orwanization [I1WAN93]

AN
co

Dom

31. Flp
FEE
FT.

3?FFTZ ?.33YQ.33
020DCO
3FF7 . 1:7

1--11141-10"
22 hits 32 bits

Data numba

122:44. OCO
t:n 9 0 (.; 0 CI

I 6-1<word caulte

114 CHAPTER 4 CACHE. MEMORY

tn —rxk

j modulo i)

whurc
= cachc set numbcr

j = rimin memory block number
m = number of lines in the cache

This is refured to as k-way set associative mapping,. With set associative mappinv,

Hoch S i
 cith be mapped into any of the lines of scf.i 1. in this ease, the cche control

logic interprets a rnonory addre!4s simph.,.
, us three fields: tag, set, an word, The d

1 fi-rilByte main InICTPRIty

Word

Main mrmory kuldress. —

Fi ore 4.)11. Aqqnciative Mapping

22 12

4,3 / ELEMENTS OF CACHE DESIGN 115

set bits specify one of if = 2.1 sets. The s hits of the tag and set fields specify one of
the 2' blocks of main memory. Figure 4.11 illustrates the cache control logic. With
fully associative mapping. the lag in a memory address is quite large and must be
compared to the tag of ever; line in the cache. With k.-way set associative mapping,
the tag in a memory address is much smaller and is only compared to the k tags
within a single set. To summarize,

• Address length = I iv) bits

• Number.of addressable units — 2' .. '" words or bytes

• Block size = line size = 2" words or bytes
y

• Number of blocks in main metnory= = 2'

• Number of lines in set = k
• Number of sets

• Number of lines in cache k
• Size of tag = (s — d) bits

Figure 4.12 shows our example using set associative mapping with two lines in
each set, referred to as two-way set associative.' The 13-bit set number identifies a
unique set of two lines within the cache. It also gives the number of the block in
main memory, modulo 2". This determines the mapping of blocks into lines. Thus,
blocks 000000. 008000 , FF8000 of main memory map into cache iset O. Any of
those blocks can be loaded into either of the two lines in the set. Note that no two
blocks that map into the same cache set have the same tag number. For a read oper-
ation. the 13-hit set number is used to determine which set of two lines is to be
examined, Both lines in the set arc examined for a match with the tag number of the
address to be accessed.

In the extreme case of r = m, k = 1, the set associative technique reduces to
direct mapping, and for v = k — in, it reduces to associative mapping. The use of
t wo lines per set (ly = nr /2. k = 2) is the most common sct associative organization.
It significantly improves the hit ratio over direct mapping. Four-way set associative
(1, = 4. k = 4) makes a modest additional improvement for a relatively small
additional cost IMAY1384, HILL89]. Further increases in the number of lines per
set have little effect.

Replacement Algorithms
When a new block is brought into the cache, one of the existing blocks must be
replaced. For direct mapping, there is only one possible line for any particular block,
and no choice is possible. For the associative and set associative techniques, a
replacement algorithm is needed. To achieve high speed, such an algorithm must be
i mplemented in hardware. A number of algorithms have been tried: We mention
four of the most common, Probably the most effective is least recently used (LAW):
Replace that block in the set that has been in the cache longest with no reference to

Figure 4.1'2. the 9 -bil sag is represented by a 3-digit hexadecimal numbor. The most significant hexa-
decimal digit in Fact is only I ail in lenglh,

ml■

"i I

Main memory

SO 1

Cache

F Data Memory addrcs6

.r1.1iss in cache)

lligore 4.11 k-Wav ktAssmiative Cache Organization

431 ELEMENTS OF CACHE DESIGN 117

.1dv. Sel word Dam

r,2<:

77 77 77 77

24 Ea:4E-

44-0"14-4.
9 1-FlIN 32 mH 4

) NB 32 !il k

5 , K we he

'it. ye 12223344
245 82 4;S€1

4
32 bits

I 6-Mnylk!' mmlln,11.1:i

Tug

Main. memory address
I 9 | ' 3 1 2 I

fi.g-ure 4.12 Two-Way SeL Ass6ciative Mapping Example

RBI two-way aSsoei.Nlivi,:, this is nisi ly itnplemented, Each line includes a USE
HE When aHne§ T aecrc d, its IS hit is set to 1 and the USE bit of the other
line in that set is set to.O. When a Hock is to be read into the set, th.E.iirte. whoNe USL

0 is used. Because we are assuming that morQ rQcently used memory locations
are more likcly to referenced, LRI. J should give the best hit ratio. Another pos-
sibility is first-in-first-out (F[F0): Replace that block in the set ilia 1 -ms been in Lhe
c2iche longest FIFO c.asily implemQnicd as a round-robin or circularbuffer tech-
nique. Still another possibility is leastfrequently used (LFU): Replace that 1. -5l ock in
the set that has experienced the fewest references. LFU could bc iroplumcntc:d by
associating a counter with each line. A techniqu 1;7 not based on usage is to pick a li ne

118 CHAPTER 4 I CACHE MEMORY

at random from arriong the candidate lines. Simulation studies have shown that ran-
dom replacement provides only slightly inferior performance to an aleorithm based
on usage [SMITS2],

Write Policy

More a block that is resident in the cache can be replaced. it is necessary to con-
sider whether it has been altered in the cache but not in main memory. if it has not,
then the old block in the cache tnav be overwritten. If it has, that means that at least
one write operation has been performed on a word in that line of the cache. and
main memory must he updated accordingly. A variety of write policies, with per-
formance and economic trade-offs. is possible. There are two problems to contend
with. First, more than one device may have access to main memory. For example.
an 110 module may he able to readlwrite directly to memory. If a word has been
altered only in the cache. then the corresponding memory word is invalid. Further,
if the 110 device has altered main memory, then the cache word is invalid. A more
complex problem occurs when multiple processors are attached to the same bus and
each processor has its own local cache. Then, if a word is altered in one cache. it
could conceivably invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write
operations are made to main memory as well as to the cache, ensuring that main
memory is always valid. Any other processor—cache module can monitor traffic to
main memory to maintain consistency within its own cache. The main disadvantage
of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes.
'Writ h write back, updates are made only in the cache. When an update occurs. an
upDATE bit associated with the line is set. Then, when a block is replaced, it is
written hack to main memory if and only if the UPDATE bit is set. The problem
with write back is that portions of main memory are invalid, and hence accesses by
110 modules can be allowed only through the cache. This makes for complex cir-
cuitry and a potential bottleneck. Experience has shown that the percentage of
memory references that are writes is on the. order of 15% [SMIT82]. However. for
HPC applications, this number may approach 3 % (vector-vector multiplication)
and can go as high as 5(t% (matrix transposition).

In a bus organization in which more than one device (typically a processor)
has a cache and main memory is shared, a new problem is introduced. If data in one
cache are altered, this invalidates not only the corresponding word in main mem-
ory, but also that same word in other caches (if any other cache happens to have
that same word). Even if a write-through policy is used, the other caches may con-
tain invalid data. A system that prevents this problem is said to maintain cache co-
herency. Possible approaches to cache coherency include. the. following:

a Bus watching with write through: Each cache controller monitors the address
li nes to detect write operations to memory by other bus masters. If another
master writes k..) a location in shared memory that also resides in the cache
memory, the cache controller invalidates that cache entry. This strategy
depends on the use of a write-through policy by all cache. controllers.

• Hardware transparency: Additional hardware is used to ensure that all up-
dates to main memory via cache are reflected in all caches, 'l'hus. if one proces-

4_3 / ELEMENTS OF CACHE DESIGN 119

sor modifies a word in its cache. this update is written to main memory, In
addition, any matching words in other caches are similarly updated.

■ 1Noneacheithle memory: Only a portion of main memory is shared by more
than one processor, and this is designated as noncacheable. In such a system,
all accesses to shared memory are cache misses. because 1he shared memory
is never copied into the cache. The noncacheable memory can he identified
using chip-seleet logic or high-address bits.

Cache. coherency is an active field of research. This topic is explored further
in Chapter 18.

Line Size

Another design element is the line size. When a block of data is retrieved and placed
in the cache, not only the desired word but also some number of adjacent words are
retrieved. As the block size increases from very small to larger sizes, the hit ratio
will at first increase because. of the principle of loenlity, which states that data in
the vicinity of a referenced word are likely to be referenced in the near future. As the
block size increases, more useful data are brought into the cache. 'The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability
of using the newly fetched information becomes less, than the probability of reusing
the information that has to be replaced. Two specific effects come into play:

• Larger blocks reduce the number of blocks that fit into a cache. Becauk each
block fetch overwrites older cache contents, a small number of blocks results
in data being overwritten shortly after they are fetched.

• As a block becomes larger, each additional word is farther from the requested
word. and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on the
locality characteristics of a particular program. and no definitive optimum value
has been found. A size of from ti to 32 bytes seems reasonably close to optimum
ISMIT87, PRZY88, PRZY9O. HAND98j. For TIPC systems. 64 and 128 byte cache
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the -typical system had a single cache.
More recently, the use of multiple caches has become the norm, 'Iwo aspects of this
design issue concern the number of levels of caches and the use of unified versus
split caches.

Multilevel Caches
As logic density has increased, it has become possible to have a cache on the

same chip as the processor: the on-chip cache. Compared with a cache reachable via
an external bus, the on-chip cache reduces the processor",, external bus activity and
therefore speeds up execution times and increases overall system performance.
When the requested instruction or data is found in the on-chip cache, the bus access
is eliminated. Because of the short data paths internal to the processor, compared

12 CHAPTER 4 / CACHE MP.MORY

with bus lengths, on-chip cache accesses will complete appreciably faster than would
even zero-wait state bus cycles. Furthermore, during this period the bus is free to
support other transfers.

The inclusion of an on-chip cache leaves open the question of whether an
off-chip. or external, cache is still desirable. Typically, the answer is yes. and most
contemporary designs include both on-chip and external caches. The resulting orga-
nization is known as a two-level cache, with the internal cache designated as level 1
(1-1.) and the external cache designated as level 2 (L2). The reason for including an
L2. cache is the. following. If there is no L2 cache and the processor makes an access
request for a memory location not in the LI cache, then the processor must access
[)RAM or ROM memory across the bus. Due to the typically slow bus speed and
stow memory access time, this results in poor performance. On the other hand, if an
L2 SRAM (static RAM) cache is used. then frequently the missing information can he
quickly retrieved. if the SRAM is fast enough to match the bus speed, then the data
can be accessed using a zero-wait state transaction, the fastest type of bus transfer.

Two features ()I' contemporary cache design for multilevel caches are note-
worthy. First, for en off-chip 1.2 cache, many designs do not use the system bus as
the path for transfer between the L2 cache and the processor, but use a separate
data path, so as to reduce the burden on the system bus. Second, with the continued
shrinkage of processor components, a number of processors now incorporate the
L2 cache on the processor chip, improving performance.

The potential savings due to the use of an 1..2 cache depends on the hit rates
in both the Ll and 1...2 caches, Several studies have shown that, in general, the use
of a second-level cache does improve perfOrmance (e.g., see [AZ1M92J, INOVI93].
IIIAND98]). I lowever, the use of multilevel caches does complicate all of the design
issues related to caches, including size. replacement algorithm, and write policy; see
[HAND981 and [PEIR99] for discussions.

Unified versus Split Caches
When the on-chip cache first made an appearance, many of the designs con-

sisted of a single cache used to store rcicrences to both data and instructions. More
recently, it has become common to split the cache into two; one dedicated to instrue-
Lions and one dedicated to data.

There arc two potential advantages of a unified cache:

▪ For a given cache size, a unified cache has a higher hit rate than split caches
because it balances the load between instruction and data fetches automati-
cally. That is, if an execution pattern involves many more instruction fetches
than data fetches, then the cache will tend to fill up with instructions, and if an
execution pattern involves relatively more data fetches. the opposite will occur.

• Only one cache needs to be designed and implemented.

Despite these advantages, the trend is toward split caches, particularly for
superscalar machines such as the Pentium and Poi.verPC., which emphasize parallel
instruction execution and the prefetehing of predicted future instructions. The key
advantage of the split cache design is that it eliminates contention for the cache
between the instruction fetchfdccode unit and the execution unit. This is important
in any design that relies on the pipelining of instructions, Typically, the processor

+.4 PENITUNI 4 AND POWERTPC CAC:1•1E ORGANI7ATIQNS 121

will fetch instructions ahead of time mid lilt a buffer. or pipeline, with instructions
Lc) be executed. Suppose now that v•e have a unified instruction/data cache. When
the execution unit performs a memory access to load and store data, the request is
submitted to the unified cache. If. at the same„ time, the instruction prefetcher issues
a read request to The cache for an instruction, lhril request will be temporarily
blocked so that lite cache can service the execution unit first, enabling it to complete
the currently CHeekiLing instruction. This cache contention can degrade performance
by interfering with efficient use of the instruction pipeline. The split cache structure
overcomes this difficulty.

4.4 PENTIUM 4 AND POW-ER.11 C CACHE ORGANIZATIONS

Pentium 4 Cache Organization
The evolution of cache organization is seen eleiirly in the evolution of Intel micro-
processors. The S0386 does not include an on-chip cache. The 80486 includes a sin-
gte On-chip cache of 8 Kilytes, using a line, size of 16 bytes and a four-way set
associative organization. All of the Pentium processors include two on-chip 1.1
caches, one for data and one for instructions. For the Pentium 4, the Li akila cache
is g ((Bytes, using a line size of 64 bytes and a four-way set associative. 0
The Pentium 4 instruction cache is described subsequently The Pentium 4 also
includes an L2 cache that feeds both of the L1 caches. The L2 cache is eight-wav set
associalive with a size of 256KB and a line size of l2K bytes.

Figure 4-].3 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches- 'The processor core consists of four major
components;

* Fetch/decode unit; Fetches program instructions in order from the U cache,
decodes these into a series of micro-operations. and stores the results in the
LI instruction cache.

• Lii-of-order execution logic: Schedules execution of the rnicto-operations sub-
ject to data dependencies and resource availability; thus, micro-operations may
be scheduled for execution in a different order than they were fetched from the
instruction stream. As time permits, this unit .schedulesspecuLtivc execution of
micro-operations that may be required in the future.

• Execution units: These units executes micro-operations, fetching the required
data from the LI data cache and temporarily storing rCsul1r in registers.

• Memory subsystem: This unit includes the L2 cache and the system bus, which
is used hr access main memory when the LE and L2 caches have a cache miss,
and to aceess the system resources.

Unlike the organization used in all previous Pentium modets. d ; an_ i n most other
processors, the Pentium 4 instruction cache sits between the instruction decode logic
and the execution core. The reasoning behind this design decision is as follows. dis-
cussed more fully in Chapter 14, the Pentium process decodes, or translates, Pentium
machine instructions into simple RISC-like instructions called micro-operations. The
use of simple, fixed-length micro-operations enables the use of superscalar pipelining
and scheduling techniques that enhance performance. However, the Pentium machine

System bus

64
hits

[.2 caehe
(256 KB

FP register file

A

IA data cache tS

Oul-of-order
execo

logic

Integer register file

L1 "instruction
caeltell2h: .top t

A

Complex
integer

Load
addresf,

nit

Store
address

unit

Insi raction
letchideeode

uatit

FP/
I MI
unit

FP
move
unit

Simple
integer

A LI:

Simple
inl eget
AL

Figure 4.13 Pentium 4 Block Diagram

4.4 / PENTIUM 4 AND POWERPC. OR.CANIZATIONS 123

Table 4,4 I-'...! ntiurn 4 C h n ai..!..(2 __berating IN.1(5LICS

operating ?dude Contra' Bits

NW Cache FilLs Write Throughs Invalidates

41 4.1. Enabled Enabled Enabled

1. 4-1 Disabled Enabled I:mobled

J. L riiiiiblud Di,iubled Disabled

C() = U: = L is.aq'suvsliJ coinhirlariori.

instructions are cumbersome to decode; they have a variable number of bytes and many
differont c}plions. IL turns out that performance is enhanced if this decoding is done inde-
pendently of the scheduling and pipelining [ogle. We return lo this topic in Chapter 14.

The data cache employs a write-back policy! Data are written to main memory
only when they arc removed from the cache and there]ias been an update. The Pen-
tium 4 processor can he dynamically eoririgurcd lo support write-through caching.

The LI data cache is controlled by two bits in one of the control registers,
labeled the CD {cache disable} and NW (not write-through) bits (Table 4,4). There
are also two Pentium 4 instructions that can be used to control the data cache:
LNVD invalidates (flushes) the intern& cache rnaulory and signals nic external
cache (if any) to invalidate. WB1NVD writes hack and invalidates internal cache,
then writes hack and invalidates external cache.

PowerPC Cache Organization

The PowcrPC cache organization]ias evolved with the overall architecture of the
PowerPC family, reflecting the relentless pursuit of performance that is the driving
force for a]] microprocessor designers.

Table 495 shows this evolution. The original model, the 601, includes a single
codcidain 32-k Byte cache that is eight-way set associative. The 603 employs a more
sophisticated RISC: design but has a smaller cache: let KBytes divided into separate
instruction and data caches, both using two-way set associative organiz,ation. The
result is that the 603 gives approximately the same performance as the Mil at hrwer
cost. The 64I4 and 620 each doubled the size of the caches from the preceding model.
The US and G4 models has the same size 1,1 caches 4i2S the 620.

Figure 4.14 provides a simplified view of the PowerPC G4 organization, high-
lighting the plac.emen I of the two caches. The core execution units are two integer

Table 11.5 PowerPC Internal Caches

Model Sixc Bytes/Line Organization

PowerPC: 61:11 1 32-KbytE 32 8 -wily set associaLive

1-.45werl-" C 1503 2 S•Kbyte 32 2-way set rissociatik .e

PowerPC 604 2 1E.-Kby 32 4-way SQL assnclatiAv
PowerPC 620 2 32-KbyLe 64 8-9futi seL aV.LaCiaLi ...Lt.

PoW4211-KC 03 2 32•KbyLe 64 - .slioiy set ili fSociativo

PowerF'C.: G4 2 '32-E(1.-v!elo 32 Sway set assmative

Vect.or
permute

Vector
register

unit

Instnictiors
fetch/decode

unit

Li iristructiors
cache 02 Ka i

Load/
store
unit

Complex .
integer
ALL

Ill■m•TM■ 1117•■■• t

1CR
like

Simple
integer
ALL'

Register
move
unit

1;PR
Zile

Floating-
point
aril

4-111.
FPR
lite

t

V

Lftlata
. cattle 144 12 racltie

Mit) Bus interface
unit

Figure 4.14 PowerPC G41 rock Diagram

4.i r RECOMPv1ENDED READING 125

arithmetic. and logic units, which can execute in parallel, and a floating-point unit
with its own registers and its own multiply. add, and divide components. The data
cache feeds both integer and floating-point operations via a loadIstore unit. The
instruction cache, which is read only, feeds into an i nstruction unit, whose operation
is discussed in Chapter 14.

The Li caches are eight-way set associative. The LZ cache is a two-way set
associative cache with 256K. 5.12K, or I MB of tu mefy_

4.5 RECOMMENDED READING >. •••- .4r
er:e

A thorough treatment of cache design is to be found in [HAN' 1)94 A discussion of Pentium
4 cache organization can he found in ININT011 and of PowerPC 04 cache organization in
I MO1 001.]. A classic paper that is still well worth reading is ISMIT821; it surveys the various
elements of cache design and presents the results of an extensive set of analyses. [AGAR89]
presents a detailed examination of a variety of cache. design issues related to multiprogratn-
ming and multiprocessing, [HICiB901 provides as 4, 1 of simple formulas that can he used to
estimate cache performance as a function of .011 kap, cache parameters.

AGA It$9 Agorwal. A. Anrrlt.cis rif Cache Performance for Operating SySfellt% and Multi-
progi.amn fing. Boston: Kiuwer Academic Publishers, 1989,

1f1AND98 Handy. .1, The Cache Memory Book. San .1)i ego: •k`adeunie Press, 1993.
Highie. "Quick and Easy Cache Performanec. Analysis.' •on2precer

lecture News, _him. 1990.
HINTO1 Hinton. 6., et al. The Mieroarcliiiecture of the Pentium 4 ProOssor.' bad

Technoloyy Journal, QI 2001. littplidevdkipc .lat 4• [Int3.10gyAtil
M1) • 001 Motorola, Powoe.PC M U.' RISC Mieroproiwssar lardware eeili•ii-

fiCkil•, Denver, CO: 2001. www,thotorold.eom
SMITA2 Smith, A. 'Cache Memories," r1, t'M Omptaing Surve•s', September 1992,

4.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access time
associative mpping .
cache hit
cache line
cache memory
cache miss
en elle Set
data cache
diteci access
direct mapping
high performance

computing (HPC)

hit ratio
instruction cache.
1...1 cache
L2 cache
L3 cache
locality
nieinory hierarchy
Multilevel cache
random CCC517;

replacein el it algorithm

sequential access
set-asSOciative mapping
spatial locality
split cache
tag
temporal locality
unified cache
write back
Write once
write through

126 CHAPTER 4 I CAC1-iE MEMORY

Review Questions
4.1 What are the differences among sequential access. direct access, and random access?
4.2 What is the general relationship among access time, memory cost. and capacity?
4.3 How does the principle of locality relate to the use of multiple memory levels?
4.4 What are the differences among direct mapping, associative mapping, and set -asso-

ciative mapping?
4.5 For a direct-mapped cache, a main memory address is viewed as consisting of three

fields. List and define the three fields,
4.6 For an associative cache, a main memory address is viewed as consisting of two fields.

List and define the two fields.
4.7 Fur a set-associative cache. a main memory address is viewed as consisting of three

fields. List and define the three fields.
4.8 What is the distinction between spatial locality and temporal locality?
4.9 In general, what arethe strategics for exploiting spatial locality and temporal locality?

Problems
4.1 A set associative cache consists of 64 lines, or slots, divided into four-line seas. Main ',lem-

on contains 4K blocks of 128 words each. Show the format of main memory addresses,
4.2 For the hexadecimal main memory addresses 111111 .666666, BBBBBB. show the fol-

lowing information, in hexadecimal format:
a. 'tag. Line, and Word values for a direct-mapped cache. using the format of Figure

4.8.
b. Tag and Word values for an associative cache, using the format of Figure 4.10.
c. Tag, Set, and Word values for a two-way set associative cache, using the format of

Figure 412,
4.3 List the following values;

a. For the direct cache example of Figure 4.8: address length, number of addressable
units, block size. number of blocks in main memory, number of lines in cache. size
of tag.

b. For the associative cache example of Figure 4.10: address length, number of
addressable units, block size, number of blocks in main memory, number of lines
in cache, size of tag.

e. For the two-way associative cache example of Figure 4.1.2: address length. number
of addressable units, block size, number of blocks in main memory. number of lines
in set, number ,±1 . Sets, number of lines in cache. size of tag,

4.4 Consider a 32-bit mk:Hiproeessor that has an on-chip 16 KByte four-way set-associative
cache. Assume that the cache has a tine size of four 32-hit words. Draw a block dia-
gram of this cache ~bowing its organization and how the different address fields are
used to determine a cache hitimiss. Where in the cache is the word from memory loca ,
Lion ABM F.8F8 mapped?
Source: L ALEX931

4.5 (liven the following specifications for an external cache memory: four-way set associa-
five: line size of two I 6-bit words; able to accommodate a total of 4K 32-bit words from
main memory; used with a 16-bit processor that issues 24-bit addresses. Design the
cache structure with pertinent information and show how it interprets the proces-
sor's addresses.
Source: [ALEX931

4.6 The Intel 80486 has an on-chip, unified cache, It contains 8 KBytes and has a four-
way set associative organization and a block length of four 32-bit words. The cache is
organized into 128 gets. There is a single "line valid bit" and three hits, BU. 131, and

least recently used least recently used

4.6 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 127

B2 (the "LR1.7 bitS), per line, On a cache miss, the 80486 reads a 16-1100 line front
main memory in a bus memory read burst, Draw a simplified diagram of the cache
and show how the different fields of the address are interpreted.
Soarcr: JALEX931

4,7 Consider a machine with a byte addressable main memory of 2' bytes and block size
of S bytes. Assume that a direct mapped cache consisting of 32 lines is used with this
machine.
a. !low is a 16-bit memory address divided into tag, line number, and byte number?
b. Into what line would bytes with each of the following addresses he stored'?

0001 0001 0001 1011
1100 0011 0011 0100
1101 0000 0001 1101
1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are
the addresses of the other bytes stored along with it?

d. flow many total bytes of memory can be stored in the cache?
e. Why is the tag also stored in the cache

4.8 For its on-chip cache, the Intel 80486 uses a replacement algorithm referred to as
pseudo least recently used. Associated with each of the 125 sets of four tines (labeled
LO, 1.1.1,2, (3) are three bits Bit, B1, and B2. The replacement algorithm works as fol-
lows: When a line must be replaced, the cache will first determine whether the must
recent use was front 1.0 and 1,1 or 12 and L3. Then the cache will determine which of
the pair of blocks was least recently used and mark it for replacement. Figure 4,15 illus-
trates the logic.
a. Specify how the hits BO, BI, and B2 arc set and then describe in words how they

are used in the replacement algorithm depicted in Figure. 4,15,
b. Show that the 80486 algorithm approximates a true algorithm. Hint: Omsider

the case in whiCh the most recent order of usage is 1,0. L2. 13, Ll.
e. Demonstrate that a true UZI.: algorithm would require 6 hits per set.

4.9 A set associative cache has a block size of [our 16-bit words and a set size of 2. The
cache can accommodate. a total of 4048 words. The main memory size that is cache-
able is 64K X 32 hits, Design the cache structure and show how the processor's
addresses are interpreted.
Source: [ALL 93]

All lour liri•s in No Replace
the set valid? non slid line

Yes

BO = 0?
Yes. LO or L1 NO, L2 or L3

131 = 0? 112

Yes Yes

Replace eplace Replace Replace
1.0 Li L2 L3

Figure 4.15 Intel 80456 On-Chip Cache Replacement Strategy

128 CHALYTER 4 / CACHE MEMORY

4.10 Consider a memory system that uses a 32-hit address to address at the byte level. plus
a cache that uses a 64-byte line sin-.
a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the

address format and determine the following parameters: number of addressable
units, number of blocks in main memory, number of lines in cache, size of Lag.

h. Assume an associative cache. Show the address formal and determine the follow-
ing parameters: number or addressable units, number of blocks in main memory,
number of lines in cache, size of tag.

c. Assume a 4-way set associative cache with a lag field in the address of 9 hits. Show
the address format and determine the following parameters; number of address•
able units. number of blocks in main memory, number of lines in set. number of
sets in cache. number of lines in cache. size of tag,

4.11 Describe a simple technique for implementing an LRli replacement algorithm in a
four-way set associative cache.

4.12 Consider the following code:

for ii. 0; a. < 20; L+-F)
for (j - 0; j < :o

= *

a. Give one example of the spatial locality in the code,
b. Give one example of the temporal locality in the code,

4.13 Generalize Equations (4.1) and (42), in Appendix 4A, ill N'-level memory hierarchies.

4.14 A computer system contains a main memory of 32K 16-bit words. It also has a 4K-
word cache divided into four-line sets with 64 words per line, Assume that the cache
is initially empty. 'rite processor fetches words from location s fl, 1,2 ,,,,, 4351 in that
order. It then repeats this fetch sequence nine more times. The cache. is 11) times faster
than main memory. Estimate the improvement resulting from the. use of the cache.
Assume an LA(policy for block replacement.

4.15 Consider n memory system with the following parameters:
= 100 as = 0_01 ebia

T;,, = 1,2(K) ns C ,, — 0.001

a. What is the cost of I MO: of main memory?
IN What is the cost of I MByte of main memory using cache memory technology?

c. if the effective access time is 10% greater than the cache access time, what is the
hit ratio H?

4.111 A computer has a cache, main memory. and a disk used for virtual memory. If a ref-
erenced word is in the cache, 20 ns are required to access it. If it is in main memory
but not in the cache, 60 ns arc needed to load it into the cache, and then the reference
is started again, If the word is not in main memory. 12 MS arc required to fetch the
word front disk, followed by 60 ns to copy it to the cache. and then the reference- is
started again. The cache hit ratio is 0.9 and the main memory hit ratio is 0.6_ What is
the average time in its required to access a referenced word on this system?

APPENDIX 4A PERFORMANCE CHA_RACTE14§TICSP
OF. TWO-LEVEL MEMORIES i.

in this chapter, reference is made to a cache that acts as a buffer between main
memory and processor, creating a two-level internal memory. This two-level archi-
tecture provides improved performance over a comparable one-level memory, by
exploiting a property known as locality, which is explored in this appendix.

APPENDIX 4A / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 129

Table 4.6 Characteristics of Two-Lc vc1 tarriorie.s

Cache
Virtual Memory

(Paging) Disk Cache
'Typical access time 40f1 (om-crtip cm:1w to 14.00011 (main manory Dapuoii (Inaiti rncrnory

ratios main memory) to disk) if.) disk)
10.1 Ahep c ache 1. o

T(12i.11 111C.11107

NiErnory management truplermnicd by CC)111h111a1L031 Ildrdwarc SVNILCM E(111WRTE

System speci a l hardwom aged symluo scillwrirc

Typiwi Nock wire 4 u 126 bye s ().4 to 40% fn....ics 64 to .111% bytils

Access of processor
to irarowl level

Direct access Indirect access Indirect access

The main memory cache mechanism is part of the computer architecture.
implemented in hardware and typically invisible to the operating system. There are
two other instances of a two-level memory appro4ieh That also exploit lueah[y .and
that are, at least parthi ly. implemented in the operating system: virtual memory
and the disk cache (Table. 4.6). Virtual memory is explored in Chapter 8, disk cache
is beyond the scope of this book but is examined in ISTAL01]. In this appendix, we
look at some of the performance characteristics of tWO-level memories t hal are com-
mon to all throe approacho.7i.

Locary

f he basis fin- rho porlorninnea advantage or a two-level memory is a principle
known as locality of referene.-e I)E 1,S I. This principle states that 111C1I101N refer-
ences tend to cluster. Over a long period of time, the clusters in use change, but over
a short period of time, the processor is primarily working with fixed clusters of mem-
ory references,

irrorn vin intuitive point of view, thEi principle of locality makes sense. Consider
the following line of reasoning:

1. Except for hranch and call instructions, which constitute oitiv a small fraction of
all program instructions, program execution is sequential. Hence. in most cases,
the next instruction to be fetched immediately foliOW ,, 1 11 t2 LISI instruction fetched.

2. ft is rare to have a long uninleiTupled sequence or procedure calls fonowed
by the corresponding sequence of returns. Rather. a program remains con-
fined to a rather narrow window of procedure-invocation depth. Thus. over a
short period of time references to instructions lend to be localized to a kw
procciUre

3. Most iterative constructs consist of a relatively small number of instructions
repeated many times. For the duration of the iteration, computation is there-
fore COT1 lined to a :;.mall contiguous portion of a, program.

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to thc.e (Wu structures will be 10 closely located claw items.

130 CHAPTER 4 / CACI LE MEMORY

Table 4.7 Relative Dynamic Frequency cif high-Level Language Operations

Study
Language
Workload

[FlUcK831
Pascal

Scientific

[KAU" 1711
FORTRAN

Student

[PATTS21
Pascal C

System System

[TANEN
SAL

System

Assign 74 67 45 38 42

Loop 4 3 5 3 4

Call I 3 I5 12 12

IF 2.1) II 29 43 36
COTO 2 9 3

Other 7 6 l b

This line of reasoning has been confirmed in many studies. With reference to
point 1, a variety of studies have analyzed the behavior of high-level language pro-
grams_ 'T'able 4.7 includes key results, measuring the appearance of various state-
ment types during execution, from the following studies. The earliest study of
programming language behavior, performed by Knuth (KNUT711. examined a col-
lection of FORTRAN programs used as student exercises, Tanenbaum [TANE78L
published measurements collected from over 300 procedures used in operating-
system programs and written in a language that supports structured programming
(SAL). Patterson and Sequent. IPATTS2a] analyzed a set of measurements taken
from compilers and programs for typesetting, computer-aided design (CAD), sort-
ing, and file comparison. .1'he programming languages C and Pascal were studied.
Huck [HUCK83] analyzed four programs intended to represent a mix of general-
purpose scientific computing, including fast Fourier transform and the integration
of systems of differential equations. There is good agreement in the results of this
mixture of languages and applications that branching and call instructions represent
onl!,. , a fraction of statements executed during the lifetime of a program_ Thus, these
studies confirm assertion I.

With respect to assertion 2. studies reported in [PATT85a I provide confirma-
tion_ This is illustrated in Figure 4_16, which shows call-return behavior. Each call is
represented by the line moving down and to the right, and each return by the line
moving up and to the right. In the figure, a window with depth equal to 5 is defined,
Only a sequence of calls and returns with a net movement of 6 in either direction
causes the window to move. As can be seen. the executing program can remain
within a stationary window for long periods of time. A study by the same analysts

Crof and Pascal programs showed that a window of depth 8 will need to shift only
on less than 1% of the calls or returns [TAMI.83].

The principle of locality of reference continues to be validated in more recent
studies. For example, Figure 4.17 illustrates the results of a study of Web page access
patterns at a single site.

A distinction is made in the literature between spatial locality and temporal
locality. Spatial locality refers to the tendency of execution lo involve a number of
memory locations that arc clustered. This reflects the tendency of a processor to
access instructions sequentially_ Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such a..s when processing a table of daiie
Temporal locality refers to the tendency for a processor to access memory locations

APPENDIX 4A PERFORMANCE CHARACTERISTICS OF 'I WO-LEVEL MEMORIES 131

Time
(in units of callOrthirus)

1.1........I I I I I I I I I I I I I I I I 1_1 I 1_1 I I_),

Rcturn

CEO

Nesliiig
depth

Figure 4.11; eAfirripl Call-R‘'(41111 11.1.:111'cLviOr Phpgram

that have been used recently. For example, when an iteration loop is executed, the
processor executes the same set of instructions repeatedly.

Traditionally, temporal locality is exploited by keeping recently used instruc-
ti on and data i4 Lies in cache incroory Fula by eNploiling a c;ichc. Iticlarch v. Spatial
locality is generally exploited by using EarKer cache. blocks and by incorporating
prefetching mechanisms (fetching items of anticipated use) into the eacR. control

Recently, Ihcre has been considerable res .eareh on refining these techniques
to achieve greater performance, but the basic strategies remain the same.

Operation of Two -Level Memory
The locality property can be exploited in the formation. of FI Imo-Few] rtioniory. The
upper-level memory (Ml) is smaller, faster, and more expensive (per bit) than the
lower - level mumory (M2). Pvil is used t temporary store for part of the contents

3,000 I I I I I I I
I I I

2,500 — — I — — 1 — —
I I I

2,000 — — — — —1— —I— —1— — — -
1

1,500 — — — — — — — -
I

1,000 — — J .
I

500 I
I I I

0 50 WO]5t1 200 250 350 41)0

CtimultaIi....c nkuFlsu er01 clocuiricaN
Figure 4.11 Locality' n 1-1eferenee for Pages IBAEN971

N
tu

nb
cr

 o
f

N
fo

rc
uo

n

132 CHAPTER 4 / CACHE MEMORY

of the Larger M2. When a memory reference is made, an attempt is made to access
the item in Ml. If this succeeds, then a quick access is made. If not, then a block of
memory locations is copied from M2 to MI and the access then lakes place via Ml.
Because of locality, once a block is brought into Ml, there should be a number of
accesses to locations in that block. resulting in fast overall service.

To express the average time to access an item, we must consider not only the
speeds of the two levels of memory, but also the probability that a given reference
can he found in Mi. We have

T, — (1 — H) x (T, + 7'2) (4.1)
= T, (1 — H) X T,,

where

T, — average (system) access time
T, = access time of MI (e.g., cache, disk cache)

= access time of M2 (e,g., main memory, disk)
tf = hit ratio (fraction of time reference is found in M1)

Figure 4,2 shows average access time as a function of hit ratio. As can be seen,
for a high percentage of hits, the average total access time is much closer to that of
M•I than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a vivo-level mem-
ory mechanism. First consider cost. We have

Cs = — • (4.2)
S, +

where

C, average cost per bit for the combined two-level memory
C, = average cost per hit of upper-level memory M1
C, average cost per bit of lower-level memory M2

= size of MI
= size of M2

We would like C C2. Given that C 1 >> C,. this requires S , « 5,, Figure 4.18 shows
the relationship.

Next. consider access time. For a two-level memory to provide a significant
performance improvement, we need to have T., approximately equal to T, (Ty -----
Given that T, is much less than 7; (T, 'I), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the
hit ratio and therefore the performance. Is there a size of Mi that satisfies both
requirements to a reasonable extent'? We can answer this question with a series of
subquestions:

• What value of hit ratio is needed so that .7",
• What size of MI will assure the needed hit ratio?

• Does this size satisfy the cost requirement?

Al'I'F‘DIX. 4A / PF.RFORNLANCE CHARACTERISTICS OF TWO-LEVEL idEMORIRS 133

r 1
100 I OM

Relative size of 00..a levels (s ,15 i)

Figure 4.18 Relationship of Average Memory Cost to Relative Minatory Size l'or a Twii-LevelMemory

To get at this, consider the quantity 1', r T,. which is referred to as the occesA effi-
ciency, It is a measure of how close average access time (T) is to MI access time
(T 1). From Equation (4.1).

7:1
T

v 1 — —

(4.3)

In Figure 4. [9, we plot
T1

 1T, as a function of the hit ratio H. with the quantity
1 I T 1 as a parameter. Typically, on-chip cache access time is about 25 to 50 times
faster than main memory access time (i.e., 1 . , IT, is 5 to 10), off-chip cache access
time is about 5 or 15 times faster than main memory access time (i.e., 1 ,/7 - is 5 to
15).' and main memory access lime is about 1000 times faster than disk access time
(T2 17.

1 = NM). Thus, a hit ratio in the range of near 0.9 would seem to be needed
to satisfy the performance requirement_

'For example. at I he time of [lib writing, for the Pentium 4, on-chip cache acces,i time is 1 ns fur data
cache. 2 ns for instruction cache, and 3,5 its For L2 cache.; main memory access time is 3U ns. For the
liatli.11M. ch ip cache a ccess time is 2 us tar LI cache and 6 ns Fro' 1.2 cad112.. of r-chip access time I 'a.wr 1-3
cache is 21 ns: main memory access ti me is 5II ns-

134 CI-TAP-MR 4 / CACHE MEMORY

Vtre can now phrase the question'about relative memory size more exactly. is
a hit ratio of. say, 0,8 or better reasonable for S i << S,? This will depend on a num-
ber of factors, including the nature of the software being executed and the details of
the design of the two-level memory. The main determinant is, of course. the degree
of locality. Figure 420 suggests the effect thEli locality has on the hit ratio. Clearly.
if MI is the same size as M2. I hen the hit ratio will he 1.0: All of the items in M2 are
always stored also in Ml. Now suppose that there is no locality; that is, references
are completely random. In that ease the hit ratio should be a strictly linear function
of the relative memory size. For example, if M1 is half the size of M2, then at any
time half of the items from M2 are also in Iv11 and the hit ratio will he 0..5. In prac-
tice, however, there is some degree of locality in the references, 'file effects of mod-
erate and strong locality are indicated in the figure.

So if there is strong locality, it is possible to achieve high values of hit ratio
even with relatively small upper-level memory size. For example, numerous studies
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless
of the size of ;wait? inaruYry [AGAR89], [PRZYKSI, [STRE83], and iSlylIT821).
A cache in the range of lK to 128K words is generally adequate, whereas main mem-
ory is now typically in the multiple-mcgabyle range. When we consider virtual
memory and disk cache.. we will cite other studies that confirm the same pheno-
menon, namely that a relatively small Ml yields a high value of hit raiio because
of locality.

Figure 4.19 Access Efficiency as a Function of hit Rath.] v = T. in

APPENDIX IA / PERFORMANCE CHARACTERISTICS OF TWO-LEVEL MEMORIES 135

1L2 0,1 Obi 410 1.0

Relative memory size (S1 %)

Figure 4.20 Hit Ratio as a Function of Relative Memory Size

This brings us, to the last question listed earlier: Does the relative size of the
two memories satisfy the cost requirement? The answer is clearly yes. If we need
only a relatively small upper-level memory to achieve good performance, then the
average cost per hit of the two levels of memory will approach that of the cheaper
lower-level memory.

Please note that with L2 cache, or even L2 and L3 caches, involved, analysis
is much more complex_ See RTIR991 and [HAND98I for discussions.

CHAPTER

INTERNAL MEMORY

..!r• ',V.-. Aro: .r0W,0".

•• Key -1 erms
Revictw Q UQ. stions
PtobNJW .

Organization
DRAM and SRAM
Type.!.. of NOM
Chip Logic
Chip Packaain •
Moduic. Organiz4ition.

0•0•7. ;2,0
00.
; .55 • r. ".

SYJ IA) D °US I) R

or"

R mhus DRAM ...
CiLac AVI 0.4.1.0•400:7,-r-oVer

.re

5.4 Recommended Reading and. Web Sitt.8

55 Key Terms, Review Questions, um' Problems

4...F: or

1.....yr..4:5-.0• • 1.-ep• •0. ":"
re•".X

...F. 0•"
-.. • yer:"....er- _..0,0' ' '57'

..o.,0!9" ''.•
-+,,;..e• '1,10 0. .0...:00. ,.erff fr:',•••• Yr' '

er :el -••• :;.. 00'; ..4.0
," -'' .̀."- .0...-?" .0',0r- ...re'. fr;:rre..0••••00.

fp
..er

0

	

	
yr ..0r 	40"........0?0'0.,01•• 0:„•••".....,0 4re: - .-.-7. ..• e•

,...•yr 	00- -er 4-
...0. ..rer.0" r.."0•40r ..4.Fr-Fr :..;:; ..F:F'r .0...00 0r•-:+2.-.. 	•••:• Ye 0.:(0,;54.,....00. , ,r.....0:00iy- 1.- .,0,01..er 4.....5.0,0.p.-.0' ••••• -: „roe.;

e:-.P".. .. 0.. ;;rr."f're..24 0 0 - . 0 . 0-r.r. . 0 •. 0 ' ''.. 0 r,.. 0." -PP . '27
...00 0.e.,°....• -.0. .0.:.

;
...0•• -.0' -..0;,0,-F.0-"`" ..ro• ..0.:P. .*:!0•104 .;•.! ...' 4"f0r" .•••44:6t W.0.1...., ".... 0.10• c..7,....."... - OR: .0r.0 .

I•• ..•,,, .,:r0",,...4!"..
...ore ..0.:?'"'. ' .0!

5.• 0,
-...rr.---,,-..."-... ...-e-,,....Xr.orrr ..:4r. :,' ,0010" 0,..• 0•4.

a.010.0:0•...err !..r"- ,..•
-06e-!‹.

,;•..e:4P50....-0.:4.04,.- - •.4.5 er' .0:::::47,0.4.0.Y. ..!;.". 4-...r!..f...:Pr-11,-.4=7C01051.15,!ii .0.10:0!■05.0.10:030%.0!0•0•. ..- 0,0• 0•-•:,.!, 40 - 0 0.. ..."...".

138 CHAPTER 5 1 INTERNAl NiEMoRy

KEY POINTS

• The two basic forms of semiconductor random-access memory are dynamic
RAM (DRAM) and static RAM (SRAM). SRAM is faster, more expensive,
and less dense than DRAM, and is used for cache memory. DRAM is used for
main metnor!,, ,

• Error correction techniques are commonly used in memory systems. These
involve addino, redundant bits that are a (unction of the data bits to 1:01'311 are
error-correcting code, If a bit error occurs, the code will detect and, usually,
correct the error.

• To compensate for the relatively slow speed of DRAM. a number of advanced
DRAM organizations have been introduced. The two most common are syn-
chronous DRAM and Ronifius DRAM. Both of these involve using the sys-
tem clock to provide. for the transfer or blocks of data.

T his chapter begins with a survey of semiconductor main memory subsystems,
including ROM, DRAM. and SRAM memories. Then we look at error con-.
trol techniques used to enhance memory reliability. Following this, we look

at more advanced DRAM architectures.

5.1 SEMICONDUCTOR MAIN MEMORY

In earlier compmers, the most common form of random-access enrage for com-
puter main memory employed an array of doughnut-shaped ferromagnetic loops
referred to as cores. Hence, main memory was often referred to as core, a term that
persists to this day, The advent of, and advantages of, microelectronics has long
since vanquished the magnetic core memory. Today, the use of semiconductor chips
for main memory is almost universal. Key aspects of this technology are explored
in this section,

Organization

The basic element of a semiconductor memory is the memory cell, Although a vari-
ety of electronic technologies arc used. all semiconductor memory cells share cer-
tain properties:

• They exhibit two stable (or semistablc) states, which can be used to represent
binary I and O.

• They are capable of being written into (at least once), to set the state.

• They are capable or being read to sense the state.

5.1 / SEN1.1CON.1) 1LIC.L'OR MAIN iviEmoRY 139

Control

(a) Write

Figure 5.1 MOTH LPry r1.1 11 OpCi•kl i4J11

.11)i. Head

Figure 5.1 depicts the operation of a memory Cc.11..Mosi commonly, the cell has
three functional terminals capabie of carrying an electrical signal. The select termi-
nal, as the name suggests, selects a memory cell for a read or write operation. The
control tevniinal indicates read or write. Far writing, the other terminal provides an
electrica] signal that sets the state of the cell to 1 or 0. For reading. Out terminal is
used for output of the cell's state. The. details of the internal organization, func-
ti ming, and timing of the memory cell depend on the specific integrated circuit tech-
nology used and are beyond the scope 0.1' this book,4.:xcepi for 41 blia gli-Tnnary.11,or
our purpa gcs. we will take it. is given t Ht individual cells can be selectci for read-
ing and writing operations.

DRAM and SRAM
All of the memory types that we will explore in this chapter arc. random access.
That is, individual words of memory are directly accessed through wired-in ad-
dressing logic,

Table 5.1 lists die major types of semiconductor memory. The most common
is referred to as random-access Merflary (RAM). This is, of course. a misuse of the
t erm, because all of the types listed in the table are random access. One distin-
guishing characteristic of RAM is that it is possible both to read data from the mem-
ory and to write new data into the memory easily and rapidly. Both the reading and
writing are accomplished through the of electrical signals.

The other distinguishing characteristic of RAM is that it is volatile. A RAM
must be provided with a C.Dostni power supply. 11 the power is interrupted, then
the data are lost Thus, RAM can he used only as temporary storage. The two tra-
ditional forms of RAM used in computers are DRAM and SRAM,

Dynamic RAM
RAM technology is divided into two technoloyics: dynamic and static. A

dynamic RAM (DRAM) is made with cells that store data as charge on capacitors.
The presence or absence of charge on a capacitor is interpreted as a binary l or 6.
Because capacitors have natural tendency to dimThargc, dynamic RAMS require
periodic charge refreshing to maintain data storage. The term elynamic refers to this
tendency of the stored charge to leak away. even with power continuously applied.

140 CHAPTER 5 1 INTERNAL MEMORY

Table 5.1 Memory Types

Memory Type iiry Erasure Write Media also' Volt Iilit}

Rorsdom-access
memory (RAM)

FiccRrica I ty.
Read.write memory

h} to Ityr
Eloc(rieally

Nucsoola tilk

Rt'd d-wanly
rriertkuty (ROM)

Remd-only critmor:y Not possible

Masks

Programmable
ROM . (PROM)

Electrically

Erasable PROM
{EPROM)

Readtncaly memory

chip level

Elecirically Erasable
FROM (EEPRDM}

Electrically,
byte lcvd

Flash memory
Elcpctri CH I I y.

h1{14:k C'c1

Figure 5,2a is a typical DRAM structure. for an indit,idual cell that stores one
bit. The address line is activai ed when the hit value. from this cell is to be read or
written. The transistor acts as 3 sgitch that is closed (allowing current to flow) if a
voltage is ,ripplicd to the address line and open (no current fiows) if no voltage is
present on the address line.

For the write operation, a vollagi2 signal is applied to the bit line; a high volt-
age represents 1, and a iow voltage represents 0, A signal is then applied to the
addresf, line, allowing a charge to be transferred to the capacitor.

For the read operation, when the address line is selected. the transistor turns
on and the charge stored cm the capacitor is fed out onto a hit line and to a sense
amplifier. The sense amplifier compares the capacitor voltage to a reference value
and determines if the cell contains a logic 1 a logic 0. The read out from the cell
discharges the capacitor, which musk he restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially
an analog device. 'The capacitor can store any charge value within a ranee: a thresh-
old value determines whether ale charge is interpreted as 1 or O.

Static KAM
In contrast, a static RAM (SRAM) is a digital device, using the kaiTlle logic ele-

ments used in the processor. In a SRAM, binary values are siortx1 using traditional
flip-flop logic-gate configurations (see Appendix A for a description of flip-flops).
A static RAM will hold its data as long as power is supplied to it.

Figure 5.2b is a typical SRAM structure for an individual cell_ Four transistors

T), 'U,. T4) Are (TOSS' CA.}[Merted in an arrangement alai produces a stable logical
state. In logic state 1. point C, is high and point C, i ioxy in this state, T, and ariz

oft and T, and T, 1 arc on.' In logic state 0. point C 1 is low and point C, is high; in

'The circles at the head ot T-, and 7 4.1 indicate tii grkal ncgatiCni.

H

T 2 H

dc 011 au

Address line

Bit ITuc
B

Transistor

st,....g.,
aipac it (Jr

Grp and

Bit Hoc
B

fi
Ground

fi
Add rm

Line
Bit line

It

E a? Dynamic RAM IDRiVel) cell 0o) Static. Ft A EA (SRA10,1) cell

Figure 5.2 Typical Memory Cell Structures

142 CHAPTER. 5 / INTERNAL MEMORY

this stale, T.. and . 1: 1 are on and T.-. and T 3 are off. Both states are stable as long as
the direct current (de) voltage is applied. Unlike the DRAM, no refresh is needed
to retain data.

As in the DRAM, the address line is used to open or close a switch. The ad-
dress line controls two transistors (T, and TO. When a signal is applied to this line,
the two transistors are switch on, allowing a read or write operation. For a write
operation, the desired hit value is applied to line B, while its complement is applied
to line B. This forces the four transislorS (T i . 1 .

2 , 13, .PL) into the proper state. For a
read operation, the bit value is read from line B.

SRAM versus DRAM
Both static and d!.. , natnic RAMs are volatile that is, power must he contin-

uously supplied to the memory to preserve the bit ‘raities, A dynamic memory cell
is simpler and smaller than a stalie memory eel[. 'Thus, a DRAvt is more dense
(smaller cells = more Cells per unit area) and less expensive than a corresponding
SRAM. On the other hand, a DRAM requires the supporting refresh circuitry. For
Larger memories. the fixed cost of the refresh circuitry is more than compensated
for by, the smEilier variable cost or DRAM cells. Thus, DRAMs tend to be favored [or
Large memory requirements. A final point is that SRAMs are generally somewhat
faster than DRAMs. Because of these relative characteristics, SRAM is used for
cache memory (both on and off chip). and DRAM is used for main. memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern
of data that cannot be changed. A ROM is nonvolatile: that is, no power source is
required to maintain the hit values in memory. While it is possible to read a ROM,
it is not possible to write new data into it, An important application of ROMs is
microprogramming, discussed in Part Four. 01 her potenliid applications include

• Libniry subroutines for frequently wanted functions
• System programs
• Function tables

For a modest-sized requirement, the advantage of ROM is that the data or program
is permanently in main memory and need never be. loaded from a secondary stor-
age device.

A ROM is created like any cal her inlCgraled circuit chip, with the data actually
wired into the chip as part of the fabrication process. This presents two problems:

■ The data insertion step includes a relatively large fixed cost, whether one or
thousands of copies of a particular ROM arc rAticated_

▪

']'here is no room for error. If one hit is wrong, the whole batch of ROMs must
be thrown out.

When only a s mutl number of ROMs with a particular memory content is
needed. a Less expensive alternative is the programuuable ROM (PROM), i.ike the
ROM, the PROM is nonvolatile and may be written into un(v once. For the PROM,
the writing process is performed electrically and may be performed by a supplier or

5,1 / SEMICONDUCTOR MAIN MEMORY 143

c,:ustorner at a time Iaier than the original chip fabrication. Special equipment is
required for the writing or "programming" process. PROMs provide flexibility and
convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is
UserLd COT applications in which read operations are far more frequent than write
operations but for which nonvolatile storage is required. There are three common
forms of read-mostly memory: EPROM, [EPROM, and flash memory.

optically crumble programmable read-only memory (EPROM) is read
and written electrically, as with PROM. However, before a write operation, all the
storage cells must be erased to the same initial state by exposure of the packaged
chip to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet
light through a window that is designed into the. memory chip. This erasure process
can be performed repeatedly; each erasure can take as much as 20 minutes to per-
form. Thus, the EPROM can be altered multiple times and, like the ROM and
FROM, holds its data virtually indefinitely. For comparable amounts of storage. the
EPROM is more evensive than PROM. Elul. it has the advantage of the multiple
update. capability.

A more attractive form of read-mostly memory ix elOctrically erasable pro-
grammable read-only memory (EKPROM). This is a read-roost]!, . , memory that can
be written into at any time without erasing prior contents: only the byte or bytes
addressed are updated. The write operation takes considerably longer than the read
operation. on the order of several hundred microseconds per byte. The LLPROM
combines the advantage of nonvolatility with the flexibility of being updatable in
place, using ordinary bus control, address. and data lines. EEPROM is More expen-
sive than EPROM and also is less dense, supporting fewer hits per chip.

Another Form of semiconductor memory is flash memory named because
of the speed with which it can he reprogrammed). First introduced in the mid-19f10s,
flash memory is intermediate between EPROM and EEPROM in both cost and
functionality. Like EEPROM, flash memory uses an electrical erasing technology.
An entire flash memory can be erased in one Or a few seconds, which is much faster
than EPROM. In addition, it is possible to 0122:.y iLLS1 blocks of memory rather than
an entire chip. Flash memory gets its name because the microchip is organi .t.cd so
that a section of memory cells are erased in a single action or 'llash." I LowcYcr,
flash rricniory does not provide byte-level erasure. Like EPROM, flash memory
uses only one transistor per bit. and so achieves the high density (compared with
EEPROM) of EPROM.

Chip Logic

As with other intet..,rrared circuit products : semiconductor memory comes in pack-
aged chips (Figure 2.7). Each chip contains an array of memory cells,

In the memory hierarchy as a whole, we saw dial there are trade-offs among
speed, capacity, and cost. These trade-offs also exist when we consider the organi-
zation of memory cells and functional logic on a chip. For semiconductor memories,
one of the key design issues is the number of bits or data that may he readiwritte.n
at a time. At one extreme is an organization in which the physical arrangement of
cells in the array is the same as the logical arrangement as perceived by I he proces-
sor) of words in memory. The array is organized into W words of bits each. For

144 CHAPTER 5 I INTERNAL MEMORY

example, a 16-Mbit chip could be organized as 1M 16-bit words. At the other ex-
treme is the so-called one-bit-per-chip organization. in which data is readiwritten
one hit at a time, We will illustrate memory chip organization with a DRAM: ROM
organization is similar. though simpler.

Figure 3.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits
are read or written at a time. Logically, the memory array is organized as four square
arrays of 2()48 by 2048 elements. Various physical arrangements are possible, In any
case, the elements of the array are connected by both horizontal (row) and vertical (col-
umn) lines. Each horizontal line connects to the Select terminal ()leach cell in its row;
each vertical line connects to the Data-ln/Sense terminal of each cell in its column.

Address lines supply the address of the word to be selected, A total of log, W
lines are needed. In our example, 11 address lines are needed to select one of 2048
rows. These 11 lines are fed into a row decoder. which has II lines of input and
2045 lines for output. The logic of the decoder activates a single one of the 2048 out-
puts depending on the bit pattern on the 11 input lines (2 1 ' = 2048).

An additional I I address lines select one of 2048 columns of 4 bits per column.
Four data lines are used for the input and output of 4 hits to and from a data buffer_
On input (write), the bit driver of each bit line is activated for a 1 or 0 according
to the value of the corresponding data line. On output (read), the value of each hit
line is passed through a sense amplifier and presented to the data lines. The row line
selects which row of cells is used for reading or writing.

Because only 4 bits are read/written to this DRAM, there must be multiple
DRAMs connected to the memory controller to readlwrite a word of data to the bus.

Note that there are only 11 address lines (AO—A10), half the number you
would expect for a 2048 x 2048 array. This is done to save on the number of pins.
The 22 required address lines are passed through select logic external to the chip
and multiplexed onto the 11 address lines. First, 11 address signals are passed to the
chip to define the row address of the array, and then the other i i addreSs signals
arc presented for the column address_ 'Mese signals are accompanied by row address
select (RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether
write or read operation is performed. Two other pins_ not shown in Figure 5.3, arc
ground (Vss) and a voltage source (Vcc).

As an aside, multiplexed addressing plus the use of square arrays result in a
quadrupling of memory size with each new generation of memory chips_ One more
pin devoted to addressing doubles the number of rows and columns, and so the size
of the chip memory grows by a factor of 4.

Figure 5.3 also indicates the inclusion of refresh circuitry, All DRAMs require
a refresh operation. A simple technique for refreshing is, in effect. to disable the
I) RAM chip while all data cells are refreshed, The refresh counter steps through all
of the row values. For each row. the output lines from the refresh counter are sup-
plied to the row decoder and the RAS line is activated. The data are read out and
written back into the same location, This causes each cell in the row to be refreshed,

Chip Packaging
As was mentioned in Chapter 2, an integrated circuit is mounted on a package that
contains pins for connection to the outside world.

Reash
Cs7iri; ?e I'

RAS CAS WE OE

ROW
aditres!,
buffer

MUX

•

Memory array
.!

4$

.
 204$ X .1)

Di
D2
F).3
D4

A Ell) — Cilliiiun
address
buffer

Data input
15.iffer

Data output
buffer

Refresh circuitry

Column decoder

Figure 5.3 Typical 16 Mcgabit DR:• M {4M 41

119

A16

Al5

Al

A7

A6

A5

A4

A3

A2
AI
AU
ID0
DI
1)2
Vss

Vec

A1B

A17

A14

A13

AS

.19

VPP
A10

CP:

D6

D3

Vcc
DI
D2
WE

RAS --ow
NC

.110

A
A2
A3

\ler

VNs

D3

CAS

OE
49

A6
A5
44

146 CHAPTER 5 / INTERNAL MEMORY

Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip orga-
ni4ed as 1M x 8. In this case, the organization is treated as a one-word-per-chip
package. The package includes 32 pins. which is one of the standard chip package
sizes_ The pins support the following signal lines:

• The address of the word being accessed. For I M words, a total of 20 (2 25 = 1 M)
pins are needed (AU--A 19).

• The data to he read out, consisting of 8 lines (DO-D7).

• The power supply to the chip (Nice).
▪ A ground pin (Vss).
• A chip enable (CE) pin. Because there may he more than one memory chip.

each of which is connected to the same address bus. the CE pin is used to indi-
cate whether or not the address is valid for this chip. The CE pin is activated
by logic connected to the higher-order bits of the address bus (i.e., address bits
above A19). The use of this signal is illmtrated presently_

• A program voltage (Vpp) that is supplied during programming (write operations).

A typica] DRAM pin configuration is shown in Figure 5.4b. for a 16-Mhit chip
organized as 4M X 4. There are several differences from a ROM chip- Because a
RAM can he updated, the data pins arc inputioutput. The write enable (WE) and
output enable (011) pins indicate whether this is a write or read operation. Because
the DRAM is accessed by row and column, and the address is multiplexed, only
1 "address pins are needed to specify the 4M row/column combinations (2' I x 2 11

l)
I M x8

2 31
3 30

4 29

5

7 26

25
t)
 32-Pin Dip 24

10 23 0.6"
L I 22

12

13

14 19

15 tk
16 17 F V

(a) 8-M hit EPROM (b) 1641bl' DRAM

Figure 5.4 Typical Mowry Pack agc Pins and Signals

Memory
scidreis
register (MAR)

512 words by
512 bits
Chip #1

9 Decode 1 of
512 bit-.tense

Memory
buffer
register (MBR)

1 —.

Bit 41

'2

Decode 1 of
512 bit-sense

Bit #7

512 words by
512 bits
Chip 1AS

ry
pri

Decode 1 of
512 bit-seroc

Bit ittl

Figure 5.5 256-Kbyte Isrle nu] ry Organ tin n

7

g

5.1 / SEMICONDUCTOR MAIN MEMORY 147

222 = 4M). The functions of the . row 4iddress select (RAS) and column address select
(CAS) pins were discussed previoustv. Finally, the no connect (NC) pin is provided
so that there arc. on CVCri number of pins.

Mo dul e Organization

If 41 RAM chip contains Drib/ 1 hit per word, then cicAv we will need at least al -R.117-
E3er of chips equal to the number of bits per word, As an example. Figure 5.5 shows
how a memory module consisling of 256K 8-bit words could he orgy tiled, For 256K
words, an [8-bit tic dress is needed and is supplied to the [nodule From sonic exter-
nal source (e.g._ the address lines of zi bus to which the module is attached), The

Memory
address
register
(MAIL}

-[

rwl

Cl Al B1 Murnory
buffer
register
(MBIZ)

B2
Bit 1

All chips 512 words by
512 bits. 2-terminal cells

A7
C7 1. 1/512

• -•:-....roup
Chip 4— A
gr)up (1_1 Z
Linable 41— D—
Select 1
of 4
group

DS

E I _
Bit a

11/512

Ca

148 CHAPTER. 5 1 INTERNAL MEMORY

Figure. 5.6 Memory Organization

address is presented to 8 256K Y, 1-hit chips, each of which provides the input!
output of I bit.

This organization works as long as ihe size of memory equals the number of
bits per chip. In l he case in which larger memory is required, an array of chips is
net4r.led. Figure 5.6 shows the possible organization of a memory consisting of llvl
word by 8 bits per word. in this case, we have four columns of chips, each column
containing 256K words arranged as in Figure 5.5, For '1 NI word, 20 address lines are
needed. The ig least si gnificant bits are routed to ail 32 modules, The high-order
2 bits are input to a group select logic module thin sends a chip enable signal to one
of the four CII]untris of modules,

5.2 ERROR ColtRECTION! -

", efirr 6f'C ,5 "10e" e g•f
ir"

." •

A semiconductor memory system is subject to errors. These can be categorized as
hard failures and soft C1T0E-r - A bard failure is a permauenl physical defect so that
the memory cell or cells affected cannot reliably store data, but become stuck at 0
or 1 or switch erraticatt!,. , between 0 and 1, Hard errors can be caused by harsh envi-
ronmental abuse, manufacturing defects, and wear. A soil error is a random, non-
destructive event that alters the contents or one or more memory cells, without
damaging the memory. Soft errors can he caused by power supply problems or alpha
particles. These particles result from radioactive decay and are distressingly com-
mon because radioactive nuclei are found in small quantities in nearly all materials,

./'

5.2 / ERROR CORRECTION 149

Error signal

Data out
Corrector

Memory . Compare

Data in

Figure 5.7 Error-Correcting C..ode Function

Both hard and soft errors are clearly undesirable, and most modern main memory
systems include logic for both detecting and correcting error:.

Figure. 5.7 illustrates in general terms how the process is carried out. When
data are to be read into memory, a calculation, depicted as a function f, is performed
on the data to produce a code. Both the code and the data are stored. Thus, if an
M-bit word of data is to be stored, and the code is of length K hits, then the actual
size of the stored word is M + K bits.

When the previously stored word is read out. the code is used to detect
and possibly correct errors. A new set of K code bits is generated from the M data
bits and compared with the fetched code bits. The comparison yields one of three
results:

• No errors are detected. The fetched data hits are sent out.
• An error is detected, and it is possible to correct the error. The data bits plus

error correction hits are fed into a corrector, which produces a corrected set
of :14 hits to be sent out.

• An error is detected, but it is not possible to correct it. This condition is reported_

Codes that operate in this fashion are referred to as error -correcting codes.

A code is characterized by the number of hit errors in a word that it can correct
and detect,

The simplest of the error-correcting codes is the Hamming code devised by
Richard Hamming at Bell Laboratories. Figure 5,S uses Venn diagrams to illustrate
the use of this code on 4-hit words (214 = 4). With three intersecting circles, there
are seven compartments, We assign the 4 data bits to the inner compartments (Fig-
ure 5.8a). The remaining compartments are filled with what are called parity hits.
Each parity bit is chosen so that the total number of Is in its circle is even (Figure
5.8b), Thus, because circle A includes three data is, the parit!,. , hit in that circle is set
to I . Now, if an error changes one of the data bits (Figure 5,8c). it is easily found,

150 CHAPTER 5 INTERNAL MEMORY

Figure 5.8 Hamming Error-C orrecting Coat

By checking the parity bits, discrepancies are found in circle A and circle C but not
in circle B. Only one of the seven compartments is in A and C but not B. The error
can therefore be corrected by changing that bit.

To clarify the concepts involved, we will develop a code that can detect and
correct single-bit errors in 8-bit words,

To start, Let us determine how long the code must he Referring to Figure 5.7,
the comparison logic receives as input two K-hit values. A bit-by-hit comparison is
done by taking t he exclusive-or o1 i he two inputs. The result is called the syndrome
word. Thus, each bit of the syndrome. is 0 or 1 according to if there is or •k, not a
match in that hit position for the two inputs.

The syndrome word is therefore K bits wide 4i nd has a range between 0 and
— I. The value 0 indicates that no error was detected, [caving 2 K — 1 values to

indicate, if there is an error, which bit was in error. Now because an error could
occur on any of the r l data hits or K check hits, we roast have

2" — K

This ineguality gives the number of hits needed to correct a *Ingle bit error in a word
containing Al data hits. For example. for a word 8 data hits (M = we have

K = 3:
• K = 4: 24

— 1
- 1

< 8
>

+ 3
4 . 4

Thus, eight data bits require four check bits. The first three columns of Table
5.2 lists the number of check hits required for various data word lengths.

5.2 ERROR CORRF.CTION 151

Table 5. Increase in Word Length with Error Correction

Single -Error .Correction
Single-Error Comc t

ti hle-Error Dcteetion

Data 1#11s Check Bits % Incr&19... Check Bits % Increase

4 5(1 5 62.5

5 31.25 6 37,5

32 fi 1S.7:r. 7 21.875

7 I11.94 g 12.5

I2S 8 6,25 CP 7.11;

25:6 3..52 10 3.91

For convenience, we would like to gcncra I c a 4-bit syndrome for an K-hi I data
word with the following characteristics:

• If the syndrome contains all Os, no error has been detected.
• I the syndrome contains one and only one hit Set to I. then an error has

occurred in one of the 4 chock bits. No correction is reeved,
• If the syndrome ctmlaina more than one bit scr 10 I, then the numerical value

of the syndrome indicate's the position of the data hit in error. This data bit is
inverted for correction.

To achieve these characteristics, the data and check hits are arranged into a
12 -N1 word as depicted in Figure 5.9, The bit positions are numbered from 1 to 12.
Those bit positions whose position nurnbcrs are powers of 2 a ri2 designated as check
hits. The check bits are calculated as follows , where the symbol ED designales the
exel usivc-or operation!

Cl = DI e D2 tf:',. D4 .$ D5 ED D7
C'Z — D1. ED. D3S D4 e D6 e D7
C4 D2. We D4 ED D8
CS = D5 ED D6 ED D7 e DK

position 1 2 --1
1

1 10 : 7
fi

5 4 3 2 Bit

Position

P11ab4.._....PR PI _P6. t35 I} E1 P
.

number I: 1. 00' 1.011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Check hit . :C8 ... C4 C2 IT C t _1

Figure 5.9 1.,ayuut of Data Flits acid Check Bits

152 criAlYnik 5 / INTERN AL MEMORY

Each check bit operaits on every data bit whose position number contains al
in the same bit position as the position number of that check bit- Thus, data hit posi-
tions 3, :9, 7, 9, and 11 (D1, D2, D4, 05. U.7) all contain a 1 in the least significant
hit of their position number as does CL; bit positions 3, 6, 7, 10, and 11 all contain
a 1 in the second bit pOsition, as does C24 and so on. Looked at another way, bit
posilion e2 is checked by those bits C ; such that Si — Eor example, position 7 is
checked by bits in position 4, 2, and I: and 7 = 4 1. 2 —

Let us verify that this scheme works with an example, Assume that the 8-bit
input word is 00111001. with data bit D1 in the tightmosl position. The calculations
are as follows:

= e o.e o o = 1
C:2 = 1 EI) oelerie0-1
c4=0e0 e t 0 -
C8 = 1 El) 1 0 ED 0

Suppose now that data hit 3 sustains an error and is changed from 0 to 1. When the
check bits are recalculated, we have

ci=1 eosie1 a)0=i
C2 =iete:1$11130-o
C:4 = 0 a:11 EF) 1 .2) 0 — 0
CS = eleoW0=0

When the new cheek bits are compared lo.rith the old check bits, the syndrome
word is formed:

C8 C4 C.2 C.J.
0 1 1 1

B 0 0 0 1
0 1 1 I

The result is 0110. indicating that bit position 6, Which contains data hit 3, is in error.
Figure 5,10 illustrates the preceding calculation. The data and check hits are

positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded
in the table), and their bit position values arc XORed to produce the Damming
code 01.11, which forms the tour check digits, The entire block that is.siored is
001101001111. Suppose now that data bit 3, in bit position n, sustains an error and
is changed flora 0 to L..1'hu resulting block is 003101101111. The resulting Hamming
code is still 0111, An XOR of the I !attuning code and all of the bit position values
for nonzero data bits resells in 0110. The nonzero result detects an error and indi-
cates that the error is in bit position 6.

The code just described is known as a single-error-correcting (SEC) code_
More commonly, semiconductor memory is equipped with a single-error-correcting,
double-error-detecting (SEC.-DEL)) code. As Table 5.2 shows, such codes requirc
one mitlitional MI compared with SEC codes.

153

1

0001

Cl

0001

I

10 l

1000

0

0

1000

0

0111

1

01[]

0110

t.):";

a

0[]0.

5.2

5

010I

L)2

/ F.R.p,cm coluta7ricw

Bit
position
Position
number

12

1 IMO

11

—r

0100

3

I

0011

2

1011

1)7

1.010

D6

1001

D5

0010

Dula bit DS D1
Cheek bit C4 C2
Word
stored R5 O. 0 1 1

Of
fetched as

1.7411T24
pumficr
CiTiefC fp Ft

0 1 L

[1)10 10.01

0

0100 1100 10] 1 .0101 0010
0

Figure 5.10 Check Bit Calculation

Figure 5,11 illustrates how 7..41ch a eode works, again with a 4-bit data word.
' Mc sequence shows that if two errors occur (Figure 511 c), the chixking procedure
goes astray (J) and worsens the problem by creating a third error (c). To overcome
the problem, an eighth bit is added 'hal is set so that the total number of is in the
diagram is even. The extra parity bit catches the. error (f).

An error-correcting code enhances the reiiability of the memory at the cost
of added complexity. With a one-bit-per-chip organiza0on, an SEC -DED code is
generally considered adequate, For example. the IBM 30xx implementations use
an 8-bi1 SFC-DED wile 02Lch 64 bits of data in main memory. Thus, Lhc of
main memory is actually about 12% larger lion .i:l app4m:J11. to the user. The VAX
computers use a 7-bit SEC-DED for each 32 hits s.)1 memory, for a 22% overhead.
A number of contemporary DRAMs use 9 check bits for each 128 bii;s of c1a1H, for
a 7% overhead ISIIA11971.

Figure 5.11 Hamming SEC -DEC Code.

154 CHAPTER 5 1 [NH IRNAL MEMORY

5.3 ADVANCED DRAM ORGANIZATIO 'FriaaC01,W41.e'
ir
,flida.77,3a:V. ',de-a..

.a...fa
 ariadaraVaaa

 ara..r eaa. .da frke.
a.

ad*. da

As was discusscl in Chapter 2, one of the most critical system bottlenecks when
using high-performance processors is the interface to main internal memory, This
interface is the most important pathway in the entire computer system. Thu basic
building Nock of main memory remains the DRAM chip, 4L!.. has for decades; until
recently. there had been no signi ricanI changes in DRAM architecture since the
early 1970s. The traditional DRAM chip is constrained both by its internal archi-
tecture and by its interface to the processor's memory bus.

We have seen that one attack on the performance problem of DRAM main
memory has been to insert one or more levels of high-speed SRAM cache between
the DRAM main memory and the processor. But SRAM is much costlier than
DRAM. and expanding cache size beyond a certain puinl. yields diminishing returns.

In recent years, a number of cnhanceTnenis to the basic DRAM architecture
have been explored, and some of these are now on the market. The Iwo schemes
that currently dominate the market are SDRAM and RDRAM. RANI has also
received considerable attention, We examine each of these approaches in this section.

Synchronous DRAM

One of the most widely used forms of DRAM is the synchri moos DRAM (SDRAM)
NOCTL.941, Unlike the traditional DRAM, which is asynchronous, the SD RAM
exchRT1gcs data with the processor synchronized to an external clock signal .and run-
ning at the full speed of the processorimemory bus without imposing wait states.

In a typical DRAM. the processor presents addresses and control levels to
the memory, indicating that a set of data at a particular location in memory should
be either read from or written into the DRAM. After a delay, the ti cC.css ti me, the
DRAM either writes or reads the data, During the access-time delay, the DRAM per-
forms various internal functions, such as activat ing (ilk: high capacitance of the row and
column Imes. h031.7-.4 the data, and routing the. data out through the outpul buffers.
The processor must simply wait through this delay. slowing system performance.

With synchronous access, the DRAM move:,1data in ztnd out under control of
Lbc., y,t,m ciock. Thu procesm)r or other lliasti2r issues the instruction and address
information, which is latched by the DRAM. The DRAM thcn responds after a
set number of clock cycles. Meanwhile, the master eau safely do other tasks while
the SDR AM k processing Lhc requnt.

Figure fi.12 shoiA.s the internal logic of IBlyts 64 Mb SDRAM [11-1Mtil 1. which
is typical of SDRAM organization, and Table 5.3 defines the various pin assign-
ments. The SDRAM employs a burst mode io eliminate the address setup time and
row and column line prechargc Lime aur the first access. In burst mode, a series of
data bits can he clocked out rapidly after the first bit has been accessed. This mode
is useful when all the bits to be accessed are in sequence and in the same row of the
array as the initial 41CiA:S.!-:.. In addiLion, the SDRAM has a multiple-bank internal
architecture that improves opportunities for on-chip parallelism.

The mode register and associated control logic is another key feature differ-
entiatin from convtmi iona I DRAMs. It provides a mechanism to cus-
lornur die SDRAf 1 10 suit specific !,ystern needs. The mode register specifics the

CKE CKE 'Wafer

Column decoder 1 Co1unn decoder

cLK —).Cl..1(buffer

Cell array
memory nani;

(2Mb x
DRAM

Sense amplifiers

Cell array
memory bank I

i2 Mb x
DRAM

Sense amplifiers

4

at
a

1/
0

bu
rk

rs

Colmnn sikeolfer

-Q. Ca array
mernory bank

2 Mb 8)

2

DRA'M
r-

■)111110.

Column decoder!
-

Cell array
memory hal* 3

12 x
DRAM

CAC

MR
RC

= Column address
counter

= regisin-

- Refresh counter

pw 5.I.2 Synchronous Dynamic I-Z AM OA).R.A M)

Sense amplifiers Sense amplifiers

156 CIJAPTER 5 / INTERNAL MEMORY

TaIlk 5.3 SDRAM Pin Assignments

Ail in Al.!. AddIL inputs

CLK Clock Input
-- -

Clock c:nallk' CKE

C.7.3 Chip select

RAS ROW LICIIETOS}, S114.1:bl!

CAS 01113 M R OCIT2SU L11)1)..'

WE Write: 011E1111c

1)0 1) to D07 Date input:00Lp LIL

11.) 104'‘..1 Dater TrinSk

burst length, %vhich is the number of separate units of da I a synchronously fed onto
the bus. The register also allows the programmer to adjust the latency between
receipt of fl read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data seri-
ally, such as for applications like word processing, spreadsheets, and multimedia.

Figure 5.13 shows an example (4 SDRAM operation. In this case. the burst
length is 4 arid Ihr latency is 2. The burst read command is initiated by having
CS and CAS low while holding RAS and WE high at the rising edge of the clock.
The address inputs determine the Martin column address For the burst, and the
mode register sers the type of burst (sequential or interleave) and the burst Length
(1, 2, 4, 8, full page). The delay from the start of the.cornmand to when the. data
from the first cell appears on the outputs is equal to the valet.' of the CAS latency
that is set in the mode register.

There is now an enhanced version. of SD RAM, known as double data rate
SD RAM (DDR-SD RAM) that overcomes the once-per-cycle limitation. DDR-
SDRAM can send data to the processor twice per clockcy cle_

Ratnbus DRAM
RDRAM, developed by Rambus [FARM92. CRIS97], has been adopted by Intel
for its Pentium and Itanium procmors. It has become the main compelitur
SDRA M. RDRAM chips are vertical packages, with al] pins on one.side, The chip
eN.changes data with the processor over 28 wires no more than 12 centimeters long.
The bus can address up to 320 RDRANI chips and is rated ac 1.6 Gaps.

The special RDRAM bus delivers address and control information using an
zft.vnchronons Hoek-otiented protocol. After an initial 480 ns access time. this pro-
duces the 1.6 Gaps data rate. What makes this speed possible is the bus itself, which
defines impedances, clocking, and signals very precisely. Rather than being controlled
by the explicit RAS, (AS, R.PW, and CE signals used in conventional DRAMs, an
RDRAM gets a memory request over the high-speed bus. This request contains the
desircd address, the type of operation, and the number of bytes in the. operation,

Figure 5.l4 ill asi ra[e: ,:. the RD RAM layout. The. configuration eunsixis of a
cum roller and a number of RDRAM modules connected together via a common

TO T1 T2 T3 14 15 T6 T7 TS

CLK

COMMAND

HLNOP NOP)—(NOP NOP :1.—; Nor Nor

I I I ! I I ! '
! ! ! !

D12 s 1 1
(our potir A i)1, DOC :11‘ A, X DOI:1 A . ,

1 1 1 1

Figure 5.13 STYRAM Reid Timing (burst. leirgth = 4, CAS latency = 2)

Controltei-

RDR \NI 1

\]I
4 4

Bus data [18:01

INIT0

HDRA 12 RDRA71,1 n

RC17;01
Rok 121

. 11 9 11i [2]

%ref

Grid 9215

V&A)

Figure 5.14 RDRAM SErtp. tum

5.4 1 RECOMMENDED READING AND WETi SITES 159

bus. The controller is at one end of the configurai ion, and the far end of the bus is
a parallel termination of the butt lines. The bus includes 1S data lines (16 actual
data, two parity) cycLing twice the clock rate; that is one hit is tent at the lead-
ing and following edge of each clock signal. This resukEs in a signal rate on each
data line of 800 Mhps. There is a separate set of 8 lines (RC) used for address and
control signals. There is also a cloek signal that starts at the far end from the con-

trfillur propagates to the controller end and then loops bi]ck. A RDRAM module
sends data to the controller synchronously to Ike clock to master, and the con-
troller sends data to an RDRAIVI synchronously with the clock signal in the oppo-
site direction. The remaining bus lines include a reference voltage, ground. and
power source.

Cache DRAM
Cache DRA (CDRAM), developed by Mitsubishi [HI [)A]f}, ZHAN011, inte-
grates a small SRAM cache 06 Kb .) onto to gencrie DRAM chip.

The SRAM on the (DRAM can be used in two ways, First, i1 can be used as
a true cache, consisting or a number of 64-bit lines. The cache mode of the CDRAM
is effective for ordinary random access to memory.

The SRAM on the CDRAM can also he used as a buffer to support the serial
access of a block of data, For example, to refresh a hit-mapped screen. the CDRAM
can prefetch I he data from the DRAM into the SRAM buffer. subsequent accesses
to Eh. ehip result in accesses solely to the SRAM.

PR1N9 I provides a comprehensivc Oi semiconductor memory tedmoiogies,
including SRAM. DRAM, and flash inentorii..s. [SI EAR 917] COVCTS the same maieriul, with
more emphasis on testing and roliabi[i(y issues, l'fiR)N9r1)1 focuses on advanced DRAM and
SRAM architectures. For an in-depth look al IMAM., see IKEET011.

A good explanation ni error-correcting, codes ix conlain.cd in [MCELS5]. For a deeper
s[oc]k, worthwhile book-lelligili treatments are IADAM91.] and [BLAII.831. [SHAR97] con-
...rills S 50001 survey of codes used in contemporary main memories.

ADANT91 Ada mok, J. Ftwo?dations of C'oding, New YIN k %Vile:yr I i.19 I
BL A..1113.3, BUhiit, R. Theory and Practice (3.f Ert:or cot rird Re.ading. MA; Addison-

1y'LL.sley..1083.
KEF.T01 Reeth, B. : and Baker, R. DRAM Circarif Dili got; A Tzar:47'411. Piscataway, Nil:

IEEE Press, NW.
ri4CF-1,85 McElicue, R. "i'he Reliability of Comprii4...r Memories." Scientefie: American,

January 1985.
PR1E491 Ptiiice, 13. Semicotsdurriw. .34,2rtiori.c.v. New York -. WiTcy, 1991.
PRINT) lifinc.d, H. MR)? Pe rtbrrPranCe Memories:: Neiv Arch &corn' nRA.Ms and SRAM's,

.F.:volJaion axed Firneaon. 'dew York; Wiley. 1999.
51-1.4297 Sharma, A. Sm. iconducior Alenakries.: .tryhnedogy, Tesritig. anei

New York: IEEE Press, 19447,

single-error-correcting
(SEC) code

single-ern tr-correcting,
do utile • error-detecting
(SEC-)12,D) code

soft error
static RAM SRA M
synchrontnis DRAM

(SD RAM)
syndrome
volatile, memory

160 CI {AFTER INTERNAt. MEMORY

Recommended 1,Veh Sites:

• The RAM Guide: Good overview of RAM technology plus a number of useful links

• RamhusSite: Useful collection of documents and pointers to RDRAM vendors

■ RDRAM: Another useful site for RDRAM information

5,5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

key 'lertriS

cache DRAM (CDRAM)
dynamic RAM {DRAM)
electrically crasablc

programmable ROM
(FE:PROM)

erasable programmable
(EPROM)

error-corr..din code
(EC(?)

error correction
flash memory

Hamming code
hard failure
nonvolatile memory
programmable ROM

(PROM)
R am Bus DRAM

(RDRAls.1)
read ,nmstly memory
read-only memory

(ROM)
semiconductor mennir

Review Questions
5.1 What arc the key properties OF semiconductor memory?
5.2 What arc two senses in which the term remr,om-access memory is used?
5.3 What is the difference between DRAM and SRAM, in terms of application?
5.4 What is the difference between DRAM and SRAM, in terms of characteristics such

as speed, size, and cu-5r?
5-5 Explain why one type of RAM is considered to he analog and the other digital.
5:6 What arc some applications for ROM?
5.7 What arc the differences among EPROM. F.F.PROM, and flash rnetnorv?
5.8 Explain the function of each pin in Figure 5.4b,
5.9 What is a parity bit?

5.10 How is the syndrome for the Hamming code interpreted?
5.11 How does SDRAM differ from ordinary DRAM?

Problems
Si Suggest reasons why RAMS traditionally have been organized as only one bit per chip

whereas ROMs arc usually organiz.ed will' multiple bits per chip-

5,5 KEY TERMS, REVIEW QUESTIONS. AND PROBLEMS 161

5.2 Consider a dynamic RAM that must be gi‘ren a refresh cycle 64 times per rns. Each
refresh operation requires 150 ns; a memory cycle requires 250 ns. What percentage
of the mernor....

, 's total operating time must be given to refreshes?
5.3 Design a 16 -bit memory of total capacity 8192 hits using SRAM chips of size 44

hit. Give thi:. tray erpiillguration of the chips on the memory board showing all
requited ioput and output signals for assigning this hicintiry to the lowest address
sp4icc. The design should allow for both byte and 16-bit word accesses_
S (.4!: E 93

5.4 For the Hamming code shown in Figure 5.10, show what happens when a chock bit
rather than a data bit is in crror.

5.5 Suppose an data word stored in memory is 1101100111 Using the Hamming algo-
rithm. determine what check bitg. would he stored in memory with the c..lara word.
Show how you got your answer.

5.6 For the word 00111001, the check bits stored with it would be 1)1 I I. Suppose
wizen the word is read from memory, the check hits arc calculated to he 1101. What
is the data word that was road from memory?

5.7 How many check hits are needed if the Hamming error correction code is used to
detect single bit errors in a 1024-1}ii daiii word?

5.8 Develop an SEC code for a 16 - hit data word. Generate the code for the data word
0101 U011110001 I I WI.. Show [hat the code will correctly identity an error in data bit 5.
Source!: [ALEX931

Magnetic Disk

ri1,1 i 1Tii 1iL. Ruad anti NVI -iie Meat.
Dab, orgarriz.tion ;I nd 1"orinatting
Physical Charactoristics
Disk Performanc`-e PararnetersH?

Key Terms. Review Questions. and Problems

Kev Terms
Review OuosIliorts
Problems

RA [I) Love] 0
RA ID [.ove] . 1
RAID Level 2
RAID Love] 3
RAID Love[4
RAID 1 .evel
RAID Level (i

Optical Memort

Compact Disk

Heunmniended Rending and Web, Sites

4

164- CHAPTER 6 f EXTERNAL MEMORY

.KEY POINTS

• Magnetic disks remain the most important component of external memor)..
Both removable and fixed, or hard, disks are. used in systems ranging from per-
sonal computers to mainframes and supercomputers.

♦ To achieve greater performance and higher availability, a popular scheme on
servers and larger systems is the RAID disk. technology. RAID refers to a
family of techniques for using multiple disks as a parallel array of data storage
devices, with redundancy built in k compensate for disk failure.

♦ Optical storage teennOlogy has become. increasingly important in all types of
computer systems. While CD-ROM has been widely used for many years.
more recent technologies, such as writable CD and DVI), are becoming.
increasingly important,

T hi ,., chapter examines a range of external memory devices and systems. We
oco n with the most important device, the magnetic disk. Magnetic disks are
th E foundation of external memory on virtually a]1 computer systems, The

ric xi section examines the use of disk arrays to achieve greater performance, look-
ing specifically at the family of systems known as RAID (Redundant Array of inde-
pendent Disks). An increasingly important component of many computer systems
is external optical memory, and this is examined in the third section. Finally, mag-
netic tape is described.

6.1 MAGNETIC DISK

A disk is a circular platter constructed of nonmagnetic material, called the substrate,
coated with a magnetizable material. Traditionally, the substrate has been an alu-
minum or aluminum alloy material. More recently, glass substrates have been intro-
duced. The glass substrate has a number of benefits, including the following:

• I mprovement in the uniformity of the magnetic film surface to increase disk
reliability

• A significant reduction in overall surface defects to help reduce read—write errors
• Ability to support lower fly heights (described subsequently)
• Better stiffness to reduce disk dynamics

• Greater ability to withstand shock and damage

Magnetic Read and Write Mechanisn-

Data are recorded on and later retrieved from the disk via a conducting coil
named the head; there are in many systems two heads. a read head and a write head.
During a read or write operation. the head is stationary while the platter rotates
beneath it.

Recording
medium

6.1 MAGNETIC DISK 165

Figure GI Inductive Wrik,'MagncLorcsistivc Read F1 .ad

The write mechanism is based on the fact that electriCit V. flowing through a coil
produces a magnetic field. Pulses arc sent to the write head, and magnetic patterns
are recorded on the surface below, with different NUei -nz, Ivor positive and negative
currunt:s. Pic write head itself is made of easily magnetizable material and is is the
shape of a rechmgalat doughnut with a gap along one side and a few lures of con-
ducting wire along the opposite side (Figure 6.1). An electric current in the wire
induces a magnetic field across the gap, which in turn magnetizes a small area of the
recording Tnedium. Reversing the direction of the current reverses the direction c. -pf
the magnetization on the recording medium.

The traditional read mechanism is based on the fact that a magnetic field mov-
ing relative to a coil produces an electrical current in the coil. 'When the surface of
the disk passes under the head, it generales a current of the S41111e polarily as the one
already recorded. 'The structure of the head for reading is in this case essenLiAv the
same as for writing and therefore the same head can be used for both. Such single
heads are used in floppy disk systems and in older rigid disk systems.

Contemporary rigid disk systems use a different read ineehanism, requiring a
separate read head. positioned for convenience close to the write head. The read head
consists of .a partially shielded magnetoresistive (MR) sensor. The MR material has
an electrical resistance that depends on the direction of the magnetization of ihe
medium moving under it. By passing a current through the MR sensor, resistance
changes are detected as voltage signals. The MR design allows higher-frequency
operation, which equaics to greater storage densities and operating speeds.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion
of the. piai ter rotating beneath it. This gives rise to the organization of data on the
platter in a concentric set of rings. called tracks. Each track is the same width as the
head. There ;ire Ihuusands of tracks per surface.

166 CHAPTER 6 i EXTERNAL MEMORY

SeOM'S

Figure 6.2 Disk Data Layout

Figure 6.2 depicts this data layout. Adjacent tracks are separated by gaps. This
prevents, or at least minimizes, errors chic lo misalignment of the head or simply
interference of magnetic fields.

Data are transferred to and from the disk in sectors (Figure 6,2). There are
typically hundreds of sectors per track, and these may be of either fixed or vari-
able length. In most coniernponiry fixed-length sectors are used. wish
512 bytes being the nearly universal sector size. To avoid imposing unreasonable
precision requirements on the system, adjacent sectors are separated by intratrack
{inter -sector) gaps.

A bit near the center of a rotating disk travels past a fixed point (such as a
read—write head) slower than a bit on the outside. Therefore, some way must be
found to compensate for the variation in speed so that the head can read a]] the bits
at the same rate. This cart be done by increasing the spacing between his of infor-
malion recorded in segments of the disk. The in roemation can then be .scanned at
the same rate by rotating the disk at a.fixed speed, known as the constun€ angular
velocity (CAV). Figure 61a shows the layout of a disk using CAV, The disk is
divided into a number of pie-shaped sectors and inter 21 series or concentric tracks.
The advan tap of using CAV is that individual blocks of data can he directly ad-
dressed by track and sector. To move Lhe head from its current local ion to a specific
address, it only takes a short movement of the head to a specific track and a short
wait rot the proper sector to spin under the head. The disadvantage of C7AV is that
the amount of dale that can be stored on the long outer tracks is the same as what
can be stored on the short inner tracks_

/ MAGNETIC DISK 167

(a) Constant angular velocity (b) Multiple zoned recording

Figure 6.3 Compariman of Disk Layeu(Meatocls

Because the density. in bits per linear inch, increases in moving from the outer-
most track Icy I hi: innermost tr,Hek. disk storage capacity in a straightforward CAV
system is limited by the maximum recording density that van be 0Qhievcd on the
innermost track. To increase density, modern hard disk systems use a technique
known as multiple zone recording, in which the surface is divided into a number of
zones (l6 is typicA). Within a Aorie, the number of bits per track is consl ant, Zones
farther from the center contain more bits (more sectors) than zones closer to the
center. This allows for greater overall sloragc capacity at the expense of somewhat
more. complex cireunry. As the disk head moves from one zone to Smother, The
length (along the track) of individual bits changes, causing a change in the timing
for reads and writes. Figure 6.3b suggests the naiurc of multiple zone recording in
this illustration. each k only a single track wide.

Some means is needed to locate sector positions within a track. Clearly. there
must be some starting point on the track and a way of identifying the start and end
of each sector. These requirements are handled by means of control data recorded
on the disk, Thus, the disk is formatted with some extra data used only by the disk
drive and not accessible to the user.

An example of disk formatting is shown in Figure In this case, each track
conluins 30 fixed-length scctors of 600 bytes each. Each sector holds 51.2 bytes of data
plus control information useful to the disk controller. The II) rick] is a unique iden-
tifier or address used to locate a particular sector. The SYNCH byte is a special bit
pattern that delimits the beginning of the field. The track number identifies a track
on a soriux- ' the hcrid number identifies a head, because this disk has multiple surfaces
(explained presently). The ID and data fields each contain an error-dcteeting code.

Physical Characteristics
Tablc (ILl lists the major characteristics that differentiate among the various types
of magnetic disks. First, the head may either be fixed or movallte with respect to the
radial direction of the platter, In a fixed-head disk, there is one read-write head per
track. All or the heads are mounted on a rigid arm that extends across all tracks;
such systems are rare today. In a movable -head disk. there is only one read-write
head. Again, the head is mounted on an arm - Became the head must be able to be
positioned above any track, the arm can be extended or retracted for this purpose.

Physical sector 0 n Physical waor 1

(_;ap Cap
1

p
2

41

TD
Lick!
1

7

Data
Held
1
515 20 17

2 Thr.tef-i

Synch Data.
byte ;

1 512

Physical sector 29

Gap tip ID
field
29

Cap
2

Data
field
2tf

Gap
3

20 17 7 4/ 515 20

60n. bytes/sector

CRC

index

Sf.rtnr

Bytes

I
{-'3P
1

ID
field

Gap
2

Data
field
0

17 7 41 515

Synch
byte

Track Bead SeCiOT CRC

2 1 1

Figure 6.4 'IrVinchestur Disi. Back Format (Seagate ST506)

Head Moi ION

11,2ad one pur Luacli;)
Mow:11.-th: twnd ir.:1C2

Porlabitity
Nourcincivkiblz ElksiE

Reinova bk. disk
SicicA

Si riAl e
I h.) It sIJLd

Phriten
Sin.g[o p[;il IL r
MultipIL pi:111.12r

Read Vitchanim
C.batact .(tloppy)
Fixed gap
Aerodynamic gap (Wirichi:;5100

Phater

J
Spindle Room

C Compownts of a Disk Drivc.

6,1 / MAGNETIC DISK 169

Table 6.1 C 11 M -el OriH tiCS iI I)i sk System'''.

The disk itself is mounted in a disk drive. which consists of the arm, Eishari that
rotates the disk. and the electronics needed for inpui and output of binary data. A
non re rnovahl u disk is petrnanentl!, , mounted in the disk drive.; the hard disk in a per-
sonal computer is a nonremovable disk. A removable disk c.In he TUmoved and

replaced with another disk. The advantage. of the latter type is that unlimited
amount...; or data arc. available with a limited number of disk systems. Furthermore,
such a disk may he moved from one computer system to another, Floppy disks mid
ZIP cartridge disks are examples of removable, disks.

For most disks, I he 111 kignednible coating is to both sides of the plat-
ter, which is then referred to as double sided. Sonic less expensive disk systems
single sided disks.

Some disk drives accommodate multiple philters stacked vertically a fraction
of in inch apart. Muttipie arms are provided (Figure 6.5). Multiple-platter disks

Read—write head (1 per surfacel Direclion of
arra (1111t11)

I

170 CHAPTER 6 / EXTERNAL MEMORY

Figure 6.6 Tracks and Cylinders

einplo!,. a me val-FIc head. with one read-write head per platter surface. All of the
heads are mechanically fixed so that all are at the same distance from the center of
the disk and move together. Thus, at any time, a]] of the heads are posilioned over
tracks that are of equal distance from the center of the disk, The set c..4 all i he tracks
in the same relative position on the platter is referred to as a cylinder. For example.
all of the shaded tracks in Figure 6.6 are part of one cylinder.

Firm I lv, the head mechanism provides a classification of disks into three types-
Traditionally. the read-write head has been positioned fixed distance above the
platter, allowing an air gap. At the other extreme is a head mechanism that actually
conies ink) physical contact with the medium during a read En - write operation. This
mechanism it used with the 'hippy dirk, which is a small, flcsible platter and the [east
expensive type of disk.

To understand the third type of disk, we need to comment on the relationship
between data density and the size (.1.1 the air gap, The head must gerieraiQ or weave art
eiectromagnetic field of sufficient magnitude to write and read properly. The nar-
rower the head is. the closer it must be to the platter surface to function. A narrower
head means narrower tracks and therefore greater data density. which is desirable.
However, the closer the head is to the disk. the greater the risk of error from im-
purities or imperfections. To push the technology further, the 'Winchester disk was
developed, Winchester heads are used in sealed drive assemblies that are almoSt free
or contaminan1s. They are designed to operate closer to the disk's surface than con-
ventional rigid disk heads, thus allowing greater data density. The head is actually an
aerodynamic foil that rests lightly on the platter's surface when the disk is motionless.
'['he pressure. generated

by,
 a spinning disk is enough 10 make the rise aho

the surface. The resulting noncontact system can be engineered to use narrower
heads that operate closer to the platter's surface than conventional rigid disk heads.

As a m Alter of basI miva I i icrrn Wiriehesser wos Origi usod he ITN ,;.ts ri code niimc. I'm the
3MLI. disk model prior to its aruloWICerrtent. Thu 3:1AD WM it miiscavable ckir k pack with the heads sealed within
she pack. The term is now applied to any sealed-unit disk drive with aerodynamic hend design, . I be Winchcsuo
disk is curninonly found built in to pci-sprimicomputm and WI WkNtations, whom it is mlun-ed to k& hard disk.

(5.1 / MAGNETIC DISE 171

!Able 6.2 Typical Hard Disk Drive Pararnotcrs

Charauleristies Seagate
Barracuda 180

eagae Cheelab S i

X15-36LP
Seagate Barracuda

361-S
Toshiba

HD D1242
IBM

Mir odrive

Appkica bon
Hi 01-CZI prILI y
SZTVer

Iiip.11-performance Entry-11.:wc1 Portable
.dctskicip

Handheld
devices

Capoi.-ity Iktt.b CJI 36.7 GB 1H.4 UTB 5 GB I OB

Mintal

track40-1Taek
seek time

O. t? m s 4,1.3 rns im (.0 roS

25sVLYra e sock Li me 7.4 rits 3.6 ins 9.5 rrL!. 15 ms

Sp.indlrz ETC2C.1 721K1 rpm .151(it nt 7200 4200 rpm 301[rprn

Average Rst4k1tonalF i.17 ms 2 roS
delay

4-17 013 7.1.4 tris S..33 a1.5

Maximum Lranac.r
rate .1 60 :ABA 522 1.3 719 MI3:s 25 Ma:5 66 MBIs 13.3 MBI.s

By per s ector 512 512 512 512 572

SW{ Fr per 'track 793 4g5 N11)

Tracks per cylindu
(riumhcr (31: plpito-

$LITRICC.9

24 2

of track s On km::: 24.247 L8,479 2 1.4. .•55 I 10,350
sidc p.inttur)

Table 6.2 gives disk parameters for typical contemporari;,
, high-performance

disks.

Disk Performance Parameters

The adu;i4 details of disk 1/0 operation depend on the computer system, the oper-
ating system, and the nature of the WO channel ;..ind disk controller hardware. A gen-
eral timing diagram of disk I/O 1rnnsrei- i2.; shown in Figure 6.7.

When the click ffrive is operating, the.. disk is rotating at constant speed. To
read or write, the head inust be positioned at the desired track and at the beginning

of thil desired sector on that track. Track NeIceLion involves moving the hcad in a
movable-head system or clixtronieolly selecting one head on a fixed-head 5:,. ,stern.
On a movahle-head sy2tern : the time it takes to position the head at the track k
known as seek time. In either case, (Alec the track is selected, the c,lisk controller
waits until the appropriatc scul car rotates to line up with the head, The time it takes
[`or the beginning of the sector to reach the heart is known as rotational delay, or
rotational latency. The sum of the seek iirric, if any, and the rotational delay equals
the access time, which is the time it takc, 10 get into position to read or write. Once
the head is in position. the rend or write operation is then performed as the sector

172 CHAPTER ri EX'llik.NAL MEMORY

moves under the head; this is the data transfer portion of the operation: the time
required for the transfer is the transfer time.

In addition to the access time and iransier time, there are several queuing
delays normally associated with a disk I/O operation. When a process issues an
I.10 request, it must first wait in a queue for the device to be availabk. AL that
lime. ale device is assigned Lo the process. 11 the device shares a single I/0 chan-
nel or a set of 170 channels with other disk drives, then there may be an additional
wait for the channel to he available. At that point, the seek is performed to begin
disk access.

In some high•end sysurns for servers, a teehnique known as rotational posi-
tional sensing (RPS) is used This works as follows: When the seek command has
been issued. the channel is released to handle other 1/0 operations. When the seek
is completed. the device determines when the data will rotate under the head. As
that sector approaches the head, the device tries to reestablish the communication
path back to the host. 11 either the control unit or the channel is busy with another

Lhcn Lhc recOnmxtion attempt fails and the device must rotate one whole rev-
olution before it can attempt to reconnect : which is called an RPS miss. This is an
extra delay element that must be added to the time line of Figure 6.7.

Seek Time

Seek time is the timei required to move the disk arm to the required track. It
turns out that this is a difficult quantity to pin down. The seek lime consists of two
key components= the initial startup time, and the time taken to traverse the tracks
that have to be crossed once the.access arm is up to speed. Unfortunately, the tra-
versal time iw not a linear function of Lhc number of tracks, but includes a startup
time and a settling time (Hine aiLer positioning Lhc head over the tar .et track until
track identification is confirmed).

Much improvement comes from smaller and lighter disk components. Serne
years ;Igo. a typical disk was 14 inches {36 ern) in diameter, whereas the most com-
mon size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to
travel. A typical average seek time on contemporary hard disks is under .L0 ms.

Hot-Anna' Delay

Disks, oilier Ihan floppy disks, rotate at speeds ranging from 3600 rprn (for
handheld devices such as digital carnera.$) up to, as of this writing. 15,000 rpm at this
latter speed. there is one revolution per 4 nis. Thus, on the average, the rotational

Wait for Wait Fur Sea Rotational Data
device channel dela*. transter

Device busy

Figure 61.7 Tiiiiirpe of a Disk Transtur

6,1 / MAGNETIC DISK 173

delay will be 2 Ins. Flopp ...• disks typicall!,. , rotate at between 300 and 61)1) rpm. Thus
the average delay will be. between 100 and 50 ms.

Trunsier Time

The transfer time lo or from t he disk. depends on the rotation speed of the disk
in the following fashion;

h
T =

riN
where

- tramrer time
= number of bytes to be transferred

N = number of bytes on Li track
r rotation speed, in revolutions per second

Thus the total average access time can be expressed as

1
T • - 2r IN

where 7', js•the average seek time. Note that on a zoned drive, the number or bytes
per track is variable, complicating the calculation.

A Timing Comparison

With the foregoing pararneiers defined, let us look at Iwo different P.O oper-
ations that illustrate the danger or relying on average values. Consider Li disk with
an advertised average seek time of 4 ms, rotalion speed ci f 1 ,00() and 512-byte
sectors with 500 sectors per track. Suppose that we wish to read a file consisting
of 2500 sectors for ik total of 1.2H Mbytes. We would like to estimate the tolal Lime
for the transfer.

First. let us assume that the file is stored as compel ly as possible on the disk.
That is the rile occupies all of the seekvs can 5 adjacent tracks (5 tracks 500 sectors.?
track - 2M10 .sectors). This is known as sequeraial organiz.rition, Now, the time to
read the first track is as follows:

.Average seek 4 ms
Rotational delay 4 ms
Read 500 sectors ms

16 iris

Suppose that the remaining tracks can now be read with essentially no seek
time. That is, the 1/0 operation can keep up with the flow from the disk. Then, at
most, we need to deal with rotational delay for each succeeding track. Thus each
successive track is read in 4 -F 8 = 12 ins. To read the entire fill:,

Total time = l6 - 4 x 2 = 64 ms = 0.064 seconds

174 CHAPTER G / EXTERNAL MEMORY

Now let us calculate the time required to read the same data using random
access rather than sequential access: that is. accesses to the sectors arc distributed
randomly over the disk. For each sector. we have

Average seek 4 ms
Rotational delay 4 ms
Read I sectors 0,016 ms

.016 ms

Total time — 500 x 8,016 4008 ms = 4.008 seconds

It is clear that the order in which sectors arc read from the disk has a tremen-
dous effect on I/O performance. In the case of file access in which multiple sectors
arc read or written. we have some control over the way in which sectors of data arc
deployed, and we shall have something to say on this subject in the next chapter.
However, even in the case of a file access, in a multiprogramming environment,
there will be requests competing for the same disk. Thus, it is worthwhile to
examine ways in which the performance of disk I/0 can be improved over that
achieved with purely random access to the disk. This leads to a consideration of disk
scheduling algorithms, which is the province of the operating system and beyond the
scope of this book (see [STAL0 I I for a discussion).

6.2 RATC6 4'W-F;
As discussed earlier_ the rile in improvement in secondary storage performance
has been considerably less than the rate for processors and main memory. 'This mis-
match has made the disk storage system perhaps the main focus of concern in im-
proving overall computer system performance.

As in other areas of computer performance. disk storage designers recognize
that if one component can only he pushed so far, additional gains in performance arc
to be had by using multiple parallel components. In the case of disk storage. this leads
to the development of arrays of disks that operate independently and in parallel.
With multiple disks, separate 110 requests can be handled in parallel, as long as the
data required reside on separate disks. Further, a single .1.10 request can be executed
in parallel if the block of data to he accessed is distributed across multiple disks,

With the use of multiple disks, there is a wide variety of ways in which the data
can be organized and in which redundancy can be added to improve reliability_ This
could make it difficull to develop database schemes that are usable on a number of
platforms and operating systems. Fortunately, industry has agreed on a standardized
scheme for multiple-disk database design. known as RAID (Redundant Array of
Independent Disks), The RAID scheme consists of seven levels. : zero through six.

:Additional levels have been defined by sonic resc,3rchers and some companies. but the seven levels
&scribed in this section sire ihti ones universally aereed on.

6.2 RAID 175

1 hese icveis do not imply a hierarchical reialionship but designate different design
architectures that share three common (,:haracieristics

1. RAID is a set of physical disk drives viewed by the operating system as a single
logical drive.

2. Data are distributed across the physical drives of an array.
3. Redundant disk capacity is used to store parity information, which guarantees

data recoverability in case of a disk failure.

The c,letai Is of the second and third characteristics differ ror the different RAID ley-
cis. RAID 0 does not support the third uharacteristie,

The term RAID was originally coined in a paper by a group of re.!,.carChel's at
the University or California; at Berkeley [PATTSS],'"Fhe paper outlined various
RAID configurations and applications and introduced the definitions of the RAID
levels that are still used. The R.A1D strategy replaces large-capacity disk drives with
multiple smaller-capacity drives and distributes data in such a way as to enable
si multaneous access to data from multiple; chives_ thereby improving 1.0 perfor-
mance and allowing easier incremental increases in capacity.

The unique contribution of tlic RAID proposal is to address effectively the
need for redundancy. Although allowing multiple heads and actuators to operate
simull ancously achieves higher I/O and transfer rates, the use of multiple devices
increases the probability of failure. To compensate for this decreased reliabiiity,
RAID makes use of stored parii y information that enables the recovery of data lost
due to a disk faiiure,

We now examine each of the RA 11.3 levels. Table 6.3 summarizes
th e

 seven
levels. Of these, levels 2 and 4 are not commercially offered and are not to
achieve industry acceptance. Nevertheless, a description of these levels helps lo clar-
ify the design choices in some of the other levels,

Figure 6.8 is an example that illustrates the use of the seven RAID schemes to
support a data capaci1y requiring four disks not counting redundane.y. The figure
highlights the layout of user data and redundant data and in di cates the. relative stor-
age rctiuireritertts of the various levels. We refer Lo this figure throughout !he fok
lowing discussion.

RAID Level 0

RAID level 0 is not 41 Irttu member of the RAID family. because it does not include~
redundancy to improw performance. However, there are a few applications, such
as some on supercomputers in which performance and capacity are primary con-
cerns and low cost is more important than improved reliability,

; Fri lbw paper. the acrcrnyrn RAID stood for Redundant Array Or ITIEXprUil'it DIAL The C UM inPVprq ■ -
vive . was used to contrast the small relatively inexpensive. disks in the. RAID array iu I he allernaLivti,
{in glc Inre expenp.ivir disk (SLED}. The SLED is e3sK3utiallls. 9 I hing al the past, with similar 4.1iiik tech-
nology being tiled for both RAID and non-RA ED CI Fri orations. Accordingl'y, the industry has adopted
1bc term ItidependeRr to emphn2,ize that the RAID array maws sign' $ic,1 n 1 irer Eirrninnee and reliability eains.

I 76 CHAPTER 6 f EXTERNAL MEMORY

Table 6.3 RAID Levels

Category Level Description Request Rate
(Readfri/Vrite)

Data
Transfur Rate
(Read/Write)

Striping 6 Koareliandant
I ,arge strips:

Rxcellent
Small strips;

Excelknt

Mirroring MallMed Good:fair Fairifair

Parallel
access

2
Redundant via
Hamming code

Poor tee llcnl

3 Bit-interleaved
parity

Poor ENcc.11erit

[Tidcpundent
3CeCsS

4 Block-interleaved
parity

Fa iripoor r 5 Block-interleaved
distributed Nrity Exellentifair Fairpoor

Block-interleaved dual
distributed parity

, r Acciientipoor Fair/poor

Typieal
Application

Applications
requiring high
performance for
noncritical data

System drives:
critical files

large 1:0 request
size applications,
such as imaging,
CAD

High request rate,
read intermive:.
data lookup

Applications
requiring extremehi
high avnilablity

For RAID 0, the- user and system dal a are distributed across all of the disks in
the array. This has a notable advantage over the use of a single large disk: If Iwo dif-
ferent 110 requests are pending for two different blocks of data, then there is a good

chance that the requested blocks are on different disks, Thus, the two requests can

he issued in parallel, reducing the 1!0 queuing time,
But RAID 0, as with all of the RAID levels, goes further than simply distrib-

uting the data across a disk array: The data are striped across the available disks.
this is best understood by considering Figure 6,9. All of the user and system data
are viewed as being stored on a logical disk. The disk is divided into strips; these
strips may he physical blocks, sectors, or some other unit. The strips are mapped
round robin to consecutive array members, A set of logically consecutive strips that
maps exactly one strip to each array menthe] . is referred to as a stripe, In an n-disk
array, the first n logical strips are physically stored as the first strip on each of the n
disks, forming the first stripe; the second n strips are distributed as the second strips
on each disk; and so on. The advantage of this layout is that if a single request
consists of multiple logically contiguous strips. then up to n strips for that request
can he handled in parallel, greatly reducing the I/O transfer time.

Figure 6,9 indicates the use of array management software to map between
logical and physical disk space. This software may execute either in the disk sub-
system or in a host computer.

(text co,ifirrele.s. 1)(ituge 1801

strip 2

strip 6

strip 10

(a) RAID 0 (Nronredundunt)

•-•

h) RAIL) I (Mirrored)

I i i It AID 2 !Redundancy through Ilarnming code)

Figure 6.8 R. Lvyels (page 1 of 2)

(d) RAID 3 (Rit-interleaved parity)

".•

(e) RAID 4 (Block-level parity)

block 9

block 4

block

Klock 12

111(i-191

1)(0-31

block 7

block 11

block 15

block L9

1/4 - _ _
(D RAID 5 i Block-level distributed parity)

(g) RAID 6 (Dual redundancy)

Figure 6.8 RAID Levels (page 2 of 2)

178

Physical Physical Physical Physical
Logical dish disk 0 disk 1 disk 2 disk 3

strip 0 - - - - - - ' I 4---___ strip I I- - - I J
I J

s

-

trip 2 1 L J

''''---. .--•-' J (1

strip 3 - 1 I I
1 1 i 1
I 3 I 1

btrip i I g ,
3

- -
1 1 p 1

strip 5 1 3 I I
1 I 1 1

S

-

t rip 6 1 1 p 3
i',-._. ._.-•-•'' I 3 strip 7 1 1 I Array ,99...___ ___...... 1 -

strip 8 _, I 1 1 - - - - - management
s-..._. — software

strip 9 1

...-.
strip 10

strip 6

strip 10

strip 14

ti

1

1

1

1

1
1

strip 11

strip 12

strip

-

 13

strip 14

strip 15.--1

6.9 Data Mapping for n RAID Lcycl 0 Array

MO CHAPTER 1 EXTERNAL MEMORY

RAID 0 for High Data Transfer Capacity

The performance of any of the RAID levels depends critically on the request
patterns of the host system and on the layout of the data. These issues can he most
clearly addressed in RAID 0, where the hupaci or redundancy does not interfere
with the analysis. First, let us consider the use of RAID tl to achieve a high data
transfer rate. For applications to see a high transfer rate, two requirements must be
met. FirSt, a high transfer capacity must exist along the entire path between host
memory and the individual disk drives. This includes internal controller buses.
host system 110 buses, 110 adapters. and host memory buses.

The second requirement is that the application must make I/O requests that
drive the disk array efficiently. This requirement is met if the typical request is for
large amounts of logically contiguous data, compared to the size of a strip. In this
case, a single I/O request involves the parallel transfer of data from multiple disks.
increasing the effective transfer rate compared to a single-disk transfer.

RAID 41 For I ligh I/O Request Rate

In a transaction-oriented environment. the user is typically more concerned
With response time than with transfer rate. For an individual request for a small
amount of data, the I/O time is dominated by the motion of the disk heads (seek
ti me.) and the movement of the disk (rotational latency).

In a transaction environment, there may he hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the 1/0 load
across multiple disks. Effective load balancing is achieved only if there are typically
multiple I/O requests outstanding. This, in turn, implies that there are multiple inde-
pendent applications or a single transaction-oriented application that is capable of
multiple asynchronous I/O requests. The performance will also be influenced by the
strip size. If the strip size is relatively large, so that a single 1/0 request only involves
a single disk access, then multiple waiting 1/0 requests can he handled in parallel,
reducing the queuing time for each request.

RAID Level

RAID 1 differs from RAID levels 2 through C in the way in which redundancy is
achieved. In these other RAID schemes, some form of parity calculation is used to
introduce redundancy. whereas in RAID I. redundancy is achieved by the. simple
expedient of duplicating all the data, As Figure 6.8b shows, data striping is used, as
in RAID 0. But in this case, each logical strip is mapped to two separate physical
disks so that every disk in the array has a mirror disk that contains the same data.

There arc a number of positive aspects to the RAID 1 organization:

L A read request can be serviced by either of the two disks that contains the
requested data, whichever one involves the minimum seek time plus rota-
tional latency.

2. A write request requires that both corresponding strips he updated, but this
can be done in parallel. Thus, the write performance is dictated by the slower
of the two writes (i.e., the one that involves the larger :seek time plus rota-

6.2 / RAID 181

clonal latency). However, there is no "write pcmalt:y. - .with RAID 1. RAID levels
2 through 6 involve the use of parity bits. Therefore, when a single strip is
updated, thc array management software must first compute and update the
parity bits as well as updating the actual strip in question.

3. Recovery from a failure is simple, When a drive fails. the data may still be
accessed front the second drive.

The principal disadvantage of RAID 1 is the cost; it requires twice I he disk
space of the logical disk that it supports. Because of I hal, a RAID configuration
is likely to be limited to drives lhat store system software arid data and other highly
critical files. 111 these cases, RAID l provides real-time backup of all data so that
in the event of a disk failure, all of the critical data arc still immediately available.

In a transaction-oriented environment, RAID 1 can achieve high 110 request
vales if the bulk 01 [he requests arc reads. In this situation, the performance of RAI F.)
1 can approach double of that of RAID

0.
 However, if a substantial fraction of the I /O

requests are write requests. [hen [here may be no ,,i gnificant performance gain over
RAID 0- RAID 1 may also provide improved perf'ormance over RAID 0 for data
transfer intensive applications with x high percentage of reads, improvement occurs
if the application can split each read request so Thal both disk members participate.

RAID Level 2
RAID levels 2 and 3 make use of a parallel access technique- In a parallel access
array, all member disks participate in I he execution or every 110 request. Typically.
the ,pindles of the individual drives are synchronized so that each disk head is in
same position on each disk at any given time.

As in the other RAID schemes, data striping is used. In the case of RAID 2
and 3. the strips are very small, often as small as a single byte or word. With RAJ!)
2, an error-corteciing code is calculated across corresponding hits on each data disk.
and the bits of the. code are stored in the corresponding bit positions oil. multiple
parity disks. Typically, a Hamming code is used. which is able to correct single-bit
errors and detect double-bit errors.

Although RAID 2 requires fewer disks than RAID I. it is slill rather costly,
The number of redundant disks is proportional to the log of the number of data
disks. On a single read, all disks are simultaneously accessed. The requested data
and the associated error-correcting code are delivered to the array controller, If
there is a single-bit error. the controller can recognize and correct the error
instantly, so that the read access lime is not slowed. On a single write, a]] data disks
and parity disks MUSI he aectmed for the write operation.

RAID 2 would only be an effective choice. in an environment in which many
disk errors occur. Given the high reliability of individual disks and disk drives,
RAID 2 is overkill and is not iraplernurited.

RAID Level 3
RAIL) 3 is organized) in a simi kir Fashion to RAID 2. The difference is that RAID
3 requires only a single redundant disk. no matter how large the disk array- RAID 3

182 CHAVIER EXTERNAL MEMORY

employs parallel access, with data distributed in small strips. Instead of an erropeor-
reeling code. a simple parity bit is computed for the set of individual bits in the same
position on all of the data disks.

Redundancy
In the event of a drive failure, the parity drive is accessed and data is recon-

structed from the remaining devices. Once the failed drive is replaced, the missing
data can be restored on the new drive and operation resumed.

The data reconstruction is quite simple, Consider an array of five drives in
which X0 through X3 contain data and X4 is the parity disk. The parity for the ith
bit is calculated as follows:

X4(i) = X3(0 .9 X2(i) Xl(i) ER WO

Suppose that drive XI has failed. If we add X4(i) e X1 (i) to both sides of the pre-
ceding equation, we gel

Xl(i) X4(i) 4 X3(i) X2(i) X0(i)

Thus, the contents of each strip of data on X1 can be regenerated from the contents
of the corresponding strips on the remaining disks in the array. This principle is true
for RAID levels 3 through 6.

In the event of a disk failure, all of the data arc still available in what is
referred to as reduced mode. In this mode, for reads, the missing data are regener-
ated on the fly using the exclusive-OR calculation. When data are written to a
reduced RAID.3 array, consistency of the parity must be maintained for later regen-
eration. Return to full operation requires that the failed disk he replaced and the
entire contents of the failed disk be regenerated on the new disk.

Performance
Because data are striped in very small strips, RAID 3 can achieve very high

data transfer Tates. Any 110 request will involve the parallel transfer of data from
all of the data disks. For large transfers, the performance improvement is especially
noticeable. On the other hand, only one 110 request can be executed at a time. Thus,
in a transaction-oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate
I/O requests can be satisfied in parallel. Because of this, independent access arrays
are more suitable for applications that require high 110 request rates and are rela-
tively less suited for applications that require high data transfer rates.

As in the other RAID schemes : data striping is used. In the case of RAID 4
through 6. the strips are relatively large, With RAID 4, a bit-by-hit parity strip is cal-
culated across corresponding strips on each data disk, and the parity bits are stored
in the corresponding strip on the parity disk.

6.2 / RAID 183

RAID 4 involves write penalty when an I/O write request of small size is per-
formed, Each time that a write•oocurs, the array management software must update
not only the user data but also the corresponding parit:; . , bits. Consider an array
five drives in which X0 ihrough X3 eontain data and X4 is the pari disk. Suppose
That a write is performed that only involves a strip on disk Xt. Initially, for each bit
i, we have the following relationship:

X4(i) —X3() e X2(i) .9) XI(i) WI)

Mier th,2 upda le, with potentially altered bi1s indicated by a prime symbol,

— X3(i) X2(i) c XV(i) e xo(i)
x3(i) o x2(r) e xr(i) e Xt)(i) EP xi cty ox.1(i)

= x4(i) e xi (i) c> Xr(ii

To calculate the new parity, Lhu array management software must read the old user
strip and the old parity strip. Then it can update these two strips with the new data and
the newly calculated parity. Thus. each strip write illiVOMS two reads and 1wo writes.

In the case of a larger sizc 1.0 write that involves strips on all disk drives, parity
is easily computed by calculation using on]} , the new dal a hits. Thus, the parity drive
on be updated in parallel with the data drives and there are no extra reads or writes.

In any case, every write operat io n must involve the parity c.ikk, which there-
fore can become a hot ill:neck.

RAID Level 5

RAID 5 is organiAed in a similar fashion to RAID 4. I he difference is that RAM
5 distributes the parity strips across all diski;. A iypical allocation is a round-robin
scheme, as illustrated in Figurc. 6.81. For an n-disk array. the parity strip is on a dif-
ferent disk for the first n s.triFs : and the pattern then repeats.

The di ,dri bullion of parity strips across all drives avoids the potential 1. 10 bot-
tleneck round in RAID 4.

RAID Level 6

RAI D 6 was introduced in a subsequent paper by the Berkeley researchers I I(ATZ89].
In the RAID 6 scheme, iwo different parity calculations are carried out and stored
in suparale blocks on different disks. Thus, a RAID 6 array whose user data require
N disks con.:-.isis of N -F 2 disks.

Figure 6.82 illustrates the :scheme. P and Q are two different data check al-
2orithms. One of ihe two is the eXe[LLSive-OR calculation used in RAID 4 and 5. But
the other is an independent data check algorithm. .rhis makes it possible to regen-
erate data even if two disks containing USer data [ail.

The advantage of RAID 6 is that it provides extremely high data avaiiabi]ity.
Three dis.ks would have to fail within the M . 1'1 . 1 (mean time to repair) interval to
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penafty,
because each write affects two parity blocks.

1S4 CHAPTER '6 / EX I ERNAL MEMORY

6.3 OPTICAL MEMORY

In 1983, one of the most successful consumer products of all time was introduced:
the compact disk (CD) digital audio system. The CD is a nonerasable disk that can
store more than 60 minutes of audio information on one side, The huge commercial
success E)1 the CD enabled the development of low-cost optical-disk storage tech-
nology that has revolutionized computer data storage. A variety of optical-disk sys-
tems have been introduced (Table 6,4). We briefly review each of these.

Compact Disk
CD-ROM

Both the audio CD and the CD-ROM (compact disk read-only memory) share
a similar technology. The main difference is that CD-ROM players are more rugged
and have error correction devices to ensure that data are properly transferred from
disk to computer, Both types of disk arc made the same way. The disk is formed
from a resin, such as polycarbonate. Digitally recorded information (either music or
computer data) is imprinted as a .scries of microscopic pits on the surface of the poly.
carbonate. This is done, first of all. with a finely focused, high-intensity laser to cre-
ate a master disk. The master is used, in turn. to make a die to stamp out copies onto
polycarbonLite. The pitted surface is then coated with a highly reflective surface, usu-
ally aluminum or gold. ' Ms shiny surface is protected against dust and scratches by
a top coat of clear acrylic. Finally, a label can be silkscrcened onto the acrylic,.

Table 6.4 Optical Disk Products

CI)
Compact Disk. A none•asabli.: disk tkvat stores digitht. !;.,d audio inlornsation..l'he standard
system uses I 2 ,ern disks and call record more thall tininh-.trupted 1 1 iawiu tinK.

(1) ,-ROM
Compact Disk Reud-Only MeinCrry , , A rionefiSSIIne disk llSed for storinir computer data.
The standard system uses .i2--•tts disks And con hold mom than 650 Mbytes.

C1)44
CD Recordable. Similar to a CD-ROM. Thti iisc.-1 can write to the disk ord.!, {mice.

C.1.)-RW
C 0 Rewritahle. Similar a CD-ROM. The user carrerase and rewrite to the disk multiple

Diiaitil Vidu.1. Disk. A it uchaolugly for producing digitilced. exinpri,.ksed ropresentation. or
video tni•rrnation, fin well as large Yolumws cli ollim digital data. Roth'and 1.2.cm iliametcn;
are mud. with a double -sided capaciuy of up to .17 {.1hyi basic —11 Y.0 is -read-0311 ,F
(DVD-ROM).

Mit) Recordable. Similar to zk D - ROM. he -OW cun write. im the disk only otio3. Only
one-sided disks can tic! used.

DVIto-RW
DVD kcwritable, Sitnilar to a D VD-ROM. The user can write to the disk multiple times.
Only 0u - sick:a disks can Tv. used.

Polycarbunate
plastic

I 1

I I

I
I I

I I

P11

6.3 r OPTICAL MEMORY 185

Protective
acrylic Label

Figure &III CD Operation

Information is retrieved from a CD or CD-ROM by a low-powered laser
housed in an optical-disk player, or drive unit. The laser shine!, through the clear
po[ycarbonkice while a motor Tim [he disk past it (Figure 6.11)). The intensity of the
reflected light of the laser changes as it encounters a pit. Specifically, if the laser
beam falls on a pit. which has a somewhat rough surface, the lieu scatters and a low
intensity is reflected back to t he source. 'Elie areas between pits are called /and,. A
land is a smooth surface, which reflects hack at higher intensity. The change 1-14.2t wc.Qn

pits and lands is detected by a photosensor and converted into a digital signal. The
sensor tests the surface at regular intervals-'['he beginning or end of a pit represents
a 1; when no 6ange in elevation occurs between intervals, a 0 is recorded.

Recall that on a magnetic disk, information is recorded in concentric tracks.
With the simplest constant angular velocity (CAN') system, the number of bits per
track is constant. An increase in density is achieved with multiple zoned recording,
in which the surface is divided into a number of zones. with zones farther from the
center containing more bits than zones closer to the center. Ali hough ihis technique
increases capacity, it is still not oplimal.

To achieve greater capacity. CDs and CD-ROMs do not organize information
on concentric tracks. Instead. the disk contains a single spiral track. beginning near
the center and spiraling out to the outer edge of the disk- Sectors near the outside
cif the disk are the same length as those near the inside. Thus, information is packed
cven Ey across the disk in segments t.if the same size and these are scanned al 1he
same rate by rotating the disk at a variable speed. The pill are then read by thi2 laser
at a constant linear velocity (CLV)- The disk rotates more slowly for accesses
near the outer edge than tor those near. the center. Thus, the capacity of a track and
the rotational delay both increase for positions nearer the outer edge of the disk. The
data capacity for a CD-ROM is ghoul 6180 Mb.

Data on the CD-ROM are organized as a sequence of blocks. A typical block
format is shown in Figure 6.11. It consists of the following fields:

186 CHAPTER 6 / EXTERNAL .MEMORY

• Sync The sync field identifies the beginning of a block. It consists of a byte of
all Os. 10 bytes of all Is. and a byte of all Os.

• Header The header contains the block address and the mode byte. Mode 0
specifies a blank data field; mode 1 specifies the use of an error-correcting
code and 2048 bytes of data: mode 2 specifics 2336 bytes of user data with no
error-correcting code.

• Data: User data.

• Auxiliary: Additional user data in mode In mode .1., this is a 288-byte error-
correcting code.

With the use of CLV, random access becomes more difficult. Locating a spe-
cific address involves moving the head to the general area, ji djasting the rotation
speed and reading the address, and then making minor adjustments to find and
access the specific sector.

C[) - ROM is appropriate for the distribution of large amounts of data to a
large number of users. Because of the expense of the initial writing process, it is not
appropriate for individualized applications. Compared with traditional hard disks,
the Cl)-ROM has two advantages!

• The optical disk together with the information stored on it can be mass repli-
cated inexpensively—unlike a magnetic disk. The database on a magnetic disk
has to be reproduced by copying one disk at a time using 1, WC) disk drives.

• The optical disk is removable, allowing the disk itself to be used for archival
storage. Most magnetic disks are nonremo'ahle. The information on non-
removable magnetic disks must first he copied to tape before the disk drive/disk
can be used to store new information.

The disadvantages of CD-ROM are as follows:

• It is read-only and cannot be updated.
• It has an access time much longer than that of a magnetic diSk drive, as much

as lin I r a second.

00 FE ,:-. 10 D1

als

aPotN
I

301.10S

Data
I.,ay rott

ECC

12 bytes
SYNC:

2352 bytes

4 bytes

2048 bytes
Data

288 bv
4 lo

L-111,CC

ID

Figure 6.11 CD-ROM Block Formal

G.3 opricm, MEMORY 187

CD Recorcloble

To accommodate applie;itions in which only one or a small number of copies
of a set of data is needed, the write-once read-many CD, known as the Cl) record-
able (CD-R), has been developed. For CD-R, a disk is prepared in such a way that
it can be subsequently written once with a laser beam of modest intensity, Thus, with
a somewhat more expensive disk controller than for CD-ROM, the cuslomer can
write once as well as read the disk.

The CD-R medium is similar to but not identical to that of a CD or CD-ROM.
For CDs and CD-ROMs, information is recorded by Ihe pitting of the surface of the
medium, which changes reflectivity. For a CD-R, the medium includes a dye laver.
The dye is used to change reflectivity and is activated by a high-intensity laser. The
resulting disk can be read on a CD-R drive or a CD-RO:VI drive.

The CD-R disk is attractive for archival 241 orage of documents and il k!,
It provides a permanent record of large volumes of user data,

CD Rewritahle

. 1 he. CD-RW optical disk can be repeatedly written and overwritten, as with a
magnetic disk. Although a number of approaches have been tried, the only pure
optical approach that has proved attractive is called phase change. The phase change
disk uses a material that has two significantly different reflectii,ities in iwt, different
phase slates. There is an amorphous stale, in which the , molecules exhibit a random
orientation and which reflects light poorly: and a crystalline state, which has a

smooth surface that reflects light well. A beam of laser light can change the mater-
ial from one phase to the other. The primary disadvantage of phase change optiZ-2i1
disks is that the material eveniiiallv and permanently loses its desirable properties.
Current materials can be used for between 500.000 and I ,000,000 erase cycles.

The CD, kW has the obvious advantage over CD-ROM and CD-R that it can
be rewritten and thus used as a true secondary storage. As Such., it competes with
Tnagnetic disk. A key advantage of the optical disk is that the engineering tolerances
for optical disks arc much less severe than for high-capacity magnetic disks. Thus,
they exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at
last found an acceptable replacement for the analog VHS video tape. The DVD will
replace the video tape used in video cassette recorders (VCRs) and, more important
for this discussion, replace lhe CD-ROM in personal computers and servers. The
DVD takes video into the digital a2e. It delivers movies with impressive picture
quality, and it Call be randomly accessed like audio CDs, which 1.3V I) machines can
also play. Vast volumes of (141ta can be crammed onto the disk, currently seven times
as much as a CD-ROM. With DVD's huge storage. capacity and vivid quality, PC'
games will become more realistic and educational software will incorporate more
video. Following in the wake of these developments will he a new crest of traffic over
the 'Memel and corporate intranets. as I his material is incorporated into Web sites.

'f'he DVD's greater capacity is due in three differences from CDs (Figure 6.12):

. riEe' effaa"

188 CHAPTER 6 / EXTERNAL. MEMORY

Label

Protective layer
(acrylic.)

1.2 nun

Reflective layer thick

(aluminum)

1.au r focuses on polycarbonate
pits in front of reflective layer.

CD-ROM—Capacity 682 MB

Polycarbona le substrate
(plastic'

Polyearbonate substrate, side 2

Nem iretlective layer, side 2

Polycarbonate layer, side 2

Fully reflective layer, side 2

Fully reflective layer, side 1

Polyearbonate layer, side 1

Semirellective layer, side. I

Polycarbonate substrate, side 1

Laser focuses on pits In one layer
on one side at a time. Disk must
be flipped to read other side.

1.2 mm
thick

(b) DVD-RON1, double-sided, dual-layer—Capacity 17 GI!

Figure 6.12 CD-ROM and DVD-ROM

1. Bits are packed more closely on a DVD, The spacing between loops of a spi-
ral on a CD is 1.6 Arn and the minimum distance between pits along the spiral
is 0.834 p.m. Thu 1)VD uses a laser with shorter wavelength and achieves a
loop spacing of 0.74 p.m and a minimum distance between pits of 0.4 Am. The
result of these two improvements is about a seven-fold increase in capacity, to
about 4_7 GB.

2. The DVD employs a second layer of pits and lands on top of the first layer. A
dual-layer DVD has a semiruflective layer on top of the reflective layer. and
by adjusting focus, the lasers in DVD drives can read each layer separately.
This technique almost doubles the capacity of the disk, to about 8.5 GB, The
lower reflectivity of the second layer limits its storage capacity so that a full
doubling is not achieved.

3. The DVD-ROM can be two sided whereas data is recorded on only one side
of a CD. This brings total capacity up to 17 GB.

As with the CD, DVDs come in writeahic as well as read-only versions (Table 6.4).

DLT 4000

20

1.5

DLT WOO SDLT 220

40 110

6.0 I 1.0

?I.6 51.6

1(34 317

549 5a9

1.2? 1,27

44I

1.. 27

I2

32.3

Number of tracks
read-write simultaneously 4

549

Capin:it), ICB).

Bala rate INTRA)

Bit density (Kblart)

Track densit). tifent)

Media length IMO

Media width (ti-n)

Number of tracks

6.4 / MAGNETIC TAPE 189

6.4 MAGNETIC TAPE ,

Tape systems use the same reading and recording techniques as disk systems. The
medium is flexible polyester (similar to that used in some clothing) tape coated with
magnetizable material. The coating may consist of particles of pure metal in special
hinders or vapor-plated metal films. The tape and the tape drive are analogous to a
home tape recorder system, Tape widths vary from 0,3S cm (0.15 inch) to 1.27 cm
(0,5 inch), .tapes used to he. packaged as open reels that have to be threaded through
a second spindle for use. Today, virtually all tapes are housed in cartridges.

Data on the tape are structured as a number of parallel tracks running length-
wise, Earlier tape systems typically used nine tracks, This made it possible to store
data one byte. at a time, with an additional parity bit as the ninth track. This was
followed by tape systems using 18 or :k6 tracks, corresponding to a digital word or
double word. The recording of data in this form is referred to as parallel recording.
Most modern systems instead use serial recording, in which data arc laid out as a
sequence of hits along each track, as is done with magnetic disks. As with the disk,
data are read and written in contiguous blocks, called physical records, on as tape.
Blocks on the tape are separated by gaps referred to as wrrecord gaps. As with the
disk, the tape is formatted to assist in locating physical records.

The typical recording technique used in serial tapes is referred to as serpen-
tine recording. in this technique, when data are being recorded. the first set of bits
is recorded along the whole length of the tape. When the end of the tape is reached,
the heads are repositioned to record ii new ack, and the tape is again recorded on
its whole length, this time in the opposite direction. That process continues, hack
and forth. until the Lap,: is full (Figure 6.13a). To increase speed, the read-write head
is capable of reading and writing a number of adjacent tracks simultaneously (typi-
cally 2 to 8 tracks). Data are still recorded serially along individual tracks, but blocks
in .!,,equence are stored on adjacent tracks, as suggested by Figure 6,13b. Table 6.5
shows parameters for one system. known as Dljnape,

Table 6.5 DLTiapo Urines

190 CI.IAPTER 6 • EiVIERNM. MEMORY

Track 2.

Track 1

'Duck 0

I I I I I I 1 I I I I I I I
I 1 I I 1 I I I I I I 1 1 I I I

1 I I I I I I I I I I I I I 1 I 1 I I I 1 I I I

I.

Direction of
llottoin read-write
vdo of tape

(a) Serpentine reading andliriting

Track 3 niTi LIL:1 1 12.] L16
L-21) 1

Track 2 3

Thad
, I
 ITS

6

['5

DI]

Direction of
tape niotion

(b) Block layout for system that reads-writes Nur tracks simultaiwotisly

Figure 6.13 Typical Magnetic Tap:. Pctaturcs

A tape drive is a sequentivd- rcce.,s.s device. If the tape hoad is positioned at
record 1, then to read record N, ii is necessary to read physical records J. through
A.' — 1, one at a time. if the. head is currently positioned beyond the desired record.
it is necessary to rewind the tape a certain di r t nee and begin reading forward.
Unlike the disk, the tape is in motion only daring a read or wrilc operation.

In con t rast to the tape, I he. disk drive is referred 10 as a direct-access device. A
disk drive need not read all the sectors on a disk sequentially to get to the desired
one, it must only wait for the intervening 2ic!.C1(11'5 within one track and can make. suc-
cessive accesses to any traek.

Magnetic. tape was the first kind of secondary memory. It is still widely
 used

as the loweAt-cast, slowest-speed member of the memory hierarchy.

n.5 / RECoMMENDED R_EAD1NC;' AND WEB SITES 191

6.5 RECOMMENDED READING AND WEB SITES

[M.F.E90a] provides a good survey or the underlyinlvt -qii ding technoloy Ft tape sys-
tems. [MEE96b]focuses on the data storage techniipics for disk and tape systems. [COMEX)]
is a short but instructive article on current treni Is in magnetic disk storage technology.

An excellent survey of RAID technii10,2, v,rit ten by the inventors of the RAID con-
cept. is ICHEN94]. A more detailed disci•ion is published by the RAID Advisory Board,
an association of suppliers and consumers or RAID-related products [MASS97]. A good
recent paper is [FR 11 4.961.

I MARC901 an excellent overview of the optical storage field. A good survey of
the underlying IL:cording and reading technology is [MANS97],

FROSC991 provides a comprehensive. overview of all types or external memory systems.
with a modest amount or technical detail on each IKHUR011 is another good survey.

CIIEN94 Chen, P.; Lee, E.; CiihsoR, O.; Katz. R.; and Patterson, D. "RAID: High-
Performance. Reliable Secondary Storage, - r1 (31 Computing Surwys, June 1994.

COME00 Comerford, R. "Magnetic Storage: The Medium that Wouldn't .Die," IFEE
Spectrum, Dc.cember 2000.

FRW96 Friedman, M. -RAID Keeps Going and Going and "IEEE Spectrum.. April
19%.

KIJUR01 Khtu -shudov, A, The Esseirtiol Guide to Computer flaw Siotage. t Ipper Saddle
River, NI Prentice Hall, 2001.

Al A NS97 Mansuripur,.M., and Sineerbox, 0, 'Principles and Techniques of Optical Data
Storage." P•ocerelin,t;r.,. or A- IEEE. November 1997.

r+Ls.RC90 Marcham, A. Optical .R{fearYfing. Readin, MA: Addison-Wesley. 1990.

MASS97 Massiglia, P. The RAID Book: A Srorage Syslern Tr:•hnology Ilemahook. St.
Peter, MN: The. Raid Advisory Board, 1997.

MEE96a Mee, C., and E. eds. Magneik Recording Technology, New York:
McGraw-Hill, 1tt96.

ME .961) Mee. C., and Daniel. F. eds. Afrignetic Soyfogr ilandbook. New York: McGraw-
Hill, 19%.

ROS094 Rosch, 'W. Vt•ieur L. Ro.seh Kurth are Bible, Indianapolis, IN: Sams, 1999.

Recommended Web Sites;

• RAID Advisory Group: RAID industry group. Information about RAID technology
and products.

• Optical Storage Technology Assodation: Good source of information about optical
storage technology and vendors, plus extensive list of relevant links.

• DI,Ttapc: Good collection or technical information and links to vendors,

• Data Storage Magazine: The magazine's Web site contains extensiv.2. information on
data storage products and vendors.

192 CHAPTER 6 / EXTERNAL MEMORY

6.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

DV D RW
fixed-head disk
floppy disk
gap
head
land
magnetic disk
maguerie tape
magnetoresistive
movable-head disk
multiple zoned

recording
nonremovablc: disk

access time
CL)
CD-ROM
CD- R
CD - RW
constan[ar riglllar

velocity (CA V)
cOtiStaill linear

velocity (CI.,V)
cylinder
DVD
DVD-ROM
DVD-R

Review Questions
6.1 What are the advantages of using a glass substrate for a magnetic disk?
6.2 llow are data written onto a magnetic disk?
63 Haw are data read from a magnetic disk?
6.4 Explain the difference between a simple CAV system and a multiple zoned record-

ing system.
6i Define the terms track, cylinder, and sector.
6.6 What is the typical disk sector size?
6.7 Define the terms .seek rime, reariiiional rfetur. decess rime, and transfer time.

(i.8 What common characteristics are shared by all RAID levels?
69 Briefly define the seven RAN) levels,

6,10 Explain the term striped data.
6.11 How is redundancy achieved in a RAID system?
6.12 In the context of RAID, what is the distinction between parallel access anti indepen-

dent access?
6.13 What is the difference between CAV and CLV?
6.14 Whtat differences between a CD and a DVD account for the larger capacity of the latter?

6.15 Explain serpentine recording

Problems
6,1 Consider a disk with N tracks numbered from 0 to (A - 1) and assume that requested

sectors are distributed randomly and evenly over the disk. We Want to calculate the
average number of tracks traversed by a seek.
a. First, calculate the probability of a seek of length j when the head is currently posi•

honed over track t. Him: this is a matter of determining the total number of com-
binations. reeogni2ing that all track positions for the destination of the seek are
equally likely.

optical memory
pit
platter
RAID
removable disk
rotational del H y
sector
seek time
serperiiitte recording
striped data
substrate
track
transfer time

KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 193

h. Next. calculate the probability of a seek of length K_ Hint this involves the sum-
ming over all possible combinations of movements of K tracks.

c. Calculate the average number of tracks traversed by a seek. using the formula for
expected value

= Ei —

n(n — 1) n(n —)(2n + I)
Hint Use the equalities: Ei

2
d. Show that for large values of N. the average number of tracks Traversed by a seek

approaches
6.2 Define the following for a disk system:

t • seek time average time to position head over track
r — rotation speed of the dikk, in revolutions per second
n — number of hits per sector
N = capacity of a track,.in bits

= time to access a sector

Develop a formula for r ...1 as a function of the other parameters.
6.3 Assume a I0-drive RAID configuration, Fill in the following matrix, which compares

the various RAID levels:

Storage
Density RAID Level Bandwidth

Performance
Tra nsaction
Performance

1

2

3

5

Each parameter is normalized to the RAID level that delivers the best performance;
therefore, the remaining numbers in the matrix should have a value between 0 and 1.
Storage density refers to the fraction of disk storage available for user data. Bandwidth
performance reflects how fast data can be transferred out of an array. Transaction per-
formance measures how many operations per second an array can perform.

6.4 It should be clear that disk striping can improve data Transfer rate when the strip size
is small compared to the 110 request size. Ii should also be clear that RAID II pro-
vides improved performance relative to a single large disk, because multiple 110
requests can be handled in parallel. However, in this latter case, is disk striping nec-
essary? That is, does disk striping improve 11/0 request rate performance compared to
a comparable disk array without striping?

CHAPTER

INPUT/OUTPUT

7.1 Lxternal Devices
Keyboard/ Monitor
Disk Drive

7.2 I/O Modules
Module Function
IjO Module Structure

7.3 Programmed VO
Overview

Commands
10 Instructions •

7.4 Interrupt-Driven I/O
Interrupt Procesing
Design Issues
Intel Ii 2C59A Interrupt Controller
The Intel g2C55A Programmable Peripheral Interface

7.5 Direct Memory Access
Drawbacks of Programmed and Interrupt-Driven [10
.D:VIA Function

7.15 I/O Channels and Processors
The Evolution of the 1/0 Function
Characteristics of Channels

7.7 The External Interface: FireWire and Infinitland
Types of interfaces
Point-to-Point and MuItipoint Configurations
FireWire Serial Bus
InfiniBand

7.8 Recommended Reading and Web Sites

7.9 Key Terms, Review Questions, and Problems
Key 'Ft:1ms
Review Questions
Problems

196 ctiAPTER / INPUT / OUTPU 1

KEY Pf)INTS

♦ The computer system's 10 architecture is its imerfacc to the outside world.
This architecture is designed to provide a systematic means of controlling
interaction with the outside world and to provide the operating system with
the information it needs to manage 1:'(.). activity effectively.

♦ The are three. principal I/O techniques: progranmied I10, in which I/O occurs
under the direct and continuous control of the program requesting the I.10
operation; interrupt-driven 1/0, in which a program issues an 110 command
and then continues to execute, until it is interrupted by the I/O hardware
to signal the end of the operation: and direct memory access (DMA), in
which a specialized [10 processor lakes over control of an 1/0 operation to
move. a large block of data.
Two important examples of external 1/0 interfaces are FireWire and lallnilmnd.

I n addition to the processor and 4i set of memory modules, the third key element
0r ,., computer system is a set of 110 modules, Each module interfaces to the
system bus or central switch and controls. one or more peripheral devices. An

1/0 module is not simply a set of mechanical connectors that wire a device into the
system bus. Rather. the. 110 module contains some "intelligence"; that is, it con-
tains logic for performing a communication function between the peripheral and
the bus.

The reader may wonder why one does not connect peripherals directly to the
system bus. The reasons are as follows:

• There are a wide variety of peripherals with various methods of operation. It
would he impractical to incorporate the necessary logic within the processor
to control a range of devices.

• The data transfer rate of peripherals is often much slower than that ()I' the.
memory or processor. Thus, it is impractical to use the high-Speed system bus
to communicate directly with a peripheral,

• On the other hand, the data transfer rate of some peripherals is faster than that
of the memory or processor. Again, the mismatch would lead to inefficiencies
if not managed properly.

• Peripherals often use different data formats and word lengths than the com-
puter to which they are attached.

Thus, an I/O module is rcquired. This module has two major functions (Fig-
ure 7.1):

* Interface to the processor and memory via Ihe system bus or central switch

■ Interface to one or more peripheral devices by tailored data links

We begin this chapter with a brief discussion of external devices, followed
by an overview of the structure and function of an Ii0 module, Then we look at
the various ways in which the 110 function can be performed in cooperation with

l\
lk

',
,,,,W

,\V
A'

..\
\%

.\\
*

M
\\

\\
%

\\
N*

N1

7.1 ExTERNAL DEVICES 197

I inks to
peripheral
di. dices

Figure 7.] Generic Model of an 110 Module

the processor and memory: the internal 110 interface- Finally. we 4: N.,d ine the exter-
nal 110 interface. between the VO module and the outside world.

7 1 ,EXTERNAL DEVI .freffrk.
4.•

,:r.frr̀rff,:rer` EF-.
" Trre,

- .re."
er „reffr

openations arc .1ccomplished through a wide assortment of external devices that
provide a means of exchanging data between the external environrnc:mt and the com-
puter. An external device attaches to the computer by a link to an 110 module (Fig-
ure 7.1). The link is used to exchange control, status, and data between the 110
module and the external device. An external device connected to an I/O module is
often referred to as a peripheral device or. simply, a pffipiwra

We can broadly elassiry external devices into three categories

■ Human readable: Suitable for communicating with i he computer user
• Machine readable: Suitable for communicating with equipment

• Communication: Suitable For Communicating with remote devices

Examples of human-readable devices are video display terminals (VDTs) and
printers. Examples of machinc -re;idable devices are magnetic disk and tape systems,
and sensors and actuators, such as are used in a robotics application. Note that we
are viewing disk and tape system s as I/O devices in this chapier, whereas in Chap-
ter 6 we viewed them as memory devices. From a functional point of view. these
devices are par1 of the memory hierarchy, and their use is appropriately discussed

198 CHAPTER 7 / INPUT / OUTPU I

in Chapter t5, From a structural point of view, these devices are controlled by LIO
modules and are hence to be considered in this chapter.

Communication devices allow a computer to exchange data with a remote
device, which may be a human-readable device. such as a terminal, a machine-read-
able device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure
7.2. The interface to the 1/0 module is in the form of control, data, and status signals.
Control signals determine the function that the device will perform, such ati send data
to the I/O module (INPUT or READ), accept data from the I/0 module (OUTPUT
or WRITE.), report status. or perform some control function particular to the device
(e.g., position a disk head). Data are in the form of a set of hits to be sent to or
received from the 110 module. Sratery signet's indicate the state of the device. Examples
are READY/NOT-READY to show whether the device is ready for data transfer.

Control le.qic associated with the device controls the device's operation in
response to direction frorn the 110 module. The transthicer converts data from elec-
trical to other forms of energy during output and from other forms to electrical dur-
ing input. Typically. a buffer is associated with the transducer to temporarily hold
data being transferred between the I/O module and the external environment; a
buffer size of g to L6 bits is common.

The interface between the I/0 module and the external device will be exam-
ined in Section 7.7. 'The interface between the external device and the. environment
is beyond the scope of this book, but several brief examples arc given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor ar-
rangement. The user provides input through the keyboard. This input is then trans-

Control A Status Data hits
signals from signals to to and from
1/0 module 110 module I/O module

Data (device-unique)
to and from
environment

Figure 7.2 Block Diagram of an External Device

EXTERNAL DEVICES 199

Table 7.1 'Iite International Reference Alphabet (IRA)
hii posilion

b, #I 0 0 , 0 1 t 1 .1
h,. a 11 I I I.) II 1 1

b. 0 1 0 I 0 I 0 I

NI:I. DLE. SP 0 ir.LF P P

SOH DC1 ! 1 A 0 :l Li

r STX DC2 9. 2 ii R II

ETX DO is 2, (9 S c s

t'.QT DC4 $ 4 D T d L

EICQ NAK % 5 E e 11

ACK SYN & 6 F N., r v

BEL ETR 7 U W g Sii

BS CANT (S H X It x

HT EM) 9 1 Y i y

LF SI YR • . .1 Z i z

Vl ESC — K (k I

FF FS 9 L . I I

CR CS - = M 1 m

SO RS ., 14.; ... n -

S1 US r ..) 0 _ 0 DEL

b,1 h, h.
0 0

as a ii I

11 0 I 0

0 0 I I

0

1

0 1 l 0

0 1 1 I

3 tj Ii 0

I 0 0

I 0 I 0

I 0 I I

I I iI

I t 11 [

I L I 0

I 1 I

milted to the computer and may also he displayed tin the monitor. In addition, the
monitor displays data provided by the computer.

The basic unit of exchange is the character, Associated with each character is
a code, typically 7 or 8 bits in length. The most commonly used text code is ihe Inter-
national Reference Alphabet (IRA).' Each character in this code is represented by
a unique 7-bit binary elide: thus, 128 different characters can be represented. Table
7.1 lists all of the code values. In the table, the bits of each character are labeled
from b,. which is the most significant bit, to b, the least significant bit. = Charac-
ters are of two types: printable and control (Table 7.2). Printable characters
are the alphabetic. numeric. and special characters that can be printed on paper
or displayed on a screen. For example, the hit representation of the character
"K" is b,b,b,b AbJ),b, = 1001.011. Some of the control characters have to do with

'IRA]s defined in 1TU-T Recommendation T.50 and was formerly known as international Alphabet
Number 5 (IA51. The U.S. national version of IRA is referred to as the American Standard COLL for
Information Interchange (AKIO,

'IRA-uncodell characters are almost always stored and transmitted using' bits per character. The
eighth hit is a parity bit used for error detection, The parity hit is the most significant hit and Is there-
fore labeled

2Q0 CHAPTER 7 / INPUT / OUTPUT

Table 7,2 IRA Control Characters

Farm'

▪ (Back....:piEcc): Indic:11.es rno...ernenk of the
printinE4 mechanism or display rurm)r 1- raCk afd
one position.

(Horizontal Lab): Indicacm. movement Or the
printing mechanism or displq W1'30.1' forward 10
the ne.xi prassigried - tab' or stopping juisilion.

IF (Line feed): Indicates rnovermi.nt of the printing
nteehanisin cir display cursor to the start rat the
lieu line.

Control
ryercieal Loh): Indicates Mos:emelt:I or the printing
mothuniS.M. or display Qtn-Nor LIle 'Lux!. 01 a Series

preassigned printing lines.
FF (TormTe.ed.): Indicates Inovc.ment {if the priming

mechanism or dis•plAy cursor to the starling
position of the nE.N.1 page... Enrol Or Kre.2n.

CR (Currii4w 111ClicA.Ln. LLSL.IVI2ITLeILL of aid

MCC h.ani Lan {5r cursor In !he
trartin pOs ion. of 11.1e 5.41he line.

Trnnsrnissi an Cord ra

FS (File xriara tor)
G S (Group r‘epiiraLor)
RS {Record separator)
US ? United sepurator)

ACK (A cknowleilvy A charaemr LrunsMiitell by
receiving device 4.6 An affirmation response Li) H

IL is ur•ed us a positive EVEP45r1IIC 1. 13 1 ,1-4Eing.

NAK acknowledgment): Achnructer
1.37.1r”..niilied h'y a receiving dievice. as an negative
response to n sender. It i used as i negniive
response Lt.) messages.

S I. SViiehrOr§OLIS:K110: Used by a synchronous
to athieNCI N:!..114;

WEICIL ncr da1.4.1. arc being Nerd., 1.1

cransrnis.sion syslent may send SIN diameters
eonhnuOurdy.

ETR (End or iransmis:-iion Nock): Indicales Ilse end
or a Hock of data For enntrnunication purpow.s,
is used lot bloc.king data where the 11 s..D.Leau-e
is 1101 TIECEssaril'y related co the procifs-sing Formes,

formation Separator
lol tiI Li., be used ill an oplionHI
manner exccTit that their hierarchy RhHil he FS
()he room inclusive) to 1..:S Rim luat iriclusive/

SOH (Stall or .h.:114,1ing.l: laud to indicate 1h' slut 1)1
ra Iwuding, which may eonlain TrAiLLESA

LEIfIMMOLtiCITI.

SI' X{Start of Lem)! 1:sed to indicate the start of the
Lext.and so also inthea.ces the.c.nd of the heading,

✓ iX ;Ella of text.): Used to terminate the le.xl 'that
was started with SIX.

On (End ni minsmimion.): Indicates 1E1e end cif u
IrAns Ss 11)11., may haw.: included am: or MOH!
--, ems- with thi:ir heatfins..

LNQ (J- riguiry .i: A leyuest for a ! N MI

rurrioLe station. ft may be used as ,1 - WHO ARE
y0. 11.;'' request icir a s tation C O idenEiry

Mistvlidne0116
NUL (Mill): No charactur. l.. st ci For ii ILLeg in

Of Filling spac.r,. on I pC ...WELC LI '.I I 12 re are no
B EL (1 LI1): 1:sed When there IL} c iIL huirta

;:ittendoli. It rna y c4.11-1X1-0] ALLIrm err katanion devices.
NI) (shirt out): intliudLos that the code comibllati tans

that fallow shall be interrircle4 us outside of the
standard character SCL Hail a SI character is
reached.

SI (Shift in): lndicalei, the Ilae codo uornbinations
rh.oc follow shill be interpreted according l o L1-112

character se!.
oF,J,)icicic): Used Lu 4ibliwrate unwarticd char-

acters: 11.)3 ,... xarnple, by ovcrwrilins.
(spoc.o: A !Ion prmling character Used in iicTiaraLe

words, InLo iiLUVe the prinking much:mi.= or dis-
play c ursor lotw:ircl by c1.11.0

I MF (1)LiLki bark esca pc); A E ham ccer that sh II
change rhC DIcflrum .5 of one or MOM con Liguc u

folic i ng. eharaecers. It can provide supplementary
con rols. or perm t5 the sanding of date characters
h.:Iving ;in y bit Combination,

DCX DC4 (I-MviLu controls): Chnrnetuni.
fur the coairol of ancillary de icc .s or 4peciiil
c3rni nal auires.

CAN (Cancel): indicareA diet Lire data than prccede
it Ell H mess age or block shoukl b. disregarded
(tmually because. an caul likay been del.c..esed

• (bid of medium)! indicates the ph riica I end of
tripe c.ir other MediuM, or LI-iu end of Elle requarea

us..7.(1 porhan of tElLhr Lued ,
S :IS ;. .S ubstit u Lo). Su bsti.ltkii.:41 liar a character that is

io Li nd to h4 c tron eouS or invalid.
i:19.NEVEJ: A eharaccer inl ende.t1 Lu Provide eotic.

ex Len lion in thal ii OVEN LI NI.veified number DC con-
tinuously (olloveing characters en N.I.Lurnate,

7.2 I I/0 MODULFS 201

controlling the printing or displaying of characters; an example is carriage return.
Other control characters are concerned with communications procedures.

For keyboard input, when the user depresses a key_ this generates an elec-
tronic signal that is interpreted by the transducer in the keyboard.and translated into
the hit pattern of the corresponding IRA code. This bit pattern is then transmitted
to the 110 module in the computer. At the computer, the text can be stored in the
same IRA code. On output, IRA code characters arc transmitted to an external
device from the 110 module. The transducer at the device interprets this code and
scuds the required electronic signals to the output device either to display the 'indi-
cated charact er or perform the requested control function.

Disk Drive
A disk drive contains electronics for exchanging data, control, and status signals with
an I/O module plus the electronics for controlling the disk read/write mechanism.
In a fixed-head disk, the transducer is capable of converting between the magnetic
patterns on the moving disk surface and bits in the devices buffer (Figure 72 A
moving-head disk must also be able tc . i caLise the disk arm to move radially in and out
across the disk's surface.

7.2 110 MODULES
r

"
5 •

Module Function

The major functions or requirements for an I/O module fall into the following categories:

• (.7ontrol and timing
a Processor communication
• Device communication
■ Data buffering
• Error detection

During any period of time. the processor may communicate with one or more
external devices in unpredictable patterns, depending on the program's need for I/O.
The internal resources, such as main memory and the system bus, must be shared
among a number of activities, including data 110. Thus, the 1/0 function includes a
control and timing requirement. to coordinate the flow of traffic between internal
resources and external devices. For example. the control of the transfer of data from
an external device to the processor might involve the following sequence of steps:

1. The processor interrogates the I/O module to check the status of the attached
device.

2. The 110 module returns the device status.
3. if the device is operational and ready to transmit, the processor requests the I

transfer of data, by means of a command to the 110 module,
4. The I/O module obtains a unit of data (e.g„ 8 or 16 bits) from the external device.
5. The data are transferred from the I/O module to the processor.

202 CI IAPTT:R. 7 / INPUT OU'T I U'1

11 !he sysWrn LTn.ploys a bus. then each of the interactions between the proces-
sor and the I/O module involves die or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module musk
communicate with the prcwe..4sof and with the external device. Prneessor committal•
cation involves the following:

• Command deeoding: The I/O module accepts ec.mim;inds from the processor,
typically seat as signals on the control bus. For example, an 1/0 module For
disk drive might accept the following, commands: READ SECTOR, WRITE
SECTOR, SEHK track number, and SCAN record III The latter two com-
iniinds each inciude a parameter that is sent on the data bus,

• Data: Data kire exchanged between I.hc processor and the I/O module owl'
the data bus.

• Stsifin reporting: [[ecriuse peripherals are so slow, it is important to know the
status of the 1/0 module, For example, if an I/O module is asked to send data
to the processor (road). it may not he ready to do so because it is still working
on the previous I/O comrmind. This fact can he reported with a status signal.
C:ornmvn statuN 2,ignals are BUSY and READY. There may also he signals to
report various error conditions.

* Address recognition: Just as each word of memory has an address. so does
each Ii0 device, Thus, an [I0 module must recognize one unique address for
each peripheral it controls.

On ghee olhcr sick. the I/O module must be able 10 perform device COMM.

['legion, This communication involves commands, status information, and data
(Figure 7.2).

An essential task of an I/O module is data buffering. The need I'm- this fan .c-
lion is apparent from Figure 7.1 Whereas the transfer rate into and out of main
memory or the processor is quite high, the 1- 41 W is orders of magnitude lower for
many peripheral devices and covers. a wide. range. Data coming from main memory
are sent to an P.O moduli: in a rapid burst. The data are buffered in the I/O• module
and then sent to the peripheral device at its dala rate. In the opposite direction, dati
are buffered so as not lo tic up the memory in a slow transfer operation. Thus, the
I/O module moat he ihie to 011i:tate at both device and memory speeds. Similarly,
it` the I/O device operates at a rate higher than the memory access rate. then the I10
[nodule performs the needed buffering operal ic n.

Finally, an 1/0 module is often responsible for error detection and for subse-
quently reporting Q.1 -rors to the processor. One class of errors includes mechanical
and electrical inalfuncliom reported by the device (s,,g,, Nper jusr, had disk track).
Another class consists of unintentional changes to the bit pattern as it is transmit-
led from device to I/0 module. Some form of error-detecting code is Often used t0
detect transmission errors. A simple example is the use of a parity hit on each char-
acter of data. For example, the IRA ch.:wader code occupies 7 bits of a by1e. The
eighth hit k mi so Ebel Ihe total number of Is in the byte is even (even parity) or
odd (odd pariiy). When a byte is received, the I/ O module checks the parity to
determine whether an error has occurred.

Gigabit Etheniei

Grppbi.es: display

frard disk

Ethernet

Optical disk

Scanner

Laser printer

Floppy MA

71
1410410111

I'douse

Keyboard

7.2 / l/ c.) MODuLss 203

Figure 7,3 Typical I10 Device lilts. Rates

I/O Module Structure

1/0 modules vary considerabl!, , in complexity and the number of external devices
that dicy control. We will attempt only a very general description here. (One spe-
cific device. t he inicl 82C55A, is described in Section 7.4.) Figure 7.4 provides a
general block diagram of an 110 module. The module connects 10 the rest of the
computer through a set of signal lines (e.g., s!,. ,stern bus lines). Data transferred to
and from I he module are buffered in one or more data registers. There may also be
one or more slaws regisicrs aro provide current status information. A status regis-
ter may also function as a control register, to accept detailed control information
from the processor. The logic within the module interacts with the processor via a
set of control lines. '11 -te processor uses the control lines 10 iSSI.PC commands to the
110 module. Sonic of the control lines may he used by the I/O moduic (e.g., for arbi-
tration and status signals). The module must also be able to reco gnize and generate
addresses associated with the devices it controls. Each 1/0 modu]e has a unique
addres..s or, if it controls more than one external device, a unique set of addresses.
Finally. the 1/0 module contains logic .specific to the interface with each device that
it controls.

An 1/0 module Funclions to allow Ihe processor to view a wide range of
devices in a simple-minded way. 'There is a spectrum of capabilities that may he pro-
vided. '['he I/O modu]e may hide the details of timing, formats, and the electro-
mechanics of an external Llevice so that the processor can function in terms of simple
read and write commands, and possibly open and close file cornmandq. In its sim-
plest form, the I/0 module may still leave much of the work of controlling a device
(e.g - . rewind a Tape) visible to the processor.

Data

Status

Contrn1

Rata

Status

t7caltrall

l ine s

Address
Hues

Control
Imes

Lx14.1-1.101

interrace
logic

ExteTtnil.

inturruo.
WW1:

reuislep4

kauturskontrol registers

204 CHAPTER 7 1 INPUT I OUTPUT

biterrace to IttlerCave to
mystem taus external device

Figure 7.4 Block Diagram of an 1/0 Moduk

An 11 module that lakes on most of the detailed processing burden. pi esent-
ing a high-level interface to the processor, is usuillly referred to as an 110 channel or
1.10 processor, An I10 module that is quite primitive and requires detailed control
is usually referred to as an 110 controller or device coniroilcr. 1.10 controllers are
commonly seen on microcomputers. whereas 110 channels are•used on mainframes.

In what follows, we will use the generic term 1/0 modale when no confusion
results and will use more specific terms where necessary.

7.3 PROGRAMMED I10

Three techniques are possible for 1/0 operations. With programmed I/O, data are
exchanged between the processor and the I/O module. The processor executes a
program that gives it direct control of the 1/0 operation, including sensing device
status, sending a read or write command, and transferring the data. 'Mien the
processor issues a command to the 1/0 module, it must wait until the 110 operation
is complete. if the processor is lamer than the 110 module, this is wasteful of proces-
sor time. With interrupi-driven 1/0, the processor issues an 110 command, continues
to execute other instructions, and is interrupted by the I/O module when the. latter
has completed its work. With both programmed and interrupt 110, the processor is
responsible for extracting data from main memory for output and storing data in
main memory for input. The alternative is known as direct memory access (DMA),
In this mode. the 110 module and main memory exchange data directly, without
processor involvement.

hired 1/0-to-Tnernne¢

transfer
Direa mcmory accoss
{DMA)

No Interrupts Use of Interrupts

1/0-111.-rnumipry Iran ter Prograrrima. 1.0
i hrough promisor

I n 2rrupt-ciri VC)

7.3 PROCRAMMTD i/i) 205

Tokple 7.3 1.0 Techniquc.s

Table 7.3 indicates the relationship among these three techniques. In [his
section. we explore programmed 1/0. Interrupt 110 and DMA are explored in the
following 1 WO sections, respectively.

Overview of Programmed I/O

When the proi:essor is executing a program and encounters an instruction relating
to I/O, it executes that instruction by issuing a command to the appropriate I/O
module. With programmed I/O, the I/0 :nodule will perform the requested action
and then set the appropriate bits in the 110 status register (Figure 7.4). The I10 mod-
ule takes no further action to alert the processor. In particular, it does not interrupt
the processor. Thus. it is the responsibility of the processor periodically to check the
status of the I/O module until it finds that the operation is complete,

(.0 explain the programmed 110 technique, we view it first from the point of
view of the I/O commands issued by the processor lo the PO module, and then jrorio
the point of view of the I/O instructions execute'd.by the processor-

I/O Commands

To execute an I/0-related instruction. the processor issues an address, specifying
the particular 110 module and external device, and an 110 command. There are
four types of I/O commands [hal an I/O module may receive when it is addressed
by a processor:

• Control: Ned to aeliv,a Le a peripheral and tell it what to do. For example, a
magnetic-tape unit may he instructed to rewind or to move forward one record.
These commands are tailored to the particular type of peripheral device.

• Test: Used to test various sLittts C onditioos associated wit h an I/O module and
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most
recent I/O operation is completed and if any errors occurred.

• Read: Causes the 1/0 module to obtain an item of data from the peripheral
and plaice it in an internal buffer (depicted as a data register in Figure 7.4). The
processor can [hen obtain the data item by requesting that the I/O module
place it on the data bus.

• Write: Causes the 1.10 module R.1 take an item of data (byte or word) From lhe
data bus and subsequently transmit that data item to the peripheral.

Figure 7.Sa gives an example of the use cif programmed I10 10 read in a block
of data from a peripheral devic„e t record from tape) into memory. Data are

read

ramnucl
IELI itl

f)(—> tiO -.F.1: —5 DMA
I

Jo .Iriit I I.: I blf:ck [Xi .411 nic -.11;
lir tr. IA I. nvxholo

P
CI NC

word

1II Lui mcnioi3.
(T12 Memory

— I

) • .> (. 11.!

al us

cif T) ‘.1 A
inksiu

206 CI-i.kPTER 7 INPUT OU:TPUT

RCZILk S.LalliS

s7f 1101
1111 5{11.111;:

VcxL I..11

1: c) D iMet MercOry Access

IN.!! Iv

won.'

I 'Inc.!! le

Ni

Nc kl I naruct:.0

CD) I nterrupt-DTiven

C)Le..;
c[i41 {Js

Issue roc,'
L.: 01111.0 am] ILI

m(KIL.O.c .
CPU o

14.E;.1 mtntus.

car 110

31.N.1.1151.U:

IJ CCU

'NJ ire
Liao men.1.01).

CPO rvitinorY

Lire]

—r CPL.'

h7lcrrupL

C.PLI

Error
L.: oisd i i loll

I1C) I

Figure 7,5 Three TechnicEtturi Input of a Block of DaLI

read in one word (e.g.. 16 bits) at a tirnc. For each word that is read in, the proces-
sor nau;711 remain in a statils-chQ.eking cycle until it Lletermines dial the word is
available in the I/O modules data register. flowchart highlights the main di--
advantage of this technique: it is a time-consuming process Ihai keeps the processor
busy needlessly.

I/O Instructions

With programmed 110, there is a close correspondence between the 1/0-related
instructions that the proccssor fetches from memory and the I/O eornmands that the
processor issues 10 an 110 module to execute the instructions. 'That is. the in.s1rue-
lions are emily mapped into 110 commands, and there is often a simp[c one-to-one
relationship. The form of the instruction depends on the way in which external
devices are addrf:Ased:

Typically, there. will be many [10 devices connected through 110 modules to
the.vstern. Each device is given a unique idenlifier or address. When the processor
issues an 110 commend. the cornmand Exn Wins the address or the desired th.vice.

Thus, mach I/O (nodule must inLCrl3ret the address lines to determine if the com-
mand is [or itself.

When the processor, main memory, and 1.10 share a common bus, two modes
of addressing re possible: memory mapped and isolated. With memory-mapped

PT

7 5 4 3 2 1 0

L Set to 1 10 L 1 . ready

I 0

Keyboard in pul data register 516

Keyboard input status
and control register 517

7.3 / 13 1.1..0GILANI1v1B0 1/0 207

I/0, there is a single address space for memory locations and I/0 devices, The
processor treats the status and data registers of 1'(modules as memory locations
and uses the same machine instructions to access both memory and 1.1r) deviee:71, So,
for example, with 10 address lines, a combined total of 2' 11 =1024 memory locations
and I.10 addresses can be supported, in any combination,

With memory-mapped 170, a single read line and a single. write line are needed
on the bus. Alterriatiyel!,. ,, the bus may be equipped with memory read and write.
plus input and output command lines. Now, the corm -nand line specifies whether
the address refers to a memory location or an device. The full range of addresses
may he available for both. Again, with IC) address lines, the system may now sup-
port both 1024 memory locations and 1024 LT_) addresses. Because. the. address space
for 110 is isolated from that for memory, this is rererrc...d 10 as isolated1/0.

Figure 7,6 cc ritrasis these two programmed I/O techniques. Figure 7.6a shows
how the interface for a simple input device such as a terminal keyboard mighi ap-
pear to a programmer using memory-mapped I/O. Assume a 10-bit address, with a

0 = busy start read

ADDRESS INSTRUCTION OPERAND COMMENT
200 1Aiad AC ,1,, Load accumulator

Store AC 517 Initiate keyboard read
202 Load AC 571 Co. slataf, byte

Kranch if Sign i 0 202. Loop until ready
Load AC 516 Load data byte

la) Memory-mapped 110

ADDRESS INSTRUCTION OPERAND COMMENT
200 I,nad I/O 5 Initiate keyboard read
201 Test I/O 5 Check for completion

Branch Not Read* 201 Loop until complete
In 5 Load dala byte

(b) Isolated I/O

Figure 7.6 Mc.rtiont-Maptx..1J and 1 ,..otaced

208 CHAPTER 7 / INPUT / OUTPUT

512-bit memory (locations 0-511) and up to 512 I10 addresses (locations 512-10231.
Two addresses are dedicated to keyboard input from a particular terminal, Addres
5l6 refers to the data register and address 517 refers to the status register, which also
functions as a control register for receiving processor commands, The. program
shown will read 1 byte of data from the keyboard into art accumulator register in the
processor. Note that the processor loops„until the data byte is available.

With isolated I10 (Figure 7.617), the I/O ports are accessible only by special M
commands, which activate the 1/0 command lines On the bus.

For most types of processors, there is a relatively large set .of different instruc-
tions for referencing memory, If isolated I/O is used, there are only a few I/O
instructions. Thus. an advantage of memory-mapped 110 is that this large repertoire
of instructions can he used, allowing more efficient programming. A disadvantage
is that valuable memory address space is used up, Both memory-mapped and iso-
lated are in common use.

7.4

The problem wit programmed 110 is that the processor has to wait a tong time For
the I/O module of concern to be ready for either reception or transmission of data.
The processor, while waiting, must repeatedly interrogate the status of the I/O mod-
ule. As a result, the. level of the performance of the entire system is severely degraded.

An alternative is for the processor to issue an 110 command to a module and
then ao on to do some- other useful work. The 110 module will then interrupt the
processor to request service when it is ready to exchange data with the processor.
The processor then executes the data transfer, as before, and then resumes its for-
mer processing.

Let us consider how this works, first from the point of view of the I/O module.
For input, the module receives a READ command from the processor. The LO
module then proceeds to read data in from an associated peripheral. Once the data
are in the module's data register, the module signals an interrupt to the processor
over a control line. 'the module then waits until its data are requested by the proces-
sor. When the request is made, the module places its data on the data bus and is then
ready for another I10 operation.

From the processor's point of view, the action for input is as follows. The
processor issues a READ command. lt then goes off and does something else (e.g.,
the processor may be working on several different programs at the same time). At
the end of each instruction cycle, the processor checks for interrupts (Figure 3.9).
When the interrupt from the 110 module occurs, the processor saves the contest
(e.g.. program counter and processor registers) of the current program and
processes the interrupt. In this ease., the processor reads the word of data from the.
110 module and stores it in memory. It then restores the context of the program it
was working on (or some other program) and resumes execution.

Figure 7.5b shows the use of interrupt I/O for reading in a block of data. Com-
pare this with Figure 7,5a. Interrupt 110 is more efficient than programmed 1/0
because it eliminates needless waiting. However, interrupt 1.0 still consumes a Jot

7.4 / INTERRUPT-DR WEN 209

of processor Orne, 1-pec,o LiSk, every word of data ihaL goes rrorn memory to I/O mod-
ule or from IIC.) module to nicinory must pass through the processor..

Interrupt Processing

Let us consider the role of the . processor in interrupt-driven DO in more detail. The
occurrence of an interrupt triggers a number of events, both in the processor hard-
ware and in soliware. Figure 7.7 shows a typical sequence. When an I/O device com-
pletes an 1.O operation. t he following secincore of hardware. weal* oeeurs:

11. The device issues an interrupt signal to the processor.
2. The processor finishes execurion of the current insiruction before responding

to the interrupt, as indicated in Figure 3.9,

Hardware Software

dem+.=,. .1111114, 11L

Device controller or
alter system hardware
issues an interrupt

Save pen-I:Ander of
process state
information

;.•

Proeepsor finishes
CUM tion of current
instruction

Process interrupt

Processor signals
acknoveledgment
of interrupt

nmeffinommm,immtmenwg

Restore process state
information

Processor pushes PSW
and PC Unto t °rand
stack

Restore old PSW
and PC

Processor loads new
PC value based an
interrupt

Figure 7.7 Simple Interrupt Processing

210 CHAPTER 7 / INPUT / OUTPUT

3. The processor tests for an interrupt. determines that there is one, and sends an
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal.

4. The processor now needs to prepare to transfer control to the interrupt rou-
tine_ To begin, it needs to save information needed to resume the current
program at the point of interrupt. The, minimum information required is (a)
the status of the processor, which is contained in a register called the program
status word (PSW), and (b) the location of the next instruction to be executed,
which is contained in the program counter. These can he pushed onto the sys-
tem control stack.).

5. The processor now loads the program counter with the entry location ol' the
interrupt-handling program that will respond to this interrupt. Depending on
the computer architecture and operating system design, there may be a single
program. one program for each type of interrupt, or one program for each
device and each type of interrupt. if there is more than one interrupt-handting
routine, the processor must determine which one to invoke. This information
may have been included in the original interrupt signal. or the processor may
have to issue a request to the device that issued the interrupt to get a response
that contains the needed in formation.

Once the program counter has been loaded, the processor proceeds to the next
instruction cycle. which begins with an instruction fetch. Because the instruction
fetch is determined by the contents of the program counter. the result is that con-
trol is transferred to the interrupt-handler program. The execution of this program
results in the following operations:

6. At this point, the program counter and PSW relating to the interrupted pro-
gram have been saved on the system stack. However, there is other information
that is considered part of the -state" of the executing program. In particular,
the contents of the processor registers need to be saved. because these registers
may be used by the interrupt handler. So, all of these values, plus any other
state information, need to be saved. Typically, the interrupt handler will begin
by saving the contents of all registers on the stack. Figure 7.6a shows a simple
example. In this case, a user program is interrupted after the instruction at loca-
tion N. The contents of all or the registers phis the address of the next instruc-
tion (N + 1) are pushed onto the stack. The stack pointer is updated to point
to the new top of stack. and the program counter is updated to point to the
beginning of the interrupt service routine.

7. The interrupt handler next processes the interrupt. This includes an exam-
ination of status information relating to the 1/0 operation or other event
that caused an interrupt. It may also involve sending additional commands
or acknowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers te,,g_ see Figure 7.84

'See Appcntiir I OA For a discussion of sk Fick rspc Ntion.

T — .114
Control

stark

—NLArl

3kQttiril

servieLt

program

Y

r

N
ikf

N + USetj

protran

7.4 TINTI - PRRUKr-DRIVEN 1/0 211

Control

Program
counter

GI: tie rin
iv8isLors

pki intcr

Y .1- T. R.00.1:11

•

L

trite rrup
service.
oulinc

Main
memory

Main
mentor',

(kb Interrupt m after instruction
at location N ill) Return front interrupt

y

.4]r7,7-7-11
Program
COLkiniel'

Cionct.41

rstack
poinier

Processor

—

Figure. 7.8 Changes in Memory Fi nd Registers fur an Interrupt

9- The final act is lo restore the PSW and program counter values from the stack.
As a result. the next ingirnetion lo kpc. executed will be from the previously
inierrtipted program.

Note th4i1ii is important to save all the state information about the interrupLea
program for later resumption. 'rhis is because the. interrupt is not a routine called
from the program. Rather, the interrupt can occur at any time and therefore at any
point in the execution of a user program. Its oceurreiree is unpredietahle.lndecd. as
we wi[[see in the next chapter. the two programs may not have anything in common
and may belong to two different users,

212 CHAPTER 7 f INPUT Tourpin .

Design Issues
Two design issues arise in implementing interrupt I10, First, because there will
almost invariabl!,, be multiple I/0 modules, how does the processor determine which
device issued the interrupt? And second, if multiple interrupts have occurred,
does the processor decide which one tea process?

Let us consider deice identificatiOn first. Four general categories of tech-
niques are in common use:

• Multiple interrupt lines

• Software Fail

• Daisy chain (hardware poll, vectored)

• Bus arbitration (vectored)

The most straightforward approach to the problem is to provide multiple
interrupt lines between the processor and the modules. However, it is imprac-
tical to dedicate more than a few bus lines or processor pins to interrupt lines. Con-
sequently. even if multiple lines are used, it is likely that each line will have multiple
I/O modules attached to it. Thus, one of the other three techniques must be used on
each line.

One alternative is the software poll. When the processor detects an interrupt,
it branches to an interrupt-service routine whose job it is to polleach I/O module to
determine which module caused the interrupt. The poll could be in the form of a
separate command line (e.g., TEST110). In this case, the processor raises TEST110
and places the address of a particular 110 module on the address lines, The I/O. mod-
ule responds positively if it set the interrupt. Alternatively, each I/O module could
contain an addressable status resister. The processor then reads the status register
of each 1/0 module to identify the interrupting module. Once the correct module is
identified, the processor branches to a device-service routine specific to that device,

The. disadvantage of the software poll is that it is time consuming. A more effi-
cient technique is to use a daisy chain, which provides, in effect, a hardware poll. An
example of a daisy-chain configuration is shown in Figure 3.25. For interrupts, all
110 modules share a common interrupt request line. The interrupt acknowledge line
is daisy chained through the modules. When the processor senses an interrupt, it
sends out an interrupt acknowledge_ This signal propagates through a series of ED
modules until it gets to a requesting module. The requesting module typically
responds by placing a word on the data lines. This word is referred to as a vector and
is either the address of the 110 module or some other unique identifier. In either
case, the processor uses the vector as a pointer to the appropriate device-service
routine. This avoids the need to execute a general interrupt-service routine first.
This technique is called a vectored interrupt

There is another technique that makes use of vectored interrupts, and that is
bus arbitration. With hus arbitration. an 1i0 module must first gain control of the taus
before it can raise the interrupt request line. Thus_ only one module can raise the
li ne at a time, When the processor detects the interrupt, it responds on the interrupt
acknowledge line. The requesting module then places its vector on the data lines.

The aforementioned techniques serve 10 identify the requesting module.
They also provide a way of assigning priorities when more than one device is

7.4 r INI'bRRUPT-DRINFEN 1/0 213

requesting interrupt service, With multiple lines, the processor just picks the inter-
rupt line with the highest priority. With software polling. the order in which mod-
ules are polled determines their priority- Similarly, the order of modules on a daisy
chain determines their priority. Finally. bus arbitration can employ a priority scheme,
as discussed in Section 3.4.

We now I urn to Iwo examples of interrupt strueLures.

Intel 82C59A Interrupt Controller
The Intel 80386 provides a single Interrupt .Request N' ER) and a single Interrupt
Aek.nov,.ledge line. 'ro i]low the 80386 to handle a variety of devices and pri-
ority structures, it is usually configured with an external interrupt arbiter. the 82C:59A.
External devices are connected to the 82C'59A, which in turn connects to the 80386.

Figure. 7,9 show showf the use of the 82C.59A to connect. multiple 1. 10 modules for
the 80386. A single 8205)A can handle up to 8 modules. If control for more than
modules is required, a cascade arrangement can he used to Lindlc up 64 modules.

The 82C9A - s sole responsibility i.s the management of interrupts. it accepts
interrupt requests from attached modules, determines which interrupt has the
highest priority, and then signals the processor by raising the INIR line. rho pro-
cessor acknowledges via the 1NTA line- This prompLs the 2C.5 1,1 A to place the
appropriate vector ihrormai ion on the data bus. The processor can then proceed
to process the interrupt and to communicate directly with the I10 module to road
or write data,

The 82C59A is programmable. The 80386 determines the priority scheme to
be used by setting a control word in the 82C59A. The following interrupl modes
are possible:

• Fully nested: The interrupt requests are ordered in priority from 0 1RO.)
through 7 (IR7).

• Rotating: In some applications a number of inierrupting devices are of equal
priority. In this mode a Jeviec, after being serviced, receives the lowest prior-
ity in the group.

• Special musk: This allows the processor lo illhihji interrupts l'rom certain devices.

The Intel 82C55A Programmable Peripheral Interface
As an example of an Ii0 module used for programmed I/O and interrupt-driven
110. we consider the Inwl 82C55 A Programmable Peripheral Interlace. The 82(:35A
is a single-chip, gLAteral -purpose I/O module designed for use with the Intel 80386
processor, Figure 7.10 shows a general block diagram plus the pin assignment for
the 40-pin package in which it is houscd.

The right side of the block diagram is the external interface of the 82C55A,
The 24 110 lines are programmable by the 80386 by means of the covil rol register.
' rhe 8038.fican set the value of the conlrul register to specify a variety of operating
modes and configurations. The 24 lines are divided into three 8-bit groups (A, B,
C). Each group can function as an 8-bit I/O port. In addition, group C' is subdivided
into 4-bit groups (C', and C H), which may he used in conjunction with the A and B
lit) ports. Configured in this manner, they carry control and sLitus signals.

Slaw
8259A
interrupt
controller
IRO Lrxternal device Oil

External device Ill I IR1 INT

1112
11(3

IR4

1R5
1116

. 1117 E‘terniil ficvicv Ill

Master
8259A
interrupt
controller

:f
 O

 IR
 IR! INT
1112
1k3
11(4
I RS
IR6
IR7

80286
processor

)01

---,

IN' I'1(
IRO [External device 08 k.

External device 09 IR I EST
11(2
ITO
1114

I RS
1.1t6

External device 15 1—

214 CHAPTER 7 / INPUT / OUTPUT

Slave
8259.A
interrupt
controller

[External device 56
E—WrnaI device 57 I s 1141 INT

114.2
1113

• 1114
IRS
IR6

External device 63 j, 1R7

Figure 7.9 Use or the t32C59A Interrupt Controller

NW! ve
8259A
internipt
controller

hufkr
Data 8-bit

internal
bus

8086 r 8
data ho s

power
ground

volts
supplies;

address AO
lines Al

read Control

write logic
reset
chip Control.

register select

PA3
PA2
l'A I
PAO

Read
Chip select

Ground
Al
AO

14.7
PC6
PC5
PC4
I'C3
PC/
PC1
PCO
P110
l'B 1
PB2

441 PA•
2 39 PAS
3 38 PA6
4 37 PA7

36 Write
6 35 Resct
7 DO
8 11 III I
9 32 D2
10. 3.1 113
11 30 D4
12 29 p DS
13 . 2S 1)6
.14 27 1)7
15 26 V
16 25 P137
17 24 P116

23 PBS
22 P114
2113 PB3

(al Block diugrarn

Figure 7.10 The Intel 82C55A ProgrammaNe Peripheral Interlace

Pin layout

216 CHAPTER 7 / INPUT / OUTPu'l

The left side of the block diagram is the internal interface to the 80386 bus.
It includes an 8-bit bidirectional data bus (DO through D7), used to transfer data
to and from the 110 ports and to transfer control information to the control regis-
ter, The two address lines specify one of the three 1/0 ports or I he control register.
A transfer takes place when the CHIP SELECT line is enabled together With either
the READ or WRITE line. The RESET, line is used to initialize the module.

The control register is loaded by the processor to control the [node of opera-
tion and to define signals, if any. In Mode 0 operation. the three groups of eight
external lines function as three 8-hit 110 ports. Each port can he designated as input
or output. Otherwise. 2,rour, A and B function as Ii0 ports. and the lines of group
C serve as control lines for A and B. 'The control signals serve two principal pur-
poses: -handshaking" and interrupt request. Handshaking is a simple liming mech-
anism. One control line is used by the sender as a DATA READY line, to indicate
when the data are present on the 110 data lines, Another line is used by the receiver
as an ACKNOWLEDGE, indicating that the data have been read and the data lines
may he cleared. Another line may be designated as an INTERRUPT REQUEST
line and tied back to the system bus.

Because the 82.(:55A is programmable- via the control register, it can be used
to control a variety of simple peripheral devices. Figure 7.11 illustrates its use to con-
trol a keyboard/display terminal. The keyboard provides 8 hits of input. Two of
these bits, SHIFT and CONTROL. have special meaning to the keyboard-handling
program executing in the processor. However, this interpretation is transparent to
the $2C55A. which simply accepts the 8 hits of data and presents them on the sys-
tem data bus. Two handshaking control lines arc provided for use with the keyboard,

The display is also linked by an 8-bit data port. Again, two of the bits have spe-
cial meanings that are - transparent to the 82C55A. In addition to Iwo handshaking
lines, two lines provide additional control functions.

7.5 DIRECT MEMORY ACCESS

Drawbacks of Programmed and Interrupt-Driven I/O

Interrupt-driven 1/0. though more efficient than simple programmed I/O,
requires the active intervention of the processor to transfer data between memory
and an 1.10 module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of 1/0 suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test
and service. a device.

2. 'file processor is tied up in managing an 110 transfer: a number of instructions
must be executed for each I/O transfer (e_g.. Figure 7.3).

There is sornc•kkhat of a trade - off between these two drawbacks. Consider the
transfer of a block of data. I.:sing simple programmed I/O, the processor is dedicated
to the task of I/0 and can move data ul a rather high rate.. at the cost of doing noth-
ing else. Interrupt 1/0 frees up the processor to some extent at the expense of the

7,5 1 DIRECT M WORY ACCESS 217

tP.

Interrupt
request

('3 Al)
Al
AZ
A3

INPUT A4
PORI' As

Atp
A7

C4
CS

82C55A
1111

112

M.:TN.:T
[43

PORT 114
115
1.16
R7

Cl

('2

CU ('7 C7

request

RU

R.1
K2
R3
R4 KEYBOARD

Shift
Control

Data read
Acknowledge

8(1
Sl

S2
S5

DISPLAY S4

Backspace
Clear

Dat.„1 ready
Acknowledge
Blanking
Clem- jr'' r

Figure 7.11 KcyboardiDit:play .1rticrfaci (0 82(..f).Li A

110 1ransil2r ratc. Nevertheless, both methods have an adverse impact on both
processor activity and 1/0 transfer rale.

When 1arge. volunie:s cif dalu 2irc kr Ile moved, a more efficient k.%21iniquc is
ruquitc:d: direct meinory access (DMA).

DMA Function

I)MA involves an additional module on the system bus, Iht: , I)M A module (Figure
7.12) is capable of mimicking the processor and. indeed, of taking over control of

218 a 'AFTER 7 / INPUT / OUTPUT

11-ic systcrn 1 . rorn the processor. It needs to do this to transfer data to and from mem-
ory over the. system bus. For this purpose, the DMA module must use the bus only
when the processor does not need it. or ii must force the processor to suspend oper-
ation lemporarily. 'tile fatter technique is more common and is referred to as c yde
Nieedirig, because the DMA module in effect steals a bus cycle.

When the processor wishes to read or write. a Mock of data, it issues a command
to the DMA module, by Ki,:ndirtg to the DMA module the following information;

• Whether a read or write is requesled, using the read or write control line
between the processor mid the DMA module

■ The address of the 110 device involved, communicated salt the data lines
• The starting location in mernor!,. , to read from or write to, communicated on

the data lines and stored by the DMA module in its addr4,:ss register

• The. number of words to he read or written, again communicated via the doto
li nes and stored in the data count register

The processor then continues with other work. It has delegated this 110 opcc.
ation to the DMA module. The DMA module transfers the entire block of data : one
word at a time, directly to or from memory, withoin going through the processor.
When the transfer is complcle. the DMA module sends an interrupt signal to she
processor, Thus. the processor is involved only at the beginning and end of the trans.
ter (Figure, 7,5c),

ef-erf:r al
erl!.
Yr+
1,1r.

Data
count

— 11{

Data Rocs 4-- 	 Data
register

Address lines

DMA request 41
DMA acknowledge

Interrupt 4—
Read

Write

Address;
mgiNier

l egit

Figury 7.12 'typical DMA Block Diagram

7.3 .1 DIRECT

limv

MEMORY ACCE'S 219

It
I•i Si n ci cycle

Processor
cycle

Processor
cycle

. Processor
cycle

Processor
cycle

Processor
cycle

Process., Fl -

cycle
 OP- 110-41---

Fetch
instruction

Decode
instruction

Fetch
operand

Execute
instruction

Store
result

Pr4a.L......,
interrupt

DMA interrupt
breakpoints breakpoint

Figure 7.0 DMA and Interrupt Breakpoints during an Instruction Cycle

Figure 7.13 shows where in the instruction cycle the procesSor may he sus-
pended. In each case, the processor is suspended just before it needs to use the bus,
The DMA module then transfers one word and returns control to the processor,
Note that this is nOt an interrupt; the processor does not save a context and do some-
thing else. Rather. the processor pauses for one bus cycle. The overall effect is to
cause the processor to execute more slowly, Nevertheless, for a multiple-word 110
transfer, DMA is far more efficient than inte rrupt -dri yen or programmed 1/0,

The DMA mechanism can he configured in a variety of ways. Some possibili-
ties are shown in Figure 7,14. 10 the first example, all modules share the same sys-
tem bus_ The DMA module, acting as a surrogate processor, uses programmed I/O
to exchange. data between memory and an 110 module through the DMA module,
This CUR figuration, while it may be inexpensive, is dearly inefficient. As with proces-
sor-controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number or required bus cycles can be cut substantially by integrating the
DMA and 110 functions. As Figure 7.14b indicates, this means dial there is a path
between the DMA module and one or more I/O modules that does not include the
system bus. .1 he DMA logic may actually be a part of ;in I/O module, or it may be
a separate module that controls one or more I/O modules. This concept can he
taken one step further by connecting 110 modules to the DMA module using an I/O
bus (Figure 7.14c). 'this reduces the number olliO interfaces in the DMA module
to one and provide:, for an easily expandable configuration. In all of these cases (Fig-
ures 7.14b and c). the system bus that the DMA. module shares with the processor
and memory is used by the DMA module only to exchange data with memory. The
exchange of data between the DMA and modules takes place off the system bus.

=11
••Eideoe*Seeforelea.13.

Nifl.ntifir:v DMA
Pr,:r2"-ferrer,' eS:1•31+32*:;:,

220 CHAPTEP. 7 / INPUT' / OULPUT

(a) Single-Ims, detactwd DMA

(I)) Singie-hus, integrated DMA-1.10

System buP.

htiN

0.„

(u) LIO hos

Figure 7.14 Alternative DMA Configurations

7.6 1/0 CHANNELS AND PROCESSORS

The Evolution of the 1/0 Function

computer "63,gems he ve evoived, there has been a pattern of in com-
piexity and sop.histication of individual components. Nowhere is this In ore evident
than in the 1.10 function. We] already wen pi.irt of thatevolution. The evoiu-

nary steps can mma &dm folic-Avg:

•

7.6. I/0 (11-1ANNELS AND PROCESSORS 221

I. The CPU directly controls a peripheral device. This is seen in simple micro-
processor-controlled devices,
A. controller or I/O module is added. The CPU uses programmed I/O without
interrupts. With this step, the CV(becomes somewhat divorced from the spe-
cific details of external device interfaces.

3, .l'he same configuration as in step 2 is used, but now inte]Tupnx arc employed.
The CPU need not spend lime waiting for an 1/0 operation to be performed,
increasing efficiency.

4, The I/O module is given direct aceesz., to memory via DMA. can now move

a block of data ICT or from memory without involving the CPU, except at the
beginning and end of the transfer.

5. The 1/0 module is enhanced to become a processor in its own right,.with a spe-
cialized instruction ;,1c1 tailored for 1.10. The CPU directs the processor to
execute an I/O program in memory, The 110 processor fetches and executes
these instructions without .CPU intervention. This allows !he CPU to specify a
sequence of LII) ad ivi ties and to be interrupted only when the entire sequence
has been performed.

6. The I/O module has a local memory of its own and is, in fact. a computer in its
own right, With this architecture., a large set of I/O devices can be controlled,
with mipirnal CPU involvement. A common use for such an arch ileei tire has
been to control communication with interactive terminals. Hie I/O processor
takes care of most of the lacks; involved in controlling the terminals.

As one proceeds along this evoluiionary path .. more and more of the I/O func-
tion is performed wilho w. CPU involvement. The CPI! is increasingly relieved of
I.10-related improving performance. h the Last two steps (5-6), a major
change occurs with the introduction of ihe 0.311.Cept of an I/O module capable of exe-
cuting a program. For step 5, I he I/0 module is often referred Lo as an I/O channel.
For step 6. the term PO processor is often used. However, both terms are Lm occa-
sion applied toy both situations. In what follows, we will use the term /.. 10 channel,

Characteristics of If0 Channels
the 1/0 channel represents an extension of the DMA concept. An I/O channel has
the ability to execulc I10 instructions, which gives it complete control over I/O oper-
ations. In a computer s!,•stein with such devices, the CPU does not execute I/O
instructions. Such instructions are stored in main memory to be executed by a spe-
eial-pu•posc processor in the I/O channel itself. Thus, the CP(initiates an I/O
transfer by instructing the I/O channel to execute a program in memory. The pro-
gram will specify the device or devices, the area or areas of memory ['or storage,
priority, and actions to be taken for [(Alain error conditions. the 1/0 channel fol-
lows these instructions and controls the data transfer.

Two types or I/O channels are common. as illustrated in Figure 7.13. A selee-
oof uheumel controls multiple high-speed devices and. at any one Lime, is dedicated
to the transfer of data with one of those devices, Thus, die I/O channel selects one
device and effects. the data transfer. Each device. or a small set of devices, is han-
dled by a coyuroller, or 1/0 module, that is much like the I10 modules we have been

Control signal
path to CPU -1L...1 . - I/0

controller`

110
controller

rum troll vr

Data and
address channel
Lo main memory

Multi-
plex•

channel

110
controller

222 CHAPTER 7 / INPUT / OUTPUT

Data and
addreis chalnIti
to main mernory

Selector
channel

Control signal
path In UPC

I/O
controller

T/0
controller

• • I

•

••

ta) Selector

{h1 Multiplexor

Figure 7.15 1/0 Channel Architecture

discussing. Thus, the 1rO channel serves in place of the CPU in controlling these ISO
controllers, A multiplexor channel can handle 1.10 with multiple devices at the same
time, For low-speed devices, a byte multiplexor accepts or transmits characters as
fast as possible to multiple. devices.HFT example, the resultant character stream from
three devices with different rates and individual streams A, A 2A,A, B I B,13 ; 144

and C I C,C.,S'4 ... might be A i B,C,AC-A 3 B,C,A4, and so on. For high-speed
devices, a block multiplexor interleaves blocks of data from several devices,

THE EXTERNAL. INTER .FACE: FIREWIRE AND INHNITIA \ I 223

7.7 THE EXTERNAL INTERFACE: FIREWIRE AND INFINIBAND

Types of Inter6ces
. 1 . 11.c interface to a peripheral from an module must be tailored to the nature and
operation of the peripheral. One, major characteristic of the. interface is whether it
is serial or parallel (Figure 7.16). In a parallel interface, there are multiple lines con-
necting the I/O module and the peripheral, and multiple hits are transferred simul-
taneously. just as all of the bits of a word are transferred simultaneously over the
data bus. In a serial interface, there is only one line used to transmit data, and bits
must be transmitted one at a time. A parallel interface has traditionally been used
for higher-speed peripherals, such as tape and disk, while the serial interlace has tra-
ditionally been used for printers and terminals. With a new generation of high-speed
serial interfaces. parallel interfaces are becoming much less.common,

In either case, the module must engage in a dialogue with the peripheral.
In general terms, the dialogue for a write operation is as follows:

L. The ID module sends a control signal requesting permi.ssion to send data.
2. The peripheral acknowledges the request.
3. I he module transfers data (one word or a block depending on the

pc riphera I).
4. The peripheral acknowledges receipt of the data.

A read operation proceeds
Key to the operation of an I/O module is an internal hurler that can store data

being passed between the peripheral and the rest of the system. This buffer allows

110 module

To system
bus

lb system II ' .1 I I
bus Rul'fvr

1b1 Seriul I/O

Figure 7.16 Parallel and Serial

Tu
peripheral

To
peripheral

224 CI !AFTER / INPILrf / OUTPUT

the module to compensate for the differences in speed between the system but
and its external lines.

Point-to-Point and Multipoint Configurations

The connection between an 1/0 module in a computer system and external deNims
can be either point-to-point or multipoint. A point-to-point interface provides ..
dedicated line between the I10 module and the external device. On small systems
(VCs, workstations), typical point-to-point links include those to the keyboard.
printer, and external modem. A typical exampIC of such an interface is the EiA-n
specification (see [STAUXI] for ti description).

Of increasing importance are multipoint external inierfaces, used to supporl
external mass storage devices (disk and tape drives) and multimedia devices (CD•
ROMs, video, audio), These mullipoirit interfaces are in effect external bums. anc
they exhibit the same type of logic as the buses discussed in Chapter 3. In this sec-
Li on, we look at two key examples: Fire,Wire and I nfiniBand.

FireWire Serial Bus
With processor speeds reaching 0Hz range and storage . devices holding multiple
gigabits, the L1O demands for personal computers, workstations, and servers an
formidable, Yet the high-speed channel technologies that have been developed
for mainframe and supercomputer systems are loo expensive and bulky for use on
these smaller systems. Accordingly, the has been great interest in developing a
high-speed alternative lo SCSI and tither small-system LIO interfaces.. The result is
the IEEE standard 1194, for a high-performance serial bus, commonly known as
FireWire.

FireWire has a number of advantages over older I10 interfaces. It is very high
speed,]ow cost. and easy to implement. In fact, FireWire is finding lavor not only
for computer systems, but also in consumer electronics products, such as digital cam-
eras. VC'Rs, and televisions. In these products. FireWire is used to transport video
i mages, which are increasingly coming from digitized sources.

One of the sircngths of i.he FireVv'ire interface is that it uses serial transmis-
sion (hit at a lime) rather than parallel. Parallel inlerfaccs, such as SCSI, require
more wires, which means wider, more expensive cables and wider, more elm-
sive connectors with more pins to bend or break. A cable with more wires requires
shielding to prevent electrical interference between the wires. Also, with a parallel
interface, synchronization between wires becomes a requirement, a problem that
gets worse with increased cable length-

In addition, compuiers are getting physically smaller even As they expand in
computing power and needs. Handheld and pocket-siv.c computers have little
room for connectors yet need high data raLes Lo handle images and video,

The intent of FireWire is to provide a single I10 interface with a simple con-
nector that can handle numerous devices through a single port, so that the mouse,
laser printer, external disk drive, sound. and local area network hookups can be
replaced with this single conconnector The connector is inspired by the one used in the
Nintendo Gameboy. I i is so convenient that the user can reach behind the machine
and plus it in without Looking.

1
I I I

Printer

Li kTrau

CD-ROM

I
camera

disk

SeallIOT

7.7 / 17: X TI-:R INTERFACE: FIREWIRE. AND iNTINTBAND 225

Figure 7.17 Simple EircWire Configuration

FireWire Configurations

FireWi re uses a daisy-chain configuration, with up to 63 devices connecLcd off
a single port. Moreover, up log 1022 FireWire buses can he in1erconnucted using
bridges, enabling a system to support as mani,. periphera Is as required.

FireWire provides for what is known as hoi plugging, which makes it possible
to connect and disconnect periphern Is without having to power the computer sys-
tem down or reconfigure the system, Also, FireWire provides for automatic config-
uration: it is not necessany. manually lo set device fas or to be concerned W ith the

relative position of devices. Figure. 7. t 7 shows a simple FireWire configuration. With
FireWire, there are no tunurmi kills. and the system automatimIly performs a con-
figuration function Lo assign addresses. Also note lhal FircWire bus need not be
a so-id cLisy chain. Rather, a tree-structured configuration is possible.

Au important feature of the FireWire standard is that it specifies a set of three
layers of protocols to standardize the way in which the host system interacts with
the peripheral devices over the serial bus. Figure 7.18 itlu.strates this stack. The three
layers of the stack are as follows:

• Physical layer: Defines the transmission media that are permissible under
FireWire and the electrical and signaling characteristics of each

• Link layer: Describes the transmission of data in the packets

• Transaction layer: Defines a request-response protocol that hides the lower-
layer details of FireWire from applications

PhyNical Laker

The physical layer of FireWire specifies several alternative. transmission
media and their connectors, with different physical and data transmission proper-
ties. Data rates from 25 to 400 lsilbps are defined. The physical laver converts
binary Jain into electrical signals for various phy;,lical media. This layer also
provides the arbitration service that guarantees that only one device at a time will
transmit data

226 CHAPTER 7 / INPUT / OUTPUT

Two forms of arbitration are provided by FireWire, The simplest form is based
on the tree-structured a rrallRerenl of the nodes on a FireWire bus, mentioned ear-
lier. A special case of this structure is a linear daisy chain. The physical layer cap
tains logic that allows all the attached devices to configure themselves so that one
node. is designated as the root of the tree and other nodes are organized in a par-
ent/child relationship forming the tree topolo*.r. Once this configuration is cgab-
fished, the root node acts as a central arbiter and processes requests for bus access
in a first-conic-first-served fashion. In the case of simultaneous requests, the nede
with the highest natural priority is granted access. The natural priority is determined
by which competing node is closest to the root and. among those of equal distance
from the root, which one has the lower ID number.

The itforementioned arbitration method is supplemented by two adlitional
functions: fair arbitration and urgent arbitration. With fairness arbitration. time
on the bus is organized into fairness itervals. Al the beginning of an interval.
each node sets an arbitration_enable flag. During the interval, each node may com-
pete for 1-Pus access. Once a node has gained access to the. bus, it resets its arbitra-
tion _enable tlag and may not again compete for fair access during this interval. This
scheme makes the arbitration more fair. in that it prevents one or more busy high-
priority devices from monopolizing the bus.

Transaction layer
(read, write, lock)

Se
ri

al
 b

us
 m

an
ag

em
en

t

Le

Asynchronous

[Kit klA I I'd HAM i

Isochronous

Link layer

radon rutiver Cyril! CORI rol

Link layer

uhitro liun I L DAL! reNy114:11 I EncodeidoNek]

[t7itimo.:14m,/mctij Ciiimucibm aide I 1 levels

figure 7.18 1 ,•ii.c Wirc Protocol Stack

7-7 THE EXTERNAL INTERFACE F1REWIRE AND INFINIEIAND 227

In addition to the fairness scheme, some LkviQc.s may be configured as having
urgent priority. Such nodes may gain control of the bus multiple time during a fair-
ness interval- In CNScnce, a counter is used at each high-priority node that enables
the high-priority nodes to control 75% of the availabre bus time. For each packet
that is transmitted as nonurgent, three packets may Inc transmitted a6. urgent.

Litrk Layer

The link layer defines the transmission of data in the form of packets. Two
types of transmission are k.upported:

■ Asynchronous: A variable amount of data and several bytes of transaction
layer infOritlai t,re 1nm:slurred as a packet to an explicit address and an
acknowledgment is returned,

• Isochronnus: A variable aMoulfil of data is transferred in a sequence of fixed-
size. packets transmitted at regular intervals. This flPrin crf transmission uses
simplified addressing and no acknowledgment.

Asynchronous transmission is used by data that have no fixed data rate require-
ments. Both the fiiirarfaiLTI [ion and urgent arbitration schemes may he used for asyn-
chronous transmission. The default method is fair arbitration. Devices that desire a
substaMial Fraction of the bus capacity or have severe .141.1xnry requirements use the
urgent arbitration method. For example, a high-speed real-time data eoltection node
may use urgent arbitration when critical data buffers are more than half full.

Figure 7.19a depicts a typic-at asynchronous transaction. The process of deliver-
ing a single packet is called a subaction. The subaction consists of five lime periods!

▪ Arbitration sequence: This is the enchange of signals required to give one
device control of the bus.

■ racket transmission: Every packet includes a header containing the source and
desiinalion Ids. The header also contains packet type information, a CRC
(cyclic redundancy check) checksum, and parameter information for the spe-
cific packet type. A packet may also include a data block consisting of user
data and another CRC.

• Acknowledginent gap: l'his is the time delay for the destination to receive and
decode a packet and generate an acknowkdgment,

▪ Acknowledgment; 'The recipient of the packet returns an acknowledgment
packet with a code indicating the action taken by the recipient.

■ Subaction gap: Thk is an enforced idle period to ensure that other nodes on
the. bus do not begin arbitrating before the acknowledgment packet has been
transmitt ed.

AL the time that the acknowledgment is sent, the acknowledging node is in
control of the bus. Therefore, if the exchange is a request/response interaction
between two nodes : then the responding node can immediately transmit the re-
sponse packet without going through an arbitration sequence (Figure 7. L9b).

For devices that regularly generate or consume data, such as digital sound or
video, isochronoos access is provided. This method guarantees that data can be
delivered within a specified latency with a guaranteed data rate.

A rh 11=111 Aek
gal)

Ack Packet

action
gap

228 CHAPTER 7 / INPUT / oulTur

To accommodate a mixed traffic load of isochronous and asynchronous data
sources, one node is designated as cycle master_ Periodically. the cycle master issues
a cycle_start packet, This signals all other nodes that an isochronous cycle has
begun. During this cvelc, Only isochronous packets may be sent (Figure 7.19c). Each
isochronous data source arbitrates for bus access. The winning node immediately
transmits a packet. There is no acknowledgment to this packet, and so other
isochronous data sources immediately arbitrate for the bus after the previous iso-
chronous packet is transmitted. The result is that there is a small gap between the
transmission of one packet and the arbitration period for the next packet, dictated
by delays on the bus. This delay, referred to as the isochronous gap, is smaller than
a subaction gap.

After all isochronous sources have transmitted, the bus will remain idle long
enough for a subaction gap to occur. This is the signal to the asynchronous sources
that they may now compete for has access. Asynchronous sources may then use the.
bus until the beginning of the next isochronous cycle.

isochronous packets are labeled with 8-hit channel numbers that are previ-
ously assigned by a dialogue between the two nodes that arc to exchange isochro-
nous data. The header. which is shorter than that For asynchronous packets, also
includes a data length field and a header CRC.

subaction I: Request Subaetton 2: Response
Sub- Sub, sub-

gap Arh Packet
l action

Packet .
1 Ad; action pution

gap

Ack
A gap 1111 I gap gap

Time
{Ito Example as:vnehronou_s subaction

subaction 1: Request subaction 2: Response
sub- Sub-

action

Ack pi action
gaP

 bap

(13) Concatenated asynchronous suhartiuns

First channel Second channel Third channel

l ures
" P

bud bola 111
gaP racket _I PP Arb 111=1 gal) Arh Packet Ack gun

(c) F„xanipk isochronous subactions

Figure 7.19 FireWire Subactions
I t

7.7 1 THE EXTERNAL [N I'EP-FACE! EIREWIRE ANL) INFINTTIAND 229

lnfiniBand

InfiniBand is a recent 110 specification aimed at the high-end server market,' The
first version of the specification was released in early 2.[)(1t and has attracted nurner-
()UN vendors. The standard describes an architecture and specifications for data
flow between processors and inteliigent I/O devices, InfinilIand is intended lo
replace the ?CI bus in servers, to provide greater capacity, increased expandability,
and enhanced flexibility in server design. In essence, InfiniBand enables servers,
remote storage. and other network devices to be attached in a central fabric of
switches and links, The switch-based architecture can connect up to 64,000 servers,
storage systems, and networking devices,

Infiniband Architecture
Although PCI is a reliable interconnect method and continues to provide

increased speeds, up to 1 Gbps, it is a limited architecture compared to In finiband.
With InfiniBand, it is not necessary to have the basic I/O interface hardware inside
the server chassis. With infinilIand, remote storage, Del working, and connections
between servers arc accomplished by altaching all devices to a central fabric of
switches and]inks. Removing I/O from ihc server chassis allows greater server den-
sitt allows for a more 11,:xibie arid scakiNe data center, as independent nodes
may be added as necked,

Lin likc Pek which measures distances from a CPU motherboard in centime-
ters, I afiniBand's channel design enables 1/0 devices to be placed up to 17 ln away
from the server using copper. up to 31111 in using mid ti mode optical fiber. and up +to
10 km with single-mode optical fiber. Transmission rates has high as 30 Gbps can
he achieved.

Figure 7,20 illustrates the InfiniBand architecture. The key elements are as

follows;

* Host channel adapter (HCA): Instead of a number ,,r pfa slots. a typical
server needs a single interface to an HCA that links the server to an Infini-
Band switch, The HCA attaches lo the server at a memory controller, which
has access to the system bus and controls traffic between the processor and
memory and between the FICA arid memory. The !ICA uses direct-memory
access (I)Iv(A) to read and write memory,

• Target channel adapter (TCA): A TCA is used to connect storage systems,
routers. and other peripheral devices to an InfiniBand

• lnimiliond switch: A switch provides pains-to-point physical connections to a
arteL of devices and switches traffic from one link to another. Servers and

devices commliniCiJ Le ihrough their adapters. via the switch. The switch's intel-
li gence manages the linkage without inlerruptirux the servers' operation.

• Links: The link between a switch and a channel adapter, or between. two switches-

4 1hilini.band is thc rusult col Lis roor r of two corr3pclin2 projucIF: Future U0 I h.rickQLI Ivy risco, HP.
Compnti, and 1[310) art] Next CTCLIC78 1 100 1. 0 i*,..121oped by Intel and hacloz.d by vanisher 4.)C ocher
cotnrtanisk

at

RCA = host channel adapter
'WA target channel adapter

230 CHAPTER 7 / INPUT / OUTPUT

Figure 7.20 infinitiand Switch Fabric

• Subnet: A subnet consists of one or more interconnected switches plus the
links that connect other devices to those switches. Figure 7.20 shows a subnet
with a single switch, but more complex subnets arc required when a large
number of devices are to be interconnected. Subneis allow administrators to
confine broadcast and multicast transmissions within the subnet.

• Router: Connects HIM Rand subnets, or connects an Infiniband switch to a net-
work, such as a local area network, wide area network, or storage area network.

The channel adapters are intelligent devices that handle all 1/0 functions with-
out the need to interrupt the server's processor. For example, there is a control pro-
tocol by which a switch discovers all I'CAs and FCAs in the fabric and assigns
logical addresses to each. 'Ibis is done without processor i nvolvement.

The I n finiband switch temporarily opens up channels between the processor
and devices with which it is communicating. The devices do not have to share. a
channel's capacity. as is the ease with a bus-based design such as PCI. which requires
that devices arbitrate for access to the processor. Additional devices are added to
the configuration by hooking up each device's TCA to the switch.

InfiniBand Operation

Each physical link between a switch and an attached interface (1-ICA or WA)
can he support up to logical channels, called virtual lanes. One lane is reserved
for fabric management and the other lanes for data transport, Data are sent in the

7.7 / THE EXTERNAL INTBRFACF.: F1REWIRE AND INFINIBAND 231

form a stream of packets, with each packet containing some portion of the total
data to be transferred, plus addre ssing and control information. Thus, a set of com-
munications protocols are used lu manage the transfer of data, A virtual lane is tem-
porarily dedicated to the transfer of data from on,.. end node to another over the
1nCiniBand fabric. The InfiniBand swilch maps Inatic horn an incoming lane to an
outgoing lane to route the Li M41 between the desired clad points.

Figure 721 indicates the logical structure used lo support exchanges over
tnrinikand. Ter account for the fact that some deviccs can send data faster than 'tem-
porarily buffers excess outbound and inbound data. The queues can tie located in
the channel adapter or in I he attached deyice'.s memory. A separate pair of queues
is used fot each virtual lane, The host ILL se.s these queues in the following fashion.
The host places a transaction, called .a work queue entry (WOE) into either the
send or receive queue. of the queue pair. The two most imporianl WQLs are.SEND
and RECF I VE. Bear a SEND operation, the WOE specifies a Hock of data in the
device's memory space for the hardware lo send to the destination. A RECH i'v
WOE specifies where the hardware is ti place data received from rancrther dcviec

when that cons.urner executes a SEND operation. 'The channel adapter processes
each posted WOE in the proper prioritized order and gclierite, a completion queue
entry (COE) to indicate the completion status.

Figure 7,21 also indicates that a layered protocol architecture is used, consist-
ing ()I' four lavers!

I Physical: The physical-laver specification defines three]ink speeds (1X. 4X,
and 12X) giving transmission rates of 25. I [1, and 30 (ihps, respectively {Tableh
7.4). The physical layer also defines the physical media, including copper and

optical fiber,
• Link: This layer defines the basic packet slructure used to exchange data.

including an addressing scheme that assigns a unique link address to every
device in a subnet. This level includes the. Logic for setting up viritiai lanes and
For .swi tching data through switches from source lo destination within a subnet.
The packet structure includes an error de14,:ei ion code to provide reliability.

• Network: The network laver routes packets between different]nfiniBand subnets.

• Transport: The transport layer provides reliability mechanism for end-to-end
transfer of packets across one nr more subnets.

Cable 7.4

Link

1- wide

iafiniR anti riks and Data Throughput Ratc.

Sinai rate Usable capacity (80'...6 I Effective data throughput
runidirtstionail or si gnal rate) (scud + receive) ,

2 (illps (250 !clips) (250 + 251.1) 2.5 Gbps

lu Ghps ii Gbps (1 Chips) (1 F I) OBps

30 °bps 2-1 tlims t3 GBps) (3 . -I • .3) Oho

QP

Send Recei%

Pori

pier

Transport layer

Network layer

Link layer

Physical layer

WQE — work eve tte c.lcinent

Client pilicess

rrEllTeRl.

WQE

Transport tengiode

PAC 1,.. CL

Poet

t P1-11.sicl Link

Target
channel 1,1' QE

IBA operations
QP

4113.1.. pareket41.

Transaclions
Ills opetation.c .1.

Sers-2r prace.v.

FBA pitchk.t.,

Packet relay
A

racket

Pori

Physical link
Fabric

ik

acket

I
Send Receive

Transpon env:me

= L{Frriphttion (111;!11:1 entry
OP = Lii.itur pair

Figure 7.21 InfiniBand Communication Protocol Stack

L— L L. ILE.1.4.■•••■■1■1■.■■■••■•■MANIN- Ia. a aliMalililiIIIMMEIMEME1111.1.111111.M1

K Ey TERms, REVIEW Qi.f.F:S'I icli Ns. AND PROBLEMS 233
11

RECOMMENDED READING AND WEB SITES
;A:Prei 10:0

- Fref:IV,
arr. aar'

A good discussion orI ntel 1. 10 modules and arcliitt'ciu f Q., including the 82C5gA and 82C55A,
can I7t ['mind in I fiREV001.

HroWir,2 is covered in great &tail in [ANDE98]. [WICK97] and [11101\4001 provide a
ciimeise twerviews of FireWirc. .

Inriniannd is covered in great de(ail in [1-71.]TR01 .1. I KAGA011providcs a concise overvic ...v.

ANDE98 Anderson, FireWirr System A t•arlre. Reading, MA: Addii.on-Wesley.

49'.K
mo-xon Brey, B. The I well N't icro 808.0.18066, 8018618P I 88, M.F22.56. SOPA

80486, Pen, hi.F?1, Pent PM um? Prn r!0.1.2 Proc essom Upper Saddle River, NJ;
Prentice Halt. 2001.1,

FUTRO1 Futral. W. IP.107 ifkold Arch:ow...rem Duvefopenc frx wmr e jilro:inent. Hillsbori
OR: Intel Pntss, 2,1101.

KAGA.01 Kagan, M. - infinif3arid; CPutsidi2 the lox Design." Communiciaimiq
Symon .Suim:fni her 200 L I'vrorvr .,csdinag.com)

THO111011 niuMpSolk, D. "1 KEE 1394; Changing tIi Way We Do Multitnedia Comirmni-
calitim," itimedia, April-June '2A)r).

WICK97 Wickelgren, 1. "The Facts About FircWii ." IEEE Sp cc? Imo .Apfil 1997.

Reu.otriniendd Web Sites:

• TN filmic Mt; ' is a Technical Corranilitl4 411 the National C'urninittte oii rnfor-

Illation Technology Standards: .,.111E1 is responsible .14.1 lowv:r-lov61 interfaces. Its princi-
pill work is the. Small Computer Sy.itein Int e rface (SCSI).

• 094 Trade Assodation: Includet, information and vendor pointers on
FireWire.

• Infinibnod Ira & Association: Includes technical. information and vcndor pointers On
Infiniband.

7.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

st{ta
direct nicitiory ...i cct!ss. I I }P,.1...\.)
FircWire

interrupt driven 110

1/0 cliarmoi
110 coinniand
11 /0 !nodule
I/O proc,2;qor
isolated I10
;;emery-niappcd 110

nuiliipti..2:tor.cha LIM!

1/0
peripheral de.vicc.
p rogranarric.d I/O
k.electoi chainiel
serial 110

234 CHAPTER 7 / INPUT / 01.1 MUTT

Review Questions
7.1 List three broad classifications of external. or peripheral, devices.

7.2 What is the International Reference. Alphabet?
73 What are the major functions of an module?

7.4 List and briefly define three techniques for performing I/O.
7.5 What is the difference ber.veen memory-mapped I/O and 'isolated IiO'l

7.6 When a device interrupt occurs, how does the processor determine which Linda
issued the interrupt?

7.7 When a DMA module takes control of a bus, and while it retains control of the hi.
What does the processor do?

Problems

7.1 In Section 7.3, one advantage and One disadvantage of memory-mapped I/O. comp:TI
with isolated I/O. were listed. List two more advantages and two more disadvaara.o.

7.2 In virtually all systems that include DMA modules. DMA access to main memoiv
given higher priority than CPI: access to main memory. Why?

7.3 Consider a disk systern with 960 512-byte sectors per track and assume the disk
at 3600 r pm. A processor reads one sector from the disk using interrupt-d riven
with I'm:. interrupt per byte. If it takes 2.5 (I; to process each interrupt, what perccni
age of the time will the processor spend handling 110 (disregard seek time)?

7.4 Repeat Problem 7.3 using DMA. and assume one interrupt per sector.
7.5 A DMA module is transferring characters to memory using cycle stealing, from a

device transmitting at 9600 bps_ 'The processor is fetching instructions at the rate ci
1 million instructions per second (1 MIPS), By how much will the processor bestowed
down due to the DMA activity?

7.6 A 32-bit computer has rwo selector channels and one multiplexor channel. Each selw
for channel supports two magnetic disk and two magnetic tape units. The multiplexor
channel has two lino printers. two card readers, and 10 VDT terminals connectedly
it. Assume the following transfer rates:

Disk drive 800 '<Bytes's
Magnetic tape drive 200 KBylesis

6.6 '<Bytes's Line printer
Card reader 1.2 KBytesis
VDT 1 I<Bylesis

Estimate the maximum aggregate I70 transfer rate in this system.
13 A computer consists of a processor and an 110 device D connected to main MI

ory M via a shared bus with a data bus width of one word. The processor can ex&
cute ki maximum of 10' instructions per second. An average instruction requirofive
machine cycles, three of which use the memory bus. A memory read or write oper-
ation uses one machine cycle. Suppose that the processor is continuously execunn3
"background - programs that require 95% of its instruction execution rate but not
any instructions. Assume that one processor cycle equals one bus cycle. Now •

• suppose the. device is to be used to transfer very large blocks of data betwan
M and D,
a. if programmed is used and each one-word I'D transfer requires the promsw

to execute two instructions. estimate the maximum I/O data-transfer rate, in wort
per second, possible through D.

b. Estimate the same rate if DMA is used.

7.9 / KEY TERMS ; REVIEW QUESTIONS, AND PROBLEIVIS 235

7.8 A data source produces 7-bit IRA characters, to each of which is appended a parity
bit. Derive an expression feet the maximum effective data rale (rate of IRA data hits)
over an k-bps line for the following:
a. Asynchronous transmission, with u I.5 - unit stop bit

b. Bit-synchronous transmission, with a frame consisting of 48 control hits and 128
information hits
Same as (b), with a 1024—bit information field

d. Character synchronous. with 9 control characters per fraMe and I information
character'

e. Same as (d), with 12 information characters
7.9 The following problem is based on a suggested illustration of 110 mechanisms in

E CKE 90] (Figure 7.22):
Two boys are playing on either side of a high fence, One of the boys, named Apple-
server. has a beautiful apple tree loaded with delicious apples growing on his side of
the fence; he is happy to supply apples to the other boy whenever needed. The other
boy, named Apple-eater, loves to ez1(apples but has none. In Fact. he must eat his
apples at a fixed rate (an apple a da• k vups the doctor away). If he eats them faster
than that rate. he will get sick. If he eats them slower, he will suffer malnutrition. Nei-
ther boy can talk. and so the problem i4 to get apples from Apple-server to Apples-
eater at the comet. rate.
u. Assume that there is an alarm clock sitting on lop of the fence and that the clock

can have multiple alarm settings. How can the clock he used to solve the problem?
Draw a timing diagram to illustrate the solution.

b. Now assume that there is no alarm clock. Instead Apple-cater has a flag that he
can wave whenever he needs an apple, Suggest a new solution. Would it he help-
ful for Apple-server also to have a flag? if so. incorporate this into the solution,
Discuss the drawhacks of this approach.

e. Now lake away the flag and a'—unie the existence of a long piece of string. Suggest
a solution that is superior to that of (. 1-9 using the string.

Apple-eater Apple-server

Figure 7.22 An Apple Problem

236 CHAPTER 7 / INPUT / OUTPUT

7.10 As:.4tinic that one 16-hit and two 8-bit microprocessors M to he interfaucci to a
te i bus. The following details are given:
1. Ail microprocessors havc the hardware features necessary for any type of a

transfer; prugraninied PC, interrupt-driven 110. and DrvIA.
2. Ail microprocessors bave 16-bit addrns bus.
1 'iwo memory boards, each of 64- KByt Qapacity. are interfaced with ilk': hus.

designer wishes to use a shared mcmcir... that is as large as possible.
4. The system. bus supports a maximum of four interrupt lines And one Dlie1A

Make .kiny other assumptions nt...cessary, and
i ye the. Systrm bus specifications atems of number and types of lines.

b. Describe possible protocol for communicating on tha ns. i.e., read:vent
intcrrupt, and DMA sequences.

c. Explain how the aforerrictitioned devices k tr interfaccd Lo the s!..rste m bus.
SourcT; IA1.EX93]

CHAPTER

OPERATING SYSTEM
SUPPORT

8.1 Operating System Overview

Operating System 0*.ctivcs l'unciimis.
'r!..Des of Operating Systems

Schedilliog

1,ong-Tcrin Scheduling
Mediuni-Terrn Scheduling
Short-Term Sched U ling

8.3 Memory Management

Swapping
Partitioning
Paging
Virtual Memory
Translation Lookaside Buffer

tnerimean

8.4 Pentium H and PowerPC Memory Management

Pentium II :Viernory Management kinrdwarc
PowurPC rvJemory-PvianagurneTat Hardware

8.5 Recommended Reading and Wel) Sites

8.6 Key Terms, Review Questions, and Problems

Key Terms
Review Q e5;0.cyri.!.,
Ptoblems

238 CHAPTER 8 / OPERATING SYSTEM SUPPORT

KEN POINTS

♦ The operating system ((:).S) is the software that controls the execution of pro-
grams on a prOcussor and that manages the processor's resources. A number
of the functions performed by the OS, including process scheduling anti mem-
ory management, can only he perfOrmed efficiently and rapidly if the proce - -
sor hardware includes capabilities to support the OS. Virtually all processors
include such elipa bilities to a greater or lesser extent. including virtual mem-
ory management hardware and process management hardware. The hardware
includes special-purpose registers and buffers, as well as circuitry to perform,
basic resource management tasks.

• One of the most important functions of the OS is the scheduling of processes,
or tasks. The. OS determines which process should run at any given time. Typ-
ically, the hardware will interrupt a running process tone time to time to
enable the OS to make a new scheduling decision so as to share processor time
fairly among a number of processes.

♦ Another important
OS

 function is Memory management. Most contemporary
operating systems include a virtual memory capability, which has two bene-
fits: {1) A process can run in main memory without all of the instructions and
data for that program being present. in main memory at one lime, and (2) the
total memory space available to a program may far exceed the actual main
memory on the system, Although memory immagemern is performed in soft-
ware-, the OS relies on hardware support in the processor, including paging
and segmentation hardware.

- . lthough the focus of this text is computer hardware, there is one area ofsoft- A
,,,,, :ncagoenslpt uhetecro'smoppuetreartsintges:rt ee ensl : pTihoe..

. . . : \01 t re a tt ihnagi systems !so ahper oagdrdarme s si he da i:
vides services Ion programmers, and schedules the execution of other programs.
Some understanding of operating systems is essential to appreciate the mechanisms
by which the CPU controls the computer system. In particular, explanations of
the effect of interrupts and of the management of the memory hierarchy are hest
explained in this context.

The chapter begins with an overview and brief history of operating systems.
The hulk of the chapter looks al the Iwo operating system functions that are most
relevant to the study of computer organization and architecture: scheduling and
memory management.

8.1 OPERATING SYSTEM OVERVIEW

Operating System Objectives and Functions

An operating system is a program that controls the execution of application pro-
grams and acts as an interface between the user of a computer and the computer
hardware. It can he thought of as having two objectives:

/—
Progilirugoet

L'ud
user

re re . 4'4

Application programs

Utilities

4)perritil;\
s7.le stern

desilgrieLir

0i:waiting system

Computer hardware

8.1 opErp.,,A LING sysThm ovERviErw 239

Figure S.1 I ,aver.3 and Views of Li Corripatcl - System

• Convenience: An operating system makes a computer more convenient to use.
• Efficiency: An operating system allows the computer qystem resources to be

used in an efficient manner.

Let us s examine these two aspects of an operating system in turn.

The Operating System us u UseriCtimputer Interface

The hardware and software used in providing applications to a user can he
viewed in a layered or hierarchical Cashion, as depicted in Figure 8.1, The user or
those applieal ions. the end user, generally is not concerned with the computer's
3relnieeture. Thus the end user views a computer system in Lerms of an application.
That application can be expressed in a programming ianguage and is developed by
an application programmer. IC one were to develop an application program as a set
or T iToce,sor instructions that is completely responsible for writrolling the computer
hardware, one would be faced with an overwhelmingly complex task. To ease this
task, a set of sysiems pre gnim:s is provided. Some of these programs are recrrod to
as utilities. 1 hesu implement frequently used func t ions that :mist in program cre-
ation, the management of files. and the control or 1. 10 devices. A programmer will
make use of these facilities in developing an application, and the application, while
it is running, will invoke L he utilities to perform certain functions. The most impor-
tant system program is the operating system. The op erating system masks the details

240 CHAPTER 8 OPERATING SYSTEM SUPPORT

of the hardware from the programmer and provides the programmer with a conve-
nient interface For using the system. It acts as mediator, making it easier for Ihe pro•
grammer and for application programs to access ancl I hose facilities and surviees.

Briefly, the operatic g system typically pr4 F'.' i dCh SCTVI CCS in the following areas:

• Program creation: The operating system provides a variety of facilities and
services. such as editors and debuggers, to assist the programmer in creating
programs. Typically, these services are in the form of utility programs that ar e
not actually part of the operating system but are acccssible through the uper-
ating system.

a Program execution: A number of tasks need to be performed to execute ¢F pro.
gram. Instructions and data must be loaded ink) main memory, devices
and files must be initialized, and other resources must be prepared. The oper•
acting system handles all of this for the user.

• Access in 1.10 devices, kach I O device requires its own peculiar set of instrue•
tions or control signals for operation. The operating system takes care of the.
details so that the programmer can think in terms. of simple- reads and writes.

g Controlled access to files! In the case of files, control must include an under-
standing of not only the nature of the 1/0 device (disk drive. tape drive)
but also the file format on Ihe storage medium. Again, the operating system
worries about Ihe details. Farther, in the a system with multiple simul-
taneous users, the operating system can provide protection mechanisms to
control access to the files.

• System access: In the case of a shared or public system, the operating system
controls access to the system as a whole and to specific system resources, The
access function must provide protection of resources and data from unautho-
ri•.cd users and roust resolve conflicts •or resource contention.

• Error detection and response: A variety of errors can occur while a computer
system is running, These include internal and external hardware errors, such
as a memory error, or a device failure or malfunction; and various software
errors, such as arithmetic overflow, attempt to access forbidden memory loca•
Lion, and inability of the operating system to grant the request or an applic,a•
tion. In each cwic, the operating system must make the response that clears the
error condition with the least impact on running applications. The response
may range from ending the program that caused the error, co retrying the
operation. to simply reporting the error to the application,

■ Accounting: A good operating system will collect usage statistics for various
resources and monitor performance parameters such as response time. On anp
system, this information is useful in anticipating the need for future enhance-
ments and in tuning the system to improve performance. On a multiuser sys-
tem. the information can be used for billing purposes.

The Operating System! as Resource Manager
A wmputer is a set of resources for the movement, storage, and processing of

data and for the control of these functions. The operating system is responsible for
managing these resources.

8.1 / OPERATING SYSTEM OVERVIEW 241

Can we say that it is the operating system that controls the movement, storage.
and processing of data? From one point of view, the answer is yes: Hy managing the
computer's resources, the operating system is in control of the computer's basic.
functions. But this control is exercised in a curious way. Normally, we think of a con-
trol mechanism as something external to that which is controlled, or at least as some-
thing that is a distinct and separate part of that which is controlled. (For example, a
residential heating system is controlled by a thermostat. which is completely distinct
from the heat-generation and heat-distribution apparatus.) This is not the case with
the operating system. which as a control mechanism is unusual in two respects;

• The operating system functions in the same way as ordinary computer soft-
ware; that is. it is a program executed by the processor.

• The operating system frequently relinquishes control and must depend on the
processor to allow it to regain control.

The operating system is, in Iaet, nothing more than a computer program. Like
other computer programs, it provides instructions for the processor. The key differ-
ence is in the intent of the program. The operating system directs the processor in the
use of the other system resourees'and in the timing of its execution of other programs.
But in order for the processor to do any of these things, it must cease executing the
operating system program and execute other programs. Thus, the operating system
relinquishes control for the processor to do some "useful" work and then resumes
control long enough to prepare the processor to do the next piece of work. The mech-
anisms involved in all this should become clear as the chapter proceeds.

Figure 8,2 suggests the main resources that are managed by the operating sys-
tem. A portion of the operating system is in main memory. This includes the kernel,
or nucleus, which contains the most frequently used functions in the operating sys-
tem and, at a given time, other portions of the operating system currently in use.
The remainder of main memory contains other user programs and data. The allo-
cation of this resource (main memory) is controlled jointly by the operating system
and memory-management hardware in the processor. as we shall see. The operat-
ing system decides when an 110 device can be used by a program in execution. and
controls access to and use of files. The processor itself is a resource, and the oper-
ating system must determine how much processor time is to be devoted to the exe-
cution of a particular user program. In the case of a multiple-processor system, this
decision must span all of the processors.

Types of Operating Systems
Certain key characteristics serve to differentiate various types of operating systems.
The characteristics fall along two independent dimensions, The first dimension
specifies whether the system is batch or interactive, In an interactive system, the
useeprogrammer interacts directly with the computer, usually through a key-
boardidisplay terminal, to request the execution of a job or to perform a transac-
tion. Furthermore, the user may, depending on the nature of the application,
communicate with the computer during the execution of the job. A batch system is
the opposite of interactive. The user's program is batched together with programs

Memory

[—Operating
system

soitwa re

•If() controller rf-

•
Programs
and data

•

•

[Processor

1-- - -

1714 . t i'4 11111, 1

• 110 ■

242 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Computer system
I/O dev ices

Printers.
keyboards.
digital camera,
etc.

•

Figure K2 The Operating System as Resource Manager

from other users and submitted by a computer operator. After the program is com-
pleted, results are printed out for the user. Pure batch systems are rare today. How-
ever, it will be useful to the description of contemporary operating systems to
examine batch systems briefly.

An independent dimension specifies whether the system employs miA-
programming or not. With multiprogrammina, the attempt is made to keep the
processor as busy as possible, bv having it work on more than one program at a time.
Several programs are loaded into memory, and the processor switches rapidly
among them. The alternative is a uniprogramming system that works only one pro-
gram at a time.

Early Systems
With the earliest computers, from the late 1940s to the mid-1950s. the pro-

grammer interacted directly with the computer hardware; there was no operating
system. These processors were run from a console, consisting of display lights, toggle
switches, some form of input device, and i printer. Programs in pt ocessor code were
loaded via the input device (e.g., a card reader). If an error halted the program ; the

8.1 OPERATING SYSTEM OVERVIEW .243

error condition was indicated by the lights. I he program In r could proceed to exam-
ine registers and main memory to determine the cause of the error. If he program
proceeded to a normal completion, the output appeared on the printer.

These early systems presented Iwo main problems:

• Scheduling: Most installations used a sign-up sheet to reserve processor lirric.
Typically, a user could 'sign up for a Nock of time in multiples of a half hour
or so. A user might sign up for an hour and finish in 45 minutes, this would
result in wasted computer idle time. On I he other hand, the user might run into
problems, not finish in the allotted time, and be forced to stop before resolv-
ing the probtem.

• Setup time: A single program, celled a job, could involve loading the compiler
plus the. high-level language program (source program) into memory. saving
the compiled program (object program). and then loading and linking together
the object program and common functions. Each of these steps could involve
mounting or dismounting tapes, or setting up card decks_ lf an error occurred,
the hapless user typically had to go back to the beginning of the setup se-
quence. Thus a considerable amouni of time was spent just in setting up the
program to run.

This mode of operation could he termed serial processing, refleding the fact
that users have access to the computer in series. Over time, various system software
tools were developed to attempt 10 make serial processing more efficient. These
include libraries of common functions : tinkers, loaders, debuggers, and 44river
routines that were available as common software for alt users.

Simple Butch Systems

Early processors were very expensive, and therefore it was important to max-
imize processor utilization. The wasted time due to scheduling and setup time was
unacceptable.

To improve utilization, simple batch operating systems were developed. With
such a system, also called a mi.pnimr, the user no longer hAs direct access to the
processor. Rather, the user submits the job on cards or tape to a computer opera-
tor, who benches the jobs together sequentially and places the entire batch on an
input device, for use by the monitor.

To understand how this scheme works,]et us look al it from Iwo poiniw of
view: that of the monilor and that of the processor. From the point of view of the
monitor. it is the monitor that conlrols the sequence of events. For this to he so,
much or the monitor must always be in main memory and avui lable for execution
(Figure 83). That portion is referred to as the resident monitor. The rest of the mon-
itor consists of utilities Lind common functions that are loaded as subroutines to the
user program at the beginning of any job that requires them. The monitor reads in
jobs one at a time from the input device (typically a card reader or magnetic tape
drive). As it is read in, the eurren1 job is placed in the user program area, and con-
trol is passed to this job. When the lob is completed, it rei urns control to the moni-
to•, which immediately reads in the next job. The results of each job arc printed out
for delivery to the user,

244 GHAPTEI St / OPERATING SYSTEM SUPPOP:r

Monitor

loterrupi
proeessing

Dell o!
drivers

Joh
stquencilig

Bou rid kW:v

Couirol
interpreter

Figure 8J Memory Layout for Li
Resident Monitor

Now consider this sequence from the. point Of view of the processor, At a c.a.
Lain poini in time, the processor k executing instructions from the portion of main
memory containing the monitor. '1 hose instructions cause the next job to be mid m
to another portion of main mentor/. Once a job has been read in, the proce;ssor
encounter in the monitor a branch instruciion that instructs the processor to co.
tin= execution 4it the start of the user pr(4,,,ram.'Vhe processor will then executt:. the
instruction in the user's program until it encounters an ending or error conditioo,
Eil hcr event causes the processor to fetch its next instruction from the monitor'
program. Thus the phrase "control is passed to a job" simply means that ihe proccs•
sor rs now fetching and execuling instructions in a user program. and "control is
returned to the monitor" mcins thus the processor is now retching and executing
instructions from he monitor program,

It should bu clear that the monitor handle 4 the scheduling problem. A batch
of jobs is queued up. tine] jobs are executed as rapidly as possible, with Ito inlerven-
ing idle time.

How about the job setup tune? The monilor handles this as welt With each
job, instructions zkre included in a job control language (JCL). Phis is a specW txpe
01 programming language used to provide instructions to the monitor, A simply

exam* is or a user submitting a program written in FOR'PRAN plus some
data to be used by the program. Each FORTRAN instruction and each item of data
is on a sep4irate punched card or a separate record on tape. in addition lo FOR.
"I RAN and data lines. the job includes job control instructions. which are denc.iie
by the beginning The overaii format of the job looks Like this:

8.1 OPERATING SYSTEM OVERVIEW 245

$FTN
•
• FORTRAN instructions

$LOAD
5 RUN

• Data
•

To execute this job, the monitor reads the $1 ,TN line and loads the appropri-
ate compiler from its mass storage (usually tape). The compiler translates the user's
program into object code, which is stored in memory or mass storage. If it is stored
in memory, the operation is referred to as "compile, load, and go." If it is stored on
tape: then the $LOAD instruction is required. This instruction is read by the mon-
itor, which regains control after the compile operation. The monitor invokes the
loader, which loads the object program into memory in place of the compiler and
transfers control to it. In this manner, a large segment of main memory can be
shared among different subsystems. although only one such subsystem could be res-
ident and executing at a time.

We see that the monitor, or batch operating system. is simply a compujter pro-
gram. It relies on the ability of the processor to fetch instructions from various por-
tions of main memory in order to seize and relinquish control alternately. Certain
other hardware features are also desirable:

• Memory protection: While the user program is executing, it must not alter the
memory area containing the monitor. If such an attempt is made, the pruccssOr
hardware should detect an error and transfer control to the monitor. The moni-
tor would then abort the job, print out an error message, and load in the next job.

■ Timer A timer is used to prevent a single job from monopolizing the system.
The timer is set at the beginning of each job. If the timer expires. an interrupt
occurs, and control returns to the monitor.

• Privileged instructions: Certain instructions are designated privileged and can he
executed only by the monitor. If the processor encounters such an instruction
while executing a user program, an error interrupt occurs_ Among the privileged
instructions are instructions. so that the monitor retains control of all I/O
devices. This prevents, for example, a user program from accidentally readin2 job
control instructions from the next job_ If a user program wishes to perform I/O. it
must request that the monitor perform the operation for it. If a privileged instruc-
tion is encountered by the processor while it is executin2 a user program, the
processor hardware considers this an error and transfers control to the monitor.

• Interrupts: Early computer models did not have this capability. This feature
gives the operating system more flexibility in relinquishing control to and
regaining control from user programs.

http://instructions.so

Read one record From the
Execute 1(X) instruction~
Write one record to file

TOTAL

0.0015 seconds
0.0001 seconds
(I.0015 seconds

0.0031 seconds

246 CHAPTER. 8 / OPERATING SYSTEM SUPPORT

0.0(X.11
Peri.:eist CPU utilizediott — — 012 2%

0.003

Figure SA System Oil ivation Example

Processor time alternates between execution of user programs and execution
Of the monitor. There have been two sacrifices: Some main memory is now gisien
over to the monitor and some processor time is consumed by the monitor. Both of
these are forms of overhead. Even with this overhead, the simple . batch system
improves utilization of the computer.

Multiprogrammed Batch Systems

Even with the automatic job sequencing provided by ,9 simple batch operating
system. the processor is often idle. The problem is that devices. are slow com-
pared to the processor. Figure 8.4 details a representative calculation. The calcula-
tion concerns a program that processes a File of records and performs. on average.
100 processor instructions per record. In this example the computer spends over
96% of its time waiting for I/O devices to finish transferring data! Figure 8.5a illus-
trates this situation. The processor spends a certain amount of time executing, until
it reaches an I/O instruction. it must then wait until that 1/0 instruction concludes
before proceeding.

This inefficiency is not necessary. We know that there must he enough mem-
ory to hold the operating system (resident monitor) and one user program. Suppose
that there is room for the operating system and two user programs. Now. when on
job needs to wait for I/O. the processor can switch to the other job, which likely is
not waiting for I/O (Figure 8.5b). Furthermore. we might expand memory to hok
three., four, or more programs and switch among all of them (Figure 8.5c). The
process is known as multiprograttuning, or multitasking. - It is the central theme o!.
modern operating systems.

To illustiate the benefit of multiprogramming, let us take an example. Con-
sider a computer with 256K words of available memory (not used by the operating
system), a disk, a terminal, and a printer. Three programs, JOB1, JOB2, and JO1 ..
are submitted for execution at the same time. with the attributes listed in Table 8.1.
We assume minimal processor requirements for JOB2 and .1 0B3 and continuous
disk and printer use by JOB3. For a simple batch environment, these jobs will Ft
executed in sequence. Thus. .10131 completes in 5 minutes. 3092 must wail until the
5 minutes is over, and then completes 15 minutes after that_ ,1 0B3 begins after 211
minutes and completes at 30 minutes from the time it was initially submitted, The

The term +rrrrltitaskiio is sometimes reserved to mean multiple tasks within the same program that - 1 ..:0;
be handled concurrently by the operating system, in contrast to niniiiiprughworung, which would rci;:
multiple processes (rum multiple programs, However, it is more common to equaic t he terms ruati-
tasking and ennhiprograninung, as is dune in most standards dictionaries (e,g., IEEE Sid 100-1992, To
New IEEE Standard Dientoktry of Pereira:al and Electroines Tema),

P FAA Itu

v
unN

111 14 .4% W3AA 31 1Mi.

11 11M

e
/ • V
/OW inia (MN

paurquto)

',II. um-Iglu,'

g mealloAd

uloaoaJ

una . UJj:

unj

C[00:1 op naill1.0SROneld L121100.0 riflOir 0_104 pug z1-1 01' Vulumssu) .rapid
-11.103 OLI1 u! slo w ow gom 2ups .!xch-yi @VI.[At glUjil Ern:111 MM ..q/g .:ILL 1,14 un1u8.) gaup

its `S4.101 D1j1 troamiaq uopu .altioa ooJTIOSa• SI gioqi as1ucoo2
INIIIILLER0c..pid .ginuz >3 131Purp unz axe sger ain Inn p5odcins mop.'

. popncl own Di 11.1_qn1-}zu otp .] 7A0 pg213J0Au
soonosa[[p.I. 10j UOTUrilillallapUn SSOlf 2.MI11 pun luappLo 5; -g9•8, ;),In'Tqd

In paymnsni[! 19.1 llowriipn ZID.Aap-eig-gZip&g(1 "Z•R alqi2j_ Jo utun/oD VuFLunini2oici
-!un. ql LET usityLi . 5; i1. sMU9 n .SuodS01 pug indOncu Li) 'u(livvin 0.).111052.1 ,Y313.1aAle

;-1Tfiwnig klual]eAoacillirmi anau

slutugiud Damp qiim VigutraimacudJuripsi (a) .

4 RIwp, f.

haurmIlaid avgi Lopi. Auguwmtrioadpinpa

4

(q)

mum,

paUmaror)

uutiNaid

y uzuagom

0 1 '8% 1.1Irtg
V

nnj WV; unu
V

una

11!N URN ; 11 13.44 tiFralnuM

VOA Utqi

&-ipttrualloadluri

atuL.1,

1.1

1! 1 •.Vi unw

L:11 AMA VaA0 TAR [SAS DNI 1 V-d.:140 / 8

248 CHAPTER 8 / OPERATING SYSTEM SUPPORT

Table 8.1 Samplc. Program E..Necut.ion Attriboas

.1 0111 ;IOW 910113

Type of job E kavy compute Heavy 1;0 Heavy 1;0
thiratiou 5 E'sin 15 min LO min
Memory ri.quired 51)1< 11.)0K. KIK

Ne ,ed ditili.? Ni, Eft} 9'4'S

Need lerminal? No Y4.‘.4 No

Need printer? Nfl No Y..:.s

i heir input and output operations active). 10131 will still require 5 minutes to com-
plete her Lit the end of that time, .10B2 will he one-third finished, ?I nd J0133 half
finished. All three jobs will have finished within 15 minutes, .l tic improvement is
evident when examining the multiprogramming column of 'l able 8,2, obtained from
the histogram shown in Figure X.nh.

As with a simple batch system. a muitiprogramming batch system mull rely On
certain comptiler hardware. features. Thc most notable additional feature that is use-
ful for mull iprogramming is the hardware thai supports I/O interrupts and DMA.
With interrupt-driven I/O or DMA, the processor can issue an I/O curnmanc.1 for one.
joh and proceed with the excention of.another job while the I/O is carried out by
the device controller. When the 1/0 operation is compicle, the processor is inter-
roptal and control k passed to an interrupi-handling program in the operating sys-
tem. The operas ink, system will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to sin-
gle-prog,rmn, or uniprogramming.f.,ysiems. 'Vo have several jobs ready to run, the
jobs must be kept in math mcmtiry % requiring some form of memory management,
In addition, if several jobs arc ready to run, the processor must decide which one to
run, which requires some algorithm for scheduling, Thu& euncepn.4. Lire discussed
later in this chapter.

Time -Sharing Systems

With the use of mulliprogvarnming, hatch processing can he quite efficient.
However, for many jobs. ii is dcsirabie to provide a mode in which the user inter.

Table 8.2 Mcts cif MulllirFrogramniing ors Resonter... Utilization

Uniprogrumuning Mulliprogramming

PICICeSSOr 'me 22% 43%

Memory we '33 % (7%

Disk use 33 .:14. (17'X.

Printer lime 33% 67%
Elapnd li ME 30 rain 1.5 min
'1' hroligliput rate johEih 12 y.lbsth

Mean response OW I }; r1.1111 10 min

0 30 25 10 20 13
minutes

. z. ,.,.

.e..„.;...., , - v. An% OM

.... %...:.. .. 0,...... \\ \V %.„x %.,,A\ % ,,.\\\ , \\
v.., „k . w,.4.4. a,,, vw„,,,,..ss, x., ..

t,s,...c.\ 4.4iitaN.... ... A '.04%. v
,,..m. '..,..:tazz,

,

. v im

%.W.MM. : \".0:".'N %. .s.4.v: . NW

%.
\
%...,

% \ 'ON* •

JOB]. JOE
I s I I

.10131
i

Gw

Jab histur2,

1 trniinal

Memoir,.

Printer

("11:

nnk\Mg.._ 0

—

.1 00.2

J0111

15
minutes

0

0%.
100%

0%
100%

0%
100%

0%
100%

—0%

.(@ Uniprngrurnming b) Multiprorraniming

Vigurc &A Utilization ilistoguains

Batch Multiprogramming 'fine Sharing

ohjecti.ve

Source of direct ive.s
Lta oparasing Hystem

Maxiinthe procoSSOV use

kb con trot 19.DgU21:42.
c.nrnin ids prtwilistil With
the job

Minimize response Liiuo

GI' DLETT]ancl::i &tiered nt

the terminal

250 citAri•Eit. 8 i OPERATING SYSTF.A4 OR T

Table /0 Batch Multiprograainning Time Shtiring

acts directly with the computer. Indeed, for some jobs, such as i msaction process-
ing. an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and (Amn
is, met by the use of a dedicated microcomputer. That option was not available in the
1960s, when most computers wcre big and costly. Instead time sharing wa;s develope6.

Just as multiprozramming allows the prmeMor to handle multiple batch ioby
at a time. multiprogranuning can be used to handle multiple internaive jobs. En thi5.
latter case. the technique is referred to as lime sharing, because the processor's time
is shared among multiple users. In a time-sharing system, multiple Liscrs sinutltawr
°ashy' access the system through terminals, with the operating sysiem interleaving
the execution of each user program in a short burst or quantum of computation.
Thus, if there arc fit users actively requcsting service at one time, each usei will only
see On the average 1 in o[the effective uoinputer speed, nut counting operating s!is-
tem overhead. However, riven the relatively slow human reaction time:. the
response time on a properly desired system should he comparable to that on a ded
icated computer.

Both hatch mulliproraniming and time sharing use multiprogramming. Tht
key differences are listod in Table 8,3.

KZ SCHEDULING- IF rrr ,r.,
O.> •

; .41
• • ..r.or • re • frer

efr: 41 .1
r

fr'err r.r.r4:00 rir re,r4
refr

re

'Hie key to multiproaramming is scheduling, In Filet. four types of scheduling are typ•
ically involved (Table. 8,4). We will explore these presently. Buff first, we introduce
the concept of procm. This lc mi was first used by the designers of the [viultics opei.
ating system in the I %Os. It is a somewhat more general term than job. Many 4.10fi-
hitions have been given for the term pmcess. including

Table 8.4 Types of Sc liedulitty

1.011.:E-mm

m6dium-Lean

SiMet-LL 11 WIWI-10111.1g

PO kuhodu4Nng

Tbe. decisici.n [15 adC3 to gr. pool 01 p rnce.ssos to he ckccu tcd

T he docidon in add to LIN Tiumbof procvsys Chnt rLre poiliolly lir

ft.114: it innin ineniuq

rhe cktt i L9n a!, 1.4r which pvnilable process will t1C c.we-uted hy hc

proee cr

The. LioLkik,n a s 10 which proces.s's pertainp.1.+0 requ "I gl}211
c.E6.;: d by an o};i i ibk 1.0 tii.ivice

S.2 1 SCHEDULING 251 •::

• A program in execution

▪ The "animated spirit" of a program
• Thai entity to which a processor is assigned

This concept should become clearer as we proceed.

Long-Term Scheduling
The long-term scheduler determines which programs are admitted to the system for
proce5sing. 'Chun, it controls the degree of multiprogramming (number of processes
in memory), Once admitted, a job or user program becomes a process and is added
to the queue for the shout-term scheduler. Ii some. systems, a newly created process
begins in a swapped-out condition, in which case it is added to a queue for the
medium-term scheduler.

In a batch system, or for the batch portion of a general-purpose operating
system, newly Kubmitici jobs arc routed to disk and held in a hutch (ILLI21.1C. The long-
term scheduler creates processes from the queue when it c2lli. There are two deci-
sions involved here. First. the scheduler must decide that the operating system can
take on one or more additional processes, Second : the scheduler must decide which
job or jobs to accept and turn into processes. The criteria used may include prior-
ity, expected execution time, and I/O requirements,

For interactive programs in a time-sharing system, a process request gener-
ated when a user attempts to connect to the system. Time-sharing users are not sim-
ply queued up and kept waiting until the system can accept them. Rathe.r, the
operating system will accept 11[1 horized comers until the system is sat tirffied. using
some predefined measure of saturation. At that point, a connection request is met
with a message indicating that the system is full and the user should try again later.

Medium-Term Scheduling

Medium-1cm scheduling is part of the swapping functiorli described in Section 8,3.
Typically, the swapping-in decision is based on the need to manage the degree of
muitiprogramming. On a system dial does not use virtual memory, memory man-
agement is also ;i n issue. Thus, the swapping-in decision will consider the memory
requirements of the swapped-out processes.

Short-Term Scheduling

The high-level seheduier executes relatively infrequently and makes the coarse-
grained decision of whether or not to take on a new process, and which one to take.
The short-term scheduler, also known as the climwArcht.r, executes frequently and
makes the floc-grained decision of which job to execute next,

Proems States
undc•nitind the operation of the short-term scheduler, we need to consider

the concept of a process state. During the lifetime of a process, its status will change
a number of times. Its status at any point in time is referred to as a stare. The term
state is used because id connotes that certain information exists ',hal defines the sta-
tus at that point. At minimum. there arc five defined states for a process (Figure &Tr

252 c•APTER, S 1 OPERATING SYSTEM SUPPORT

* New: A program is admitted by the high-level scheduler but is not yet ready
to execute. The- operating system will initialize the process. moving it to the
ready state.

■ Ready: The prc.}eess is ready to execute and is awaiting access to the processor

• Runninic The process is being executed by the processor.
• Waiting: The process is suspended from execution waiting for some system

resource. such as W.
• Halted: The process has terminated and will be destroyed by the operating

system.

For each process in the system, the operating system must maintain informa-
tion indicating the state of the process and other information necessary for proeesi
execution. For this purpose, each process is represented in the operating system by
a process control block (Figure 8.8), which typically contains the following:

• Identifier: Each current process has a unique identifier.
• State: The current slate of the process (new. ready, and so on),
• Priority: Relative priority level.
• Program counter: The address of the next. instruction in the program to be exe-

cuted.
• Memory pointers: The starting and ending locations of the process in ineinor.

• Context data: These are data that are present in registers in the processor
while the process is executing, and they will be discussed in Part Three. Fat
now. it is enough to say that these data represent the "context" of the process.
The. context data plus the program counter are saved when the process leaves
the ready state. They are retrieved by the processor when it resumes execu•
Lion of the process.

• 110 status information:IncludeNoutstanding1/0 requests, 1/0 devices (e.g.. tap
drives) assigned to this process, a list of files assigned to the process, and soon.

• Accounting information: May include the amount of processor time and clock.
ti me used time. limits, account numbers, and so on.

Admit
zit

Figure 8.7 Five-State Process Model

8.2 SCHEDULING 253

Inc r

stirte

PrioriLy

Program on

Fl emery poilikrs

Context dai s)

1/0 status
irlfOrrtuaiall

ilor.couniing
information

•

•

Figure 13.1'1 Process Control 131(Kk

When the scheduler accepts a new job or user request for execution, it creates
a blank process control block and places the associated process in the new state.
After the system has properly filled in the process control block, the process is trans-
ferred to the ready . stale.

Scheduling Techniques

To understand how the operating system manages the scheduling of the various
jobs in memory, let us begin by considering the simple example in Figure S.9. The fig-
ure shows how main memory is partitioned at a given point in time. The kernel of the
operating system is, of course. always resident. In addition, there are a number of
active processes. including A and 1 -3, each of which is allocated a portion of memory.

We begin at a point in time when process A is running. The processor is exe-
cuting instructions from the program contained in A's memory partition. At some
later point in time. the processor ceases to execute instructions in A and begins
executing instructions in the operating system area. This will happen for one of
three reasons:

1. Process A issues a service call (e.g., an 110 request) to the operating system.
Execution of A is suspended until this call is satisfied by the operating system,

2. Process A causes an interrupt. An interrupt is a hardware-generated signal to
the processor. When this signal is detected, the processor ceases to execute
A and transfers to the interrupt handler in the operating system. A variety of

A
„Rini ,"

13
"Running'

254 CH.A.PThR. S 1 OPERATING SYSTEM SL:PP013T

events related to A will cause an interrupt. One example is an error. such
attempting to execute a privileged instruction. Another example is a timeout:
to prevent -any onc process from monopolizing the processor. each procc9s is
only granted the processor fora short period at a time.

3. Some event unrelated to process A that requires attention causes an interrupt.
An example is the completion of an I.O operation.

In any case, the result is the following. The processor saves the current con-
text data and the program counter for A in A - s process control block and then
begins executing in the operating srstern. The operatinu swum. may perform sow
work, such as initiating an NO operation. Then the short-term-scheduler portion of
the operating system decides which process should he executed next. in this exam-
ple, B is chosen. The operating s ,... ,stern instructs the processor to restore 13's context
data and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the short-term sched-
uler. Figure 8.1.0 shows the major elements of the operating system involved in the
multiprogramming and scheduling of processes. The operating system receivo
control of the processor at the interrupt handler if an interrupt occurs and at the
service-call handler if a service call occurs. Once the. interrupt or service call is
handled, ihe short-ierin scheduier is. invoked to pick a procesf, for execution.

Operating system

Isenfice. handier

Operating system
In

;Control

Service liandler

1172 .rn.ipt MckLeMhder

A
'rleVaiting'

Operating system

I. &Tyke handl7:1r
I .5cIt er.

snrertupt

A
lArairing"

Other partit Ims

Ready"
11
"Rudy"'

Other partitions Other partitions

Figure 8.9 Rticduling Exarnpic

Service call
from process —

Interrupt
from proces.

Interrupt _
from I/O

:Operating system'

serv[ec
colt

handler (code}

Loog- Short- 1/0
tcroi thin Einem%
oiteuv queue

_I

Pass control
to process

Figure 8.10 Rey Elements of k m Operating System for Muitiprog,ramming

8.2 1 sciimuuNG 255

To do its job, the operating system maintains a number of queues. Each queue
is si mply a waiting list of processes waiting for some resource. The long, -term queue
is a list of jobs waiting 1. 0 use the system. As conditions permit. the high-level sched-
uler will allocate memory and create a process rOT 0111U cif the w ii1ing itcrns.
shori-terrn queue consists of all processes in the ready state. Any one of these
processes could use the processor next. It is up to the short-term scheduler lo pick
one. Generally, this is done with 4i round-robin algorithm, giving each process some
ti me in turn.. Priority Levels may also be used there is an //U geeveee for each
I/O device. More [Ion one process may request the. use of the same [10 device. All
processes waiting to use. each device are lined up in that device`s

Figure 8.11 suggests how proCC,MS progress through the computer under the
control of the operating system. Each process request (hatch job, user-defined inter-
Active job) is placed in the long-term queue. As resources become available, a
process request becomes a rarocvs ,s anti is then placed in the ready state and put in
the short-term queue. The processor alternates between executing operating system
instructions and executing user processes. While the operating system is in control,
it decides which process in the short-term Llueue should be cxceutecl nexl. When the
operating system has finished its immediate tasks. it turns the processor over to the
ch.on.n process.

As w..as mcntiuncd carlicr, a process being executed may he suspended for a
variety of reasons. If it is suspended becaun: the process i -NuQsis 11(1 then it it
placed in the appropriate queue. if it is suspended because of a timeout or

Shirt-term
queue

Long-ti rrn
queue

End Admit

Figure 8.11 Queuing Diagram Repres;2ritation of Processor Scheduling

256 CHAPTER 8 OPERATING SYS•I'Eril

because the operating system must attend to pressing business, then it is placed in
the ready f4 aW and put into the short-term queue.

we. meni ion that the operating system also manages the 1/0 queues,
a n IIO opermion is compicled, the operating system removes the satisfied

process from that I/O queLle a nri places iI in the short-lerm queue. It then selects
another t.441.ing process (if any) and signals for the 1/0 device to satisfy that
process's request.

$.3 MEMORY MANAGEMENT

In uniprogramming sVstem, main memory is divided into two parts: one part for
I he operating system (resident monitor) and one part for the program currently
being executed. In a multiprogramming system, the "user" part of memory is sub-
divided to accommodffie multiple processes. The task of subdivision is carried out
dynamically by the operating system and is known as memory mbrnagemmt,

Effective memory management is vital in a multiprogramming s!....stain. II only
a few processes are in mcmorv, then for much of Lhe time all of the processes will

8.3 i'v'kEMORY MANAGErvIFINT 2S7

be waiting for I.10 and the processor will he idle. Thus, memory needs to be allo-
cated efficiently to pack as processes into memory as possible.

Swapping

Referring hack to Fiaire 8.11. we have discussed three types 01' w,.Le.L.Les: the long-
term queue of requests for new processes, the short-1EY1T1 queue of processes ready
to use the processor, and the various l/O.queues of prouesses that are not ready to
use t h e processor_ Recall 1h.,r the reason for this elaborate machinery is that
11 0 activities arc much slower than computation and therefore 1he processor in a
uniprogramming system is idle most of the time,

But the arrangement in Figure 8.11 does not entirely solve the problem. It is
true that, in this case, memory holds multiple processes and that 11 -ic processor can
move to another process when one process is waiting, But the processor is so
much faster than 110 that it will be common for all the processes in memory to be
waiting on I/0. Thus, even with multiprogramming, a processor could be idle mom
of the lime.

What to do? Main memory could be expanded, and Ni3 he able to accommo-
date more processes. But there are two flaw4, in this approach. First, main memory
is expensive, even today. Second, the appetite of programs for memory has grown
as fast as the cost of memory has dropped. So larger memory results in larger pro-
cesses, not more processes.

Another solution is swapping., depicted in Figme 8,12. We have a long-germ
queue of process requests, typically stored on disk. These are broughl in, one al a
ti me, as space becomes available. As processes are completed. they are moved out
of main memory. Now the situation will arise that none of the processes in memory
are in the ready state all are waiting on an I/O operation .). Rather than remain
idle, the processor Nwaps one of these processes back out to disk into an iniermedi-
ute queue. This is a queue of existing processes that have been temporarily kicked
out of memory, The operating sysi cm then brings in another process from the inlet - -
mediate queue, or it honors a new process request from the long-term queue. Exe-
cution then continues with the newly arrived process.

Swapping. however, is an 1I0 operation, and therefore there is the potential/
for making the problem worse. not better. But because disk I/O is generally the
fastest 110 on a system (e.g., compared with tape or printer I/O), swapping will
usually enhance. performance. A more sophisticated scheme, involving virtual mem-
ory. improves performance over simple swapping. This will be discussed shortly. Bill
first, we must prepare the ground by explaining partitioning and paging,

Partitioning

The simplest scheme for partitioning available memory is to use fixed -size porritiom,
as shown in Figure &]3. Note I hat, although the partitions are of fixed size, they
need not be of equal sixe. When a process is brought into memory, it is placed in the
smallest available partition that will hold it.

Even with the use of unequal fixed-size partitions, there will be wasted mem-
ory. Jo most cases, a process will not require exactly as much memory as provided
by the partition_ For example, a process that requires 3M bytes of memory would

Itsbermediate
queue

Long.-Le= cruguu

Main memory

Operating
system

258 CHAPTER ki 1 OPERATING SYSTEM SUPPORT

Disk storage

Lung-term
queue

Main
11112111017

I Operating
system

Completed jobs
and uw-

 vesSiOn5

(a) Simple job scheduling

Disk storage

.(b) Swapping

Figure 8.L2 The L:S6 of Swapping

Completed jobs
and user semictils

be placed in the 4M partition of Figure 8.13b, wasting 1 M that could he used by
another process,

A more efficient approach is to use variable-,sire parritions, When a process is
brought into memory, is is allocated exactly EIS much memory as it requires and na
more. An example, using 64 Mbytes of main memory, is shown in Figure 8.14.

main memory is emply% except for the operating system (a). The. first three.
processes are itiaded in. startilig where the operating system ends and occupying just
enough space for each process (b, c, d). This leaves a "hole" at the end of memory
that is too small for a fourth process. At some point, none of the processes in him-
or is ready. The operating system .iw4ips out process 2 (e), which leaves sufficient
room to load a new process, process 4 (1). Because process 4 k smaller than proce
2. another small hole is created. Later, a point is reached at which none o the
processes in main memory is ready, but process 2% in the Ready-Suspend state, is
available. Because there is insufficient l'00111 in memory for process 2, the operating
system swaps process l out (g) and swaps process 2 back in (h)„ ,ks this example
shows, this method starts out well, but eventually it leads to a situation in which
there are a lot of small holes in memory. As time goes on. memory becomes more

NIFMORY• MAN. GTmENT 259

and more. fragmented, and memory utilization declines: One technique for over-
coining this problem is conspaction: From time to time. the operating system shifts
the proccnIseF ,; in memory to place alt the lice memory together in one block. This is

ti me-consuming procedure, wasteful of inocessor time.
Before we consider ways of dealing with the shortcomings of partitioning, we

must clear up one loose end. If I he 17i..aLlor considers Figure 8.14 for a moment, it
should become obvious that a process is not likely to he loaded into the same place
in main memory each time it is swapped in. Furthermore, if compaction is used,

Operating system
8 M

814E

M

8 M

- ,

8 M

Sri

. ..

8 M

8 M

i A) Equal-size p irl itions

Operating system
814E

-----.---t
2 rlif

4 rid 1
1

6 NI

I

5

.11

8 M 6
F

12 M

16 M

F.

(I)) Unequai-size partitions

8 M

N. 1.3 H.xanipi.e. o1 Fiyed rtit i on i 4.0' a 64-Mbyte. Memory

26.1.1 CI-TAPTER M / OPERATING. SYSTEM SUPPOR• I

(Al (h) (c)

8A1

56M

20M

36 M

Operating
system If

Operating
sTstern

Process 1

Operating

Process 1

Process 2

(e) (f) (g) (h)

Figure 8.14 Th4.!. LITect of Dynamic Partitioning

.2 UM

8 141

6M

FPO

4M

Operating :
system

Prove s% 2

process 4

Process 3

Operat,ing
system

Prkeg

Prows 3

Operi77.
system

Proceo I

Process 4

Prooess 3

'Operating
_system

Prows I

Process 3

ISM

4M

Operating
tem

Pnletss 2

Process 3

MEMORY MANAGEMENT 261

and physical addresses. A logical address is expressed as a location relative to the
beginning of the program. Instructions in the program contain only logical ad-
dresses. A phyNicall addrvis is an actual iocatien in main memory. When the proces-
sor executes a process, it automatically converts from logical to physical address by
adding the current starting location of the process, called it base address, to each
logical addrcs.s..lhis is another exainpte of a processor hardware feature designed
to meet an tepertrtiit syS.leitl requirement. The exact nature of this hardware feature
depends on the memory management strategy in use. We will see several ex:In -Epics
later in this chapter.

Paging
Both unequal fixed-size and variable-sire purlilions are inefficient in the use of
memory. Suppose, however, that memory is partitioned into equal fixed-size chunks
that are relatively small, and that each process is also divided into small riNed-sive
chunks of some size. Then the chunks of a program, known as pages, could he
assigned L0 available chunks of memory. known asframt!s, or page frames. At most.
then, the wasted space in rnemor,. for that process is a fraction of the last page.

Figure 8.15 shows an example of the use of pages and frames- At a given point
in lime, some: of I ht frames in memory are in use and some are INe. The list of free
frames is miiin tai ined l the operati[ts s!,.stetn, Process A, stored on disk, consists of

Free frame Iisk
20

Free frame list

14
15

20

Proccf-;:-; A
Page kl

Page I
Page 2
Pap 3

Process A
Page
Page 1
Page 2
Page 3

Process A
Page Table

13 1
14
15

18

13 Page 0
of A

14 Page 1
Of A

Page 2
15 l of A

.
In

36 Use

In
Use

Page
of A

In
Uae

2.0

17

1!

13

14

15

16

17

18

20

21 21

(a) Before (b) After

FiRtire R,1 Allocalion of Free Frarncs

Page. Relative ilddresh Frame RelatIve address
number within page 1111 nthEr

Physical I
address I " 3"

A

within frame

Logical
address

13

7► 14

15

73

262 CHAPTER P / OPERATING SYSTEM SUPPORT

four pages. When it comes time to load this process, t H 4 Pe rating system finds four
free frames and loads the tour pages of the process A into the four frames.

Now suppose, as in this exampie, that the,re ore nog sufficient unused corn12.u-
ous frames to hold the process. Does this prevent the operating system frorn load-
ing A'? The answer is no, because we can once again use the concept of logiol
address. A simple base address will no langer suffice. REli her, the operating sri...:11
rnziiiitailiS a page table for each process. The pogo table shows the frame location for
each page 61' the process. Within the program, each logicai address consists of

a
 page

number and a relative address within the page. Reeall that in the case of simple par.
tiiioning, as logical address is the location of a word relative to the beginning u L the
program; the processor translates ;hat into o physical address. With paging, the

address translation is still done by processor hardware- The procc.
sor must know how to .ievess the page table of the current process. Presented wi1h

logical address (page number, relative address}, the processor uses the pa
table ;o produce a physical address (frame number, relative address). An exampl .2
is shown in Figure 8.16,

Klain
memory

13

14

15

1t1

17 .

18

Page 0
of A

Page 1
of A

Page 2
of

Page 3
of A

Process A
page table

Figure 8.16 I,LOcal anti Physical Addresses

S.3 I. MEMORY MANAGEMENT 263

This approach solves the problems raised earlier. Main memory is divided into
many small equal-size frames- Each process is divided into flume-size pages: Smaller
processes require fewer pages, larger processes require more. When a process is
brought in, its pages are loaded into available frames, and a page table is set up.

Virtual Memory

Demand Paging
With the use of paging, truly effective multiprogramming systems came into

being. Furthermore, the simple tactic of breaking a process up into pages led to the
development of another important concept; viii Wi I mil -Wiry.

To understand virtual mcniory, we must add a refinement to the paging
scheme just discussed. That refinement is demand pix ing. which simply means that
each page of a process is brought in only when it is needed, that is, on demand.

Consider a large process, vork .sisLing of a lone; program plus a number of arrays
of data. Over any short period of time, execution may be confined to a small section
of the program (e.g., a subroutine), and perhaps only one or 1 WO arrays of data are
being used. This is I he principle cif Ideality, which we introduced in Appendix 4A.
/1 would clearly be wasteful to load in dozens of pages for that process when only a
few pages will be used before the program is suspended, We can make better use of
memory by loading in just a few pages, '['hen, if the program branches to an instruc-
ti on on a page not in main memory, or if the program references data on a page not
in memory, a page fault is triggered. This tells the operating system to bring in the
desired page.

Thus, at any one time, only a few pages of any given process are in memory,
and therefore more processes can be maintained in memory. Furthermore, time is
saved because unused pages are not swapped in and out of memory. I lowever, the
operating system MUM be clever aboni how u rnanmus this scheme. When it brings
one pagc in, it must throw another page out. If it throws out a page lust before i1 is
about to be used, then it will just have to go get that page again a Imost immediately.
Too much of this leads to a condition known aiti thrashing: The processor spends
mosr or its time swapping pages rather than executing instructions. The avoidance
of thrashing was a major research area in the 1970s and led to a variety or complex
but effective algorithms. In essence, the operating system tries Lu guess, based on
recent history', which pagc.s are least likely to be used in the near future.

With demand paging, it is not necessary to load an entire process into main
memory. This fact has a remarkable consequence: lir Es pos.vihie fw IF prmess try be
larger than all of main memory- One o1 the most fundamental restrictions in pro-
gramming has been lifted. Without demand pagin g . a programmer must be acutely
aware of how much memory is available. If the program being wri I l en is too large,
the programmer must devise ways lo structure t he program into pieces that can be
loaded onc at a time. With demand paging, that job is left to the operating system
and the hardware. As far as the programmer is concerned, he or she is dealing with
a huge memory, the size associated with disk storage_

Because a pawXSN L.NE:„Culi,!;; only in miin memory, that memory is referred to
as real memory. But a programmer or user perceives a much larger memory—I hat
v.rhich is allocated on the disk. This latter is therefore referred to as virtual memory.

264 CHAPTER. S / OPERATING SYSTEM SUPPORT

Virtual memory allows for very effective multiprogramming and relieves the user of
the unnecessarily tight constraints of main memory.

Page Table Structure

The basic mechanism for reading a word from memory involves the transla-
tion of a virtual, or logical, address. consisting of page number and offset, into a
physical address, consisting of frame number and of fs;et, using a page table.. Because
the page table is of variable length, depending on the size of the process, we cannot
expect to hold it in registers. Instead, it must be in main memory to be accessed. Fig-
ure 8.16 suggests a hardware implementation of this scheme. When a particular
process is running, a register holds the starting address of the page table for that
process. The page number of a virtual address is used to index that table and look
up the corresponding frame number. This is combined with the offset portion of the
virtual address to produce the desired real address.

In most systems, there is one page table per process. But each process can
occupy huge amounts of virtual memory. For example, in the VAX architecture.
each process can have up to 2 31 = 2 GBytes of virtual memory. Using 29. = 512-byte
pages, that means that as many as page table entries are required per VOLp
Clearly, the amount of memory devoted to page tables alone could be unacceptably
high. To overcome this problem. most virtual memory schemes store page tables in
virtual memory rather than real memory This means that page tables are subject
to paging just as other pages are. When a process is running, at least a part of its
page table must be in main memory, including the page table entry of the currently
executing page. Some processors make use of a two-level scheme to organize large
page tables. In this scheme, there is a page directory. in which each entry points to
a page table. Thus, if the length of the page directory is X, and if the maximum
length of a page table is Y, then a process can consist of up to X X Y pages. Typi
cally, the maximum length of a page table is restricted to be equal to one page. We
will see an example of this two-level approach when we consider the Pentium El
later in this chapter.

An alternative approach to the use of one- or two-level page tables is Ihe usc
of an inverted page table structure (Figure 8.17). This approach is used on IBM's
AS141K) and on all of IBM's RISC products, including the PowerPC.

In this approach. the page number portion of a virtual address is mapped into
a hash table using a simple hashing function. = 'The hash table contains a pointer to
the inverted page table, which contains the page table entries. With this structure.
there is one entry in the hash table and inverted page table for each real memory
page rather than one per virtual page. Thus. a fixed proportion of real memory is
required for the tables regardless of the number of processes or virtual pages sup-

A hash ['unction maps numbers in 1112 range ll through M into number:: in the 74ingc through A', who-6
> .V. The output of the hash function is used as an index into ihc hash table. Since more thar.,

input maps to the same output, it is passible for art iltpul item In map to a hash in ble entry that is ahvadv:
occupied. In that case, the new item must merthrw ink} }In ocher hash table location, 1 .yriCtilly. the new
item is placed in the firsl succeeding empty space. .and a pointer from the original location is provided to
chain the entries together. Sec [STALL)! J for a more tleiailed discussion or hash tables.

Page table
Page # Entry Chain

1.1190 -0

4
' Frame #

Offset

Inverted page table Real addrois Hash table

Virtual address

13 gg OtiF,et I

Figure 8.17 Inverted Page Table Structure

266 CHAPTER S OPERATITNIG SYSTEM SUPPORT

ported. Because more than one virtual address may map into the same hash table
entry, a chaining technique is used for managing the overflow. The hashing. tech•
nique results in chains that are typically short—either one or two entries,

Translation Lookaside Buffer
In principle, then, every virtual memory reference can cause two physical memory
accesses one to fetch the appropriate page table entry, and one to fetch the cicwinJ
data, Thus, a straightforward virtual memory scheme would have the effect of dou-
bling the memory access time_ To overcome this problem, most virtual memory
schemes make use of a special cache for page table entries. usually called a transla•
lion lookaside buffer (TLB). This cache functions in the same way as a memory
cache and contains those page table entries that have been most recently used. Fig-
ure 8.18 is a flowchart that shows the use of the TLB. By the principle of locality.
most virtual memory references will be to locations in recently used pages. There-
fore. most references will involve page •table entries in the cache. Studies of the
VAX . 11.13 have shown that this scheme can significantly improve perform=
ICLAR85, SATYSI].

Note that the virtual memory mechanism must interact with the cache system
(not the 'ILE; cache, but the main memory cache). 'Phis is illustrated in Figure 819.
A virtual address will generally be in the form of a page number, offset. First, Ihe
memory system consults the TLB to see if the matching page table entry is present,
If it is. the real (physical) address is generated by combining the frame number with
the offset. If not, the entry is accessed from a page table. Once the real address is
generated, which is in the form of a tag and a remainder (see Figure 4.17), the cache
is consulted to see if the block containing that word is present. If so, it is returned
to the processor, If not, the word is retrieved from main memory.

The reader should be able to appreciate the complexity of the processor hard-
ware involved in a single memory reference. The virtual address is translated into a
real address. This involves reference to a page table. which may be in the TLB, in
main memory, or on disk. The referenced word may be in cache, in main memory,
or on disk. In the latter case, the page containing the word must be loaded into main
memory and its Wick loaded into the cache. In addition, the page table entry for
that page must be upda I ed.

Segmentation
There is another way in which addressable memory can be subdivided, known as
segmernathm. Whereas paging is invisible to the programmer and serves the purpose
of providing the programmer with a larger address space, segmentation is usually
visible to the programmer and is provided as a convenience for organizing programs
and data, and as a means for associating privilege and protection attributes with
instructions and data.

Segmentation allows the programmer to view memory as consisting of multi-
ple address spaces or segments. Segments are of variable, indeed dynamic, size_ Typ-
ically, the programmer or the operating system will assign programs and data to
clifferent segments, There may he a number of program segments for various types

Page transferred
rD11 n (A to

main aneiPlary
CPI I genrrateq

phvsieni !Add el.".)*,

"rre., ,fr

Mentor!.
Full?

3 miAiORY MANAGEMENT 267

Page tables
updated

Vkligt.! {AbleS.

IP pdSI ted
•

Figure 8.18 Operating of Pagi kJ! and R..711. 1.4 & ion Lookaside Bufk.r (TLB) FUR1 .1871

IA programs as ws n umber of data gegments. Each segment may be. ;.isNigned
,aastnd rights. Memory referencos consist of 41 (segment 11 umber, offset)
form of address.

'Ellis organization has a riumbu Of . ; Kiv;tii Lages to the proarammer over a non-
segmented adfircs:i space:

N o

Return to
faiilted instruction

Paget-atilt
handling routine

••••

CPU activateq
1/0 ha rd

,

OS lititrtiCiS (TV
to read the page

from 41
2.•- ■ ••

kill

26S c -,HAPrER O1'ERATTNG SYSTEM SUPPORT

'1[1.,B operation

virtual ndeircm

ruge* I .111kt.t

11"143 miss

11.11

71,13
hit Cache. operation

i

Real addres s

---4-16..[F!lit I Romaimied

Miss

Page table

Figure FLO Translation Lookasidc Buffer and Cache Operation

L [I si mplifies the handling of growing data structures- if the programmer tioe.t.
not know ahead of time how large a particular data structure will becOrnc,it,
is not necesar!,. , to guess- The. data structure can he assigned its own scgalept,:,
and the operating system will expand or shrink the segment as needed.

2.. It allows programs to he altered and recompiled independently. without
requiring that an entire !.51 of program* he relinked and reloaded. Again, this
is accomplished using multiple segments.

3, It lends itself to sharing among processes. A programmer can place a utilit:.•
program or a uscful table of data in a segtnent that can be addressed he
other processes.

4. II leads itself I o protection. Reeause a segment can be constructed to contain
a well-defined set of programs or data, the programmer or a system adminis-
trator can assign ac(xss privileges. in a convcnient fashion.

These advantages are not available with paging, which is imjiNible to Ilse pro-
grammer, On the other hand, we have seen that paging provides for an efficient
form of memory management. combine the advantages of both, some systernh
are equipped with the hardware and operating system software to provi& both.

1

VENTIUM 11 AND POWERPC MEMORY MANAGENMNT 269

8.4 PENTIUM II AND POWERPC MEMORY MANAGEMENT

Pentium II Memory Management Hardware
Since the introduction of the 32-bit • architecture, microprocessors have evolved
sophisticated memory management schemes that build on the lessons learned with
medium- and large-scale systems. In many cases, the microprocessor versions are
superior to their larger-system antecedents. Because the schemes were developed
by the microprocessor hardware vendor and may he employed with a variety of
operating systems, they tend to he quite general purpose. A representative example
is the scheme used on the Pentium 11. The Pentium 11 memory-management hard-
ware is essentially the same as that used in the Intel 80386 and NO486 processors,
with some refinements.

Address Spaces

The Pentium II includes hardware for both segmentation and paging Both mech-
anisms can be disabled, allowing the user to choose from four distinct views of memory:

• Unsegmented unpaged memory: In this ease, the virtual address is the same as
the physical address. This is useful, for example, in low-complexity, high-per-
formance controller applications.

■ Unsegmented paged memory: Here memory is viewed as a paged linear
address space. Protection and management of memory is done via paging. Thi,
is favored by some operating systems (e.g., Berkeley. UNIX).

• Segmented unpaged memory: Here memory is viewed as a collection of logi-
cal address spaces. The advantage of this view over a paged approach is that
it affords protection down to the level of a single byte. if necessary. Further-
more, unlike paging, it guarantees that the translation table needed (the seg-
ment table) is on-chip when the segment is in memory. Hence, segmented
unpaged memory results in predictable access ti mes.

• Segmented paged memory: Segmentation is used lo define logical memory
partitiOns subject to access control, and paging is used to manage the alloca-
tion of memory within the partitions. Operating systems such as UNIX Sys-
tern V favor this view.

Segmentation

When segmentation is used, each virtual address (called a logical address in
the Pentium II documentation) consists of a 6-bit segment reference and a 32-bit
offset. Two hits of the segment reference deal with the protection mechanism, leav-
ing 14 bits for specifying a particular segment. Thus, with unsegmented memory, the
user's virtual memory is 2 32 = 4 GBytes. With segmented memory, the total virtual
memory Taco as seen by a user is 2'' = 64 terabytes (TBytes). The physical address
space employs a 32-bit address for a maximum of 4 Bytes.

The amount of virtual memory can actually be larger than the 6 ,4 - Myles. This
is because. the processor's interpretation of a virtual address depends on which
process is currently active. Virtual address space is divided into two parts. One-half

270 CHAPTER, S 1 OPERATING SYSTEM SUPPORT

of the virtual address space (8K segments , X 4 CiBytes) is global. shared by all pro-
cesses; the remainder is local and is distinct for each process.

Associated with each segment are two forms of protection: privilege level and
access attribute. There are four privilege levels from most protected (level 0) to least
protected (level 3), The privilege level associated with a data segment is its "classi-
fication"; the privilege level associated with a program segment is its "clearance."
An executing program may only access data segments for which its clearance level
is lower than (more privileged) or equal to (same privilege) the privilege level of the
data segment.

The hardware does not dictate how these privilege levels are to he used; this
depends on the operating system design and implementation, II was intended that
privilege level I would be used for most of the operating system, and level (I would
he used for that small portion of the operating system devoted to memory man-
agement, protection, and access control. This leaves two levels for applications. In
many systems, applications will reside at level 3, with level 2 being unused. Special-
ized application subsystems that must be protected because they implement their
own security mechanisms are good candidates for level 2. Some examples are data•
base management systems, office automation systems, and software engineering
environments.

In addition to regulating access to data segments, the privilege mechanism lim-
its the use of certain instructions. Some instructions_ such as those dealing with
memory-management registers, can only be executed in level O. 1/C) instructions can
only be executed up to a certain level that is designated by the operating system:
typically. this will be level 1.

The access attribute of a data segment specifies whether read—write or read-
only accesses are permitted. For program segments. the access attribute specifies
readlexecute or read-only access.

The address translation mechanism for segmentation involves mapping a vir-
tual address into what is referred to as a linear address (Figure 8.20b). A virtual
address consists of the 32-hit offset and a 16-hit segment selector (Figure 8,20a). The
segment selector consists of the following fields:

• Table Indicator (Ti): Indicates whether the global segment table or a local seg-
ment table should be used for translation.

• Segment Number; The number of the segment. This serves as an index into
the segment table.

■ Requested Privilege Level (RPL): The privilege level requested for this access.

Each entry in a segment table consists of t54 bits, as shown in Figure 8.20c. The
fields are defined in Table 8.5.

Paging

Segmentation is an optional feature and may be disabled. When segmentation
is in use, addresses used in programs are virtual addresses and are converted into
linear addresses, as just described. When segmentation is not in use, linear addresses
are used in programs. In either case, the following step is to convert that linear
address into a real 32-bit address.

15 3 /27:

index T RPL

Il = Table indicator
RN. Recluestor Twiviiege level

(a) Segment selector

22 21 t2 It

Directory l Table

(b) Linear address

Offset

2 4

25 22 241/ L9 ib F5 31 13/12 ri
D > A Segment

Base 31...24 G / V limit P DPL. S Type Kase 21..16
L 19...16

Base 15...0 Segment limit 15-0

AVL
Base
D/B

=

Available for use by system software
Segment he address
De f a ul t operation si2A
Descriptor privilege size

G
Limit =
P =
Type =

Granularity
Segment limit
Segment present
Segment type
Descriptor type

Reserved

(e) Segment descriptor (segment table entry)

3t

Page frame address 31...12 AVL
i
E' 0 A

r4 P

AVL = Available for systems programmer use PWT Write through
PS = Page size US = User /supervisor
A = Accessed RW a Read—write
PCD = Cache disable P = Present

(c1) Page directory entry

3!

Page frame address 31...12

Dirty
(e) Page table entry

Figure 8.20 Pentium Memory-Management Formals

271

212 ci-t.. vrrt. s / (wrRAItNc. sysIEM SUPPORT

IahK 4A PL;ntiurtt TI Mcrnur• Mii gciir11 Pirarn1cr

Se t Dest (S mnt thk Iitti). .

l)e#roes the LTI1l idt sw i)1 t hL rci men w i tI] iu the 4-(1 (e huier Lddi i t pa

rim ail
In :I)Lk •efl nI, tEii j 'Jic U bil art[] incFt tc. 11LE1e 1,t rijith ac : dd sirlg nmI• at: I b ut

2.

1}CSC[ig#nr P . ik iI fl 11L) 2',4 E%4
Spi i1iLx L FIL prvit c te J of Eh.seiner retCrie c3to 1 thi nioht dc. r:

Cir^mll i p^r its bi
]raJicatt ']ih'i the Liti1 iicltt tctbant t diiiw3i h iii b ti t 4. Iyts.

L7(1fli Llsc ca rp i rh inrI The i r inEcrpretth [Lit fl ciLtic rtf jI)

the pymiithritv liii: in LLr11tS Oi ciiic b k° tc, up Ri 11 I1E nkre ti ri U I. MBi. L f in ki nil lit 4 K[ytc,
itp Leo i r C.L!1Th.L1 si 4 3 iu1i4c' t CT]vtci

hit
L)ctriiiittt \ h her U 5cgflWI1L i.s a RyctcIll i tUeflt 1 d CL^ 4e nr LIaF;L gLVLL.1I.

Segrneai I'vc ni bit (P}
J d fur ii Jlpa2,c1 1 jdica bEIitr th• - I in iiiülti mc 1 uy. Rr itged

1tt]tI,. [hLs iHI i yI I lii I.

Tpe
LJi guih btwcLJJ arKItIc hi I] LI L gmrits id incl]c .ucr. the ccss Muihutc..

Pe l)trectory F.ntr hge Tthk Entry
c ii Mt {A

]Thk h[L i5 % a L' t h ih r1,Lt ur in h a t}i Ie t is 4f p; e Lab.9 whi n ii.ad eFi wrft.o opr:n'Ii t.' th
• r iijULni page ocuii

1)irty blI (1))
This bits, i4 t ki t] y l li pr CY 3 .ui]' Ji ii w rite pr:IIirI w t ll c tii r pornJir, Iaal L O(GUr.

Fniuw AdoTv.
[T{v id . h phya. ieii I add res3 (I page iD t1 F1L1TY ii lbe pfvECTl I hit k . Sicc I ri (i

• nil 4K ti iwdir. tEIL I i 12 TiV üi 1Fd bits LSF bick kdii. Ur ElLr.

lit a past Jii tui, th 13 that {)f.L]c age 1thc.

1? Cic1w IW.ahlc bit {i(I1}
IFLic11cs wIitlIic dmi IrL)LEf rage m ay E:i cat1Qt;

Pais SIebV (I'S)
I tsdica tcs whEllLf pa ge' size is 4 K1vLc o r 4 A I yt;:. '

P1 1r WEIk• I'h uØi bit (I'W
ILi at!i whc lhar arrite I j J1 (i E{ Eia [+i,licw wilt Fi used fur daL W c] p4)E1dIig

L1Ih

rc*nt hit (P)
IidiCfflL whether 411c pig, ti 1e r

RiHI-WI11e kilt (RW
For t r- icc pa.'s, in3 wI]cihcr Iht kluge is cid -ciily acccsr t >j.cl -wril int ut-[vçi
NGrT,

l r optxIF hit (U
InclLc whether tw vil1ik c iiit FU th c11urILr y4 -I 4 r pi.riO h V.1.F UT is to

1 *h n i l^c ILLIIri S. Tll ;iid ILV)f L'VLI}.

/ PENTIUM II AND POWERPC MEMORY MANAGEMEM 273

To understand the structure of the linear address, you need to know that the
Pentium II paging mechanism is actually a 1 ,N4P-level table lookup operation. The
first level is a page directory, which contains up to 1024 entries. This splits the 4-
(i13!,,te linear memory space into 1024 page groups, each with its own page table.
and each 4 MBytes in length, Each page table contains up to 1024 entries; each entry
corresponds to a single 4-kByteyage. Memory management has the option of using
one page directory for all processes, one page directory for each process, or some
combination of the two. The page directory for the current task is always in main
memory. Page tables may be in virtual memory.

Figure 8.20 shows the formats of entries in page directories and page tables,
and the fields arc defined in Table 8.5. Note that access control mechanisms can be
provided on a page or page group basis.

The Pentium H also makes use of a translation lookaside buffer. The buffer
can hold 32 page table entries. Each time that the page directory is changed. the
buffer is cleared.

Figure 8.21. illustrates the combination of segmentation and paging mecha-
nisms. For clarity, the translation lookaside buffer and memory cache mechanisms
are not shown.

Finally. the Pentium 11 includes a new extension not found on the 80386 or
80486. the provision for two page sizes. If the PSE (page size extension) bit in con-
trol register 4 is set 10 1, then the paging unit permits the operating system pro-
grammer to define a page as either 4 kByte or 4 MByte in size.

When 4-MByte pages are used, there is only one level of table lookup for pages.
When the hardware accesses the page directory, the page directory entry (Figure-8,200
has the PS bit set to 1. In this case, bits 9 through 21 are ignored and hits 22 through 31
define the base address for a 4-MByte page in memory. Thus, there is a single page table.

The use of 4-MByte pages reduces the memory-management storage require-
ments for large main memories. With 4-KByte pages, a full 4-GByte main memory
requires about 4 MBytes of memory just for the page tables. With 4-M Byte pages,
a single table, 4 Bytes in length, is sufficient for page memory management.

PowerPC Memory-Management Hardware
The. PowerPC provides a comprehensive set of .addressing mechanisms. For 32-bit
i mplementations of the architecture, a paging scheme with a simple segmentation
mechanism is implemented. For 64-bit implementations, paging and a more power-
ful segmentation mechanism are supported. In addition, for both 32-bit and 64-hit
processors there is an alternative hardware mechanism, known as block address
translation. Briefly, the block addressing scheme is designed to address one draw-
back of paging mechanisms. With paging, a large number of pages may be fre-
quently referenced by a program. For example, programs that use OS tables or
graphics frame buffers may exhibit this behavior. The result may he that frequently .
used pages are constantly paged in and out. Block addressing enables the processor
to map lour large blocks of instruction memory and four large blocks of data me.m-
ory in a way that bypasses the paging mechanism.

A discussion of block addressing is beyond the scope of this chapter. In this
subsection_ we concentrate on the paging and segmentation mechanisms of the 32-
bit PowerPC. The 64-bit scheme is similar,

Paging Segmentation

J.c!.gical address

Segment L
Lzy w

Dir Page Offset

Segment
table

Page Page
thiectoni table

'Frigate M.21 Pentium Niemen!. AdIdlre:.5s Translation Mccharn MT'S

Ri.;11 page nornhcl- Byte (Arse

_ II

(a) Elreciive kRldress

Nridual segment I D (VSLD)

ROW page riurnbcr

APT

PI'

R = Refuel -Iced E..Fi[1:1 .= reserved
C = Changcd hit
WIIVEG = Cache and sh.orage access conIrfli bits
PP r Page. protection hits

(h) Page EallIc entry

= Entry valid bit
= Hash [unction identifier

APL = AbhreviaEcd page. index

/ PENTIUM II AND POWER _Pe MEMORY MANAGEMENT 275

(et kcal addr .,2NN

Figure 8.22 liovr.cr PC 32-Bit Nle.niory-Ivlarragerns?ht Formats

The 32-bit PowerP(' makes use of a 32-bii effective address (Figure. 8.22a),
The address includes a 12-bit byte selector and a 16-bit page identifier. Thus,
2 12 = 4 KByte pages are used. Up to 2 16 = 64K paes per segment arc allowed. Four
bits of the address are used to designate one of i 6 seRnient registers. The contents
of these registers are controlled by the operating sysi ern. Each segment register
includes access control hits and a 24-bit identifier, so that the 32-bit affective address
maps into a f32-bit virtual Atiress (Figure

The PowerPC makes use of a single inverted page table. The virtual address
is used to index into the page table in the following manner. First, a hash eode. is
computed as racy's:

1-t(U , _18) SiD(5 23) e vpN(t)

The virtual page number in the virtual address is padded on the is [`t (most sig-
nificant end) with three binary zeros to form a 19-bit number. Then a bii-by-bi I
exclusive-or is calculated of that number and the 1.9 right-most bits of the virtual seg-
ment IL) to form 19-bit hash code. The 'able is organized as rt groups of 8 entries,
From 10 to 19 hits of the hash code (depending on the size of the page table) arc
used to select one of the groups in the table. The memory-management hardware
then scans the eight entries of the group to test for a match with the virtual address.

.r() do the match, each page table entry includes the virl dal segment TI) and
the left-most 6 bits of the. virtual page numbcr, called the abbreviated page index

S Page

116

la Me

Virtual segment ID AP]

Real page number

32-hit 20/

itcill

1 (1

-4 16 Segtrtent ri i.I I

276 GHAPTERtt / OPERATING SYSTEM SUPPOIVI

(because at least 10 hits of the 6-bit virtual page number 411 w ,HyS participate in the
hash to select a page iablc.t entry group, only an abbreviated form of the virtual pup
number need be carried in the page table entry to match the virtual address). If
here is a match, then the 20-bit real pge number from the addres.5 is concatenated

with the lower 12 hits of the drective address to form Ihe 32-bit physical address to
be accessed.

If there is no match, then the hash codex complemented to produce a new
page table index that is in the some relative position at the opposite end of the
table. This group is Ihcn scanned for a match. if no match is found, a page fault
interrupt occurs.

Figure 8.23 Pows:rPC 32-Lilt AtitIr Translation

6.5 / 1.t_ECOM141ENDED RFADING AND WEB SITE 277

Table 84 1.3 43.tvel- PC tyleinory Management Paranimors

Sexrnetit Table Entry
Effeeki.te Segment

I di:ases or, of E.14.1-+ 4tftctivu useti iu J teriLlul ealty

Entry Valid (V) hit
IndicasC5 wheshff this i, 111C,1-11(ity or E.:Orscirjr il.

Negnient Type (I) lest
Indicaies whoslier iN #i LswinUrs.. or E!) si!ginelit.

SapervIsor Key Ms)
li;sed with tlio vatuail [raga n Limbo' to tenni Ile trues ill page

Page Table Entry'
Vrirry Valid. (1.1) Iiii

1.1.1n2i her ih{214:' Is walivi data iik this

1-40 Tikniiiier
fridicHres w IlE111C1 LIVIA LS a]IriiIsa7y

edge IT-Hfrx (API II
Usxkl. to match 11 VIII U.,I iidd 1C.SS 1.11.16.1L1.21Y.

Referenced (R) bit
'Phis hit is we I Ii} I by 1.1112 procossrm when read Or opErviLicin Lis Lhe.cisrvi...1)rsi:Lliir:

Iiagi ticcurS.

('hinged (C) bit
This hit is rL L to I by the prau2ssor when 3 write opratiors is i corrusp.sriding

(KC

I M4. spitz
4G=-si: Usti Iv rice-back use write-Enroll h
1.1.1: uiching next Ii hibiLed; [::I; cachininhibitcal
M - not shared shard memory.
O .0: rial guald.r.:4.1 memory; 6=1: gnarlwd

P ►#i Prolottion. (PP) bits
AIXIL'NS Ce.slI4t01 hft ILIStN.1 With K Nis Flom ss2gimui y.L.F.3111311t .britrs., Ir!
define access rights.

fip.ru K.22 shows the !oaic of the addresti Iranslation mechanism. and Figure
8.23 shows the formats of the effective address, page table entry, and real address.
Finally. Table S,16 dctine ih pm-an -lea:Is in the page table entry.

The Memoty management scheme is designed k he dp rardly compat-
ible vvith the 32-bit implementation. In eStiC Dec, all eficinive. addresses, general reg-
isters, and branch address registers.; are. extended on the left to 64 bits.

8.5 RECOMMENDED READING !LIND WEB SITES 1:

1st-Auld covers Lhc. topics <rt this draw ex in cktail..

Sta..IIhtp, W. Oppratin8 Systems, InEerntris gad PriLicipks, 4th edition,
Upper Saddle River, NJ; Prentict. Half. 2Kl.

batch system.
demand paging
interactive operating

system
interrupt
job control language

kernel
logical address
long-term scheduling
medium-te fin scheduling
memory management

oteinory protection
multiprograimning
multitasking
nucleus
operating system (OS)
paging
page table
partitioning
physical address
privileged instruction
priicess
process control block

278 CHAPTER / OPERA TING SYSTEM SUPPoit..T

Recommended Web sites:

• Operating System Project Information: Links to OS projects and research

• ACM Special 6nerest Group on Operating Systems: Information on SIGOPS publica.
dons and conferences

• IF:F.E Technical Committee on Operating Systems and Applications: Includes an online
newsletter and links to other sites

• Review of Operating Systems: Comprehensive review of commercial, free. research,
and hi Fnt'ty Otis

8.6 KFY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

process state
real memory
resident monitor
segmentation
short-term scheduling
swapping
thrashing
time-sharing; system
translation lookaside buffer

(T LB)
utility
v irtual memory

Review Questions
8.1 What is an operating system?

l.ist and briefly define the key services provided by an operating system.
8.3 List and brielly define the major types of OS scheduling.
8.4 What is the difference between a process and a program?
8,5 What is the purpose of swapping?
8.di If a process may be dynamically assigned to different locations in main memory, what

is the implication for the addressing mechanism?
8.7 Is it necessary for all of the pages of a process to be in main memory while the process

is executing?
81 Must the pages of a process in main memory be contiguous?
8.9 Is it necessary for the page's of a process in main memory to be in sequential order?

8.10 What is the purpose of a translation lookaside buffer?

Fg.6 / KEY TERMS. REVIEW QUESTIONS. AND PROBLEMS 279

Problems

8.1 Suppose that we have a multiprogratinned computer in which each job tiriil idequic.21.
characteristics. In one iJortipuiaIiott period, T. far a job, half the lime is spent in 1.0
and the other half in proccy-.01....iclivity. Filch job runs for a total 01N Twiods. Assume
that a simple round -robin pliolity is used. and that I.10 opermioir, can overlap with
processor operation. De.figh... We following quantities.;

■ Tornaoloild ti me - actual time to complete a job
■ liroughput - average number of jobs completed per time period T
■ Processor utilization - percentage or time tllat the processor is active (not waiting).

Compute these quantities for orw, tv,o, and four simultaneous jobs. assuinifig that the
period T is distributed in each of 1 he following ways;
A. 1..0 first half. processor second half
h. 110 first and fourth quarters, proixssur secoild and third quarters

8.2 An 110.bound program is ow I hai, if run alone, would spend more time waiting for
I10 than using the prorx..4s1.1. A p3ticessor-bound program is the opposite. Suppose. a
short-term scheduliri.1 iayon those programs that have used little proces-
sor time in the reo...ni psi. I why this algorithm favors PO-hound programs
and yet does nut per denyprocessor ti me 10 processor-bound programs.

8.3 A program computes the row sums

C., = CI.:

; I
of an array A that is ID° by 10th Assume that the computer uses demand paging with
a page size of Lon° ,vorth, and that the amount of main memory allotted for data is
five page frames. Is there any difference in the page 'Fri ult rata if A were stored in vir-
tual nu.tmory by rows or columns'? Explain.

8.4 Suppose the page table. for the process currently executing on the processor look; like
the following. All numbers are derima], everything is numbered starting from zero,
and all addresses are memory byte addresses - The page size is 1021 bytes.

r
Virtual Pap

hit

Valid hu Reference hit
lumber

[nudity bill
frame

number

0 I I 0 4

1 I 1 1 1

a 0 0

I. b 1) 2

4 El D 0 —

5 L I.) I c.I

a- Describe exactly how. in genera]. a virtual address generated by the CPU is Mins-
lated into a physical main memory address,

b. What physical address. it .kluy, would each or the following virtual addrows corre-
spond to'? (Du not try 105 handle any page faults, if any.)
(i) 10.32.

2.22l
j41)9

280 CHAPTER 8 OPERATING SYSTEM SUPPORT

Give reasons that the page size in a virtual memory system should be neither very small..
nor very large.

8.6 The following sequence of virtual page numbers is encountered in the course uf axe—
cation on a competes' with virtual memory;

3 4 2 6 4 7 1 3 2 ri 3 5 L 2 3

Assume that a least recently used page replacemeni policy is adopted. Plot a graph of
page hit ratio (fraction of page references in which the page is in math memory) as a •
function or main•memory page eapacily n ror 1 01 8. Assume that main memory is
initially empty.

/4.7 in the VAX compute', lisor riage tables are 'located at virl Lid! addresses in the sys =
space. 1i.Vhas is the advaniage of having user page tables in virtual rather than main
memory? IrVfial is the disadvantage?

8,8 Consider a computer system with both segmentation and paging. When a segment is
in memory, some words are wasted on the last page. In addition. for a segment sizes.
and a page size p, there are s/p

 page 'able entries. The smaller the taupe size, the le s5 .
waste in the last page of the segment, but the larger the page table. What page Mire
minimizes the total overhead?

8.9 A computer has a c.,ache. main memory, and a disk used ror virtual minor.... If a ref-
erenced word is in the cache, 20 ns are required to access ii. l r it is in inain memory
but not ill the c- Ht - Feu, 60 ns are needed to ltlad it into Ihe Lathe, and then the reference
i started nain. El the word is not in main memory, 12 ms are required to fetch the
v,:iird four! ilkL. followed by 60 ns to copy it to the cache, and then the reference

started again. The cache hit ratio is 0.9 and the main-memory hit ratio is 0.6. What is
il.K1 average time in ns required to access a referenced word on this system?

8.10 Assume a task is divided into rout' equal-sized segments, and that the system builds
an eight-entry page descriptor table ror each segment. Thus, the *sleet has a combi-
nation of segmentation and paging. Assume also that the page ske is 2 Kbytes.
B. What is the maximum size of each segment?

b. What is the maximum logical address space for the task?

e. Assume that an clement in physical location 00021ABC is accessed by this task.
What is the format of the logical address that the task generates for it? What k the
Maximum. physical address space for the system?

8.11 Assume a microprocessor capable oi' accessing up to 2' byi es of physical main mem-
ory. It implements ooe s• :I.: merited logical address space 471 maximum size 2 . ' 1 bytes.
Each instructiori comairr-. IIre whole two-part addre.1... ,..1 ernal memory management
units (MMUs) art' krnvi whose management sehenie assigns contiguous blocks of
physical memory c31 ked size 2 .' 3 bytes to segments. .i'he starting physical address of a
segthimt is always it isiltile by 1024. Show the delailed intereonnoction of the ester-
''a1 mapping mechanism that converts logical addresses to physical . addresses using

appropriate number of MMUs. and show the detailed internal structure of an
Mhil (assuming that each MMU contains a 121-entry directly mapped segment
descriptor cache) and how each Mfy1l... 1 is selected.

8.12 Consider a paged logical address space (composed of 32 pages of 2 Kbytes each)
mapped into a 1-MByte physical memory space.
a, What is the format of the processor's logical address?
h. What is the length and width of the page table (disregarding the. "access rights"

e, What is the effect on the page Table it the physical mentors? ,•pac.e is reduced by
half?

Processing Unit

ecrefre er
 5ero: ef ;fea;er-,,

,rr"'elr ar.

Up to this point, we have viewed rhe CPU GSLiciiii.liny as a "black box and 1
have considered its interaction with 1/0 and memory. Part Three examine

the. inlomai structure and function of the CPU, The CPU cofisists of a con-
roi unit registers, the arithmetic and iogic unit, the. instruction execution

unit, and the interconnections among these components. Architectural issues,
such as instruction sci design arid data types. ale. covered. The pari also looks

t OTWIT111, 1i.01-191.1 LS;SUON, Sudi as pipelining.

ee--
'ree

e"

Chapter 9 Computer Arithmetic
Chapter 9 examines the funelinuality of the ALU and focuses on the rort-
sentiltion of num hers and techniques for implementing ,iiriihnictic operations.
Processors typically support two types of arithmetic: integer, or fixed point,
and floating point. For both c4isei;, the Chapter first examines the represn-
ualion of numbers and i hen discusses arithmetic openaii -pirs..1.9hc important
I 754 floating-point standard is examined in clutail.

Chapter 10 Instruction Sets: Characteristics and Functions

From a programmer's point of view, the best way to understand the op'] k-
iioa of ti processor is to learn the machine instruction set that it executes.
The cc..1.1 -npilL.7,; topic of instruc.1.tion set design occupies t'haptcs I() arid U.
(hairier Eft focuses on the functional aspecisi of inistruction set design. The
chapter examines the types of flinclions Ow are specified by complier
instructions, and then lock! ,. Spc. c.ifiLLilly at the types of operands (which spec-
i data to he ciprated on) and the types of orxtralioll., (Which specify the

282 PART THREE I THE. CENTRAL PROCESSING UNIT

operations to be perforrned) commonly found in instruction sets. Then the rek:-
tionship of processor instructions to assembly language is briefly explained.

Chapter 11 Instruction Sets: Addressing Modes and Formats

Whereas Chapter 10 can be viewed as dealing with the s,oniantics of instruction
Chapter 11 is more concerned with the syntax of instruction sets. Specifically. CI:
ter 11 looks at the way in which rn,mory icictrescoN ,art= srcified and at alp 01_
format of computer instructions.

Chapter 12 CPU Structure and Function
Chapter .12 is devoted to a discussion of the internal structure and function of thy
processor. The chapter describes 1.13 C use of registers as the CPU's internal memory.
and then pulls together all of the material covered so far to provide. an overview of
CPU structure and function. The overall organization (AEI:, control unit. register
file) is reviewed. Then the organi'4ation of the register file is disciised. The rernitig-
der of the chapter describes the functioning of the processor in executing nnichim;
instructions. The instruction cycle is examined to show the function and inter-
relationship of fetch, indirect, execute. and interrupt cycles. Finally. the use of pilw-
lining to improve performance is explored in depth.

Chapter 13 Reduced Instruction Set Computers

The remainder of Pan Three looks in more detail at the key trends in CPU design.
Chapter 13 describes the approach associated with the concept of a reduced instruc-
tion set computer (RISC), which is one of the most significant innovations in corm
puler organization and architecture in recent years. RISC architecture is a dramatic
departure from the historical trend in processor architecture. An analysis of this
approach brings into focus many of the important issues in computer oq!,aniz.ation
and architecture. The chapter examines the motivation for the use of RISC design and
then looks at the details of RISC instruction set design and RISC CPU architecture
and compares RfSC with the complex instruction set computer (CISC) approach.

Chapter 14 Instruction -Level Parallelism and Superscalar
Processors

Chapter 14 examines an even more recent and equally important design innova-
tion: the superscalar processor. Although supersealar technology can be used on any
processor, it is especially well suited to a RISC architecture. The chapter also looks
at the general issue of instruction-level parallelism.

Chapter IS The IA-64 Architecture

The IA-64 instruction set architecture is a new approach to providing hardware sup-
port for instruction-level parallelism and is significantly different from the approach
taken in supersealor architectures. Chapter 1.5 begins with a discussion of the moti-
vating factors for the new architecture. Net , the chapter looks at the general orga-
nization to support the architecture. 'Me chapter then examines in some detail the
ki ev features of the IA-64 architecture that promote instruction-level parallelism,

CHAPTER

GO MPUTER ARITHMETIC

9.1 The Arithmetic and Logic Unii

92 Integer Representation

Sign•-Magnii tide Representation
l'Ivos Complcrnc.nt ReprQsen Lotion
Couverling howucn Different Bii Lengths
Fixed-Point Representation

93 integer Arithmetic

Negation
Addition and Subtraction
Mult ip.licut ion
Division

94 Eloating-Nint Repreit

Principles
rliF.F. Standard for Binary Fioating-Point Representation

95 Floating-Paint Arithmetic

Addition and Subtraction
:Multiplication and Division
Precision Consid CP1 tions
IEEE Stunc.hrd for l'Iinary Floating-Point Arithmetic

9.6 Recommended Heading and Vireb Site

9.7 Key Terms, Review .Questions, and Problems

Key Terms
KL-yi m Quesiions
Pnrilieins

C•LIPTEK 9 COMPUTER AIM L'IVAUTIC,

KEY POINTS

• The two principal concerns rt.)1' co mputer arithmetic arc. the way in which lium-
bers arc represented (the binary format) and the algorithms used for the basic
ariihmetie operations (add. subtract. multiply, divide). These two consideril•

apply both to integer and floating-point arithmetic.
• Floating-point numbers are expressed as a number (sigoificand) multiplied by

Li constant (base .) raised to some integer power (exponent). Floating-pnini
numbers can be used to represent very large and very small numbers.

* Most processors implement ihe. IEEE 754 standard for floating-point re„Px-
sentation and floating-point arithmetic. lECE. 754 defines, both a 32-11 .11. acid a
fro-hit format.

e begin our examination of the processor with an overview of the Faith-
ie and logic unit (ALLT). The chapter then focuses on the most COM•

Alex aspect of the ALU, computer arithmetic. The logic functions that iu -c.
part of the ALLT are described in Chapter 111 , and implementations of simple logic
and arithmetic furictioro, in digital logic are described in Appendix A of this book.

Computer arithmetic is commonly performed on two very different types ut
numbers: integer and floating point, In bg rt h eases, the representation chosen is a e
ciai design issue and is treated •irst, followed by a discussion of ariihnielic opera:dm.

This eh:irate,- includes a number of examples, each of which is highlighted in a
s box.

9.1 lig, WIWYJET..ic ANA,W .(4,C, UNIT

The AIM is that part of the computer that actually perrorrns arithmetic and logical
operations on data. All of the other elements of the computer system•control
unit, registers, memory, I.10—are there mainly to bring data MI° the AL[; for it
10 process and then to take the results back out. We have, in a sense. reached the
eon: or essence of a computer when we consider Ihe AUL

An ALL) and, indeed, all electronic components in the computer arc based
on the use Of si mple digital logic deices that can store binary digits and perform
si mple Boolean logic operations. For the interested reader, Appendix A cm -km
digital logic implementation.

Figure 9-1 indicates. in general terms, how the ALU is 411cl -connected with the
rest of the processor. Data are presented to the AU! in registers, and the results Qf
an operation are stored in registers, These registers are temporary storage leentiost&
within the processor that are connected by signal paths to the ALU (e.g., see Figure.
2.3). The AU; may also set flags as.the result of an operation. For example, an ovcr•
flow flag is set to 1 if the result of a computation exceeds the length of the registu:

I NTEGUIt. R1-1 , 11.12.SPNIATION 285

((intro!
unit

Registers

ATAJ

Hap

RugisterN

Figure 9,1 A LAJ Inputs Lind Outputs

into which it is lo be stored. The flag values are also stored in registers within the
processor. Thc control unit provides signals that control the operation of Ilse ALU
and the movement of the data into and out of the ALL],

9.2 INTEGER REPRESEN1ATION

In the binary nurnbcr system,' arbilrary' numbers can he represented with lust the
digits zero and onc, the minus sign, and the period : or radix point,

—1101.0101 2 = —1331?5 0

For purposes of computer storage and processing, however, we do not have the ben-
efit of minus signs and periods. Onkv binary digits (0 and 1) may be used Lc; repre-
sent numbers. If we are li mited to nonnegative integers, the representation is
straightforward.

1 An 8-bit word can represent the numbers from 0 to 255, including

00000000 0
(1(1000001 = I
00101.001 41
11000111[10 = 128
1].111111= 255

In general, if an n-bit sequence of binary digits ta„_, , a : , is interpreted
as an unsigned inte2er A, its value is

'Sec Appendix B For rI buhic rofnzslm flii m hcr s :..sterns (dclzi mak, bin dry, h.z.x.ackcirnal).

286 CHAPTER 9 / COMPUTER ARITHME1 IC

A =

Sign-Magnitude Representation
There. are several alternative conventions used to represent negative as well at
positive integers, all of which involve treating the most significant (leftmost} hit in
the word as a sign bit, If the sign bit is 0, the number is positive: if the sign bit is t, the
number is negative.

The simplest form of representation that employs a sign bit is the sign ,
magnitude representation. In an n-bit word, the rightmost n — 1 bits hold the mag-
nitude of the integer.

-18— 00010010
—1S— 1001.0010 (sign magnitude)

The general case can be expressed as follows:

E 2 1 a ; if =

Sign Magnitude A =
- E2a. if tri„ _ =

There are several drawbacks to sign-magnitude representation. One is that
addition and subtraction require a consideration of both the signs of the numbers
and their relative magnitudes to carry out the required operation. This should be-
come clear in the discussion in Section 9.3. Another drawback is that there are two
representations of 0:

+ 0„, = 000000po
o t „ = ib0000po (sign magnitude)

This is inconvenient. because it is slightly more difficult to test for 0 (an operation
performed frequently on computers) than if there were a single representation.

Because of these drawbacks, sign-magnitude representation is rarely used in
implementing the integer portion of the ALU, instead, the most common scheme is
twos complement representation.'

Twos Complement Representation
Like sign magnitude, twos complement representation uses the most significant it
as a sign bit. making it easy to test whether an integer is positive or negative. It dii-

In the literature, the terms rwo75 complement or 2'r complement are often used, Here we follow the prac-
isn LiNed in standards documents and omit the apostrophe (e.g., IEEE Std 101}-1 903. The New ?FEE SwF.

elan! Dictionary of Elearicat and Electronics ferns).

• through 2" -i –

umber of
Rep-yen:notions' of Z01. 0

Runge

One

'rake 11-ic Flog5lean ccolipleinent of each bit of she corre.sponclin!F
poi•riiive number. Chen add L to the resulking bit pa.tirn
An unsigned

Add hit FuritionE Lo Ike. lett and fill in with the xi:011C of
origiiiiii Nip-5 hit.

II two numbers with the s.ime sign (both iac}3iti\:e Of both Ilega-

Live) are added.. then (m1-flow OCCUTS it and only if the resull has
the opposite sign.

7.*. e- ntion

ExtwFFSiou 4).F Bil Length

Overflimo Rohl

Siihtrurtion Rule To subtract B from A lakc c he twa.i. complement i rf 13 . 0Eld add ik to A

9.2 INTDGER REPRESENTATION 2S7

TatFle 91 CharaCtcriStics . 1wL-5s Complement Representation and Arillintetio.

fors from the use of the sign-magnitude representation in the way thin the c Fi her hits
;Ire inlerprel Lit I 411)1e 9.1 highlights key characteristics of two:, compiement repre-
sentation and ti'iLitlietiC, which are elaborated in this section and the next.

Most treatments of Twos complement representation focus on the rules for
producing negative Mini bcrs, with no formal proof that the scheme –

wt-nrk.s.. ! '

I nstead, our presentation of twos complement integers in this section and in Sectibn
9.3 is based on [DATT93], which suggests that twos complement representation is
best understood by defining it in terms of a weighted sum of bits, as we RI pre-
viously for unsiEtned and sign-magnitude representations. The advantage of this
treatment is that it does not leave any lingering doubt that the rules for arithmetic
operations in twos complement notation may not work for some special f:Tises.

Consider ari a-hit integer, A, in twos complement repre71:.eriG)tion.. 1f A is
positive, then the sign bit, is zero. The remaining bits tc....precnit the magnitude
of the. number in the same fashion as tot - sign magnitude:

A — 2`a, for A a. 0

The number zero is identified as positive and therefore has a 0 sign bit and.a mag-
nitride of all OS, WC can see that the range of positive integers that magi be repre-
sented is from 0 (all of the magnitude bits are 0) through 2" — 1 (a]1 of the
magnitude bits are I). Any larger number would require more bits,

Now, for n 3ievrive. number A (A (1), the sign bit, a, : , is one. The remain-
ing n — 1 bits wan take on any one of 2' values. 'Fbewfore, the range of negative
integers that can be represented is from —1 to —2.n - I. We would Like to assign the bit
values to negative integers in such 8 way that arithmetic can be handled in a straight-
forward fashion, similar to unsigned integer arithmetic- In unsigned integer repre-
sentation, to compute the value of an integer from the bit representation, the weight
of the most significant bit is +2: 4 For a representation with a sign hit, it turns out

Ihe desired arithmetic properties are achieved, as we will see in Section 9.3, if

288 CHAPTER 9 / COMPUTER ARITHMETIC

the weight of the most significant hit is -2" I , This is the convention used in twos
complement representation, yielding the following expression for negative n umbers:

Two Complement

In the case of posiiive integers, 0. so the term - 2:" '0,, ,= O. Therefore,
Equation (92) defines the iwos complement representation for both positive and
negative numbers,

'Fable Q2 compares the sign-magnitude and twos complement representations
for 4-hit integers. Although iwos complement is an awkward representation from
the human point of view, we will see that it facilitates the most important arithmetic
operations, addition and subtraction, For this reason, it is almost universally used as
the processor representation for integers,

A useful illustration of the nature or twos complement representation is a value
box, in which the value on the far right in the box is 1 (2 u) and each succeeding
position to the left is double in v;iltie. until the leftmost position, which is nepta.
As you can see in Figure 4,2a, the most negative twos complement number that
can be represented is - 2!' if any of the hits other than the sign bit is one, it adds
a positive amount to the number. Also, it is clear that a negative number must have a
1 at its leftmost position and LI positive number must have a 0 in thai position. Thus,
the largest positive number is a 0 followed by all ls, which equals 2'' 1.

The rest of Figure 9.2 illustrates the use of 1he value box to convert from twos
complement to decimal and from decimal to Twos complement.

Table 9.2 Alternative RwreseilLaticros for 4 -Bit Integers

Decimal Sign-Magnitude '11441014 Complcrnent Biased
Rovesentation ICepreseniMion Hepresentation RepreRentation

-FI - - 1111
-7 0111 0111 11 W
-Ft) 0110 01.10 1101
+5 0101 01.01 L Ifx1
44 0100 0100 1011
+3 0011 0011 1010
-2 i.11(.0 0010 1 W1
-1 ;;o0I 0001 I WO
+0 r.,i.I0!! WOO 0111
-4.1. I.:11.1 0 -

1 I1X11 1111 OLIO
-2 1010 1110 010.1
-.• 1011 3101 0100
-4 1100 1100 0011
-5 1103 1011 0010
-6 111.0 1010 I1(301.
-7 1111 WIJI 1:%101}
43 - LOW -

71.2 16 g I • 2

I t1 0

—8
Ei

9,2 INTEGER REPRESaNTATION 289

-.1.2 0 64 . .12 16

I:I(cil....1n-po3lii.on twos cornpleinU111 Value. box

--128 64

1

32 16 8 4 • 2 1

0 II I o I !
128 = —

(b) Con vc rt binEiry I MO(X) 1 1 to decimal

: 64

I r1

— 120 =

(c) Correcn dccinvil —120 co binary

Figure 9,2. of n 'Value Box fur Co unieTSIO hetwcen Twos
Ci.prrirlinnwli Binary and Decimal

Converting between Different Bit Lengths

It is sometimes desirable to Lake an 02-bit integer and store it in m bits, where m > n.
In sign-magnitude notation, this is easil!,. , accomplished; Simply move the sign it to
the nCvi leftmost position and fill in with zcros.

+18 — 00010010
00.1100f1(0000 1100 I 0

--
. 1 • .1 001.00 .10

1000000000010010

(sign magnil tide, N hits)
(sign mtignilude. 16 bits)
(sign magnitude. 8 bits)
(sign magnitude, 16 bits)

This procedure will not work for twos complement negative integers .. Using the
same eumple,

-F tH
+18
-•

--32,658

0€1010010
001)111 01101010010

11.101110
1000000001101110

(twos complement., 8 bits)
(twos complement, 16 bits)
(I wos complement, 8 hits}
(twos complement, 16 bits)

' Me next to last hue is easily seen using, the box of Figure 9-2- The last
line can be verified using ion (9.2) or a 16-bit value box.

lnstcad, the rule for twos complement integers is to move the sign hit to the
new Leftmost position and fill in with copies of the sign For positive numbers,

290 ctiAnFR ' COMPUTER ARITHMETIC

fill in with zeros, and for negative numbers. fill in with ones. This is called sign
e.xtc:nsion-

lg

11101110 (t. wm complement, hits)
lg = 11111U (twos complement, .l6 bits)

To see why this rule wOrks, let us again consider an fl-bit sequence of binary dig-
its a,, l a r , . ,a i a interpreted as a twos complement integer A. so that its value is

A = -2'
i ts , , i I E 2

'a,

HA is a positive number, the rule clearly works. Now, if A is negative and we want
to construct an nt-bit representation, with ,n > 'Then

me a
A = 'a„_ -I-

; -11

The two values must he equal:
—

I + = —2" + 2 1
a: _

2 ;a, —
...

2'' I I 2'a ., =. 2'

, m 2

1 4- E 2'a ; .= i + 2'
- -

.. ■ 2

2' • =. E 2'
• .9 - I I

2 — — - 7 =ra r , ,

In going from the first to the second equation, we require that the least signif-
icant n — 1 bits do not change between the two representations. Then we get to the
next to last equation. which is only true it all of the bits in positions rr -- I through
fit 2 are 1. Thus the sign-extension rule works.

Fixed-Point Representation
Finally, we mention that the representations discussed in this section are. sometimes
referred to as fixed point. This is because the radix point (binary point) is fixed and
assumed to be to the right of the rightmost digit. The programmer can use the same
representation for binary fractions by scaling the numbers so that the binary point
is implicitly positioned at some other location.

/ iN•14,:c.Fklk AR M-IMF:TIC 291

9.3 INTEGER ARITHMETI

This section examines common arithmetic functions on numbers in mos comple-
ment representation.

Negation

In sign-magnitude representation, the rule for forming the negation of an integer is
simple; invert the sign bit. In twos complement notation, the negation of an integer
can he formed with the following rules:

1. Take the Boolean complement of each bit of the integer (including the sign
bit). That is. set each 1 to 0 and each 0 to 1.

2, Treating the result as an unsigned binary integer, add 1.

This Iwo-step process is referred to as the twos complement operation, or the taking
of the twos complement of an integer,

+.1g =. 00010010 (twos comp iem ent)
bitwi se complement 11101101

-1-

lli01110 —18

experied, the. negative of the negative of that number is itself:

1/01110 (twi.3s complE..niv.ni)
wise COOT[errtent = 00010001

—

Gan 0010= +18

We can demcinstraLe the validiiv ul the operation just ie.scrilied using the def-
inition of the twos complement representation in Equation (9.2). Again, interpret
an ;sequence of binary digits a r, a . a 1 , as a twos-complement integer A,
so that its value is

1. 2

= 2)
I 2`a ;

i IJ

Now form the bi1virise cornple,menl. and, treating Ibis is an unsigned
integer, add 1. Finally, ihterprel the resulting n-hit scquentx of binary digits as a
twos-complement integer B, so that its value is

B = —2" 'o,, 1 -F E.2.' a:
-c:

292 cl-TAP-ilIk. 1 COMPL0 .1. FR ARITI

Now, we want A = — B, which means A + B = 0. This is easily shown to he true:

.! 2
A B = —(a,,_ , — .702" • +I -1 (I2V -L a f))

)

—

2' I . 1 1 + (24-
I

— 1)

— 4- 2' = 0

'1'he prml:..ding derivation assumes that we can first treat the bitwise eomplement
A as an unsigned integer for the purpose of adding 1, and then treat the result aE
a twos complement integer. There are two special cases in consider, First. considu
A 0. In that case, for an 8-bit representation.

004100000 (tvitys complement)
•IL1111111

toop00000 o

bitwise oomplement =

There is carry out of Ihe most significant bit position, which is ignored. The result is
that the negation of 0 is 0, as it should be,

The second special case is more of a problem- If we take the negation of the
hit pattern of I followed by n — 1 zeros. we get bad the same number. For exam-
ple. for 8-bit words,

LZS —
bitwise complement

100000E.10 (twos. complem en 19
011111.11

100000000 —128

Some such anomaly is unavE_Iithible. The numbcr of different hit patterns in an
el -bit word is 2', which is an even number, We wish to represent positive and ile.4-
tivc integers and 0. H an equal number c.if positive and CLCE/iLiVe integers are repr•
wonted (sign magnitudc): then there are two representations for EL If 'here is only
one representation of 0 (twos complement), then there must be an unequal number
or negative and positive numbers represented. In the case of LWOS complement. Cot
iii n-bit length, there is a representation for —2' but not for +2".

Addition and Subtraction

Addition in twos complement is illustrated in Figure 43. The first four examples
illustrate successful operations, If the result of the operation is positive, we get 8

positive number in ordinary binary notation. II the result of the operation iE
negative, we get a negative number in twos complement form. Note that, in soma

9.3 INTEGER ARITHMETIC 293

:021 = -7
iO.U. 1 .. .= 5
11L0 = -2

(a) (-7) + (+5)

=AIM = -4
+'..-.:.-1.1.2.1_= 4
1300C = 0

al) (-4) 4 0-..1)

:: 0 I -3 '. 1 r.c..: = .4
1...; 1•-..' .0. 4 +_11_ = -1
01=1 = 7 :I: 0'1 - -.)

(...) H-31 -1- 14-1) I1.1)1-41 I I 1.1

-.I. :.: 1 = .J 1 .:11)1 .
+01:20 7 4 -F 101.3_= -:.
10:1 = Overtiow VO 1: = Ov.e.r,t- 1c)......

C..) (-F5) + (-P.1.) (1) (-7) + (-6)

Figure 9.3 Addition or Numbers in Twos Coniplemetil
Rciprt,sunta Lien

instances, there is a carry bit beys -nd the end of the word (indicated by shading),
which is ignored.

On any addition. the result may be larger than can be held in the word size
being used, This condition is called overflove, When overflow occurs, the ALU must
signal this fact so that no attempt is made to use the result. To detect overflow, the
following. rule is observed: If two numbers are added, and they are hoh poitive or
bOth negative, then overflow occurs if and only if the result has the opposite sign.
Figures 13e and I' show examples of overflow, Note that overflow can occur whether
or not there is a carry.

Subtraction is also easily handled with the following rule To subtract one
number (subtrahend .) from another (minuend), take the twos complement (nega-
tion) of the subtrahend and add it to the minuend. Thus, subtraction is achieved
using addition. as illustrated in Figure 9.4. The last two examples demonstrate that
the overflow rule still applies.

Some insight into twos complement addition and subtraction can be gained by
looking at a geometric depiction [BENI-192]. as shown in Figure 9.5. '11 -u.: circle in
the upper half of each part of the figure is formed by selecting the appropriate seg-
ment of the number line and joining the endpoints. Note that when the numbers are
laid out on a circle, the twos complement of any number is horizontally opposi e
that number (indicated by dashed horizontal lines), Starling at any number on the
Circle, we can add positive .1((or subtract negative k) to that number by moving k
positions clockwise. and we can subtract positive k (or add negative k) from Ihai
number by moving k positions counterclockwise. If an arithmetic operation results
in traversal of the point where the endpoints ;ire joined, an incofrect answer is given
(overflow).

Ail of the examples of Figures 9.3 and 9.4 are easily traced in the circle of Figure 9.:5.

294 CHAPTER 9 / COMPUTER AJUTUMETIC

Figure 9.6 suggests the data pais and hardware elements needed to accorn-
piibh and subtraction. l he central element is a binary adder, which is pre-
sented two numbers for addition and produces a sum and an overflow indication.
The binary adder ire...Nis the two numbers ais unsigned integers. (A logic implemen-
tation of an adder is given in Appendix A.) For addition, the two numbers arc pre-
se.nli:d to the adder from two 1 - c: Ri!,ters, designated in this case as A and 13 registers.
The result may be stored in one. of these registers or in a third. '1'he overflow indi-
cation is stored in a 1-bit overflow flag (0 — no overflow; 1 4 overflow). For huh.
traction, the subtrahend (B register) is passed through a Lwos complemc.nter so that
its twos complemeni is presented to the adder.

Multiplication

Compared with addition and subtraction, mulliplication is a complex operatitm,
whether performed in hardware or software. A wide variety of algorithms have been
used in v,Hrious computers. The purpose of this subseciion is to give the reader some
feel for the type of approach typically taken, We begin with the simpler problem of
multiplying two unsigned (nonnegative) integers_ and then we look at one of the most
common iechniques for multiplication of numbers in twos complement representation,

Unsigned Integers
Figure 9.7 illustrates the multiplication of unsigned binary integers, a might

he eta riled out using paper and pencil. Several important observations can be made;

0.1) If 7 2 = : W = 5 - 010:
= 7 = :111 - 2 = 001C
= 100= = 1:12

.7: 010 = 2
•120 ... = - 7

= -5

1) :01 = 5
-1:1D =

101= -
+111.0_= -2

=: -7

Ft =-5 - 10=1
= 2 COLO

- 9 = 11/0

C10= = 5
- 2

0:11 =

.1: Zt = 5 =
a =-2 = -.110

—s = := 010

:010 = —6
+2111 = 7 —4
1110 = ovQrflow = Ov17.7=low

M = 7= f) N = -
S = -7 .= 1G: 01 E = =

- 9 = (:11 -a =

Fiore 9.4 Subtraction of Numbers in Twos Complemmt
Koprc8cmkation S)

(a) 4-bit numbers 1kp) numbers.

Subl ruction

ur positive
uuukben; .01100 ... I I

III __.1

OI1 1 1

(1100 110 • • 0

6101

Nubtrsortion

of pOtiiiiVE

numbers

1101

ONO
1111 .0F1W1

1110 00111

1010

1001

4111 ►
2 I

—]

.1." —
 I

ur positive

numbers

il d-111111H1111111[1 11 1

Figure 9.5 Geometric. Depiction of Twos Compliment lntegen

tai

It Register A Register

296 CHAVI FR 9 / COMPUTER ARITHMETIC

OF L..-- ()willow bit
SW = Switch t3elect Addition or subtraction)

Figure 9.l Block Diagram of Hardware for Addition and Subtraction

1. Multiplication involves t.hc generation of partial products. one for each digit
in the multiplier. These partial products arc then summed to produce the
final product.

2. The partial products arc easily defined. When the multiplier hit is O. the partial
product is 0. When the multiplier is I, the partial product is the multiplicand.

3. The total product is produced by summing the partial products. For this oper-
ation, each successive partial product is shifted one position to the left relative
to the preceding partial product.

4. The multiplication of two n-bit binary integers results in a product of up to 2, ,z
bits in length (e.g., 11 X 11 = 1001 }.

1 01 1 Multiplicand {11)
1 1 0 1 Multiplier {13)

1 0 11

0I
0

1
10 1 1.

0
1

Partial products

10001111 Product (143)

Figure 9.7 Multiplication of Unsigned Binary Integers

r) 1

1r-Rif
A{111

—1-
4—

Filf---A------,/

Shin right

1 C —11•4‘4_ • • • I Aip 0n-a A i •

''.. ..r•— •—■—d
Multiplier

9.3 / ETNIThC,R1Z. ARITHMETIC 297

Compared wilh 11-1 0 pencil-and-paper approach, there are several things we can
do to make computerized mottiplication more efficient_ First, we can perform a run-
ning addition on the partial products rather than waiting until the end. This eliminates
the need for storage of all the partial products; fewer registers are needed. Second, we
can save some time on the generation or partial. products, For each I on the. multiplier,
an add and a shift operation are required; but for each 0, only a shirt if required.

Figure 9.a shows a possible implementation emplovin.g these measures. The
multiplier and multiplicand arc loaded into two registers {Q and MY A third regis-
ter, the A register, is also needed and is initially sit 10 0, .There is also a 1-bit C: rcg-
istcr, initialized to 0, which holds a potential carry bit resulting from addition.

The operation of the multiplier is.as follows. Control logic reads the bits of
the multiplier one at a time. if Q,, is 1, thin the multiplicand is added to the A reg-

Multiplicanal

ta) Block diagram

r

L, On 110. 1011 Initial va;ues

10 --1 1 -.01 1011 Ada Firs:
;1:i 1110 10=1 S'nift cycLe

Second
1111 10=1 cycle

101 1111 :011 Ldd Third
C. 0110 1111 1011 Sh:ft cycle

1 O:)0_ 11'.L1 101: Ada Forth
0 1000 11L1 1C.1: Sh .1ft cycle,

{ht Example la-43 ni Figt.pnr. 9.7 (product in A, Q1

ngure 9.8 I I ii1-dwa rc I m plcmen latiun of UnNigncd Binary Multiplication

C. A <—
111,1

lquItipk
Ullut £ I!

Shirt tight 41'.. A,
Count <— ("m on - 1

298 C, I.. PTER 9 compu -rER ARITHMETIC,

Figure 9.9 Flowchart for UnNi.pi<ld BirmrY

Product
i!1 A. Q

ister and the result IS siored iu the A register, with the C hit used for overflow.
Then al] of the. bits of the C, A, and 0 registers are shifted to the right one hit, so
Thal t he C bit goes into A„ goes into and 0„ is lost. llf 0„ is 0, then no
addi tion is perCormed, jug the shift, 'this process, is repeated for each bit of the
original multiplier, The resulting 24z-bit product is contained in the. A and 0 regis-
ters, A flowchart of the operation is shown in Figure 9.9. and an example is given
in Figure 9.8h, Note that on the second cycle. when the tnultiplier bit is 0, there is
no add operation.

Twos Complement Multiplication

We have seen that 1.cidition and subtraction can he performed on numbers in
twos complement nOiaLian by tre.4i ling them as unsigned integers. COnSicict

L a C.1
— .3 C

1L.3

if L. se numbers are considered to be unsigned integers, then we ;ire. adding 9
() plus 3 .({101.1), to gel 1 .2 (1100)- As twos complement integers, we are adding
—7 (1001) io 3 (0011) lo get —4 (1100),

1C.01 1201 (-7)

x0011 (3) . x00:1 (3)
O .:0.7.1001 1•20: I : x -

1:::01 x 2 I' 1 -.0010_ (-.7; x 2 = 1 -141
OC.0110=1 I 1:: 011 (-21)

(a)1.1migneil integer.; 1:13) Twos cotapluitiont inieger!,

9,3 I N'ITGER ARITHMETIC 299

1:.01

0002.10 -L1 1:1] x 1
1211> O)42

0210:1:0 11)11 1 x2
0101:02, 0 10=1 xl
102011.11

Figure 9.10 Multiplication of Two Unsigned
4•Bit Intugcrs Yielding and 8-Bii

Unfortunately, this simple scheme will not work for multiplication. To see

this. consider again Figure 93. We multiplied I I 0011) by 13 (1101) to. get 143
(10001111). If we inlcrpreL these as twos complement numbers. we have —5 (1011)
ti mes —3 (1101) equals —113 .(10001111). This example demonstrates that straight-
forward multiplication will not work if both the multiplicand and multiplier are neg-
ative. In fact, it will not work if dither the mul1ipliCand or the mulliplier is negative.
To justify this statcment, we need to go hack to Figure 9.7 an.d explain what is being
done in Terms of operations with powers of 2. Recall that any unsigned binary num-
bv.r can he expressed as a surn of powers of 2, Thus,

1101] ' +1 22 + 0 x 2 1 + 1 2a
= + +

Further_ the multiplication of a binary number by 2' is accomplished by shifting dial
number to the left n bits. With this in mind, Figure 9.10 recasts Figure 9.7 io make
the gcrwration of partial products by multiplication e74plicit. The only difference in

Figure 9.10 is that it recognizes that the parlia I products should he vie.o.red as 2n-bit
numbers generated from the multiplicand.

Thus, as an unsigned integer, the 4-bit multiplimnd 1011 is stored in an 8-bit
word as 00001011. Each parlial product (other 1h4in that for 2 1) consists of this num-
ber shifted to the left, with the unoccupied positions on the right filled with zeros
(e.g., a shift to the left of two places yields 00101100).

Now we can demonstrate that straightforward multiplication will not work if
the multiplicand is negative. The problem is that each contribui ion of the nega-
tive multiplicand as a partial producl must be a negative number on a 2n-hil field:
the sign hits of the partial products must line up. This .k demonstrated in Hgure 9.

Figure 9.11 ComparKon of Multiplication of 1.:nsignEd and Twos (-...oirpletnent

300 CI IAPTER 9 / GUMPUTER ARITHNIEMC

which shows that multiplication of 1001 by 0011. If these are treated as unsigned
integers. the multiplication of 9 x 3 proceeds simply. However, if 11)01 is
interpreted as the twos complement value —7, then each partial product must be
a negative twos complement number of 2n (8) bits. as shown in Figure 9.11b. Note
that this is accomplished by padding out each partial product to the left with
binary Is.

If the multiplier is negative, straightforward multiplication also will not work.
The reason is that the bits or the multiplier no longer correspond to the shifts or
multiplications that must take place. For example. the El-bit decimal number —3 is
written 1101 in twos complement_ II . we simply took partial products based on each
hit position, we would have. the following correspondence:

1101 (I X 2 3 4- 1 X + 0 X 2' + 1 x 2u) - (2' — — 2' 1)

In fact., what is desired is (2 1 4- 21j), So this multiplier cannot be used directly in the
manner we have been describing.

There are a number of ways out of this dilemma. One would be to convert
both multiplier and multiplicand to positive numbers, perform the multiplication,
and then take the twos complement of the result if and only if the sign of the two
original numbers differed, Implementers have preferred to use techniques that do
not require this final transformation step. One of the most common of these is
Booth's algorithm. This algorithm also has the benefit of speeding up the multipli-
cation process. relative to a more straightforward approach.

Booth's algorithm is depicted in Figure 9.12 and can he described as follows.
As before, the multiplier and multiplicand are placed in the Q and Ni registers,
respectively. There is also a 1-bit register placed logically to the right of the least sig-
nificant bit (0,,) of the 0 register and designated 0 its use is explained shortly.
The results of the multiplication will appear in the A and Q registers. A and 0_, are
initialized to 0. As before. control logic scans the hits of the multiplier one at a time.
Now, as each hit is examined, the bit to its right is also examined. If the two hits are
the same (1-1 or (1-0), then all of the hits of the A, Q, and 0 . registers are shifted
to the right 1 hit. If the Iwo hits differ, then the multiplicand is added to or sub-
tracted from the A register, depending on whether the two hits are 0-1 or 1—). Fol-
lowing the addition or subtraction. the right shift occurs. In either case, the right
shift is such that the leftmost hit of A. namely A,. ,_ not only is shilled into A
but also remains in A„ i . 'Ellis is required to preserve the sign of the number in A
and 0. It is known as an arithmetic shift, because it preserves the sign bit.

Figure 9.13 shows the sequence of events in Booth's algorithm for the multi-
plication of 7 by 3. More compactly, the same operation is depicted in Figure 9.14a.
The rest of Figure 9.14 gives other examples of the algorithm. As can he seen, it
works with any combination of positive and negative numbers. Note also the effi-
ciency of the algorithm. Blocks of Is or Os are skipped over, with an average of only
one addition or subtraction per block.

Why does Booth's algorithm work? Consider first the ease of a positive mul-
tiplier. In particular, consider a positive multiplier consisting of one block of is sur-
rounded by Os (for example. 90011 l 10), As we know. multiplication can be achieved
by adding appropriately shifted copies of the multiplicand;

- 0. , • 0
Multiplicand

Q Multiplier
Count or

i I k ali etie. shirt
itigh if A. Q, Q 1
Count (— (Aunt — I

Mx 00011110) (2' — 2 1)
= M x (32 - 2)
- I X 3U

9.3 / bGER AR1TiirviETIC 301

Figure 9,12 Booth's Algorithm lor Twos Complement
Nioltiplica(ian

The number of such operations can I-'c reduced to two if w ()Nerve that

302 cri_zurrER COMPUTER. ATUTHMETIC

02'11 0 0:11 r

12.01 C011 C. C.1=1 A •.— A r•f 1
11.20 100= 1 :111 Shit

1110 010r! 1 0=11 Shit:

0:01 2120 , (.4:1 A - M 1
0010 1010 0 :111 .c..h .itt

C0C.1 0:01 0 0:1: Shi f.'T- }

Figure 9.13 Example of Booth's A[goi- ithrn (7 X 3)

First
cycle

TILrd
cycl1

Four:n

So the product can be generatced by one addition and one subtraction of he multi ,
plicand. This scheme extends to any number of blocks of ls in a multiplier% includ-
ing the Qaz;•• III which a single 1 is treated as a block.

M X ((1IL L i010) = Sx (2" - 21 -F. 2 1)
1%.1 X (2 i- }

Booth's algorithm conforms to this scheme by performing a subtraction when titt
first F of the block is Qncountered (1-11) and an addition when the end of the Hock
is encountered ({1-1).

0:1, CcIll
x0Ci -I1 (0 '.. x1101 (C.)

1L1116.a1 1-0 111:1001 1-0
0000002 1-1 0000111 0-1
.1 0:a1=1 0-1 Ill D.e..: 1 1- .0
207101 (_ +.2:) 1. 110:011 1.21:.

im) (7).x .11)= (2)) 13) 0) X (.-3) = (-21)

1 021 10:.:1
X001 - 1:0) x:.101_ .:0) .

.2 0.00241= 1-.2 0000:111 1 -2.
2.000020 , _ 11=1001 7-1
111'.0 C-1 .0 02'11: 1-0
1 -12.1011 (-,•-•"_) C0010101 (21)

(0 (-7) x (31= (-21) (d) (- -n x (-31= (2)1

Figure 9.14 Examples Using Booth's Algoriihm

9.3 / INTEGER ARITHMETIC 303

To show that the .amc scheme works for a negative multiplier. we need to
observe the following, I.& X be.s negative number in twos complement notation:

Representation of X = {1x,, 3 • - .1 l ie f ,'

Then the value of X can he expressed as follows:

X = + (x,, x 2) + x - „ + X 2 1) + (x„ x 2') (9.4)

The reader can verify this by applying the algorithm to the numbers in -rabic 9.2.
'fhe leftrniast hit of X is 1, because X is neptive. Assume. that I he leftmost 0 is

in the kth position. Thus. X is of tic form

Representation of X = I ... 10x, „ (9.5)

Then the value of X is

X = I + + h'' -F. x21 .1) - 4 X 2') (9.6)

From 17i,ti uation (93), we can say that

Rearranging,

-F + 2'' + ft441 =
(9 -7)

Substituting Equation (9.7) into Equation (9.6). we have

X r' (x A . , X2 ') -F (. ..t n X 20)

Al e?in return to Booth's algorithm. Remembering the representation
of X [Eguntion (9.5)], it is clear that all of the hits from x„ up lu the leftmost 0 arc
handled properly. because they produce all of the terms. in Eiluation (9,8) but

I) and thus are in the proper form. As the algorithm scans over the leftmost 0
te nd 4;Ticounti2IN the next 1 (2k I), a 1-0 transiiion occurs and a subtraction takes
place (-2' • I). This is the remaining term in Equation (9.6).

As nn example. consider the multiplication oafsome multiplic-and by (-6).
In twos complement representation, using an 8-hit word, (- () is represented as
11111010. By Equation (9.4), we. know that

- 6 + + 2 4 2) + 2'

which the reader can easily verify. Thus,

11,1 x 11.010) hi (-2 7 4- 26 f 2 5 -h 24 + 23 + 2')

304 CHAPTER 9 COMPUTER ARITHMEI1C

Using Equation (9.7),

M (11111010) = M x (-2 3 1 2')

which the reader can verify is still M v (--(). Finally. following our earlier line
of reasoning,

Ni (111.11010) x (-2` 4 – 2')

We can see that Booth's algorithm conforms to this scheme. It performs a subtrac-
tion when the first 1 is encountered (1-0), an addition when (01) is encountered, and
finally another subtraction when the first 1 of the next block Of is is encountered.
Thus, Booth's algorithm performs fewer additions and subtractions than a mom
straightforward algorithm.

Division

Division is somewhat more complex than multiplication but is based on the same
general principles. As before, the basis for the algorithm is the paper-and-pencil
approach, and the operation involves repetitive shifting and addition or subtraction.

Figure 9.15 shows an example of the long division of unsigned binary integers.
It is instructive to describe the process in detail. First, the bits of the dividend
examined from left to right, until the set of bits examined represents a number
greater than or equal to the divisor; this is referred to as the divisor being able to
divide the number. Cintil this event occurs. Os are placed in the quotient from left
to right. When the event occurs, a 1 is placed in the quotient and the divisor is sub-
tracted from the partial dividend. The result is referred to as a partial remainder.
From this point on, the division follows a cyclic pattern. At each cycle, additional
bits from the dividend are appended to the partial remainder until the result is
greater than or equal to the divisor. As before, the divisor is subtracted from this
number to produce a new partial remainder. The process continues until all the bits
of the dividend arc exhausted.

00001101 4— Quotient

Divisor 1011/10010011 -4- Dividend

Partial
remainders

10111
001110

11

1011
001111

1011
100 Remainder

Figure 9.15 Example. of Division of Unsigned Binary Integers

Quotient in Q
Remainder in A

Figure 9.16 Flowchart for Unsigned Binary Divisilin

A +— 0 „p-

M i - Divisor 5

Q 4-- Dividend,
Fount <-• n

...:

9.3 / INTEGER ARITHMETIC 305

Figure 9,16 shows a machine algorithm that corresponds to the long division
process. The divisor is placed in the M register. the dividend in the register. At
each step, the. A and 0 registers together are shifted to the left I M is subtracted
from A to determine whether A divides the partial remainder.' If it does, then
gets a 1 hit. Otherwise, (...)„ gets a 0 bit and M must be added back to A to restore the
previous value. The count is then decrernented. and the process continues for it steps.
At the end, the quotient is in the register and the remainder is in the A register,

'This is subtraction of unsigned integers. A result I hat requires a borrow out of the most signilicant hit
is a negative result.

A Q M=1)011
02 2 :)1.1: initial value

0000 1110 shift
L1 .21 subiract
co D] L1=0 restore.

0:01 110: shift
1110 mibtraLl
0001 1100 restore.

102.0 4hi I.

000.1.9. subtract
0206 100: awl Q ::

0001 0210 shift
:110 su kiwi
0 001 ;3 0:0 restore

306 CHAP - I. F.P... 9 COMPIJ TER ARITHMETIC

This process can, with some difficulty, be extended to nepiive numbers. Vi41
give here out. approach for twos core plement numbers. Several examples of Up
approku:th are shown in Figure 9.17. 'The algorithm can be summarized as folEo95:'

1. Load lhe divisor into the M register and the dividend into the A. Q registers:
The. dividend mist expressed as a 2n-his iwos complement number. Thui,
ror example, the 4-bit 0111 becomes 000001E1, and 1.001 becomes 11111001.

2, Shift A, Q left 1 bit position.

A Q M=110]

00120 0111 1ri al vuluc

2000 1110 hi ll
1101 add
0000 1112. rolore

00..01 1100 shift
1 1I0 add
2001 11 c.. (': restore

2.. 01: 1202 shift
0700

1001 LieLQ) =1.

..7 0::.1 '..: 0 1 Ci' shill

.110 add
000: 0 :1..': res lore

(a)17 VP) OM 1711{ —3)

A Q M=001L A

11=1 10:1 Initial value :111 100:. Initial value

111= 2010 .shift 1L11 0212i shift
0: 1 -': add 001t7 810131 MCI
1111 0 .2.1 r..' rc.sr.orc 11:1 00=0 .N.store

11L0 0100 Nhi 1, 2100 shift
20 C.1 add CiC 0: subtraci
1112 :14 0 restore 1112. C. re.strare

1 1 0C' 1 ,J0 shift. 11:0 1.000 shift
1111 add 1 1:i subtract
11:1 1001 set Q0 = 1 L111 =0 01 seEQ.--1

111: 2010 shill
0012 add
1111 021: re.store

111: 0:1:: shill
0212 solltract
1111 0010 restore

{cu (-7]+'(3)

Figure 9.17 Examples of Twos Complement Division

] d} (-7)4-1)

P-1
I,'

-7reerglkt,e-
den:eil.";:fr5e,:pre:42:_re'SVereed,,,,:r. fr 9.4 FLOATING-POINT REPRESENTATION

9.4 1 FLOATING-POINT REPRFS•NTATION 3117

3. if M and A have the same Sips. perform A A rsv1; otherwise, A A 1 M.
4. The preceding operation is successful if the sign of A is the same before and

oparmion,
a. If the operation is successful or.A = Cl, then set Q„ I.
b. I f Ihe operation is unsuccessful and A # 0, then set 0„ (— 0 and restore the

previous value of A.
5. Repeat steps 2 ihrough 4 as many times as there are. hit positions in Q.
6. The remainder is in A. If the signs of the divisor and dividend were !he same,

then the quotient is in otherwise. the correct quotient is the twos compie-
men1 of Q.

The reader will note from Figure 9.17 Lhal (- 7) and (- 3) produce
different remainders. This is because the remaindei i.w defined. by

D =extfl R

where

D = dividend
Q = quotient
V = divisor
R runain.dur

The rcmilts of Figure 9.17 are consistent with this formula.
s:

g+.1
lac

Principles

With a fixed-point notation (e.g., twos complement) it is possible Lo represent a
range of positive and negative integers centered on 0. By assuming a fixed binary or
radix pain C , 1h is formal allows the representation of numbers with a fractional com-
ponent as welt.

This approach has limitations. Very large numbers cannot he represented, nor
cat vin' s mall fractions. Furthermore. the fractional pan of the quotient in a divi-
sion of two large numbers could he lust,

For decimal numbers, one gets around this limitation icy using scientific
notation. Thus. 976.000,000,000,000 can be represented as 9.Th 10 14, and
0.0000tIi0000000976 can be represented as 9.76 10 What we have done. in
effect. is dynamically to slide the decimal point Lo ri c.onvenien1 location Li nd usc the
exponent of .E0 to keep track of that decimal point. This allows a range of very large
and very small numbers to be represented with only a few digits.

This same approCh can be taken with binary numbers, We can represent a
number in the form

;

=S x

308 CHAPTER 9 COMPUTER ARITHMETIC

Sign cif
significund

— 11 .31s . —ph-d 23 ails_

i Lim2d 43XpOrLent Signirecand

la) Format

2 1c- '3 a 2 10017,01•_ 1 ..7 10C0.1.COM)0200:-..00C.02;7.0 1.C38L25 x 222

1.1D10.7,01 N 2 1-1" = 1 100100:1 = -1.639125 x
1. .Loicoo= x 2 :7 100 = 0 01:•12 -0. 10:0.7.17.10.COON•JC.0200E.00C. = ..635125 x 2 -2?

-1,1010K1 x 2 -111.3171
 7 1 0 '1 101011 12 .10:;01:..:00CCPDV)::00::00 'L. C1 = -1.636125 x

1b) Hun ipIts

Figurc. tkig Typical 32-13it Floating-Point hon-tat

'['his number can be stored in a binary word with three fields:

■ Sign: plus or minus
• Significand S

• Exponent E

The base B is implicit and need not be stored because it is the same for all nurribeis.
Typically, it is assumed that the radix point is to the right of the leftmost, or most
significan1, hit of the signifieand. That is, there is one hit to the left of the radix point.

The: principles used in representing binary floating-point numbers are bes'.
explained with an example.. Figure. 9,I 8a shows a typical 32-bit floating-point fur-
mat. The leftmost hit stores ihe sign or the number (0 — positive, 1 = negative). The
exponent value is stored in the next 8 bits. The representation used is known as
biased representation, A fixed value, called the bias, is subtracted from the field
gel the true exponent value, Typically. the bias equals (2' 1 — 1), where k is the.
number of bits in the binary exponent, in this case. the $.-bit field yid& the num•
hers 0 thrortEh 2:5!5, With a is of 127, [he Lillie exponent values rare in Lk range
—127 to + 128. in this example, the base is assumed to be 2.

Table 9.2 shows the biased representation for 4-bit integers. Note that whert:
the bits of a biased representation arc treated as unsigned integers.lhe relative mak
°nudes of the number!) do nor change. For example, in both biased and unsigned
representations. the Largest number is 1111 and the smallest number is (1000. This ix

not true of sign-magnitude= or twos complement representation, An advantage of
biased represeniation is that nonnegative floating-point numbers eon be treated 4
integers for comparison intrpoKcc.

The final porlitin of the word (21 hits in this case) is the significan d, also [A]led
the mantissa.

Any floating-point number can be expressed in many ways,

C .

http://710C0.1.COM

9.4 / rW.AT! G-PDTNT REPRESENTATION 309

The fo[lowing are equivatent.where the significand isc:xpressed in binary' form.:

0.110 c 2
1.10 X 2=
0,0110 x

'Fo simplify operations on floating-point numbers. it is iypica I Iy required that they
be normalized. A normalized number is one in which the most significant digit of
the significand is nonzero. For base 2 representation, a normalized number is there-
fore one in which the most significant bit of the significant! is one. As was men-
tioned. the typical convention is that there is one bit to the kit of the radix point.
Thus, a normalized nonzero number is one in the form

± I .bbh b X 2-LE

where b is either binary digit (0 or l). Because the most significant hit is always one,
it is unnecessary to store this hit; rather, it is implicit Thus. the 23-bit field is used
to store a 24-bit significand with a value in kite half open interval 11, 2). Given a num-
ber that is not normalized, the number may 1w normalized by shifting the radix point
to the right of the leftmost bit and adjusting the exponent accordingly.

Figure 9,1XiD gives some examples of numbers stored in this format Note the
following features

* The sign is stored in the first bit of the word,
• The first hit of the true significand is always 1 and need not be stored in the

signilluind field.

• The value 127 is added to the true exponent to be stored in the exponent field.

• The base is 2.

With this representation, Figure Q19 indicates the range of numbers [hal can
be represented in a 32-hit word. tising twos complement integer representation, all
of the integers from -2 31 to 2 11 - 1 can be represented, for a total of 2 71 different
numbers. With the example floating-point format of Figure 9.1S, the following ranges
of numbers are possible:

▪ Negative numbers between • (7 - 2 .2?) X 2 12A and -2 -127

• Positive numbers between 2 . and (7 - 2 ') X 2 28

Five regions on the number line are not included in these ranges:

* Negative numbers less than (2 - 2 23) X 2 12 ', called negative overflow

• Negaiive numbers greater than 2 • ', called negative underflow
• Zero
• Positive numbers less than 2 7

. called positive uWdetilow

• Positive numbers greater than (2 2 23) x 2 12", called positive overflow

3.:%pressible negative
fit111113,ers

Negative
overflov+

Expressible possitive
numbers

- 127 2 -1—

(13.1 Posting-point cumbers
— (2 —

wither
1a»

Positive
r ilOW

Zero

Ex p reSSi We integers
jr-----_-11/4.-----Th

L____ I i _11. Nem. iber
1113e _1. 3. 1

ti el _

ia .I Twos maple M ent integers

Negative Positive
untlerilow ti nticrllow

Rpm 9.19EN]) ressi Mc. Num hers in T @x132 r rin ats

9.4 / FLOATING-POINT REPRESENTATION 3/1

wri II .2” 4"

Figure 9.241 Density c.).1 I 1.5;:iling-Poini Numbers

'[hi representation as presented will not accommodate a value of 0. However,
as we shall see, actual tloatinE-point represern al ions include a special bit pattern 10
designate zero. Overflow occurs when an arithmetic operation result in a magni-
tude greater Ilian can be expressed with an exponent of 128 (e.g., 2 -2n X 2"' =
UnLicrilow occurs when the fractional magnitude is. Loo small (e.g., 2" "" 2 :2".).
Underflow is a less serious problem because the result can generally be satisfai:;-
torily approximaled by

It is i mportant to note that we are not representing more individual values with
floating-point notation. The maximum number of different values that can he rep-
resented with 32. bits is still 2 32 . What we have clone is to spread I.hose numbers out
in two ranyxs, one positive and one negative.

Alsi.), note that the numbers represenled in floating-point notation are noL
spaced evenly along the number line, as arc fixed-point numbers, The possible val-
ues get closer together near the origin and farther apart ass~ you move ;.iway, as shown
in Figure 9.20. This is one of the trade-offs of noai ing-point math: Many calculations'
produce results that are not exact and have to be rounded to the nearesi value that
the notation can represent.

In the type of format depicted in Figure 9.18, there is a trade-off between
range and precision. The example shows 8 bits devoted to the exponent and 23 to
the significand. If we increase the number of bits in the exponent, we expand the
range of expressible numbers. But because only a fixed number of different values
can be expressed, we have reduced the density of those numbers and therefore the
precision. The only way to increase both range and precision is lo use more Hts.
Thus. mos1 compilers offer, at least, single-precision numbers and double-precision
numbers. For example. a single-precision formal might be 32 bits, and a double-
precision format 64 bits.

So there is a trade-off between the number of bits in the exponent and the
number of bits in the significand. But it is even more complicated than that. The
i mplied base of the exponent need not be 2. '1 .he IBM S/390 architecture, for exam-
plc, uses a base or 16 rAN DI.:67b I. The format consists of a 7-bil exponent and a 24-
bit signific,7111(1,

In Qv: 1131v1 forEnat,

0. 11.01(k001 X 2 — 0.111040001 x 16"

and the exponent is stored to represent 5. rather than 20.

L

2

312 CHAPTER 9 COMPUTER ARITHMETIC

The advantage of using a larger exponent is that a greater range can be achieved
for the same number of exponent hits. But remember, we have not increased the
number of different values that Ca n be represented. Thus. for a fixed format, a larger
exponent base gives a greater range at the expense of less precision_

IEEE Standard for Binary Floating-Point Representation

The most important floating-point representation is defined in IEEE Standard 754
PEEE851. This standard was developed to facilitate the portability of programs
from one processor to another and to encourage the development of sophisticated,
numerically oriented programs. The standard has been widely adopted and is used
on virtually all contemporary processors and arithmetic coprocessors.

The IEEE standard defines both a 32-bit single and a 64-bit double format
(Figure 9.21), with g-hit and H -bit exponents, respectively. The implied base is 2. L.
addition, the standard defines two extended Formats, single and double, whose exact
format is implementation dependent. The extended formats include. additional hits
in the exponent (extended range) and in the significand (extended precision). The
extended formats arc to be used for intermediate calculations. With their greater
precision, the extended formats lessen the chance of a final result that has been con-
taminated by excessive roundoff error; with their greater range, they also lessen the
chance of an intermediate overflow aborting a computation whose result would
have been representable in a basic format. An additional motivation for the single
extended formal is that it affords some of the benefits of a double format without
incurring the time penalty usually associated with higher precision. 'Fable 9.3 stun-
marizes the characteristics of the four formats.

Not all bit patterns in the IEEE Formats are interpreted in the usual way:
instead, some hit patterns are used to represent special values. Table 9,4 indicates
the values assigned to various bit patterns..l'he extreme exponent values of all zeros
(0) and all ones (2515 in single format, 2047 in double format) define special values.
The following classes of numbers are represented:

Sign
hi[

Blase t
exponent

1.4o Snilk: It rnui

.I I gr

exponeni

tbi L)oul-5[1: format

Figure 9.21 IEEE. 754 Fo rmat

Sign
hi[ti ' Bile.

17.0ATING-POIN'I• ARM-POETIC 313

Table 9.3 IEEE 754 Forma(

Parameter

['Ammeters
ormat

Single Single Extended Doable Doable Extended

WORI. WI di Fli 4. 1.)i Ls) 32 z-743 e.)-1 -.-1.7. 14

Exponent width, (bits) .‘A 7-.1 i t t =- 15

Ex ponc. n1 bloc 127 1..:Dspe6fiL.d 1023 Unspc..cifi.ed

l'1Q;5ximun exponunt 127 023 102 .2. ;.,-- 163.83

Min:EMIR') exponent -12{-1 - -102..2 -L.02.2 -.- -16382

Number Ent ge (bon 10) t0 "',. 10' 1 ' Lin p.c:fiucl. l eg . lo•..1- t.Insiwci.lic.il

Sii.milicand width. (hits)* '2 1. •E...31 5 7 7- fi.3

7 unthur of eN:polienEs .2.C4 Lilts pet iri...,..cl 2346 11.i nspi .24:i lied

N1111113.21" (3f fractioas 2.3.1 Urn peci liod 2 Cnspcciricl.1

Numhcr of volui... I,..:..1[# x 2.'' t :3 .0..peci Lied 1.49 x 2 5. Unspeciik. d

bil

• For cAponcrit vaiues in the range oft through 254 kw singie format and 1
through 2046 for double formm, normalized nonzero floating-point numbers
arc represented, The exponent is biased, r;o that the range, of exponents is
— L26 through -F127 for single torn it and —1022 through 1023. A nortnal-
ized number requires a 1 bit to the left of the binary point; this bit is implied,
giving an effective or 51-bit significand (called fraction in the st,andni -dj.

• An exponent of zero together with ;.1 fraction of zero represents positive or
negative. zero, depending 0E1 the sign bit. As was mention it is useful to have
an exact value of 0 represented.

• An exponent of all ones together with a friAlet ion of zero represents positive
or negative infinity, depending on the sign bit. It is also useful to have a rep-
resentation of infinity. This icinves it up to the user to decide. whether to treat
overflow as an error condi I ion or to carry the value 05 and proceed with what-
ever program is being executed.

• An exponent of zero together with s nonzero fraction represents a (knot -mak
ized number. In this c,rise, the bit to the left of [he binary . point is zero ;Ind the
true expoucnt is —126 or —1022. The.nunther is positive tw negative depend-
ing on the sign bit.

• An expon.,:iii all ones together with ti nonzero fraction is given the value NaN,
which means Not a Number, and is used to signal variom exception conditions.

The significance of denorinaliz ,ed numbers and NaNs is discussed in Section 9,5.

9.5 FLOATING-POINT ARITHMETIC

'11 . 4i Mc 9.3 summarizes the batie operotions for floating-point arithmetic, For addi-
titart subtraction, it is necessary to ensure that biitii operands have the same

http://t.Insiwci.lic.il

Sign

U

0

Value

{.)

1.

or 1

CC

NaN 0 or 1

255 (all Is)

25ff• (all 19

0 or 1 255 i. a31 * 0 Nafq .0 or 1

< c < 755 1 2 c (1.f) U

255 2 117 (1.1)

U

0

f 0

f *0

t— .12 15(0 .
0

Fraction
Biased

exponent

0

f

0

2047 (a111.si

2047 (41 13)

2047 1211 1 s

7.047 (all 1s)

e c < 2047

(I <12 <2047

0

Double Precision (64 bits)

U

0

Single Precision (32 bit&)

Biased
exponent

CI

25f. (ail 1

Fraction Sign

0
ZC111

Ne20.1.ivc
zero

Plus

MiLlU5
i1)ardty

Ouici
NaN

PosiLive
Ill

normeso

NeAauve
normalized
noazero

}SitiV{!
cicnon-naliyd

NeatiVC
&rICiTmNFL4.1

Value

0

—0

NN

2

'NaN

l • • ' 7(.1.0

2r 1.17 (0.11

''''(01)

'table 9.4 Interpretation of HEEL 754 Floating- PI ,
 ill

y (x, x Hx: " - x
.v - y = / B. , . - x '

X = (X, X

X (
x

Floating Point Numbers Arithmetic Operation...4

= X , x ..V•

.:

9.3 FLOATING—POINT ARITHME11C 315

orlon nt value. This may 1 -cquirr . shining ihe radix point on °nu of the operands to
achieve alignment. Multiplicaiion arid division are na -rre straightforward.

A floating-point operation may produce One of these conditions:

▪ Exponent overflow: A pogiLivc: exponent exceeds the maximum possible expo-
nent value. In some systems, this may be designated as I. or

• Exponent underflow: A negative exponent is less than the minimum possible
exponent value (e.g. . -200 is less than -in. This means that IN number is
too small to he represented. and it may be reported as 0,

• Signifleand underflow: Iii the process of aligning sio.nificands, digits may flow
off the right end of the signiticand. As We shall discuss. some. form of round-
ing is required.

• Signifleand overflow: The addition of two significands of the same sign may
result in a carry out of the most significant bit, This can he fixcLI rcalign-

4is cxplain_

Addition and Subtraction

In flo.ting-voint arinunctic, addilion ,rind subtraction are more complex than mul-
tiplication and division. This is because of the need for alignment. There are four
basic phases of the algorithm for addition and subtraction;

1. Check for zeros.
2, Align the 6ignil9cands.
3. Add or subtract the significands.
4. Norrimlize the result-

a"

A typical flowchart isshown in Figure 9-22. A step - by-step narrative highlights
[he main functions [or Hoaling-point addition and subtraction. We assume
a format similar to those of Figure 9.21. For the addition or subtraction operation,
the two operands must be transferred to registers that will be used by the Al,(.1 If

Table 9.5 Floating-Point Numbers and ArithnwLicOperatioias

A i ! 1;1' • II.") 1 0 • 11. • 11;

11.2. :1%
X I •:11.3./.,:.2 .1 x Ill : " _ • 1:1 i.111111
X :•••• ft: 7 : ..5:. I

a

(Si it

Ch
n ii

Incronent
smaller

exponent

Shift
significand

right

RE 1!t

(RE•URN)

Add
signed

significanils

\ II

Shirt
siguirwand

left

Dteretnent
exponent

Shift
si•nificant].

right

V

RETURN

Put other
nunitm-r in 7.

Report
underflov.

Figure 9.22 Floating-Point Addition anti Subtraction (Z X Vj

/ FLOATING-POINT ARITI I Ni.F.TIC 31.7

the floating-point format includes an implicit significant' hit. that bit must be made
explicit for the operation.

Phase 1: Zero check. Because addition and subtraction are identical except
for a sign change, the process begins by changing the sign of the subtrahend if it is
a subtract operation. Next, if either operand is O. the other is reported as the result.

Phase 2: Significand alignment. fhe.next phase is to manipulate the numbers
so that the two exponents are equal.

.4.

L

tk

A

To see the need for aligning exponents, consider the following decimal addition:

123 x 1(Y1) -I- (456 x 10 2)

Clearly, we cannot just add the significant's. The digits must first he set into
equivalent positions, that is. the 4 of the second number must be aligned with the
lof the first. Under these conditions, the two exponents wilt be equal, which is
the mathematical condition under which rwo numbers in this form can be added.
Th us.

(123 x 10") — (456 X 10 (123 X It") (4.56. 0") 127.56 x 10'

Alignment may he achieved by shifting either the smaller number to the right
(increasing its exponent) or shifting the larger number to the left. Bccau.sc either
operation may result in the loss of digits, it is the smaller number that is shill ed; any
digits that arc lost are therefore of relatively small significance. The alignment is
achieved by repeatedly shifting the magnitude portion of the significand right t digit
and incrementing the exponent until the Iwo exponents are equal. (Note that it the
implied base is 16, a shift of 1 digit is a shift of 4 bits.) If this process results in ;1 0
value for the significand, then the other number is reported as the result. Thus. if
two numbers have exponents that differ significantly, the lesser number is lost.

Phase 3: Addition. Next. the two significands are added together. Li king int o
account their signs_ Because the signs may differ, the result may be 0. There is also
the possibility of significant] overflow by I digit. II' so. the significand of the result is
shifted right and the exponent is incremented. An exponent overflow could occur
as a result: this would be reported and the operation halted.

Phase 4: Normalization. The final phase normalizes the result. Normalization
consists of shifting significand digits left until the most significant digit (bit, or 4 bits
for base-16 exponent) is nonzero. Loch shift causes a decrement of the exponent
and thus could cause an exponent underfloor_ Finally, the result must be rounded off
and then reported. We defer a discussion of rounding until after a discussion of mul-
tiplication and division.

Multiplication and Division

Floating-pain t multiplication and division are much simpler processes than addition
and subtraction, as the following discussion indicates.

We first consider multiplication, illustrated in Figure 9.23. First. if either
operand is (I, 0 is reported as the result. The next step is to add the exponents. It
the exponents are stored in biased form. the exponent sum would have doubled

s

Add
exponent5

overflou
llepori

318 (A .9Z COMPUTER ARITHMETIC,

YUN Report
tputiorfilow

Multiply
t airm kids

Nom Im

(17.E1T R.Nj
7. I

.
R4).ki WI I

Figure 9.23 Flciating ,Peint Nluldrylicailen (Z 4— X X

the is l'hus, the bias value must liesubtracted from the sum, The result could he
either an exponent overflow or underflow. which would bc reported, ending the
algorithm.

If rh,: exponent of the product iswithin the proper range, thenext step is to
mulliply the significands, la.king into account theft SiQ,J3 Themultiplication is Nr.
any in the same way as for integers. In this case, we are dealing.with a sign-
magnitude repres.entation, but lite dEtails are similar lo those for twm.complerneal
representation, The produet. will !De double the length of the multiplier and multi-
plicand. The extra bitx will be lost during rounding.

').5 l FLOAT] NIG-POINT ARITHMETIC 319

.After the product is calculated, the result is then normalized and rounded, as
was done for addition and subtraction. Note that normalization could tcwit in expo-
iw,n1 undcrflow.

FiIdly, l a 0s cormicricr rinwehm-1 Eor divihion depicted in Figure 9.24.
Again, the first step is testing for 0. 1E the divisor is 0, an error report is issued, or
the result is set to infinity, depending on the implementation. A dividend of I) Tenths
in O. Next, IIi divisor eNponcni i.s NubLracted Iron, the dividend exponent. This
removes the bias, which Tntiz.,1 hu added back in Tests are then made for exponent
underfiow or overflow.

Figure 9.24 Floating-Point Division (Z<- XIY)

320 CitAtirrEk COMPUTBIK

The next Kier) is to divide the significands. This is followed with the usual nor.
ma]ization and rounding.

Precision Considerations

Guard Bits
We mentioned that, prior to a floating-point operation, the exponent and sip,-

nificzind of each operand are Loaded into AU! registers, In the ease of flit'
the length of the register is almost always greater than the length 01 the

significand plus an implied register contains additional bits, called guard
which are used to pad out the right end of the significand pith

The reason for the use of guard hits is illustrated iEt Figure 9,2.5. Consider
numbers in the IEEE 10 -rnat, which has a 24-bit significand, including an implied
I hit Co the left of Lhe binary point. 'Iwo numbers ihat are ii. m.. close in value. are
N , 1,00 . . . 00 X 2) and Y 1,11 . . . 11 X r, If the smaller number is to be suh-
iracted from the larger. it must he shiftcd right i hit wi align the exponents, This
is shown in Figure 9.25.a, In the process, V low..., 1 bit ofsigni [mance.; the re:ii.dt k
2 .2 -', The same open li011 is rileateci in part 1:i with inc. miclition of guard bils.
Now the least significant hit is not lost doe to alignment, and the result is 2 ', a
difference or a factor or 2 from the previous answer, When the radix is Its, the [
loss of precision can he greater. As l:'i gutes 9.25c and d show, the differtmce can
be a factor of 16.

Rounding
Another detail that affects the precision of the result is the rounding policy.

The result of any operation on the signiticands is generally stored in a Longer regis-
ter. When the result is pui hack into the floating-point format, the extra bits must
be disposed of.

x = 1 . '!.00 CAO .. x .. 2 1 x - .101000 x 16 1

0.111 1: .. x 2 1 - y = . OFFFFF x 15 1
.7. 0.030 01 .. K 2 1 z = .0:0001 X le l

= 1 . O H ..7. C. .. x ..2 -22 - .10.0.7!0; X 16 -1

(m Binary exanipk., wilhout guard bits tci) Plexadecirualuxouplc, wichmo guard hits

x - 1.0n (.).: .. 0000 'x 2 1 x - .1C00:!•0 00 x 1E:

- -yr - 0 A:1 . „ —11 :000 x 2 • -2 = ,OFFFFF 2.7, x =6 -

z ::.' . 000 '' 0 1010 x ;- 2 = . COO R 10 x 16'

1.'106 CO 0000 x 2 -2-5 = .10 ,1000 1.'..0 x 1.5 -

(13) Binary example, with guatd hits; (di Hcmad(x.iirial exam*, vvith. guard bin.

kigure 9.25 . I'he USE: of Guard Hits

9,5 / FLOATING-POINT ARITHMETIC 321

A number of lechniq LICS have been explored for performing roundinz In fact.
the slandard lists four alternative approaches -

,

■ Round to nearest: The result is rounded to the nearest representable number.

• Hound tfilikalLd M: The result is rounded up toward plus infinity.

■ Round toward The result is rounded flown toward negative

• hound toward 0: The result is rounded toward zero.

Let us consider each of these policies in turn. Round to nearest is the default
rounding mode limed in the standard and is defined as follows: The representable
value nearest to the infinitely precise result shall be delivered! if the two nearest
representable values are equally near, 1he orN12 With its least significant bit 0 shall
be delivered.

If the extra bits, beyond the 23 bits that can be steered, are 10010, then the
extra bits amount to more than.one-half of the last representable bit posil ion. in
this case, the correct answer is to add hinat:;. , 10 the last representable round-
ing. up RP the neut representable number. Now consider that the extra bits are
01111. In this ease : the extra bits amouni to less than one-half of the last repre-
sentable bit position. TN'. correct ;.inswer is simply to drop the extra bits (LT uneate),
which has the effect of rounding down to the next representable number.

The standard also addresses the :peciai ease of extra bits of the form
[WOO Here the resull is exaetly halfway between the two possible representable
valiws. One possible technique here would be to always fruneate, as this would be
the simpiest operation. However, the difficulty with this simple approach is that it
introduces a small but cumulative bias into a sequence of compu [a I ions. What is
required is an unbiased method of rounding. One possible approach would be. to
round up or down on the basis of a random number so that, on average, the result
would be unbiased. The argument agai nst I his approach is that it does not produce
predictable, deterministic results. rim-melt taken by the IEEE standard is to
force the result to be even .: If the result of a computation is exactly midway between
iwo representabie numbers, the value i5 rounded up if the last representable bit is
currently 1 and not rounded up if it is currently O.

The next two options, rounding to plus mid minus infinity, are useful in imple-
menting a technique known as interval arithmetic. InitLi-va I arithmetic provides an
efficient method for monitoring and eoffiroiling err°, s in floating-point compui
tons by producing. two values for each result. The two values correspond to the
lower and upper endpoints of an interval that contains the true result,. The width of
the interval, which is the difference between the upper and lower endpoints, indi-
cates the accuracy of the result. if the erldpiru, of an interval are not represeniable,
then the intemil endpoink are rounded down and up, respectively. Although the
width of the interval may ,...ary according to implementation. many algorithms have
been desNned to produce narrow intervals. if the range between the upper and
lower bounds i suffieienily narrow : then a sufficiently accurate result has been
obwined. It' not. at least we know this and can perform additional analysis,

322. CHAPTER 9 1 COMFUTER ARITHMETIC

The final technique specified in the standard is round toward 'LIMP. This is. ir,
fact, simple. irunealion: The extra bits; are ignored. This is certainly the simplest tbt-
nique. I iowever, the result is that the niagnitudc of the truncated value is alwaydw
than or equal to the more precise original value, introducing a consistent bias tom!
zero in the operation. This is a more serious bias than was discussed earlier, becatil
this bias affixts every operation for which there are Dormer() extra bits.

IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754 goes beyond the simple definition of a format to lay down specific prat.
tices and procedures so that floating-point arithmetic produces uniform, predichibl

...
results independent of the hardware platform. One aspect of this has already 1.26n
discussed, namely rounding. This subsection looks at three oilier topics:
MiNs. and denormalized numbers.

Infinity

Infinity arithmetic is treated as the limiting ease of real arithmetic, with th4
infinity values given the following interprciation:

-% < (every finite number) < -F

exception of the special cases discussed.subsecluently. any aritlun
operation involving infinity yields the obvious result-

Fur example,

5 + (--.K) .4. w. 5 (. -c..3) = +0
5 -- (..rte;) = (±x) (--) .}-•A

5 -F (-3.2) = -x. (-') - (..) ' -,x

3 - (-x .) = +x ('- ') - (-') ' -Q.:.

5 X (-i-•;) •F.:‘,c (f c':) — (—m) -I-rk

Quiet and Signaling NaNs

A NaN is a symbolic entity encoded in floating-point formal. of which dim.
arc two lypcs: ,:.i gnaling and quiet. A signaling NaN signals an invalid operation
cxcepticm whenever it appears as an operand. Signaling NaNs afford values for
uninitialized variables and arithmetic-like enhancements that are nul the subject
of the standard, A quiet NaN propagates through almost every arithmetic opera-
tion without signaling an exception. Table 9.6 indicates operations that will pro.
duce a quiet NaN.

Note that both types of NaNs have the same genera] formal (Table 9.4): an
exponent of all tines and a nonzero fraction. The actual hit Rattern of the nonzero
fraction is implementation dependent: the fraction values can be used to distinguish
quiet NaNs from signaling NaNs and to specify particular exception conditium.

Denormalized Numbers

Denorrnalized numbers are included in TEF:h 754 to handle cases of exponent
underflow. When the exponent of the result Faccornes too small {a negative. evo-

Kernaindc.r x REM 0 or REM y

wh ---- I) Square 1001

Operation ()Hid NAB Produced by

An.......orie.ranon on a;;ignaling NaN Any

Add or;•Liblrod.

/ FLOATING-POINT ARITHIv11-:11c. 323

Table 9.6 Operationblhal Prodoce a Quiet NaN

ni,:n1 with Re kirge a magnitude), the result is denormalized by right shifting the
fraction and inc . ; ernenting the exponent tor nch !Ihifl, until the exponent k wilhin
a representable range.

Figure 916 illustnics the erfuet c)1 thu addition ofd northalized nurnbevi.. The
TuprmIntable numbers can he grouped irito inten . als of the form 1.2!', 2'1. Within
each such interval, the exponent portion of l nurnber remains constant while the
fraction varies, producing zi uniform spncing of representable. numbers; within

—(

2 .2'. 2 121 -
1 ee

32-13;•it icFrinat » LESOUL deaorinalized mambas

IL:nifom
spac g

;

A-126 2 - L25 1 - 20L 2. - 123

• .; formt wish (k.normalizccInuniber...;

Figure 9.26 The Effect of I EEE 754 Denorrnalized Numbels

324 CHAPTER 4) / C }MN 11 ER A Rp , IHN1ETIC

interval. As we get closer to zero, each successive interval is half the width of the.
preceding interval but contains the same number of representable numbers. Hence
the dunsity aJr reraresuniable numbers increases as we approach nett). liowevur. if
only normalized numbers are used, shire is a gap hetwccn the smallest nornializd
number and f). In the case of the 32-bit IEEE 754 format, there are representnhk
numbers in each interval, and the smallesl representable positive number is
With the Adition of . dcnorrna i n Hdditional -22? numbers unifotmly
added between. 0 and 2 - I

The use of denornialized numbers is referred to as gradual underflow [COONO.

Without denormaiized numbers, i he gap between I he snialles1 representable
nonzero number arid zero is rhua wider than the gap between the smollest repre-
sentable nonzero number and the next larger number. Gradual underflow fills in
lhal, gap and reduces the impact of exponent underflow to a level comparable with
roundolf among the normalized numbers.

9.6 RECOMMENDED READING AND WEB SITES

[PARHOOf is an excelicnt ireatment of computer a ri 1111111 giC, covering all of the topics in this .
chapter in detail. 'FINN:it I is a useful discussion thnt focuses um practical design ;Ind
mentatinn issues- For the serious student ofuomputer arithmetic, a very useful reference is
the two-volume. I SWA R901. Volume I MIS originally. published in I 9R0 and provider- key
papers (some very difficult to obtairi fltherwis.)4,11 wriputer arithmetic iundanrctak.
Li me f I contains more recent papers. covering theoretical, design, and implementation aspects
of computer arithmetic.

For floating-point arithmetic. riOLD91 .1 is well named; "What Every Computer Scr ,
enlist Should Know About Floating-Point Arithmetic." Another excellent treatment of the
topic is CCPnlakined in I .KNUT981, which also covers integer computer arithmetic. The follow-
ing more in-depth treatments arc also worthwhile; [OVER01. EVENDO, OBER97u,
OBee.R`)71i. SOD[96].

1:5.1.11 1*,141describts the first IBM Si'39ltirrucemor too integrale radix-16 and IEEE 754
arithmetic in the same floating-point unii.

EVEN00 and. '• 011 ot I complinnt Flouiing•Puiiit
Units." 1 1=Lfs S rrN (}11 COehlphkrigOW, May 2000.

FLYNN Flynn, M. and Oberman, S. A iliviayri Derip. - New
York; Wiley. 2001.

GOLD9 .1 Goldberg, D. "What Every Computer Scientist Should Knew Abaut
Flitial tug-Point Arithmetic." ACM Cop.,puithg Surveys. March 1.(191, do..ailutall;

p ;.:Nyxkx4,validgh.corn.

IKKU198 Kutti It, I.). The. Arr einem, Prograrorming, Voiron re 2: Srminzertwrii- fei
Rinclim;, MA; Addison-Wt.-ley, 199S,

1H3ER974 Oberman. S and l'Iyun, M. - Design Issile3 Di 0ion acid Other Floating-
Point Operations.' farm Er CO,refingrri, I eI itch y

OBER97b Oberman, aodFlyrin. \r-l. "Division Algirritlinis and 1mplcinenta Lions." IEEE
Transacsioni Compuree.v, 19 1.7.7.

C1 `E Ovizmpu, M. Alf oenprkiri CeJhriArliej .c With 1 E1 .;. 6 NurilioR P49b11 ArithfnCii

Philadelphtk PA: Sociu. tv for and Appkod Mathe.rilatics,:lrm1.

guard bits
minuend
multiplicand

negative. overflow
negative underflow
nortnalia4 number
ones Ooiiipl4;11ii ill

representation

partial. prodocit
posiriva overflow

procliJci

rmlix poi!
rel II ai del"

WV] k ding
sign bit
si gni eicand
signifirand i.PVC!rflow
significant 41E1 dallow
sign-magnitude TT...presentation
Si1lstr2abe1]cl
twos ctniplc'.mcnl

representation

9.7 / K.CY WEVIP.'.' QUESTIONS, AND PROBLEMS 325

PARI100 Parl - runi 5 B. Comp,. Arilirnrcric.: r via ?en:, nti a rdivim , Oxford!
Oxford University Press, 20(X);

SCHWO9 Schwarz, E., and Krygowski, C. "The ,fiThir foriir-
wd f Rcsearch err DeL:4oprnem, Septc.mbizr.iNcricrinheT 1999. (www.)

SODE.% sod,2r-quisi, ri nd Leeser. M. "Area 4111d Performanez Tradeoffs in Floativ
Point Divide and Square-Root Irripkinentations." ACM Computing Sti rye ys. Sep-
tember 1996.

SWAR91) Swartzlande.r. E.., ed. IC (iv- rirr4rrrLC lir, 1/rohen,r.s I (Mid 11..1..os Alamitos. CA;
IF.F.F, Computer Saciery Press:199G.

RCCOMITiell<led Web Si k..;

■ IEEE 754: The IEEE 754 documents. related pLiblications and papers. and a useful sot
of links rekited computer . arithmerie

9.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key 'Terms

Hritlintetic and logic unit
(ALU)

arithmelie
ha5e.
biased representation
denormalized number
dividend
divisor
.Exponent
ci.poners OA:L.2 0km
xpoincnt underrlow

fixed-point rep reSC ntaii011
ra;prws4I11 .1tii1rt

Review Questions

9,1 Briefly explain. the following reptesait sign-rag ivi..os complement. biased.
41.2 Explain how lo determine if a number is Hui ralowing representations.:

sign-rnquitukile.14tr.os uomplorunt.,
93 what is Itie sign-extensil rifle cur twos !:outpE'.inent numbers'?
9.4 I low L.iin you form the negation or an iriler:1 iii two.; colTLplkfient Npreseniation'?

In geoural lcrnik, when docis the twos compleirte at operation on an B-bit integer pro..
duet; ;Ill....Q. -C.'

9 .6 What i8 1lie difkiE i*o..,5corn pitmen(representation of a numher and
the. twos complemi..E1[

326 CHAPTF.R 4 / COMPUTER ARITHMETIC

9.7 IC we. great 2 twos 00mph:int.:Ail numbers as unsigned integers 143r purposes of addition,
the result is correct if interprels.A.1 as a twos complement number. This is nol true for
nrlti1 iplication- Why?
'Whal arc the four essential elements of a number in floating-point notation?

9.9 What is the benc.fil of using biased represent al ion for the exponent portion of a
flouting-point number?

9.10 What arc the differences among positive overflow, exponent overflow, and signih-
cund overflow?

9.11 Whai are the basic eluments of Flom ing-point addition ...I nd subtraction'?

9.12 C.3.iva a reason for the use of guard bits.
9.13 List four alternative methods of rounding Itn: re4tilt of a floating-point operation.

Problems
9.1 Another representation of integers lhat is sometimes encouni is ones com•

plcmwnr. Posiiiw integers arc represcriled in the some wav tide. A lug-
alive integer is represented by taking the 'Boolean complenion ilt k:;Icli hit of she;
corresponding positive number.
a, provide a definition of Ones coinpiernent numbers u5fialg a Wi2ighted sum Of hill..

similar to Equations (9.1) and (9.2)-
b. What is the range of numbers that call be represented in ones vomplement?

c. Define an algorithm for performing addition in ones complement aril
9.2 Add columns 10 • Fable 9.1 for sign magnitude and ones eompleineill.
9.3 Considt:r ;lie following operation on a binary word. Start with the least signifieant.

Copy all bits ihat are until the first hit is reached and cops: thrill [iii. too. Then IA:
the complement of each bit therctifler. What is the result'?

9.4 1.11 SQction 9.3, the tWON4..oitiplernent operation is defined as follows. To find the tiwos
complement of K. take Ow Boolean complement of each hit of X. and Olen add 1.
a. Show that the folli ming is an equivalent definit ion. For an n-hit integer X. the torus

complement of k rimmed by treating X as an unsigned integer and ealculatin :::
(2n - Xi.

b.. D4.2nsonstrate..1h.nt Figure 9.2 can be used lir support graphically the claim in pan a.
by showing how a clockwise movernent is used to achieve subtraction.

9.5 Find the following differences using ivvos complement arithmetic!

&- b.:11021_0D c. 1111:.0C.O.L_11 d. 11 Ou011
- 12.1110 -1_12201.1110::11 -11:01000

9.6 Is the following a Valid alternative definition of overflow in twos complement arith-
metic?

If the exclusive-OR of the carry bits into and oul of the leftmost column
is 1, then there is an 41 ,,er11ow. condition. Otherwise, there is not.

9.7 Compare Figures 9.9 and 9.12.Vali. is the bit not used in the latter?
9.8 Given ; - ti 101 and v - 1010 in 14.k.osi-ornplement notation (Le_ x 4, v - - 6), env

putt. the product p - x Xy with Booill's algorithm.
9.9 prrive that the multiplication of two n-digit numbers in base B gives a product of no

more than 2n digits.
9.10 Verify the validity of the unsigned binary division algorithm of Figure 9.16 by

showing the steps involved in calculating the division depicted in Figure 9.15. Us:
presentalion similar to alai of Figure.

9.11 The twos complelne.itt integer division algorithirt described in Section 9.3 is kno*rt
as the restoring method because the value in the A register must be restored fa-

1).7 KEY '1Ellie:1S, 14.1.01/1EW QUES IONS, AND PR,0011-MS 327

lowing unsuccessful subtraction. A slightly more complex approach. known as no n-
restoring. avoids the unnecessary subtraction and addition. Propose an algorithm for
1his latter approach.

9.12 Under computer integer arithmetic, the quotient .11K of two integers and K is less
than or equal to the usual quotient. True or false'?

9.13 Divide -145 [ix 13 in binary twos c .ornpientent riotalion, using 12-hit words. Use the.
algorithm described in Sect iiIn

9.14 Assume that ihc c.pi went c is constrainod tci lie: in the range 0 s e X. with a bias
or I.?, rhat thv base is b. and thai 1.1w sign ilicarld is p kligits

a. What are the largest and smallesi positive value.s that can be written'
h. What are the largest and smallest positive values that can he written as normaLed

floating-point numbers'?
9.15 Express the following numbers in 1 FEE .32-bit Floating-poini format:

a, -5 ie.. 1)16
h, -6 d. 384 f. -

9.16 Express the Ibllowing numbers in IBM's 32.bit floating-point format, which uses u7
bit exponent with an implied base of 16:

111.. 1.0 i. 1164 e. -15,0 g. 7.2 X L C
h. 0.5 d. 0.0 F. 5.4 X 1:0

9.17 1114' tat would he the bias value for
a. A base 2 exponent (R. - 2) in a 6.bi1 field?
h. A 1 -sale- t exponent (11 - 8) in a 7-bit field?

9,1H Draw a Ii irlF tkr hole io that in Figure 9.19k for the. float in ig-point format of
9..7.111.

9,19 Consider a floating-point formai with 8 hits for die. biased 1...,x.porkini and 2:1 hits for
signilicand. tibinw the hit pattern for the following numbers in Ihis format:

a. 720
h. 0.645

9.20 V'hen people speak about inaccuracy in ihmtirig-point arithmetic. they often ascribe
errors to cancellation that occurs during the subtraction of nearly equal quantities.
Rut when X and Y are approximately equal. I he difference X Y is obtained exactly.
with no error. What do these people really mean'?

9.21 Any ftonling-poii;1 represent@ lion used in ...sent only certain real
nuinhers %I:sac-ilk..., all oille.rs rnml appi4ixiimiteal. the stored value approxi-
mating the real value .4,11scn he !illative error. 0., is eNpi I as

/1 A'

A

Represent the decimal quantity I 0.4 in the following floating-point format: base - 2;
exponent.: biased, 4 bits; significant]. 7 bits. What is the relative error?

9.22 Numerical k. t.dus A and Beare stored in the computer as approximations A' raid
N4Jglecting any further truncation or. rOundoff errors, show that the relative error of
the product is approximately t he sum of [Eh'. TdatiV4. struts in the laciors.

9,23 If A = 1.427, find di relative error if A Mrtincatod io 1.42 and if it is rounded to t.43-

9.24 One if the most serious errors in computer calculations occurs when two nearly equal
numbers are subtracted. Consider A 0.222M and 0.22211. The cilinputer trun-
caLes all values to four decimal digits. Thus A: - 0.2228 and 8' - 0.2221.

Wi nd are the rolalive errors kir A' and
h. Vaal is the relaliye error for C = -• fr?

328 C.HAPTER 9 / C'01v11"t .ITER ...kRIEHMETIC

9.15 Show how the folli -r..ving floaiiim -point additions are performed [where signifizaA
are truncated 1. 0 4 decimal digits)'.
a. 0.5566 X 111' .1- 0.7777 x 10' b. 03344 — 0.8877 x]0

9.21+ Show hoW the following floAtingrpoirit stibtractions to performed (where significa
are truncmed to 4 decimal digits).

a. 0.7144 10 = — 11.(.60 X 10 h. 0.8844 X 10 2 - 0.2233 X LAY'

9.27 Show how the 10110W irig 11 (tting-point calculations arc POr(ormc (".here
 significatith

arc. truncated to 4 decimal digits}_
a. (0.2255 x 102) x (0.1234- 10 .) b. (0.8833 : 10 5)

9.28 Expross the octal numbers in htlxade.cimill notation:
a. 12 11), 5655 e. 25502145 d. :1726755

9.29 Prove that %wary r4A number with a terminating binary representation (finite ruun•
ber .uf Lligits to the righ1tir the binar:L. point) also hits j terminating decimal reresea•
tation (finite number of cligits to the right of the Llueimrdpoiru).

CHAPTER 10
INSTRUCTION SETS:
CHARACTERISTICS
AND FUNCTIONS

10.1. Machine litstruction Characteristics

10.2 Types of Operands

10.3 Pentium and PowerPC Data Types

10.4 Types of Operations

10,5 Pentium and PowerPC Operation Types

10.6 Assembly Language

10.7 Recommended Reading

10.8 Key Terms, Review Quemions, and Prot,'ems

Appendix 10A Stacks

Appendix 11}11 Little-, Big- and Bi-Endinn

331) 7H A PTER 10 INSTRUCTION SETS: CHARAcTPRISTICS AND FUNCTIONS

KEY POINTS

• I he c:47;.ciiiial elements of a computer instruction are the opcodc, which spu...-
ifies the operation to be performed; the. source kind destination operand ref-
erences, which specify the input and output locations for the operation: and a
next instruction reference. which is usually implicit.

• Op-codes specify operations in one of the following general categories: arith-
metic and logic operations: movement of data between two registers, register
and memory, or two memory locations: 110; and control.

• Operand references speci t)... a veRister or memory location of operand data.
The type of data may be addresses, numbers.: characters. or logical data.

• A common architectural feature in processors is the use of a slack, which may
or may not be visible. to the programmer. Stacks are used to manage proce-
dure calls and returns and may be provided as an alternative form of address-
ing memory. The basic stack operations are PUSH. POP, and operations on
the top one or iwo slack local ions. Stacks typically are implemented to grow
from higher addresses to lower addresses,

• Processors may he categorized as big-endian, little-endian, or bi-radian. A
multibyte numerical value. stored with the most significant byte in the lowest
numerical address is stored in big-endian lash i4 in; if it is stored With the most
significant byte in the highest numerical address, that is little-endian fashion,
A bi-endian processor can handlL both styles.

m. Lich of what is discussed in this book is riot readily apparent to the user or
programmer of a computer. If a programmer is using a high-level lan-
guage, such as Pascal or Ada, very little of the architecture of the under.

lying machine is visible,
One boundary where the comput designer er Lcs.gner and the computer programmer

can view the same machine is the machine instruction set. From the designer's point.
of view. the machine instruction set provides the functional requirements for the
(11:: Implementing the CPU is a task that in large part involves implementing
the machine instruction set. From the user's side, the user who chooses to program.
in machine language (actually, in assembly language; sec Section 10.6) becomes
awire of the register and memory structure, the types of data directly supported by
the machine, and the functioning of the AUL

A description of a computer's machine instruction set goes a long way toward
explaining the computer's CPU. Accordingly, we focu, on machine instructions it
this chapter and the next.

10.1 MACHINE INSTRUCTION CHARACTERISTICS

The operation of the determined by the instructions it executes, referred to
as machine instructions or computer insmalions_ The collection of different instruc-
tions that the CPU can execute is referred to as the CPU's thstractirm set.

Return Fur su ing
1)1 LC FM" (12(ZI

LTC; I rue I itrii cornplotc,
rttc2- 11 nem instruutio.n

InsEruction
addruss
1:1114:1110 I HI

hntructiim
apuriition

1(1-I MACHINE INSTRUCTION CHARAC'] F.I><IS II . 1 CS 331

Figure UL Instrildion Cycle. Si nile I)iagrarri

Elements of a Machine Instruction

Each instruction must contain the information required by 1he CPU for execution.
Figure 1111, which repeats Figure. 3.6. shows II h,;2. !%.1.cpm in volved in instruction exe- -1'

.. d

elation and. by implication, Llefines the elements of a machine. instruction. These ele- -: ...
rnerlt:5. are aix roillows: 1•I

• Operation code: Specifies the operation to be performed (e.g„ ADD, 110). The
operation is specified by a binary code, known as. the operation code : or opcode.

• Source operand reference: The operation may i vc one or mere source
operands. that is, operands that are inputs for 1hs opuratit)11.

• Result operand reference: The operation mily produix a result.

• Next ki4ruction reference: This tells the CPU where to fetch Ihe I1L'XI instruc-
tion after the execution of this instruedim i cOropleLe.

The next instruction to be fetched is loo:- t(31 in main Memory or, in the case of
a virtual memory !.3ys1i,:.m. in either main inemory or secondary memory (Ask), in
most casi2s, the next instruction to be fetched immediately f.c.1.1lows the current
instruction. In those cases, there is no explicit reference to the next instruction,
When an explicit referenc• ix neetki, 1tien the Mill memory or virtual rilentory

address mus; I ti e foi ILL in which that address is supplied is cliseusscd III
Chapter 11.

Source and result clperands. can bc in erne or 1 hri2c areas:.

• kfitin or virtual memory: As with net instrUCtiOn roferences. the main or vir-
ILL W rnetriOrsi address must be supplied.

• CPU register.: With rare excei:.ptioris, a CPU contains one or more registers that
E MIN be referenced by machine instructions. If only one register exists, refer-

VI

yl

•

332 CHAPTF.R. I0 / INSTRUCTION SETS! CHAR AC,TLRISTICS AN!) FUN{ R 'NS

enee lo it may he iTnplicii. If more than one register exists, then each Tel -Lista
is assigned a unique number, and the instruction must contain the number of
the desired register.

• 110 device: The instruction roust specify the I/0 module and device for the
operation. If memory-mapped I/0 is used, this is just another main or virtual
memory address.

Instruction Representation

Within the computer, each instruction is represented by a sequence of bits. The
instruction is divided into fields, corresponding to the constituent elements of the
instruction. A simple example of an instruction format is shown in Figure 10.2. As
another example. the lAS instruction format is shown in Figure 2.1 With most instruy-
tion sets, more than one format is used. During instruction execution. an instructia
is read into ain in:A ruction register (IR) in the. CPU, The CPU must be able to extract
[tic data from the various instruction fields in perform the required operation.

it is difficult for boih the prt Fgr am Mel' and the reader of textbooks to deal with
binary representations of machine instructions. Thus., it has become common prat•
lice Lo use a .symbolk. represengaiion or machine instructions, An example or this was
used for the 'AS instruction set, in 'I'ablc 2.1.

Opcodes are represented by abbreviations, called ne n on/Ls, that indicate the
operation, Common examples include.

ADD Add
SUB Subtract
Nun' Multiply

DIV Divide
LOAD Load data rrom memory
STOR Store data to memory

Operands are also represented symbolica/ly. For example. the instruction

AD R,

may mean add the value contained in data location Y to the contents of regisier R,
In 1 his example- Y refers to the address of a location in memory, and R Terors to a
particular register. Note that the operation is performed on the contents of a loca•
lion, not on its address.

'Elms, it is possible to write a machine-language program in symbolic form.
Each symbolic opcode has a fixed binary representation. and the programmer spec-

4 Bit% 6 MN Bib,

I Opcode op.stimilf.11=1.14E.rencu

4 16 Bits

Figure 10,2 A Simple InsLirticl ion Format

operand refimellor

10.11 / MACT-11NE INSTRUCTION CHARACTERISTICS 333

ifies the location of each symbolic operand. For example. the programmer might
begin with a list of definitions;

X - 513
Y 514

and so on. A simple program would accep11his symbolic input, convert opcodes and
operand references to binary form, and construct binary machine instructions.

Machine-language programmers are rare to the point of nonexistence. host
programs today are written in a high-level language or, failing that, assembly lan-
guage, which is disens;. ,.ed ;11 the end of this chapter. However, symbolic machine
language remains a useful tool for describing machine instructions, and we will use
it for that purpose..

Instruction Types

Consider a high-level language instruction that could be expressed in a language
such as BASIC or FORTRAN. Fur uxamill4,.

x IlY

This statement instructs the computer to add the value stored in Y to the value
stcired in X and pm the result in X. might this be accomplished with machine
instructions'? Let us assume that the variables X and Y correspond to locations 513
and 514. If we assume a simple set of machine instructions, this operal ion et iuld be
accomplished with three instructions:

1. Load a register With the contents of memory location
2. Add the contents of memory . Location 514 to the register.

3. Store the contents of the register in memory !mailer' 51i.

As can be seen. the single BASIC instruction may require three machine
instructions- This is typical of I he relationship heiwern a high-level language and a
machine ianguage. A high-level language expresses operations in a concise algebraic
form, using variables. A machine language expresses operations in a basic form
involving the movement of data to or from registers,

With 1h is. si mple example to guide us, let us consider the types of instructions
that must be included in a practical computer. A computer should have a set of
instructions that allows the user to formulate any date processing task. Another way
to view it is to consider the capabili tics of a high-level programming language. Any
program written in a high-level language must be translated into machine Language
to be executed. Thus, the set of machine instructions musA stillieient to express
any of the instructions from a high-level language. With this in mind we can cate-
gorize nislraelliOn types as fellows;

• Data iiroceming.. Arithmeiic and logic instructions
• Data storage.: !vtemory in!,IrLieLions
• Data movement I/O in.drucLioris
• C'untrol: ' lest and 13nind-i instructions

334 CHAPTER la / INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Arithmetic instructions provide computational capabilities for processing
numeric data, Logic (Boolean) instructions operate on the bits of a word as bits
rather than as numbers; thus, they provide capabilities for processing, any other type
of data the. user may wish to employ. 'These operations are performed primarily on
data in CPU registers. Therefore, there must be memory instructions for moving
data between memory and the registers. I/O instructions are needed to transfer pro-
grams and data into memory and the results of computations hack out to the user.
Test instructions are used to test the value of a data word or the status of a compu-
tation. Branch instructions are then used to branch to a different set of instructions
depending on the decision made.

We will examine the various types of instructions in greater detail later in
this chapter,

Number of Addresses
One of the traditional realys of describing processor architecture is in terms of the
number of addresses contained in each instruction. This dimension has become less
significant with the increasing complexity of CPU design. Nevertheless. it is useful
at this point to draw and analyze this distinction.

What is the maximum number of addresses one might need in an instruction?
Evidently, arithmetic and logic instructions will require the roost operands. Virtually
all arithmetic and logic operations are either unary (one operand) or binary (two
operands). Thus, we would need a maximum of two addresses to reference operands.
The result of an operation must be stored, suggesting a third address- Finally, after com-
pletion or an instruction. the next instruction must be fetched, and its address is needed.

This line of reasoning suggests that an instruction could plausibly be required
to contain four address references: two operands, one result. and the address of the
next instruction. In practice, four-address instructions are extremely rare. Most
instructions have one, two, or three operand addresses, with the address of the next
instruction being implicit (obtained from the program counter).

Figure .10.3 compares typical one-, two-, and three-address instructions that
could he used to compute Y = (A - 1-1) (C + D x E), With three addresses, each
instruction specifies two operand locations and a result location. Because we would
like to not alter the value of any of the operand locations, a temporary location, T,
is used to store some intermediate results. Note that there are lour instructions and
that the original expression had five operands.

Three-address instruction formats are not common. because they require a rel-
atively long instruction format to hold the three address references. With two-
address instructions, and for binary operations, one address must do double duty as
both an operand and a result. Thus, the instruction St .'13 Y, B carries out the calcu-
lation Y B and stores the result in Y. The two-address format reduces the space
requirement but also introduces some awkwardness. To avoid altering the value of
an operand, a MOVE instruction is used to move one of the values to a result or
temporary location before performing the operation. Our sample program expands
to six instructions.

Simpler yet is the one-address instruction. For this to work, a second address
must be implicit. This was common in earlier machines, with the implied address
being a CPU register known as the accumulator, or AC. The accumulator contains

L0.1 MACHENT INSTRUCTION CHARACTERISTICS 335

Instruction Comment Instruct i1l11

SUB • A 4 B Y.— A - B 1-DAD I)
MPY 1, D. E T D x E MPY l
ADD T, T•(—T+ C ADD C

DIV Y, Y, Y < TOR Y

Figure 111.3 Progrnms to Execute 117 — (A •- 131 (C + D.

one of the operands and is used to store the result. In our canipIc, eight instruc-
tions arc needed to accomplish the task,

It is, in fact, possible tiP rriai,:e do with /elm addresses for some instructions.
e.roLaddress instruet ions an applicable to a special memory organization, called a

sifrc:k. A stack is a last-in-first-out set of locations. The stack is in a known locatton
and. often, at least the top two elements are in CPI) reyislers. Thus, zero-address
instruction* would Eac.rcnue the top two stack elements. Stacks are deseribcd in

Appendix ltIA. Their use is explored further later in this chapter and in Ch4ipter I L
Table 1(3.1 summarizes the interprctalions to be placed on instructions with

zero. one, two, or three addremcs• In each ease in the table, it is assumed that the
midresN or the nest instruction is i mplicit, and that one operation with two source
operands and one result operand is to be performed.

The number of addresses per instruction is a basic design. decision. Fewer
addresses per insirticlion result in n -14 PPE' primitive instructions, which requires t1]ess
complex, CPU, It z.ilso resuits in instructions of shorter length. On the Whey hand:

. 1 .411)1‘1. 10.1 or Instrueii.ori Addresses (Nonbranehing Instructioa6)

Number of Addresses Symbolic preieuiatkn Interpretation

3 OP A : B. C A •(— B 0.k' C
1 OP A. B A •(— A OE ki

1 OP A AC t AC Or A

3 OP T q-• (T •- I) OP T

▪ = 1:1 CL:JITJU.U014

I Hr .41;..0;

▪ II. I . rr rip! rry UT C:.:111StOT 0.11)17%

r j - I s II Li uid111;: fit L: I S'HiCk

.111 LI (I Lela

Al.
AC E

•(— + C
Y AC

LOAD .2\ AC: c• A (zE) Thico-;1411.3p.rs.s. ill %till
4E:13 13 AC •• AC . B
DIV V AC (— AC

Instruction Comme nt STOR Y Y AC
MOVE V. A Y <•-• A
SUB Y. B Y B

(c) Orie-addrei...s instmetions
Y •

MOVE T. D T •(— D
MPY' T. E T•(—TxE
ADD T. C T T C
DIV Y, '[Y -

F T

lb) i Ii!.;

336 CHAPTER ENSTRIX:TION SE I S: CHARACTERISTICS AND FUNCTIONS

programs contain more total instructions, which in general results in longer neap
tion times and longer, more complex programs. Also, there is an important thresh-
old between one-address and multiple-address instructions_ With one-address
instructions, the programmer generally has available only one general-purpose reg-
ister. the accumulator. With multiple-address instructions, it is common to have
multiple general-purpose registers, This allows some operations to he performcd
solely on registers. Because register references are faster than memory references,
this speeds up execution. For reasons of flexibility and ability to use multiple rogi,-
ters, most contemporary machines employ a mixture oE two- and three-add TL:N ,

instructions.
The design trade-offs involved in choosing the number of addresses per instruc-

tion are complicated by other factors. There is the issue or whether an address ref-
erences a memory location or a register. Because there are fewer registers, fewer
hits are needed for a register reference. Also, as we shall see in the next chapter, a
machine may offer a variety of addressing modes, and the specification of mode
takes one or more bits. The result is that most CPU designs involve a variety of in-
struction formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is
instruction set design. The design of an instruction set is very complex, because it
affects so many aspects of the computer system. The instruction set defines many of
the functions performed by the CPI I and thus has a significant effect on the implc-
mentation of the CPU. The instruction set is the programmer's means of control-
ling the CPU. Thus, programmer requirements must be considered in desiti.ning the
instruction set..

It may surprise you to know that some of the most fundamental issues Mat-
ing to the design of instruction sets remain in dispute. Indeed, in recent years, the
level of disagreement concerning these fundamentals has actually grown. The nio!A
important of these fundamental design issues include the following:

• Operation repertoire: !low many and which operations to provide, and how
complex operations should be

• Data types; ' l'he various types of data upon which operations are performed

• Instruction format: Instruction length (in bits), number of addresses, size of
various fields, and so on

• Registers: Number of CPI.1 registers that can be referenced by instructions,
and their use

• Addressing: The mode or modes by which the address of an operand is
specified

These issues are highly interrelated and must be considered together in design-
ing an instruction set. This hook, of course. must consider them in some sequence,
but an attempt is ma& to show the interrelationships.

Because of the importance of this topic, much of Part Three is devoted to
instruction set design. Following this overview section, this chapter examines data

I 0J,2 / TYPES OF OPRR ANDS 337

types and op.eration reperioire. Chapter 11 examines addressing modes (which
includes a consideration of regiMers) and instruction formats, Chapter 13 examines
the reduced instruction set computer (RISC). RISC archilcciurc calls into question
many of the instruction sel design decisions made in many conti2inporary commer-
cial computers.

10.2 TYPES OF OPERANDS

Machirs12.instructicins oncrate on data. The most important general categories of data arc

• Addresses

* Numbers

▪ Characterg

• Logical data

We will see, in discussing addressing modes in Chapter 1.1, ihat addrusscs arc.
in fact, a form of data. In many cases, some ea lculal ion must he performed on the
orwrand reference: in an instruction to determine the main or virtual memory
address. In this context, addresses can be considered to be unsigned integers.

Other common data types are numbers. characters, and logical 61a, and each
of these is briefly examined in this section. Beyond [hal. Nome machines define spe-
cialiw:ed daia types or data strueitire:i. For example. there may be machine operators
that operate directly in a list or a string of characters.

Numbers

All machine Languages include numeric data types. Even in nonnumeric data pro-
cessing, there is a need for numbers to act as counters, field widths, and so forth.
An important distinction between numbers used in ordinary ni4,Lhcmaties ink] num-
bers stored in a computer is that the latter lirnittd. This is true in two senses.
First, there is a li mit to the magnitude of numbers representable on a machine and
second, in the case of floating-point numbers. a Limit to their preds.ion. 't nos, the
programmer is faced with understanding the consequences of roundin, overflow,
and undcrflow.

Three types of numerical data are common in computers:.

* Integer or fixed point

• Floaling point

■ Decimal

We examined the first two in some detail in Chapter 9. It remains Id say a few words
about decimal numbers.

Although all internal compuier opera[ions Lire binary in nature, the human
users of the system deal with decimal numbers. Thus, there is a necessity lo converl
from decimal to binary on input and from binary to decimal on output. For appli-
cations in which there is a great deal of 1/0 and comparatively little, comparatively

338 CHAPTER 10 1 INSTRUCTION SETS: CHARACTERISTICS AND FUNCIIONS

simple computation. it is preferable to store and operate on the numbers in decimal
form. The most common representation fear this purpose is packed decimal.

With packed decimal, with decimal digit is represented by a 4-bit code, in the
obvious way. Thus, (1 — 0000, 1 — 0001, S = 1000, and 9 = 1001. Note that this
is a rather inefficient code because. only 10 of 16 possible 4-bit values arc used. To
form numbers. 4-bit codes are strung together, usually in multiples of 8 bits. Thus,
the code for 24f is 0000001001000110 This code is clearly less compact than a
straight binary representation. but it avoids the conversion overhead. Negative num-
bers can be represented by including a 4-hit sign digit at either the left or right end
of a string of packed decimal digits. For example. the code 1.111 might stand for the
minus sign.

Many machines provide arithmetic instructions for performing operations
directly on packed decimal numbers. The algorithms are quite similar to those
described in Section 9.3 but must take into account the decimal carry operation.

Characters
A common form of data is text or character strings. While textual data are most core
venient for human beings. they cannot, in character form, he easily stored or trans-
mitted by data processing and communications systems. Such systems are designed
for binary data. Thus, a number of codes have been devised by which characters are
represented by a sequence of bits. Perhaps the earliest common example of this is
the Morse code. Today, the most commonly used character code in the International
Reference Alphabet (IRA), referred to in the United Slates as the American Stan-
dard Code for Information Interchange (ASCII; see Table 7.1). IRA is also widely
used outside the United States. Each character in this code is represented by a
unique 7-bit pattern: thus, 128 different characters can be represented. This is a
larger number than is necessary 10 represent printable characters, and some of the
patterns represent control characters. Some of these control characters have to do
with controlling the printing of characters on a page. Others are concerned with
communications procedures. IRA-encoded characters are almost always stored and
transmitted using 8 bits per character. The eighth bit may be set too or used as a par.
itv bit for error detection. In the latter case, the bit is set such that the total number
of binary ls in each octet is always.odd (odd parity) or always even (even parity).

Note in Table 7.1 that for the IRA bit pattern 011XXXX. the digits ft through
9 are represented by their binary equivalents, 0000 through 1001, in the rightmost
4 hits. This is the sante code as packed decimal, '['his facilitates conversion between
7-hit IRA and 4-bit packed decimal representation.

Another code used to encode characters is the Extended Binary Coded Dec-
imal Interchange Code (EBCDIC). EBCDIC is used on 1BM 5/390 machines, It is
an 8-bit code. As with IRA, EBCDIC is compatible with pocked decimal. In the case
of EBCDIC. the codes 11110000 through 11111001 represent the digits 0 through 9.

Logical Data
Normally, each word or other addressable unit (byte, hal fword, and so on) is treated
as a single unit of data. It is sometimes useful, however, to consider an n-hit unit as
consisting of n L-hit items of data, each item having the value 11 or 1. When data are
viewed this way, they arc considered to be logical data.

10.3 1 PENTIUM AND POWERPC DATA TYPES 339

There are two advantages to the bit-oriented view. First, we may sometimes
wish to store an array of Boolean or binary data items. in which each item can take
on only the values 1 (true) and 0 (false). With logical data, memory can be used most
efficiently for this storage.. Second, there are . civeasions when we wish to manipulate
the bits or a data item. Forexample, if floatin g-point operations are implemented in
software, we need to be able to shift significant bits in some operations. Another
example: To convert from IRA to packed decimal, we need to extract the rightmost
4 hits of each byte.

Note that, in the preceding examples, the same data are treated sometimes as
logical and other times as numerical or text. The "type" of a unit of data is deter-
mined by the operation being performed on it. While this is not normally the case
in high-level languages, it is almost always the case with machine language.

10.3 PENTIUM AND POWERPC DATA TYPES

Pentium Data Types

The Pentium can deal with data types of 8 (byte). 16 (word), 32 (doubleword). and
64 (quadword) bits in length. To allow maximum flexibility in data structures and
efficient memory utilization, words need not he aligned at even- numbered addresses;
doublewords need not be aligned at addresses evenly divisible by 4; and quadwords
need not be aligned at addresses evenly divisible by 8. However, when data are
accessed across a -32-bit bus, data transfers take place in units of doublewords, begin-
ning at addresses divisible by 4. The processor ameris the request for misaligned

Table 111.2 Pentium Data Types

Data Type 1.1eNcripticin

CiuncrRI 13. 1.e, word (16 bits), doulik.w4ird.t.12 hits). and quadvigird (#.1 ,1 bits)
locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word. or douhle•ord,
using twos complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded A representation (rf a BCD digit in the range it Ihroueji 9, with one

decimal fEl.CD1 digit in each byte..

Packed 13C0 Packed byte representation of two liC1) digits: value in the range
to 99.

Near pointer A 32-hit effective aditivss that represents the oFfsct within a segment.
Used lug all pointers in Al nonsegmented memory' and [car rofercnees
within a set:mein in :3 segmented memory,

Elit field A contiguous sequence of hits in which the position 01 each hit is
considered as an independent unit, A hit. string can hL Cin at arty hit
position of an' byte and can contain up to - 1 hi k.

Byte strive A oontiguous sequence of bytes, words. or doublewords, on -11,111ring
form zero to 2" - / bytes.

Floating point See Figure 10.1.

4 1'

integer
Ir

QUaLl.W011 unsigned integel

13.3.1v si ..t,,neci integer's'
g t,

340 CHAPYFR / INSTRUCTION SETS; C .FIARACTERISTICS AND FUNCTIONS

values into a sequence of requests for the has transfer. As with all of the Intel 807e.-. ,6
machines, I he Pentium users the little-endian styie [kit is, the least significant byte iii
stored in the lowest ,a ddress (see A opc.ndix 1013 for a discussion of enclianness).

The Iwle, word. doubleword, and quadword are referred to as general datd
types. In addi lion. the Pentium supports an impressive:array of specific data rypts
that are recognized anal operated on by particular instructions. Table 10;2 stoma-
Finis these types.

Figure KO 'illustrates the: Pentium nurnericat data types. The signed integers
are in twos complement representation and may be RI. 32. or 04 bits ionR. The floating-

BvIe unsigned in•ge.1

Word unsinc:clinreg.e.r

I '•'-' nf.. 0.111! , Word ..:i gued [mega-

Doult-dxwooi :•iitzued inIeger

Quadword Signed inrugcr

rwos

....N i l I
1.

11 L:.

 floating point

[cxrg

51

sign hir ifiLETel'

...) 0EFo.fit'
, •

64 6•2

Double
naming !,[li ra

: •: DeRiblx prvci4:51)
50.L9. !":,41T

:c1.' • flodring paint

Figure WA Pentium Numeric Data HicruaLs

J. -

• •

10.4 TYPES OF OPERATIONS 341

point type actually reIcrs Lo a st.!t of types that are used by the floating-point unit
and operated on by floating-point instructions. The three floating-point representa-
tions conform to the IEEE. 754 standard.

PowerPC Data Types

'The PowerPC' can deal with data types of g (byte). 16 (ha I fword), 32 (word), and
fib (doubleword) bits in length. Some instructions require that memory operands
be aligned on a 32-bit boundary, In general, however, alignment is not required.
One interesting feature of the PowerPC is that it can use either little-endian or big-
cndian style: that is, the least significant byte is stored in the lowest or highest
address (see Appendix 11111 for a discussion of endianness).

The byte, halfword, prd, and dOLINCward arc general data types. The proces-
sor interprets the contents of a given item of data cleNntling on the instruction. The
fixed-point processor recognizes the following data types:

• Unsigned byte: Can he used for logical or intcgcr ariihmetic oper a tions- 11 is
loaded from memory into a general register by zero extending on the]eft to
the full register size.

• Unsigned halfword: As for unsigned byte, heal rot 16-bil quantities-
* Signed halfword: Used for arithmetic operations: Eoaded into memory by sign

extending on the left to full register size (i.e., the sign bit is ref iicated in al]
vacant posi lion6).

* Unsigned word: for logical operations and as an address pointer.
■ Signed word: Used for arithmetic ()pew ions.
• Unsigned doubleword: Used as an address pointer.
• Byte string: From 0 to 128 bytes in length.

In addition. the PowerPC supports the single- and double-precision floating-
point dati types defined in IEEE 754.

firti.S -
;rerrri,w-5,-"Ar%x

The number of different opeodes varies widely from machine to machine, 1Iowever,
the same general type's or operations are found on all machines. A useful and typi-
cal categorization is the following:

▪ Data transfer
• Arithmetic
• Logical
■ Conversion
*
■ System control
• Transfer of control

Table 10.3 (based on II l Asr.' HMI) lists common instruct ion types in each
category. This section provides a brief survey of these various types of operations,

342 CI-AFTER 10 INSTRUCTION SETS: CHARACTERISTICS AND FUNCT1ON:s:

Table 10.3 Common, l nstructiou Set OpratioirliF.

Operation Name. Dem....610 .50n

Data sransfer

MOVE ft NI 11 Sf LI)

Su }re

1.oad
•xchim .1412

'Cie rr (rOSCE)

&i!.

Push
Pop

Transfer wont or hi SICk Horn SOW-CC 1.0 cichtination

TranSfer Want from processor LL.) memory
Trausfer 1 wort. .rmiL (Nr.nor!.. to proccsor

cup Le n LP% of source and destma ti on
Transfer wort] of Os to dcsl inH ri{

'1 runr442.] . word of Is. t4 d esti ii i I is i n

1 ran2...f121 word from souro2 1 c1 lop of :Ltack
TTH nNtu r 9eOic.1 from top iii slack to destination

A1laure1ie.

Add
Surrirad.
Multiply
Divide
A 5osolute
Ne.ga Le

(:o m po le 'Loin Of LINO operand:,
Caril riaLc di nre31C.0 of two operands

pu e ptr.Fduct of rwo operHnds
5111 pulC quaitlit cir two 4pervinOs

,pperaliLt by its 911S{ 51 IA IL valL1C5

Ch nge Or operand
[ucre iilenl

Decrcinera
Add t to cppetarid.
Sohttact] from opernmi

AND
OR
NOT Perform the specified lo6iica1 ripe ratio!' hitwisc

(Complement)
E)Zel usive-OR

Logical Test Test specified condition% sei) !lased on outcome
Compare Make or a rntrn;-...I ic ea nsoi L of two Or more. opel . m.d5!

NCI Ila.p..(s1 based on (uncoil -it!
Set control Claris inA ructions to Kl controls fol. prokeetspit purpose&
vuriabl es InlCirupL ti mer con e Le.

Shift (rig{ 11 shift op.:mild, inLr{)d1C.1114 ODLiStanLS at end
Rotate 0) .1.) stuit ilpernnci, with wraparound end

Transfer
ryf control

Jun Lp flwari.ekt)
unip con dir.iona I

Jump Lo subroutinc

F..x1 .2ci.11.12

Skip
Skip condi knurl

'ciirir iL

.opt ration

UncondiLiciloil 11'i:11131'er! LODA1 PC' %%II h !Teel fled address
'I em. condi Llo n: either load PC' tvitkt specified addre..sg ar
do no bins, In1s4 cm condition
Place curl-42111 propdui control mf grind Li on in known location;
lump to specir led add rC%S
Re Waco conwn Ls of PC and other register front known 1oca Lion
Fes ch. operlind from specified local ion Hn d wcectl Le as insl ruetign:
di I not nincliry PC'

1 ncremcni PC Lo hkits next instruction
feet pr2ci condition! etcher skip or d0 nothin44 based Du
condition
Slop program cAocution

rop pr igraul execution:. test specified 42....)n dition. repc
re.stime execution when condition k satisfied
fin opuru tic in is performed, but program execution is cOntirruiLd

In puLlous pu1

Input (mod)

()ION!! (wrilc}

St;iri 1:4.)

'If aris Cor data fri5111 SpLci 'Jed 1..'0 Nil or rieviee 1.0 destinati.311
main memory 15r proCeMol.' register .)

Transfer d al a from hpccifid source to port or 1.1 6.01C42:

T ransfer ins! tucl ir m s to 1.:0 processor I n inil in Le 170 operation
' I 'ra sk.r claim i n LcFrrllutit7ll 110111 110 N'yStcrn Lci speuir3ed de:30111.MM

f;onveryi1 f1I

T r;1111111.1.12 T'ra nsiate. values in H {A memory based cl n a Lable.of
corresipondences
Convert 41.1c conients of kl word CrOn1 011e. RIM L o nni.)Lhe.i
{e.g., packed decimaf to n u ry}

10-4 rTYPES OF OPERATIONS 343

Table 104 CPU Actions for Vat. jou: I 'ypes of Operations

Data transfer

Transfer dal. n.c.trrl one location ICI am,' her

1. 1 memory is ink.olved:

Determine memory.address
Perform virtual-In-aclual-memor:, address trawdorination
(Meek (melte.
Initiate memory

May involve dam irxmr.sr, hcf Ore •andlor alter
Arithmcite Ferfurat function in All)

Si4..: condition code: and flaFs

Logical Sainc. as arithm:21EC

Conversion Similar In ,;irithiii;•ifc r.irLd logical. May involve. special logic In 1et - 1(1TM conversion

Transfer of control
Updritc program ciminer_ Fur stihruntine callrreIurn, manap:. FirCIrricWT posing and
linkage

Issue command to I/O module.

If memory-mapped 1.'0, determine inentu3 y-rnapped kI ddrum

together with a brief discussion of the actions taken by the CPI I to execute a par-
ticular type of operation (summarized in Table l0.4). The lattei topic is examined

in more detail in Chapter 12. •

Data Transfer
The most fundamental type of machine instruction is the data transfer instruction.
The data transfer instruction roust specify several things. First, the location of the
source and destination operands must hu specified. Each location could be memory.
a register. or the top of the stack. Second, the length of data to be transferred must
be indicated, Third, as with all instructions with operands, the mode of addressing
for each operand must be specified. This latter point is discussed in Chapter I t.

The choice of data transfer instructions to include in an instruction set exem-
plifies the kinds of trade-offs the designer must make. For example, the general
location (memory or register) of an operand can he indicated in either the specifi-
cation of the opcode or the operand. Table If15 shows examples of the most com-
mon IBM Si390 data transfer instructions. Note that there arc variants to indicate
the amount of data to be transferred (8. 16,32, or 64 bits). Also, there are different
instructions for register to register. register to memory. and memory to register
transfers. In contrast, the VAX has a move (MOV) instruction with variants for dif-
ferent amounts of data to be moved. but it specifics whether an operand is register
or memory as part of the operand. The VAX approach is somewhat easier for the
programmer, who has fewer mnemonics to deal with. However, it is also somewhat
less compact than the IBM S/390 approach, because the location (register versus
memory) of each operand must be specified separately in the instruction. We will
return to this distinction when we discuss instruction formats, in the next chapter,

In terms of CPU action, data transfer operations arc perhaps the simplest type.
If both source and destination are registers, then the CPU simply causes data to be

344 CHAFFER 10 / INSTRUCTICM SF.TS: CHARACTERISTICS AND. FUNCTIONS

l'oble 10.5 Eitaittpla:s of IBM SI391) Data Transf.2: Operation ,:

Operatil P n

Mnemonic Name
Nitwit:er of Rib

Transferred Description

J Load 3 7 1 . 11111:.,1..‘1" i'morn murrLary in i-Lgistu

I-I! Loin] hall-word L6 Trail4fer :1.11m iise.irlors.. to 1 . c4......sLee
I..R I ..oad 32 TraLlS1 .01' Jrcini rEliSICT 1.0 Eckister

LER Lor.id (5110s1) 32 Traw.:11.n . Isom. floathig-poirst se.gisker io flo;ring-
point R-...gisic r

LE Lokiil (short .' 32. Tr.:Ansi:Qs Imin memory ;a) nou[ing•poiuti Tc..6.i.F.Lei

LDR Load (long) 64 Transk.r l'i-orri flouting-point ft:lilt:La 10 fliiiiiii1F-
point•rceisftr

[.. n. f..oad (toric) 4.'4 Trall.510r From rnornory Ill 11i5;11....rol poln1 rqisr.er

ST SIorl 32 Traitcfc I 1'41111 1.2.0 Cl C i i n incurcH . ..,

NTH S1CITE hall:word 1G Tun...;I'ff l'r oriS reAisl.ci . 10 rrienwry

STC %Skil-12 chari:i.....tc r g Transt.c-r rrilis, ii.. i..s1......r 1c1 niumory
STE Sufri: 1:€.1tort) 32 TrEmsfur from Lloalini-poinI. ropm...1.-- 1.0 memory

STD Su:Av. (long} il..1 Tur1il)21' from Elry.iiirip-point reg1hi4.-r hi merao....y

translernal from one register to another: this is an cpperatiOn inlernal lo the CPU. If
one or both operands are in memory, then the CPU must perform some (Pr all of the
roliowing actions!

'L. Calculate the memory address, based on the addre: ,:s mode (discussed in
Chapter 11),

1 If the addre.s:s. refers to viri ual memory, trail:date from virtual to actual mem-
ory address-

3, Determine whci her the addressed item is in cache.

4. If not, issue. I command hr the memory module,

Arithmetic

Most n1;ichilieS provide. the basic arithmetic opermitions of lidd, subtraei,
anti divide. Thesc.., zlre invariably provided for signed integer (fixed-point) numbers.
Often they are]so provided for floating-point and packed deciirral numbers.

Other possible operations include a variQly Cif single-operand instructions:
for example.

• AbwInte: Take 1.11 ,2 absolute value of the operand,

• Negate; Negate the operand.

■ Increment: Add L hr the operkuld-
• Decrement; Subtract L from the operand.

The execution of an arithmetic instruction may involve data Irtii rer opera-
ions to position operands for input to the ALL, and to deliver the output of the

ALL'. Figure :4.5 illustratcs the movcmenis involved in both (Lila transfer and arith-
metic operations. In addition, of course, the ALI! portion of the CPU performs thc
desired operation.

el •

10.4 / TYPES OF OPERATIONS 345

Logical

Most machines also provide a variety of operations for manipulating individual bits
of a word or other addressable units, often referred lo as "bit twiddling." They are
based upon Boolean operations (see Appendix A).

Some of the basic logical operations that can be performed on Boolean or
binary data are shown in 'Table 1011. The NtlY1 . operation inverts a bit. AND, OR. and
Exclusive-OR (XOR) are the most common logical functions with two operands.
EQUAL is a useful binary test.

These logical operations can be applied bitwise to n-hit logical data units.
Thus, if two registers contain the data

(R1) 10100101

(R2) 00001111

then

(RI) AND (R2) — 00000101

where the notation (X) means the contents of location X. Thus. the AND operation
can be used as a mask that selects certain bits in a word and -zeros out the remain-
ing bits. As another example., if two registers contain

t111) = 10100101

(R2)= 11111Ill

then

(RI) XOR (R2) = 01011010

With one word set to all 1s. I he XOR operation inverts all of the bits in the other
word (ones complement).

In addition to bitwise logical operations, most machines provide a variety of
shifting and relating functions. The most basic operations are illustrated in Figure
10.5. With a logical shift, the bits of a word are shifted left or right. On one end. the
bit shifted out is lost. On the. other end, a 0 is shifted in. Logical shifts arc useful pri-
marily for isolating fields within a word. The Os that are shifted into a word displace
unwanted information that is shifted off the other end.

Table 10.6 Basic Logical Operations

P Q NOT P P AND 0 P OR Q P XOR Q NO

0] 0 0 0 1

IF 1 1 0 I I 0

I 0 0 0 I I 0

I 1 0 1 I 0 1

346 CHAPTER I I) / INSTRUCTION SETS: CHARAC:TPRISTICS AND FUN(...:TIONS

0

:t1.1. 1A3.g .k!al left shill.

I L . I A ri t hi:11 ,211.c. right shin

MOM •

(1) Left rotaic

'Vire 10.5. Shill and Rotait. Operadoos

Af.„ art example, suppose we wish to transmit charvictcr.1
,. of data to an 110

device 1. characier at a (irnc. &emsh memory word is; [6 hits in length and contains
two characters, wi2 mum wzpack the characters tic lore they can he. &M-To send the
two chuirneten; ill word.

I. I Amd the word into a registi:r.
2. ANL) with the value [11[1.1 ! I (C)N COO. This masks ()unite character on the riht.

3. Shift to thenght eight kiines. This shifts the rem:lining character to thc right
half of the rcgistur,

4. Pei-Corm 110. The 110. module reads the lower-order 8 hih, from the data bus.

The preceding steps result in sending the left-hand character. To scrid the.right-
hand eh ll'acter.

Input

10100110

10100110

10)001 ID
10100110
101001 lit

1
 l0l00110

Operation

Logical right shift (3 lit)
Logical tell shift (3 bits)
Arithmetic right slidt (3 bits)

Arithrhoic left shill (3 bits)
Right rotate (3 hits)
Left rotate (3 hits)

00(1111100

001 10000

1I1.1011X)

101 moon

j 01(11)

Resoll

00110101

10.4 / TYPES OF OPERATIONS 347

1. Load the word again into the register.
Z. AND with 0000000011111111.

Perform I/O.

The arithmetic shirt operation treats the data as a signed integer and does not
shift the sign bit. On a right arithmetic shift, the sign hit is replicated into the bit
position to its right. On a left arithmetic shift, a logical left shift is performed on all
bits but the sign bit, which is retained. 'these operations can speed up certain arith-
metic operations. With numbers in twos complement notation, a right arithmetic
shift corresponds to a division by 2, with truncation for odd numbers. Bolt' an arith-
metic left shift and a logical left shift correspond to a multiplication by 2 when there
is no overflow- If overflow occurs, arithmetic and logical left shift operations pro-
duce different results, but the arithmetic left shift retains the sign of the number.
Because of the potential for overflow. many processors do not include this instruc-
tion, including PowerPC and Itanium. Others, such .as the IBM S/390, do offer the
instruction. Curiously, the Pentium architecture includes an arithmetic left shift but
defines it to be identical to a logical left shift.

Rotate, or cyclic shift, operations preserve all of the bits being operated on
One possible use of a rotate is to bring each fiit successively into the leftmost bit,
where it can be identified by testing the sign of the data (treated as a number).

As with arithmetic operations. logical operations involve AI.0 activity and
may involve data transfer operations. Table 1(1.7 gives examples of all of the shift
and rotate operations discussed in this subsection.

Conversion

Conversion instructions are those that change the formal or operate on the format
of data. An example is converting from decimal to binary. An example of a more
complex editing instruction is the S/390 Translate (TR) instruction. This instruction
can be used to convert from one 8-bit code to another, and it takes three operands:

TR RI, R2, L

he operand R2 contains the address of the start of a table of 8-bit codes. The. I..
bytes starting, at the address specified in RI are lranslated. each byte being replaced

Table 10.7 F...XaMpli:s of Shift and Rotate. Operations

348 CHAPTER 1(1 (NSTRUCTION SETS CHARACTERISTICS AND PUNCTIONS

by the contents of a table entry indexed by that 117. . ,.1e. 1;or example, to translate from
EBCDIC to IRA, we first create a 256-byte table in storage locations, say, 1000-WET
hexadecimal. ' Hie table contains the characters of the IRA code in the sequence of
the binary representation of the EBCDIC' code: that is, the IRA code is placed in
the table at the relative location equal to the binary value of the HI3CDIC code of
the same character. Thus. locations IWO through 10F9 will contain the value ;

30 through 39, because FO is the kBCDIC code for the digit 0. and 30 is the IRA
code fot the digit 0, and so on through digit 9, Now suppose we have the EBCDIC
for the digits 1984 starting at location 2100 and we wish to translate to IRA, Assume
the followinw

• Locations 21.00 .2103 contain Fl F9 1- ,8
• R1 contains 2100.
• R2 contains 1000:

Then, if we execute

TR R1, R2, 4

locations 210(1-2103 will contain 31 39 3S 34.

Input/Output

Input/output instructions were discussed in some detail in Chapter 7. As we
saw. there are a variety of approaches taken, including isolated programmed 110.
memory-mapped programmed 110, DMA, and the use of an 110 processor. Many
implementations provide only a few 110 instructions, with the specific actions spec-
ified by parameters. codes, or command words.

System Control

System control instructions are those that can he executed only while the proces-
sor is in a certain privileged state or is executing a program in a special privileged
area of memory. rypically, these instructions are reserved for the use of the oper-
ating system.

Some examples of systetn control operations are as follows, A system control
instruction may read or alter a control register; we discuss control registers in Chap-
ter 12. Another example is an instruction to read or modify a storage protection key,
such as is used in the S/390 memory system. Another example is access to process
control blocks in a multiprogramming system.

Transfer of Control

For all of the operation types discussed so far, the next instruction to be performed
is the one that immediately follows, in memory, the current instruction, However, a
significant fraction of the instructions ill any program have as their funelion chang-
ing the sequence of instruction execution. For those instructions, the operation per-
formed by the ('Nt.' is to update the program counter to contain the address of some
instruction ill memory.

111.4 / TYPES OF OPERATIONS 349

There are a number of reasons why transfer-of-control operations are re-
quired, Among the most important are the following.:

1. In the practical use of computers, it is essential Lo be able to execute, each
instruction more than once and perhaps many thousands of times. It may
require thousands or perhaps millions of instructions to implement an appli-
cation. This would be unthinkable if each instruction had so he, written out sep-
arately. Fla table or a list of items is to be prt -locssed, a prowarn loop is needed.
One sequence of instructions is executed repeatedly to process a]] the data.

2. Virtually all programs involvc some &vision making. We would like the com-
puter Io do one thing if one condition holds, and another thing if another con-
dition For example, a sequence of instructions computes the square root
of a number. At the suiri of the sequence. the sign of the number is tested. If
the number is negative, the cornpuiation is not performed. tru1 art error con-
dition is reported.

3. To compose correctly tl 11.1 rgC or even niedim-n - ize computer program is an
exceedingly difficult task. It helps if there are mechanisms for breaking the . .
task up into smaller pieces that can be worked on one at a time.

We now turn to a discussion of the most common transfer-of-control opera-
tions found in instruction sets: branch, skip, and procedure call.

linuich Instructions

A branch instruction. also called a jump instruction. has as one or its.operands
the address. of the nexl instruction to be executed. Most often, the instruction is a
condirlondi t,Franch instruction. '1'hat is, the brandh is made {update program counter
to equal address specified in operand) only if a certain condition k met. 01herwise,
the next instruction in sequence is executed (increment program counter as usual).

There are two common ways of generating the condition to be tested in a condi-
tional branch instruction. First, most machines provide a l-bit or multiple-bit con-
dition code that is set as the result.of some operations. This code can be I hough" of
as a short user-visible register. As an example, an arithmetic operation (ADD, SUB-
TRACT, and so on) could set a 2-hit condition code with one of the following four
values: 0, positive, negative, overflow. On such a machine, there could be lour dif-
ferenI conditional branch instructions:

BR? X Branch to location X if result is positive.
BRN X Branch to location X if result is negative.
I-3 R/. X Branch to location X if result is zero.
BO X Branch 10 location X if overflow occurs.

In all of Ihese cases, 1he result . referred to is the result of the most recent oper-
ation that set the Ci HILliti on code.

Another approach that can be used with a threc-addressinstruction formal is
to perform a comparison and specify a branch in the same instruction. For example,

1.314 R I, R2. X Branch to X if contents of Rl = contents of R2.

200
201

• 202 SUB X, Y
203 BRZ 211
• •

•

210 BR 202
211 •
• •

Unconditional
hranCES

350 CHAPTER II) / INSTRUCTION SETS: CH ARA CTFRISTIC:S AND FUNCTIONS

Figure 10.6 shows examples of these operations. Note that a branch can he
either forward (an instruction with a higher address) or backward { lower address).
The example shows how an unconditional and a conditional branch can he used to
create a repeating loop of instructions. The instructions in locations 202 through 21i)
will he executed repeatedly until the result of subtracting Y from X is 0.

Skip Instructions
Another common form of transfer-of-control instruction is the skip inSITLIC,

tion. The skip instruction includes an implied address. Typically, the skip implies
that one instruction be. skipped, thus, the implied address equals the address of the
next instruction plus one instruction-length.

Because the skip instruction does not require ai destination address field, it is
free to do other things. A typical example is the increment-and-skip-if-zero (ISZ)
instruction. Consider the following program fragment:

3 C 1

•
3011 r.sa R1
31C RR 3C.1
311

In this fragment, the two transfer-of-control instructions are used to implement an
iterative loop, Rl is set with the negative of the number of iterations to be per-
formed. At the end of the loop, RI is incremented. If it is not 0, the program
branches back to the beginning of the loop. Otherwise, the branch is skipped. and
the program continues with the next instruction after the end of the loop.

Mcrnory.
address Tnstruction

• •
• •

22.5 BRE R1, P.2 2.15
•

• •
• •

235 •

figure 10.6 Branch Instructions

Conditional
('.ranch

Conditional
branch

10.4 / TYPES OF OPERATIONS 351

Procedure eaIt Instructions

Perhaps the most important innovation in the development of programming
ianguages is the procedure. A procedure is a self-contained computer program that
is incorporated into a larger program. At any point in the program the procedure
may be invoked, or coffed. The processor is instructed lo go and execute the entire
procedure and then return to the point from which the call took place,

The two principal reasons for the use of procedures are economy and modu-
larity. A procedure allows the same piece of code to be used many times. This is
important for economy in programming effortand for making the most efficient use
of storage space in the system (the program must he stored). Procedures also allow
large programming tasks to be subdivided into smaller units. This use of nu-gdular-
iry greatly eases the programming task.

The procedure mechanism involves two basic instructions: a call instruction
that branches from the present location to the procedure. and a velum instruction
that returns from the procedure to the place from which it was called. Both of these
are forms of branching instructions.

Pigure 10,7a illustrates the use of procedures to construct a program- In this
example, there is a main program starting al location 400(1. This program includes a
call to procedure P ROC71, starting at location 4500. When this ca]] instruction is
encountered, the CPI: suspends execution of the main program and begins ex-
ecucion of PROC1 by fetching the next instruction from location 4500. Within
PROC1, there are two calls to PROC2 at location 4800. In each case, the execution
of PROC I is suspended and PROC2 is executed. The RE11.:RN statement causes
the CPU to go back to the calling program and continue execution at the in:t1ruc-
[ion after the corresponding CAUL instruction. This behavior is iilustrated in
Figure 10.7b.

Several points are worth noting:

I. A procedure can be called from more than one location.
2. A procedure call can appear in a procedure. This allows the ne.viiig of proce-

dures 10 an arbitrary depth.
3. l ath procedure ca]] is matched by a return in the called program.

Because we would like Lo he able to cal] a procedure from a variety of points.
the CI-1 U must somehow save the return address so that the return can take place
appropriately. There are three common places for storing the return address:

• Register
• Start of called procedure
■ Top of stack

consider a machine-language instruction CALL X, which stands for COB procedure

ut lOctifiw2 If the register approach is used, CALL X causes the following actions:

L

RN 4• PC -F
PC

CALL Proc2

CALL Proc2

RETCHN

Addresses
4000

Main rnernory

4100
4101

CALL Prod

Main
]irrigrain

110MON.I.M.■ Procedure
Proc2

Procedure
Prod

4500

4600
4601.

450
4651

352 cHAVIT.n. W ZIN&T■Ubl1ON SP1's: CIIARAC1'USTics AND FuNcrro

(a) Culls and returns ml Execution sequence

Figure 10,7 ."s'e.cied Proccdur..2.s

irvhere RN is a register that is kilways used for this purpose. PC is the program'
counter, and A is the instruction length. The called procedure can ntjw skive Ile con-
Lents of RN to be used for lite later return.

A second possibility is to store the return address at the start of the proceduru.
In this case, CALL X causes

X PC — A
PC, t— X —1

This is quite bandy. I - he return address h;is keen stored safely away.
Both if the preceding approaches work and have 1 -icen used. The only I imi iation

of these approaches is that they prevent the use of reentrant procedures, A reentrant
procedure is one in whieh it is pOssible 10 lmeive several calls open to it 6 1 U same the.
A recursive procedure (one that calls 'Bell) is an example. or the: use of ibis feuture.

A more enerail and powtirfui approach is to use a stack (see Appendili 1,0A
for a definition of the stack). When the CE(..) executes a call, il places the return
address on !tic stack, When it executes return, it use!, the address on the slack.
Figure ma illustrates the use of .the stack.

4601

4651

4101

4101

4101

la qtat-1. I I)} Atter (e) IA} After (e) After tt) At a Atter
leuntenis CALL Prue! CALL Fre.c2. RETURN CALL Prue2 RETURN RETURN

Figure 10-S Ike of Stock to lEnplernunE Nestcd. Subroutines of Figuit 10.7

354 CHAPTER to INSTRUCTION SETS; CHAIAACTERISTICS AN].) FuNcTioNs

In addition to providing a return address, it is also often necessary to pass
parameters with a procedure call. These tan he passed in registers. Another possi-
bility is to store the parameters in memory atter the CALL instruction. In this
case., the return must he to the location following the. parameters. Again, both of
these approaches have drawbacks, If registers are used, the called program mid the
calling program must be written to assure that the registers are used properly. The
storing of parameters in memory makes it difficult to exchange a variable number
of parameters. Roth approaches prevent the use of reentrant procedures.

A more flexible. approach to parameter passing is the stack. When the proces-
sor executes a call. it not only stacks the return address, it stacks parameters to be
passed to the called procedure. The called procedure can access the parameters
[torn the slack. Upon return, return parameter's can also be placed on the stack. The
entire set of parameters, including return address, that is stored for a procedure
invocation is referred to as a stack frame.

An example is provided in Figure 10.9. The example refers to procedure P in
which the local variables .1. - 1 and x2 are declared, and procedure 0. which can be
called by P and in which the local variables vi and y2 are declared. In this figure,
the return point for each procedure is the Iirsi item stored in the corresponding
stack frame. Next is stored a pointer to the beginning of the previous frame. This is
needed if the number or length of parameters to be slacked is variable.

Stack
pointer

Frame

Stack
pointer

Frame

V I

OW frame pointer
pointer

Return point

x2 x2

ri xl

Old frame pointer Old frame pointer
pointer

3. Return point Return point

fa) P is active tbt Phi called 0

Figure 10.9 Stock Frame Growth Using Sample Procedures P and

10.5 / PENTIUM AN]) POW_ERPC OPERATION TYPES 355

10.5 PENTIUM AND POWERPC OPERATION TYPES

Pentium Operation Types

The Pentium provides a complex array of operation types, including a n umber of spe-
cialized instructions. The intent was to provide tools for the. compiler writer to pro-
duce optimind machine language translation of high-level language programs. Table
10.8 lists the types and gives examples of each. Most of these arc the conventional
instructions found in most machine instruction sets, but several types of instructions
arc tailored lo the 80x86/Pentium architecture and are of particular interest.

CA/Return Instructions
The Pentium provides four instructions to support procedure callireturn:

CALL, ENTER. LEAVE, RETURN. It will he instructive to look at the support
provided by these instructions. Recall from Figure 10.9 that a common means of
implementing the procedure callireturn mechanism is via the use of stack frames.
When a new procedure is called, the following must be performed upon entry to the
new procedure:

• Push the return point on the stack.
• Push the current frame pointer on the stack.
• Copy the stack pointer as the new value of the frame pointer.
• Adjust the slack pointer to allocate a frame.

The CALL. instruction pushes the current instruction pointer value onto the stack
and causes a jump lo the entry point of the procedure by placing the address of the
entry point in the instruction pointer. In the 8O and 81-J86 machines, the typical
procedure began with the sequence

?USA Ear,
MOV EEP
,,1T71P ESP, space, fox_loca=

where EBP is the frame pointer and ESP is the stack pointer. In the 80286 and later
machines, the ENTER instruction performs all the aforementioned operations in a
single instruction,

The ENTER instruction was added to the instruction set to provide direct sup-
port for the compiler. The instruction also includes a feature for support of what are
called nested procedures in languages such as Pascal, C01-301., and Ada (not found
in C or FORTRAN). It turns out that there are better ways of handling nested pro-
cedure calls for these languages, Furthermore, although the ENTER instruction
saves a few bytes of memory compared with the PUSH, MOV, SUB sequence (4
bytes versus 6 bytes), it actually takes longer to execute (10 clock cycles versus ti
clOck cycles). Thus, although it may have seemed a good idea to the instruction set
designers to add this feature, it complicates the implementation of the processor
while providing little or no benefit. We will see that, in contrast. a RISC approach

AN L) AND operistids.
KIN Iii! t.s:..s I. and set. Operistin on D hit CD.31.ci cspernn a. The inssrucl3on copie.s th42 current

va I tic clt a bit in flug CF and h u LS. the orkgi MI I Ion 10 I.

13SF Bil m:201 Corward. Scans n word cll. do ti bleword sot. a 1 -b it And ...toms the nunsber ot' the

l'iro. I -bit into kl reOster.
SF31_,...S HR Shill logipol lull ur righ.1.
SAUSAR. Shin. arithmetic It or sight.
RODTZ OR Rotate loCI. (IT Tight.
SEIce Sets a bytes to 1...e.ro ci f ono 11.12puii di sig t i n a 1.113.. of L1112 16 c.ondiLions cic.fir.566 by 5th bas flag

Control Transfer

J it 1..incood [lion u I .i.0111
CALL Trans [el control to al:v1111C' 14...c3tso n. elbro Insnt.fgr• the: aiLdiess o I she i L

followirT Ihe CALL k placed nn lhe
JE1.11 Juitip ii equLil!zern.

L - O OPE'LOOPZ- Loops if L'c1unlizer1 1. ' I17i iE ;1 cclndi4iOfLxh lu n ip using El val.41d litarud in rvgisIur ECX.

Thu instrucLion First ducl.rernenir. ECX 1. -.4fore E CX for the branch condailm.

1n1crrupt!InteryupL it ovef Row. Traus fcr cc rol to an iL1 rup L c uLi Re.

String ()perallions

MOVS Movr2 word, dwuid This inR1ruction. Opc:TakeS 6L1 10E11.7:111 of a String.

indc-xed reguilus ES1 and EDI. Amer each strine uperation. I he registers isre

u toms' Incrum e n ted nr de.ere trse n ed to poml La El k: ricx.i clancin of the string.

CODS Loud byte, word, Liwurd ni iLiir1

356 CHAPTER 10 1 INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

Table 10.8 Pentium Operation Types (with EXarrip[CS Of Typical OpernitionS)

lostruclion Descriplion

Data Movement

MO's/ Move opernrid, bciwecn r<.i.ster5 cm- beLwe.an rugistC1:

13 (.1 51-1 +Sh7 ,.•1)12 ra ad onto -.tack.
pii.!!.-.1 I A Push n11 rep.iste.is on muck.
MC 10,/!..i X hyte. word. dw.:5rd, sian extt.rided. Movi...s: 1 1 'y I C LL word Dr a vs.o.rd It

4.1 01.1.h1C . Wil WIth iwoh-compleinent E[En 42xL1231SirM.

I . EA Lo.:Id CifoLtitiC a cldrexa. Loads 1.1112 01:1E1 of (FLO, 30 u m; operand. rather 1han its +Jahn iii
the demination operand.

XI-AT Tahle Replaces a byu.. in AL with al-11,W Ivorn riser-uodod

irarodirLion. When XLAT is exc.coLed. AL thould have Etn unsignctl index to the

XLA•I• uhkui .Os the ccm[ents o(AL Crom I h.: table index Lo the nble

1 N. 91.11' fnput. ouspul crrkrisnd From 1)0 spacc-

Arithmetic

..61.1.11 D Add operands.
I 51.:il Su btract ornands.
I Mill, unsigned ini.cgwr multiplica.sion. with byte.. wo3d. or doublc or ap4m .ands, and won.l.
il
1

doolik.mnrd, of co..svd.Word YE:1.1S I L .

1 1)1 V Signed 12ivide,

Logical

High-Level. Language SuPPrirt

ENTER Creates Li iiiack realm dull edit be. used Lu. the. rules DI a block-SIS LI eturEd
highlo•rd hkngua

LEAVE Roverses the aeition ot . t he Ilrevious ENTER.

10.3 PENTIUM AND PC.AVERPC OVERA I ION TYPES 357

-WA 10.8 cantinued

High-Level Language Support conumeed

BOUND Chuck army holinds Vertlies ttt3l the value in clitand 1 is within, lower and Upper
Thu limits nru in Iwo asliact:nt memory locations referenced by opet and 2. AR interrupt
occurs if 1.1u2 visiu.:2 is cl ue hounds. This instruction is used to check an array index.

Flag Control

STC Set Carty flag.
LAHF Load A teOster from klgS- C4 Ti CS SE, 7F, AF, PF. find Cl bits into A register,

Segment Register

LDS Load pointer into D sc ncnt ru.eir41411- .

SySE ern .00(51.1
TILT Holt.
LOCK Asserts a hold on Shared rne.rilory Su thrdL Lhv Pentium hHs c.xclusi V2 I he.

instruction that immediately Inflows the LOCK.
ESC PIDCUNSCU C:!}(1 enNiall escape. An escape code that indicates the suuxedins inNtructions

arc to ht uatcuotcd by a numeric coprocessor that sUpperts hij2h-pruciiiiun hiLL!gur rind
IlcFatin poen i caICSO I.

WAIT Vir' nit until 1-11..:SYli negArt:d. kluspends PCULSi.LAM progam execution the proce:.:scir
detect:, that the. 'RI :Ny pin is inmctivc, indicating that the nunicric 4oproce5;sor has
linished eN.ceu Lion .

Protection

Stort. global dt.scriptar t
Load sepnwra li mit. nit. LCPLEIS a MUT-ST142C1110.4i Ngistcr with a .s.2gment limit.
Vcri ry segincat fnr rue dinsiw ri Ling.

Cache Management

INVE) Flushet.; the internal cache. memory.
*BENVD V1u511eS the internal cache ineinury aitur WI i Li Il i. dirt!: limn Ina mcmory.
ItCVLPC, invalidates s translation lookaside buffer (TLEI:112nlry.

to processor design would:avoid complex instructions such as ENTER and might
prtxluoe a more efficient implementation with ;I Noqucncu elf simpler instructions.

Meinury NIanagetruent

Another set of specialized instructions deals with rricriitiry segnieniiition,

These are privileged instructions that can only be executed from the opt:x..3111Th sp...
tem. They allow loch and global segment tables (called descriptor tables) to be
loaded and read. and for the privilege level or lo he checked and altered.

The special instructions for dealing v ilII the on-chip troche were dibous6cd in
Chapter 4.

Condition Caries
We have trientiotte.ci thal. condition E.xules are bits in special registers that may

be sct by certain operations and used in cOrniitional branch instructions. These con-
ditions arc by arithmetic and compare operations. The compare operation in

358 C:I IAPTER 1(1 i INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

most languages subtracts two operands, as does a subtract operation, The difference
is that a compare operation only sets condition codes, whereas a subtract operation
also stores the result of the subtraction in the destination operand.

Table 10.9 lists the condition codes used on the Pentium. Each condition, or
combinations of these conditions, can be tested for a conditional jump. Table 10.10
shows the combinations of conditions for which conditional jump opcodes have
been defined.

Several interesting observations can be made about this list, First, we may wish
to test two operands to determine if one number is bigger than another. But this will
depend on whether the numbers are signed or unsigned. For example. the 8-hit
number 1111 Elll is bigger than 00000000 if the two numbers are interpreted as
unsigned integers 1255 > but is less if they are considered as twos comple-
ment numbers (-- 1 0). Many assembly languages therefore introduce two s ets
of terms to distinguish the two cases: If we are comparing two numbers as signed
integers, we use the terms Ic.iry than and greater than: if we are comparing them as
unsigned integers, we use the terms beloiv and above.

A second observation concerns the complexity of comparing signed integers.
A signed result is greater than or equal to zero if (1) the sign bit is zero and there is
no overflow (S = 0 AND 0 = 0). or (2) the sign hit is one and there is an overt'oe,
A study of Figure 9.41 should convince you that the conditions tested for the various
signed operations are appropriate (see Problem 10.14

Pentium MMX Instructions

In 1996, Intel introduced MMX technology int() its Pentium product line
MMX is set of highly optimized instructions for multimedia tasks..l'here are 57 new
instructions that treat data in a SIM D (single-instruction. multiple-data) fashion,
which makes it possible to perform the same operation, such as addition or multi-
plication. on multiple data elements at once. hitch instruction typically takes a sin-
gle clock cycle to execute. For the proper application. these fast parallel operations
can yield a speedup of two to eight times over comparable algorithms that do not
use the MMX instructions [AlK [961.

Table 10.9 Pcmium Condition Codes

Status Bit Name Description

Carry Indicates carrying or borrow mg into the leftinost hit posiiion
Iollowtrig an ki nthrnetic operation, Also modified hr some of
the shift and rotate oplobiets.

P Parity Parity or the result Or an aril h !TIE VIC Or lope opr'raIiuin. t ininalLeS
even parity: Oindicatem othi parity.

A Auxiliary carry Represents carrying or hurrow•inti between half-bytes of an 8 , hit
arithmetic or logic operation using the Al. register.

7./.115 l ndicaics ihat the result of an arithmetic or logic operation is. O.

S Sign Indicate the sign of the result of 'elfi nrithmgpc or logic operatton

0 Overflow indicates ine y, ariih tic owerflo alter ;In addition or subtraction,

A. (7 1 AND
All:, NB. NC

C .1
C-1 OR Z-1

1.{ S.1 AND 0.1) OR (SCI
AND 0-0)3 AND 1 .7,=01

(S-J AND 0 I) OR
(S-l} AND 0 • 0)

(S=1 AND 0 (1 .) OR
(S=I AN]) (1=1)

(S-L AND 0=01 OR (5=U
AND 0.:.1) OR (Z-1,

Z.=0
0=0

S-0

P=1)

0=1
P=L

S-1

N(.)

ICY. PO

0

P

B. NAE. C

DE NA
L. Z

0. NLE

10.3 l PENTIUM AND POWERPC, OPERATION TYPES 359

Table. 10.10 Pentium Condhlitmq for C'ormlitional Jump and Insrructions.

Symbol

Copridition Tested Comment

Abcrye; not below or equal (greater than, tirsined)

Above or equal; not below (pea tel than or equ I.
unsigni.•:(1): not carry
ItcIiw; not rl bOVE {ir equal (less than. unsi!ned): car ry

1312]{1.41. uI CLIL1a1; 110L Fl Ur equal, LlnyirtEd)

Equal: taro piped or unsigned)
trcatcr than; not Jc4s titnn or .•,:. (31.131 (signet)

ClreaLur ! hall (IT L'ClUal: not ICriki than (signal)

Less than.; :sot gf Ls2:1 than or equal (signed)

9101r1 clr IAILLHI; nol greNiET than Nig•rwc•11.

Not quall riot 2eto (sisne:ct or unsip.ned)
N n (WC rilow
Vol Rigel (nco

Not parity ., parity odd

OVe alms:

Pnrityl parity cViall
Sign i. nr2 .12a Live)

The focus of rkil MN is mithimedia programming, Video 4i nd audio data arc 1 yp-
ically composed of large arrays of small data typcs. such as 8 or lib hits. whereas. con-

ventional instructions are tailored to operate on 32- or (,4-bit data. liere are some
examples: In graphics. and video, a single scene consists of an array of pixels, - and
there arc 8 bits for e?ich pixel or 8 hill for each pixel color component (red, green,
blue). Typical audio samples are quantized using 1•6 hits. Por some 3f) graphics aEgo-
rithms. 32 bits are common for basic data types. 'PL) provide for parallel operation
on these data 1E10 hs, three new data types are defined in MMX. Each gala type is
454 bits in [mall and consists of multiple srriller each of which holds a
fixed-point integer. The types are as follows:

• Packet byte: Eight bytes packed into one 64-bit quantity
• Packed word: Four 16-bit words packed ink) 64 hits
• Packed doubtewordi Two 32-hit di -aublewords packed into M hits

Table 10.11 lists the MMX instruclion set- Mosi of the instructions involve par-
allel operation on bytes, words, or douhiewords. I.LaT ox;irriple, I he P.SLI.Av

A pi r4I. or picture elennist, is the smallest element or a digital image lisac can he assigned a Li iry level.
Equiykilently, u pixy] is an individual dpi in 1k (34)r - rT)Hirj .K NpTcsCrrta

Category 111%truetiou

Arithmetic

OD [IS. W. DI Parallel add Cif packed four tC.hlt wort's,
cit. t wo 32-hit douhlewords, with wiiip2TLY:111d

Add with sritura Lion

Add tinNigned with Kit Lira tics!'

Subtract will, wrapround

51.31-iiracl with 2..aLtiration

Stibtraei unNiglied w:th saturabon

Pai.0c1 multiply cif lour 1 6-bit ...0.5:ds. with
hi0-oriler 16 hits of -2-hit chosen

PAL) D5 Ig, WI

DDCS

PSUB [FL W. DI

PSI.II3S \VJ

WJ

13101.J1..HW

Parallel mull 15e riiur t i pied 1.6..hiE words, with
low-L5eder 1 h bits of 32 hit rgwult choser.

PMULLW

D: QI Parallel loeical left shift DI packed words, doublewords.
Or <I Li ildword by amount spixi.L'ikW in NIX ri3g.,:ister ar

Shift Panillel logical right Nhifi of packed 4.,..ords,
dmillie word R., or quadword

Parallel arithu,ci.it right shift of packed wordr,
dou.hlewords. quadword

1-,S.R.L [W. D, Q]

PSRA 1W,

Data Transfer

Slate Mgt

Nei() [D, Qi

Fmms
N4:1e: L.: an ins-Main:1. Apr; I 1..111..1 0o daca Lyixs [byte (15 in (WI, di:.11b1C:word ILL I. d I

itidi.mod in h rackets.

Movc closibleword or cll.i dword L<I ?Frosrr hDetX rcgistc.t

Empty Nal X slate (ernrty FP rogisiors tag hi's.'

360 cHeip-raili) 1 iNsTRucTioN c:14AR.AcTER35T1cs AND FUNCTIONS

Table 1.0,1. I MMX I ristr action Set

•

.11

DDWD 1111.1.1 Li ply of ft n itgncd 16-hit rd:: adtl
iouctlicr p;i1TS .41 . 32-bit result.;

(.43111r011.!.4 45n

PCMPEQ W, f)] ... oriip,rk: for ocfu LS] res'.311 is ID , INk CH . I S ir

L BW (11- 1-1S. if FaL

licriAPC.T [FL W, DI Parallel 4_40inpare. For 1- t:: aser thou: re24111 is mask or is iC

Lz Lk! Or 1.1,i false

Conversion

PACKL-SW13 Pack. wordhi into bytLs. inisign.ed

PACKSS [W13, IDWI Pack wordE into hyln...11:6 doubloNords into words. with
signed. saLu rat i 0E1

I) I....I N:Pt -I< I T I B W, Wiz. DQ] Pantile! unpack t. inwrIcawed mem.e.) hi 17 ordcr
Or d(111blewords from ItINIX rofLisi.c. r

PUNFCKL [IRV, WD, Dol Parallcl unpark tinLerlealeed inergc) low-Di-din- bytes.
words. (II ordk rro.rn TO8.iSter

Logical

PA N D hi misu lagifial AND

PNION 6a - hi i bihkisci logical AND NOT

Pnk biiwise: logical OP

PXOR CR

10.3 / PENTIUM AND POWERPC (?PE1&A'11ON 'TYPES 361

performs a left logical shift separately on catch the four words in the packed word
operand; the PA.1)01-linsIstiction Lakes packed byte operands as input and performs
parallel additions on each byte position independently to produce a packed byte
output.

One 41111YILLU I ft: MLin: or the new instruction set is the introduction of satura-
tion arithnietic. With ordinar,. , unsigned arithmetic, when am operation overflows
(i.e., a carry out of the most significant bit). the extra bit is truncated. This is referred
lo aS wraparound, hezotin ibe effect of the truncation can be. for example, to pro-
duce an addition result that is smaller than the two input operands. Considcr the
addition of the two words, in hexadecimal, F000h and 300(1h. '1 . he sum would be
expressed as

F000h = 1111 0003 OHO OCOO

+3000h = 0.011 0',:i00 000 0000

10310 •3C0 00C3 '0000 = 2000h

If the two numbers represented image intensity. then I he resell of the addition is to
make ihe combination of Iwo dark shades turn out to be lighter. 'This is typically not
what is intended. With satunition arithmetic, if addition results in overflow or sub-
traction results in underf[ow. the result is set to the largest or smallest value repre-
sentable. For the preceding example, with saturation arithmetic, we have

FM.]Oh - =111 0303 000 000

+30C h - 0311 0303 00 0000

1'0310 030 000 0000

1 111 =111 :111 =111 = FFIPM

To provide. a feel for the use of MMX instructions, we look at an example,
taken from ITELE971. A common video application is the fade-out. fade-in effect,
in which one scene gradually dissolves into anol hc.r. Two images are combined with
a weighlcd average:

Result_pixel — fade + B_pixel x (1 — fade)

This calcul;ition is performed on each pixel position in A and B. If a series of video
frames is produced while gradually changing the fade value from 1 lo U (scded
appropriately for an g-hit integer), the result is lo inde from image A to image B.

Figure 10,10 shows the sequence of stop, required for one set of pixels. The
g-bit pixel components arc converted to 16-bit elements to accommodale the
MMX 16-bit multiply capability. If these images use 640 480 resolution, and
the dissolve technique uses all 255 possible value.; of the fade value, then the
total number of instructions executed using M NIX is 535 million. The same calcu-
lation, performed without the IvIMX instructions. requires 1.4 billion instructions
IINTE98].

R
Linage A

rntfle 1 fade rack I lade

Image A

L Unpack byte R pixel
curnimineniN rrorn

images A and 13.

2.Siihtrai.:1 image 13 fiwri i mage A

3. Multiply result by rack value

r3 I r2 11 I rn

362 CHAPTER till 1 INSTRUCTION SETS: CHARACTERISTICS AN]) FUNCTIONS

'

1.1-adcxr.3 1adtxr2 rradeXrliadcx1 . 0

-F -F

4. Add image F3 pixels 1313 I 13r2 I Br I I 13c0

=El pewc2 ncwr l new r0

5. Pads' new coinpOSiii pixels
hack to bytes

MMXcrtcle serquence verforining this operation:

pmn i1kr(1.7, I mri7 : m•ci ow 1111117
mo.srq t' ad wal ;l oad Caclu .k. altie repii.... oxI 4 iiincin
mcryl rnm41, L MaleA :I i.rad 4 red pixelconsrxiaciiss i magi: . A
inovd intu], itrut&c.a Tut plxct czancxynerns rrorn. image. B
punp.:khhx. MEW), (01117 lunpadi. 4 riv:im 10 i6 hits

pun pckhlw mot', min? :unpack 4 pixels hiss
Emullw mmo, rnm I :sul-rtracE i mi4e E Crum IJii igi A

mn)(5, ;multiply the 7.ubtracL re ull by radr
padddw r um(, nim t !Add requIL lo image B
puckumwb m int). mni7 ;pack resulti [xick 1r, by tem

Figure 111.10 Image Corop-usihng on (:7olor Plane Represmiarion [PELI3V7 I

10.5 / PENTIUM AND POWERPC ovERATIoN . 1 -YPRS 363

Table 10.12 PowOCPC Operation TypOsitwitli ExamplQs of Typical Operations)

Instruction Description

Bronch Oriented

h Line° udisionai branch.

hl Branch lo iHrgcl address and place effective addrc.srt of imtructicia Col lovvin2 the branch into
the Link Reuiiiter

bc Branch conditional on Count Register a adi'or on bit in Condalion Register

st System calkto invoke an ope:raring system si;:rviee

trap Compare two operands F►nd invoke system trap handler if siwitiecl conditions are met

I otuii.Slure

Load word and zero extend to]eft: update source register

Id doublcworci

Inve: Load multiple word; load consecutive words into contiguous registers from the targei
rup.istl2r through general-pin pose fCt i3ter 31.

Load a string of bytes into registers beginning with target reiziaer:.4 hytn: per register: wrap
around from register .31 so regisler

Integer Arithmetic

add Add unelLtrItS 011w1..1 tegisbLES Eldtt phLee register

;ubf SlullYLI'Lla contents c.ir two registers and place in third register

Multiply low-order contents 351:. I WO regiSLCTS a nd place 64-hit product ill. third register

diva Divide 64-bit contents of L .wcr rop.istvrs kith] 1}IaCC Erl tiLEOLieut in third register •

Logical and Shift

crap C:ornpnrc two oFicrands and sc:t Vour condildcm hits in the spetifiea LOndiLi{n register field.

crk:Ind CondiLiDn register AND: t wo bits of the Condition Register are ANDc:d and I he re.still
placed in one C}r Ihe two hit positions

and AND contents of two regislers and plea: in third register

canal COunt number of consecutive II hits starting ni bii ,eTi, in sl.}1.11TE register aJicl c(Fura ilt

declination register

Rot ale Icri double WOTC I re AND wilh mark, and storc itt d s tinatiun register

sly Shift left hits in source register and store in destination register

Routing Point

114 1.ciad nurnbur from memory, LC:divert (L 64- format, and SLOTO in
flonLing-pciint rqirdcl-

add Add L'132)1.2.111.3 ts.vo registers and place lit third register

fmadd Multiply contents of two registers. add thG ecintenis of a third, and plow result ill fourth
register

f.c:nirn (:cinipare twee Flogging -paint i5perHnds and set cortdirion hits

Csiehe

dcbf Darn cache block flush; p-erfOrErflOOkUp in cache on spedficd target acklress perform
flushing operation

ichi Imo-mum cache block invalidate

364 CHAPTEP, INSTRUCTION SETS CHARACTERISTICS AND FUNCTIONS

PowerPC Operation Types

The PowcrE)C provides a large collection of operation types. Table 10.12 lists the
t!,,pcs and gives exampLes of each. Several features are. worth noting.

Iiranch-Oriented inwtruction

The PosscrPC supports the usual unconditional and conditional branch cup.
bilities. Conditional branch instructions test a single bi I of the condition register for
true. false. or don't care and the con Len Is of the count register for zero, nonzero, or
don't care. Thu:s, there are nine separate conditions that can be defined for the con•
ditional branch instruction. if the count register is tested for zero or nonz ..ero,lhen it
is decremented by 1 prior to the test. This is convenient far Kciting up iteration loops.

Branch instructions can also indicate that the address of the location follow-
ing thi branch is to be placed in the [ink register, described in Chapter 14. This fad•
itates call/return processing.

Load/Store Insiructions
rt

hi the PowerPC architecture, only load and store instructions 4.1.=:wdi mcrnor,
locations: arithmetic and logical instructions are performed only on registers. This
is characteristic of RISC design, and i1 is explored further in Chapter 13.

There arc two features that characterize the different]oadistore instructium

■ DIIIR size: Data can be transferred in units of byte, hal fword, word, or dm.-
bleword, Instruction xrc aim) [able for loading or storing a string of bytes
into or from multiple registers.

■ Sign extension; For haliwnri and word loads, the unused bits to the left in the
64-hit destination register are either filled with zeros or with the sign bit of the
loaded quantity.

10.6 ASSEMBLY LANGUAGE

A CPI:: can understand and execute machine instructions. Such instructions arc sim-
ply binary numbers stored in the computer, If a progrimmer wished to program
directly in machine language. then it would be necessar y to enter the program as
binary daia.

Consider the simple BASIC statement

N=1-h,1-1(

Suppose we wished to program this statement in machine language and to initialize
1. J, and K to 2, 3, and 4, respectively, This is shown in Figure 10,11.3. The program
starts in Location 101 (hexadecimal). Memory is reserved for the four variables dart-
ing at location 201. The program consists of four instructions:

R1,6 / ASSEMBLY 1. ANGUAGF. 365

1. Load the conteras or location 201 into the AC.
2. Add the contents of location 202 to the AC.
3. Add the contents of location 203 to the AC.
4. Store the contents of the AC in location 204.

This is clearly a tedious and very error-prone process.
A slight improvement is to write the program in hexadecimal rather than

binary notation (Figure 10.111)- We could write the program as a series of lines.
Each line contains the address of a memory location and the hexadecimal code or
the binary value to he stored in that location. 'Then we need a program that will
accept this input, Iranslate each line ink) binary number, and store it in the speci-
fied Location.

For more improvement, we can make use of the symbolic name or inncmonic
of each insiruction. This results in the Nymbofic proKreon shoves. in Figure 10.11c.
24ieh line of input still reprcNents one mentory location. Each tine consists of three
fields. separated by spaces. The first field contains the address of a Location. For an
instruction, the second field contains Ihe three-letter symbol for the opcode. It' it is.
a memory-refcrencing instruction, then a third field contains the address. To store
arbitrary data in a iocation. we invent a pseudoinsrraction with the symbol .0/kiT.
This is merely an indication that the third field on the line von[ains hexadecimai
number to be stored in the location specified in Llie fivsL field.

Add res ,, CO titC/IN Address Instruction
101 01.3 10 0010 0000 0001 101 LDA 2(11
102 0001 (10] (1 0000 0010 102 ADD 202
103 0001 (1010 0000 01111 103 ADD 203
104 0011 0010 000(1 0100 1 04 4'I -A 204

201 0[100 0000 0000 00 LO 201 DAT 2
202 0000 0000 0000 001.] 2(12 L)A1' 3
203 0000 ocom. noon 01(10 203 DAT 4
204 0000 0000 0000 0000 2(14 D Al- (1

(al Binary nrnaram (1].). Symbolic program

Andros Contenis; i .k.thel Operation Operand
1(11 22111 1- 01041IL LDA
102 1202 ADD .1
103 1203 ADD K
104 32{14 STA

2(11 0002 1 DATA 2
202 0003 1 DATA 3
201 (1004 K DATA 4-
204 0000 N DATA (I

(C) flexadoc im al progiun Id) A3 Aenibl y program

Figure 10.11 Collimation of the rorrnuia N = I + 3 +

366 CHAPTER '141 1 INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

I-or this type of input wC need a slightly more complex program, The program .
accepts each line of input. generalcs a binary number based on the second and third
(if present) fields, and stores it in the location specified by the first field.

The use of a symbolic program makes life much easier but is still awkward.
In particular, we must give an absolute address l'ur each word. ihis means [hut the.
program and data can be loaded into only one place in nicmury'. and we must
know that place ahead of time. Worse, suppose we wish to change the program
some day by adding or deleting a line, 'Ibis will change I he addresses 01 all subse-
quent words.

A much better system, and one commonly used, is to use symbolic addresses.
[his iw illusmiled in Figure 10.11d. Each line still consists of three fields. The fir5t
field is still fur the address, bin a symbol is used in ,,l ead or an ab7;...olute numerical
address. Some lines have no address, implying that the address of that line is one .
more than the address of the previous line. For memory-reference instructions, the
third field also contains a symbolic address.

With this last refinement, we have. an a.ssembly hinguive, Programs written in
assembly language (assembly programs) are translated into machine language by ao
ca.s.embkr. This program mum not only do tl- e symbolic ironslaiion discussed ear.
lier, but also assign some form of memory addresses to symbolic addresses.

The development of assembly language was a major milestone in the evolu-
tion of computer technology. It was the first step to the high-level languages in use
today. Although few programmers use 4s:se•mbl:,..y language, virtually t,11 machine
provide one.. They are used, if at all, for systems programs such as compilers and
110 routines.

10.7 RECOMMENDED READING. -03-WAtIrr".:''''*;(1.-Ar?'
err er

A ittirobr.lr of ttmbooks provide good coverage of machine language and instruction •;i
Lltsign. including [PATT98], [TAN EN], and [HAYE98]. The Pentium instructicin silt is
covtrtd by [1311-ENOIA. The PowtrPC. instruction seL is covered iti 11.13M)41 and IWEIS941.

RRF,Y00 Bre.y. B. The. Imel ,144-roprour•veryt.y: Ai186..M. 06, 10118641188, 802S6, 7ffk? f7,
80486, Porgithol, NetiMnt Po.o Peeii 2.1. h.] Proccsx.

00.8.. 4-rpal . Rivt.I.T, NJ:
Prentice 1-Tall, .2000.

HAYE98 lin yes. J. ComparoT Airbil•requre road Organi7'.060.1, 5c.00.17.4 LefithYPJ, Ntiv York!
MeOraw-Hil I. I .998.

ll` M+ International Business Machines, Inc. The. PowarP(.7 ArOrifec . tam- A Sfn.c.ifieer-
thhq for a New Parnifi DJ . RISC Pare -,slaty, San Francisco, CA; Morgan Kalifrnarkti.
19 1)4,

PATTI/8 Patterson. D., and Hennessy : .1. Comp i.divr CJr ertaiErtrirrt, ae,id Desivl: The I-lard ,
ware/Sofrware Intryffer.e. San Mato.) : CA: Morgan Kaufmann, 1998.

TANE99 Tannbiliton, A. Sfrffi'M ri'd C(.1.tnpreiCr FlIOCIV{3431.1 C[i(fS,

PrEntice Hill. 1 1)99.
Wiz-1594 Weiss, +.1.110 Smitk. J. PO. 11411#40 Power IC, trancisco: NIDtpn15..0 .1.kt-

mann, 1994, "
•

http://have.an

aectimulator
addreNs

.arithinetie shift
hi-endian
frig endian
branch
conditional branch
instmetion set

jump
Unit: aldian
logical shill
machine instruction
operaoil
ri..er.iitioi

packed decimal
pop

I / KEY TERMS. REVIEW QUESTIONS, AND PROBLEMS 367

LOA KEY TERMS, REVIEW QUESTIONS, AND PIZOBLENI arreArA:", FArle,
rdja,

:rgrP:e7.7P:1":

Key Terms

procedure call
procedure return
push
reentrant procedure
reverse Polish notatima
.1.148lq=
skip
stack

Review Questions

10.1 What are the typical elements of a machine instruction?
10.2 What types of Locations can hold source and destination operands?
10.3 if an instruction contains four addresses, what might be the purpose of each address?
10.4 List and briefly explain five important instruction set design issues.
10.5 What types of operands arc typical in machine instruction sets?
10.6 What is the relationship between the IRA character code and i[W packed decimal rep-

resentation?
10,7 What is the difference between au it li med ie shifi it logical shift? .
1.0,X Why are traiisfer of cont fell i11s1ria114111N Jlvt!111,!1,1?

10.9 List and briefly explain two conunon ways of generating the condition to be tested in
a conditional branch instruction.

10.10 W hat is meant by the term nesting of procethries1
10.11 List three possible places for staring the return address Err a procedure return.
10.12 What is a reentrant procedure?
10.13 What is the difference between amerribly language and machine language?
10.14 IN hat is reverse Polish notation'?
1015 What is the difference between big endian and little endian?

Problems
10.1 Madly (TIN provide logic for performing arithmetic on packed decimal numbers.

Although the rules for decimal arithmetic are similar to those for binary operations.
the decimal results may require some corrections to the individual digits if binary
Logic is used.
Consider the decimal addition of two unsigned numbers. If each number consists of
N digits, then there are 4N bits in each number. The two numbers .tire to he added
using a binar:i.. adder. Suggest a simple rule for correcting the resull. Perform addition
in this fashion on the numbers 1698 and 1786.

10.2 The tens complement of the decimal number .5(is defined to he 10 % X. whore N is
the number of decimal digits in the number. Describe the use of ten's complement
representation to perform decimal subtraction, illustrate the procedure by subtract-
ing (0326) 1 , : from (0736)L.

368 c1-IAPTER 10 INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS

10.3 Compare zero-, one-. two-, and three-address machines by wri ring programs to compute

X — (A — B X CND - E
for each of [lee four machines. The instructions available for use are as follows!

0 Address 1 Address 2 Address 3 Address

PUSH M
POP M
ADD
SI..18
m 1 : I
Div

LOAD M
STORE. M
ADD M
SOB M
m 4 : i m
Div rs1

MOVE (X e• Y)
ADD IX e— X .1 Y)

kIB IX <— X V)
Nen .L (X i= X x Y)
D1V (X t— XI)

MOVE (X t— V)
ADD 0.<— Y + 7)
SUB (X t— Y -- 7.1
Ml IT, Pc (— V \ 7.)
Dry (.5,:: .— VIZ)

10,4 Consider a hypoinefical computer with an instruction '3 e1 of only two or - hit in.
suructions..rk first hit specifies the opcode, and [Ile remaining It sl-PeCifY

 one
 of the

— 1 D-bil words of main memory. The twci insiructions are

SUBS X Subtract the ountents•of location X from the accumulator, and store
the result in location X and ace umttlator.

JUMP X Place address X in die program counter.
A word in main mentor!, may Liint either an instruction or a binary 111.1 mher in two
complerneni notation. Demonsiniie that this i 1Sauefloii repertoire is reasonably COrm
pieta by specifying how the following operations can be programmed:
u. Data transfer: Location X to accumulator. accumulator to location X
b. Addition: Add contents of location X lo accumulator
e. Conditional branch
d. Logical OR
e. 110 Operations

10.5 Many instruction sets contain the instruction NOOP. meaning. no ON rat ion, which
has no effect 4.31.1 the CPU state other than increinenlingihe program counter. Fuggesr
some uses of this instruction,

10.6 In Section 10.4, it was stated I hat bolt an arithmetic [eft shift and a logical led shift
correspond to a multiplication by 2 when there is no overflow, and if overflow occurs.
arithmetic and logical left shift operations produce different resulES, but the arithmetic
left shift retains the sign of the numl -rer. Demonstrate that these statements arc true
for 5 bit twos complement integers.

10.7 In what way are numbers rounded using an Ihrnelic right shift (c.g., round lowarcl +co,
round toward — cc., toward zero. away from Or

10.8 Suppose a stack is to be used by lite CPU lo manage procedure calls and returns. Can
the program counter he eliminated by using the top of the stack as a program counter?

10.9 Appendix 10A points not that there are no stack-oriented instruclions in an instruc-
tion set if the stack is to be used only by the CPU for such purposes as procedure
handling. How can the CPU use a slack for any purpose without stack-oriented
instructions?

10.10 Convert the following formulas from reverse Polish to infix_
a. AB — C D x
b. AR; CD.: I
C. ABCDE + X X
d. ABCDE + + — X -F

10.11 Convert the following formulas from infix to reverse Polish:
a. rl BIC D•E
h. {A - B)

>c
 (C I D) •I•

•

KF.y moos. RT:IITEW QUESTIONS, AND PROBLEMS 369

c. (A x 13) + (C x D} — E
d. (A — B) x ((fC: — 13 x 12:).:1)/(;) H

10.12 Convert the ex[resskin A — B C to postfix notation using Dijkstra's algorithm.
Show the 81.0pS I LIWIM2d. is the result equivalent to (A I B) - C or A + — Cr?
Doe% it matter?

10.13 The Pentium architecture includes an instruction called Decimal Adjust after Addi-
tion .(DAA). DAA performs the following 5u(iiience of instructiorm

if HAL AND CFH) > OF(then
AL c AL 1 Er
AF l!

AF I-
 C:

andif.r.
if = l) then

AL 4-- AL 6 1.7)1.
CF t- 1;

AP'

enaif-

H"' indicates hexadecimal. AL is an S-hit register that holds the result of addition of
two unsigned 8•bit integers. AF is a flag lict if there is a carry fp c oil hit 3 io hit 4 in the
result of an addition. CF is a flag set if there is a earry front bit 7 Et1 hi! ti. F,xplain the
function performed by the DAA instruction.

10.14 The Pentium Compare instruction (CMV) subiracisilui 41]urci nperand from the des-
tination operand; it updates the sta1us flags (C. A. 7., 5, 05 but does not alter either
of the operands. The CNN instruction. may 10110w...ill by a conditional Jump (,Ice)
or Set Condition (SETec) instruction. where cc vefersio one of the 1.6 conditions listed
in Table M. I . Dertionstrale that the conditions toted for a signed number compk --
ison are correct.

10,15 Nlipsi microprocessor instruction sets include an instruction that a condition and
sets destination operand if the condition is true. Examples includi! 1111 5.(00 the
Pentium, the Sec on the Motorola Ma8000. and the Sound 4111 !Fit! NHI ikPIIH I:\

a. There are a few differences among these instructions;
• SETce and Sec operate only on a byte. whereas Scond operates on byte. word.

and doubleword operands.
• SETce and Scond set the operand hi integer one if true and to zero if false. Sec

sets the byte to all binary ones if 1cue and all nips if false.
What are the rela1i've advaniages and disadvantages of these differences'?
h. None of these instructions set any of the condition code flags. and thus an explicit

test of the result of the instruction is required to determine its value. Discuss
whether condition codes should be .sei rstili of this instruction.

e. A simple IF stalcmcnt suit, ci II a I I i r.N can he implemented using a numer-
ical reprc.sentation inethoil. I hat k, 1 1n: 1:i li g the Boolean value manifest, as opposed
LO rt flow viconrioiniL , 111 , 1.I, W1114'11 1 L!'1) roen ts the valUe.of a Boolcan expression by
a point reached in t17e 31 0171 ; mi. A iamipiler inight implement IF a > b TI LEN with
the following g0X861 Lilt P:

SUB CZ, ! to
A2, 2 ccnLcri, Of 1:DCariDn T! to register LK

C.Cd A2_, A c.cltpare con:*3a1;8 :eoister AX and location A
.TL.E T=5;7 j::urp if A
=NC ; add = to corten of re7Later CX

TEST J) OUT ; -iJwc Lf con-e=lse of CX ecual
THEN

OCT

370 ciIAPTER 1. 0 INSTRUCTION SETS: CHARACTERISTICS AlD FUNCTIONS

The result of (A B) is a Boolean value held in a register and 'available later
on, ovtside the context of the flow of code just shown. IL is convenient to use Pg.

CX this, because many of the branch and loop cipcodes have a built-in test
for C.

Show an alternative implementation using jnsi ruction that saves
memory and execution time. (Him; No additional new :%8n instructions arc
needed. other than the SE.Teti.)

d. Now consider the high -level language statement!

(13. C) OR (D — F)
A compiler might generate the following code:

MOV TAX, ri ; Tr,ve 2on7.ents of l•catLon E
CAp TAX, r ;cmpEra ronterta of regis=er EAX 3nd lOCSI7irM.
MOV eJ ; 0 represemts false
ME Fl ;j1:mp if 2
MW 1 ;J. represents false

NI E. C

CMr EA,

bH, J
JNE F
ECV EH,

N2 OR EL, EH

Show an alternative impleniuntaLon using the SF IL instruction that saves 111M17.17
and execution Lime.

10.16 Using the algorithm for converting iufix to past ix defined in Appendix 10A, shove it k
steps involved in converting the expression of Figure 10.15 into postilx. Use a pre-
sentation similar to Figure 10-L7-

1.0.17 show the calcu[at ion of the expression in Figure 10.17 : using a presentation sim[Ear to
Figuiv [(-5.

10..111 Redraw the little-endian layout in Figure 10,18 so that the bytes appear as numbered
in the big-endian layout. That is, show memory in 64-bit rows, with the bytes listed
left to right. top to bottom.

10.19 For the following data structures, draw the big-endian and little-endian layouts, using
the Lortnat of Figure 11.i. 8, Ind comment on the results.

a. strucz
doub --E {10x1=1213=41515171 8

sL;
b. struct.

; /./Oxl:1213:4
int j Zi0x]..161 71.8

s2
9tx ...)E7t.

short- L; .r./Cx=112
short 7::;
short k;
shark: L; ./.12x171a

111.20 The PowerPC architecture specification does not dictate: now a processor should
implement little.cndian mode. It specifies only the view of memory a processor must
have when operating in little-endian mode. When converting a data structure from
big endian to little endian, processors are free to implement a true byte-swapping

APPF.NINX 10A / STACKS 371

Little-endian address mapping

11 0 . 01 02 1)

111

04

12.

LL ...

13
c

14
417

21 22 23 24 25 26 21 28

cis () O.A (8 OC CI D 0.1.: 01 2

'D" 'C' , 1 111,' ;"A' 31 32 33 34

z1) LI 12 ; I. L4] 1(2 l'. ,
51 52 ,,,G , : T r i , E .

:•..s 19 1..3 W IC !Di .I.F.. : 1 F

61 62 6,3 64

20 21 22 23 24 25 21-1 27

Figure; 1111,12 }'o Fort'[' Lit
Structure s in Memory

mucliunisni crc to use lornc sort of an address rrtudilleation mechanism, Current Plyomrt 3 C.
pruccbsurs arc al] ddatilt big-endian niatthincs and tisk.' #Iddre ,is in 'hi 1rcza
data as little-endiall.

CI:Pnsidcr the slru lurt s dcinicd in Figure W.18. Thu layout in 11110 lower-right por-
HI ilk LA 1 flw lig.tire shows are structure: s suesi by Cho prock:ssor. In fact, it si meture. s

1111 little -Lmlian its in memory is she in Figure 10.12.
1-:.% pialir [kw mapping chat is involvd. 1.11.scriln.iir1 easy way LL implement the map-

k•ind discuss Ow elfcciivkInG..SS of this aprprnah,
10.21 Write a small program to determine the endianness °I:machine and report the results.

Run the program on a comput...:x available to you and turn in the outpul.

APPENDIX 10A STACKS :

for' . .refer;,rereerr.
..reek- +far .er

Stacks

A ,stack is an ordered set of vic .nwnts, only onc. of which can be accessed at a ti me.
The point of access is called the top of the stack. The number of elements in the
stack. or ire.ngth of the stack, is variable., items may only be El dded to or deleted from
tlic is or the stack - 14.or this re..i.ison, a stack is also known as a petvhchnvn Esq. or a
!am-in-lint-out (LIFO)

Figure 10.13 shows the basic stack operations. We begin at some point in time
when the stack contains some number of elements. A PUSH operation append., i pric
new item to Lhc 1op or the stack. A Pop operal ion removes thu top item from the
stack. In both cases, the top of the stack moves accordingly. Binary operations.
which require two operands (e.g., multiply, divide. iLdd, subtract), is L1 top two
stack items as operands, pop bath items, ;ind i1n.,11 the resuEt hack onto the stack.
Unary operations, which require only one operand (e.g., logical NOT), use the item
on the lop of the stack. All of these operations are summarized in Table l. 13,

r.c.
: Rid

1S

372 CTIALPTER INSTRUCTION SETS: CHA.P,ACT2RIS7'ICIS AND FUNCTIONS

K

1.

•

•

•

Kase

Start

Alter POP

After multip y
operation

Figure 10.13 Basic Stack Operation

Stack Implementation

The stack is a useful structure to provide as part of a CPU implementation, One use,
discussed in Section 10,4, is to manage procedure calls and returns. Stacks may also
he useful to the programmer. An example of this is expression evaluation, discussed
later in this section.

The implementation of a slack depends in part on its potential uses. if it is
desired co make black operalions available to the programmer, then the instructiotl
set will include stack -oriented operations, including PUSH, POP, and operations
that use the top one or two stack elements as operands. Because all of these opera-
tions refer to a unique location, namely the top of the stack, the address of the
operand or operands is implicit and need not he included in the instruction. HICSe
are the zero-address instructions referred to in Section i0.1..

If the stack mechanism is to be used only by the CPU, for such purposes as
procedure handling, then there will not he explicit stack-oriented insirmliOns in the

Table 10.13 Stack -Oriented Operations

PUSH Appetitt a new u142mtnt in [he top of Ekle' Staek,

POP Delete the top el on en! iif [11

Unary operation Perform operation on Lop elurnenL of ,auck.
Rr..place Sep element with result.

13iliar1 operation Perform operation on limp two ctrrseral.; of stack.
I]cle[4:. Lop two elements uF slid, Place result or
cip riaLicln on top of tack.

rutisdurs
Lei n

neiliDry reglAte.ru
Main

memory

} Muck
evarrvoli
11)r dark

Inn III Mock
resen.cd
Fur Mick

stack
element

second
stack
clurnimt

APPF.NDTX IOA / STACKS 373

instruction set. In either case, the implementation of a stack requires that there he
some sat of locations used - to store the stack elements. A typical approach k illus-
trated in Figure 10.14a. A contiguous. block of locations is nerved in main mem-
Ory (or virtual memory) for the stack. Niost of the time the block is partially filled
with stack elements and the remainder is available for stack growth.

Three addresses are needed for proper operation. and these are often stored
in CPU registers:

• Stuck pointer; Contains the address of thc top or the stack. If an item is
appended to or deleted from the stack, the pointer is incremented or decre-
mented to contain the address of the new top of the stack.

• Stack base: Contains the address of the hoLtom locaiion in the reserved Nock.
If an attempt is made to POP when the stack is empty, an error is reported.

• Stack limit: Contains the address of the other end of the reserved block.
alternpI is made to PUSH when 1hc block ix fully utili?..ed for the stack, an error
is reported.

Troditionally, and on most machines today. the base of the stack is at the high-
address end of the. reserved stack block, and the li mit is at the low-address end.
Thus, the stack grows from higher addresses to lower addresses.

(41 All 41C s.tmek in memory (11.11 TWO tap clemellix in registur6

Figure 10,14 Typical Stack Organizations

I

L.

374 CHAPTER 10 / INSTRUCTION SETS: CHARACTERISTICS AND FUNC l'IONS

To speed up stack operations, the top two stack elements are often stored in
registers, at shown in Figure 10.14b. in this case, the stuck pointer contains the
address of the third element of the stack.

Expression Evaluation

Niallic;..rnalieal formulas are usually expressed in what is known as infix notation. hi
this Corm, a binary operation appears between the operands (e.g., a h). - or NM.
plea expressions, parentheses are used to determine the order or evaluation of
expressions. For example, a — (h x c) will yield a different result than (a b) c.
To minimize the use of parentheses, operations have an implied precedence- Gen.
erally, multiplication takes precedence over addition, so that a L. bxe is eiluiva•
lent to a -I. (h x c).

An alternative technique is known as reverse Pofi,ii, or postfix, notation, In
this notation, the operator follows its Iwo operands. For example,

a+ h becomes a b —
a -F (h .x becomes abcx
(a +b)x c becomes a b.—

Note that, regardless of lhc complexity of an expression, no parentheses are
required when using reverse Polish.

The advantage of postfix notation is that an expression in this form is easiiy
evaluated using a stack. An expression in postfix notation is scanned from left to
right. For each elemern of the expression, the following rules. arc

L If the element is a variable or constant, push it onto the stack.

2. if the element is an operator, pop the top two items of the stack, perform the
operation, and push the restili.

After the entire expression has been scanned, the result is on the top of the slack.
The simplicity of this algorithm mikes it a convenient one for evaluating

expressions. Accordingly, nviny compilers will take an expression in a high-Level lan-
guage. convert it to postfix notation. and then generi Le the machine instructions
Crum that notation. Figure 10,15 shows the sequence of machine instruction s for
evaluating f = b)? (e -F d c) using stack-oriented instructions. The figure also
shows the use of one-address and two-address instructions. Note that, even though
the .stack-oriented rules were not used in the [ass two cases. the postfix notation
served as a guide for generating the machine instructions. The sequence of events
for the stack program is shown. in Figure 10.16,

The process of converting an infix expression to a postfix expression is itself
most easily accomplished using a stack. The following algorithm is due.to Dijkstra
[DIJK63]. The infix expression is scanned from left to right, and the post fix expres-
sion is developed and output during the scan. The slops are as follows:

L Examine the next element in. the input.
/ If it is an operand, output it.

iup—lid Memory access 7 up — (id 1. 0op + 6d

Stack
Push a
Push b

Subtract
Push
Push d
Push

Multiply
Add

Divide
Pc»

General Registers
Load a

Subtract RI.
Load R2. d

hluUipiy R2; e
Add k2.

Divide R1, R2
Store Rh

Single Register

Multiply c
Add
Sum:.
Load a

-Subtract h
Divide f
Slum (

Number or instructions 7

11

APPENDIX 1LPA TACK.S 375

Figure 10.15 Comparison of Three P`rogranis to Calculate f = b) (c • d

3. If it is an opening parenthesis, push it onto the stack.
4. tf it is an op.E.:ni tor, awn

• If the top of the stack is an opening parenthesis, then push the operator.

• If 4 has higher priority than the top i..)C thc stack (multiply .and diviii2 have
higher priority than add :.)rd $. ubtract)_ then push the operator.

• Else, pop operation from stack to output, and repeat Eltep 4.

(a - b)/
dxe+c

Figure 16.16 Use or sloe': to Compute f = (a • 13); (d e c).

376 CHAPTER 10 / INSTR UCTION SETS: CHARACTERISTICS AND FUNCTIONS

Stack
(top on right)

A+BxC+ (D - x F empty empty
+ C (D - E) A empty

x + (I) - E) X F A
x h)xF AR

C I (D-E)x.17 An +x
•I (D -t- E) x F ABC +

(D + E) x F AB(.
D + E) x F A C x I +

+ X F7 A C x D 4. (

E) X F A li C x -D
) xF ABCx - DE -

x A I-3 (7 x - D E +
ABC/ +DE-

empty A BC + F. + F x
empty ABCx+DF+F x empty.

Figure 10.17 Conversion of an Exprcinion from Infix to Post rix Notation

5. If it is a closing parenthesis, pop operators to the output until an opening
parenthesis is encountered. Pop and discard the opening parenthesis.

6. If there is more input, go to step 1.
7. If there is no more input, unstack the remaining operands.

Figure 10.17 illustrates the use of this algorithm. This example should give the
reader some feel for the power of stack-based algorithms.

APPENDIX 10B LITTLE-, BIG- AND BI-ENDIAN

An annoying and curious phenomenon relates to how the byk.s within a word and
the bits within a byte are both referenced and represented. We 14.)ok first at the prob-
lem of byte ordering, and Then consider that of hits.

Byte Ordering

The concept of endianness was first discussed in the literature by Cohen [COHE811,
With respect to bytes, endianness has to do with the byte ordering of multibyte
scalar values. The issue is best introduced with an example. Suppose we have the
32-bit hexadecimal value 173419678 and that it is stored in a 32 -bit word in byte-
addressable memory at b!, ,te location 1.84. 'nu value consists of four bytes, with the
least significant byte containing the value 78 and the most significant byte contain-
ing the value l2. There are two ways to store this value:

Input . Output

APPENDIX 1013 / LITTLE-, BIG-, AND 81-ENDIAN 377

AtItiros.;
•

Value Address. Value_

12

185 34 1.85 56

E86 _56 186 34

t;`.4 7 187 12

The mapping on the left stores the most significant byte in ihe lowest numerical byte
addre ss; this is known as big endian and is equivalen1 Lo Ihe left-to-righttprder of writ-
ing in Western culture languages. The mapping on the right stores the least signifi-
cant byte in the lowest numerical byte address; this is known as little endian and is
reminiscent of the right-to-left order of arithmetic operations in arithmetic Por
a given multibyte scalar value, big endian and little 4,: ndion are byte-reversed map-
pings of each other.

The concept of endianness arises when it is necessary to treat a multiple-bylc
en Lily as a sins k data item with a single address, even though it is composed of
smaller addressable units. Some machines, such as the. Intel 80x86, Pentium, VAX.
and Alpha. are tittle-endian machines, whereas others, such as the IBM System
3701340, thi.. Motorola 680x0, Sun SPARC, and most RISC machines, are big endian.
This prestitui iwobleins when data are transferred from a machine of one endian
type to the mile!, and when a programmer attempts to manipulate individual bytes
or bits within a muitibvie scalar.

'File property of endionness does not c.xicnd beyond Li n individual data unit. In
any machine, aggregates such as files, data structures. and arrays are cornpoted of
multiple data units, each with endianness. Thus, conversion of a block of memory
from onc style or uicthihricss to the other rquires knowledge of the data structure.

figure 10.18 iliustrates how eadianness determines addressing and byte order,
The C structure at the top contains a number of data types. The memory layoul in
the lower left results from compilation of Ihat structure: fora big-endian machine, and
that in the lower right lot a little-endian mach in each case, memory is depicted
as a series of 64-bit rows. For the big endian case, memory typically is laid out left to
right. top to bottom. whereas for the little-endian case. memory typically is laid out
right to Left. topic bottom, Note alai these layouts are arbilrary_ sehenie could
use either Lit to right or right to left within a row; this is a matter of depiction, not mem-
ory assignment. In fact, in looking at programmer manuals for a variety rriiehines,
a bewildering collection of depictions is to be found, even within the same manual.

We can make several iihservations about this data structure:

■ Each data item has the same address in both schemes_ Poi- example, the
address of the doubleworLi with hexadecimal value 2122232425262728 is 08.

▪ Within any given multibyte scalar value, the ordering of bytivs in the le-
endian structure is the reverse of that for the big-erldimi structure.

'TELE terms 132' i. endian and endicrrr come' tram Part T, Chap ILr 4 of a StiwilCi Te7 •
di. They rofer (43 a religious WAY between. two Aro ups. one that hmaks ergs et the big end and the other
that Frre4ts ego HI I IN' Litt I end,

378 CHAPTER 10 1 INSTRUCTION SETS! CHARACTERISTICS ANT.) FUNC.TIONS

st=zi.
inz a; .!.:Cm11:17. Lc: poor

ins

.b; C.K2122_232.S_2326_2725

0 .718..f* / Cx3132_"233.'
cAar 71 A irray

'fLoriz //0x5152

int fi /71:1x6161_63;34

Big-enclismaddrum.mapplin

• 11 1. 2 1 3

rk: Di c.r.

14
c.:. 11.1 .1-: III. i.r7

21 22 23 24 25 24 27 U
:..i !..1 r; '. .._ _ • . - .

!.11 (X Ili) I'll. 'if

_III n .13 .14 'A "111' 'C' 'Dr
I.: II I.. 13 ,1 7. ic. L

't.:' : '1.: : '(: 51 52

H ' id ' i.ti Ili --...-.4-,-,;.4.........................—..--..-.-...;...—.—. it ii.5 1..7' ii

ill fa 1'3 64

70 21 :'7. ..! 1.

LittierFniii§m airiciris mapping

ff? ::i.. ...:. CA L

 -- 11
fi...

12.
..:?

13 i47
•i• IR. ;

21 22 23 24 25 26 21 Di
f..i' DI. 50 ;:e .:..11 .:.5 .1. , ii!. ■

gfr :'C' :11 9 VA .' 31 32 33 .1 4
I7' In : 1) ; 14 11. 1.2 I: :. ;

51 52 "(:' '1." :, 'ff'
11' 11' 1p 1s' 11.1 _ If. I.9 'IL .}1

.

61 62 43 64

23 2:2 21 t„,

::

21.

Figure 10.18 Example C Data Structurc and Its Encliffli Maps

■ Endianness does not affect the ordering of data item* within a structure. Thus.
the four-character word c exhibits byte reversal. but the seven-character byte
array d does not. Hence, the address of each individual element of d is the
same in both structures.

The effect of endianhess i perfiaTis more dcnionstra1cd whigt we vive .
memory as a vertical array of bytes, as shown in Figure 10,19.

There is no general consensus as to which is the superior style of endianness.'
The following points favor the big-endian style:

• Character-string sorting: A big-endian processor is faster in.comparing inte-
gcraligncd character strings; the integer ALLT can compare multiple bytes in

• fleeirnal/IRA diurrapi; All values can be printed left to right withou1 causing
confusion.

• Consistent order: Big-endian processors store their integers and character
strings in the same order (most significant byte conies first},

The f011owing points favor the little-endian style:

* A big-endian processor has to perrorm addil ion when it convurts a 32-fait irate•
ger ziddress to a 1h-bit integer address, to use the least significant bytes.

- Ehe prophet revered by both groups in Clic- Endisn Wars 45C (Mr Ay r's .T11 Iv er lead Lhis La ray. '' All LYU
Fl.411CVC.IN 4halt break their Eggs at the convenieriL Not much help!

APPENDIX 14B f LITTLE- , BIG- , ANT) BI-F.NDIAN 379

iIIS 11 (Wi 1 4
1 3
1 2
IL

11-1

2$

22

I . 2.17- :24
LR 2.3

1$
3 !
32

32

I -I
'R'
1 1•1

I r
I .' I.

'1. "
'11.;"

I

"m-

.111 61 (4
.62

62
61

(a! Big undian (hi !Attie enrijan

Figure PLO Anfither View
of Figure 1(1.1.8

0 It is easier to perform higher-precision arithmetic with the little-endian style;
you don't have to find the least-significant byte and move backward_

The differences are minor and the choke of endian style is often more a mat-
ter of accommodating previous machines. than ;.inytiling else.

The PowerPC is a biacintli;in processor that supports both big -ebdin and
little-endian modes_ 'f'hu bi-endian architecture enables software developers to
choose either mode when migrating operating sy'sl.cros and applications from other
machines. The operating system cst4iblishes the endian mode in which processes
execute. °nee a mode is selected, all subsequent memory loads arid stores are
determined by the memory-addressing model (Cf that mode. To support this hard-
ware feature, 2 bits arc maintained in the machine state register (MSR) maintained
by the operating system as part of the process state. Ono bit specifies the endian

1

lC

380 CHAPTER 1{) 1 INSTRUCTION SETS:: C'HALRACTERISTICS AM) FLJNCTIC)NS

mode in which the kernel runs; the other specifies the processor's current operating„ :.
mode. Thus. mode can he changed on a per-process basis.

Bit Ordering

In ordering the bits within a byte, we are immediately faced with two quemions:

1. Do you count the Cirst bit as bit zero or as bit one?
2.. Do you assign the lowest bit number to the byie's. Last significant bit Oink

endian) or lea the bytes most significant bit (big endian)?

These questions are not answered in the same way on all machines. Indeed, on
some machines, the answers are differen1 in different circumstances. Furthermore.
the choice or big- or little-endian bit ordering within a byte is not always consistunt
with big- or little-endian ordering of bytes within a rnultibyie scalar, The program-
mer needs to be concerned with these issues when miniraliaOng individual bits.

Another area of concern is when data are transmitted over a bit-serial Line.
When an individual byte is transmitted. does the system transmit the must signifi-
cant bit first or the least significant bit first? The designer must Tnake certain that
incoming bits Arc handled properly- For a discussion of this issue, see 1JAME901.

114 Addressing

5:;,creffe e.rpr--e :Per-er-eerr)Wre.fkere..,:r/-'

INSTRUCTION SETS:
ADDRESSING MODES
AND FORMATS

Inimeaaie Addresing
• irect Addressing .;

:Indirect Acidi•oWng;:,
Register Addressing .'',••••-

••11cgisteer Indirect Addresing;
Address*

AddressitIg •
e ,

11.2 Pentium and PotserPC Addreming Modes
. Pcntinni Addie:ssing Modes
.rowerPC Addressing Modes

2. I nstruf.7tion Length
• •110eLitiorl of Bits

iiii' ifiabic-Length Instructions

11.4 Pealing" and PoxverPC Instruction fiStritats
[claim 'Instruction Formats
Piya.erPC. instruction T.'orrnats

11.3 Instruction FormaWW,- .f7.1:eerf
epr ee ,Or

ere

ere7W
.
"

.f. <FOP.: .•§P'

11,4 Key Terms, Review Questions. and Prol -iiermi
Kiz.y Terms
Rvicw OtiOrli
ProbieMS

CHAPTER

11.5 Recommended Reading

• An operand reference in n instruction either contains the actual value of the
operand (irrurnedia re) or fl N.:fereEtce to the address of the operand. A wide
variety of addressing modes is used in various instruction sets. These include.
direct (operand address is in ad(1reti% field), indirect {address field points lo

that con tAinq the (ye nd address), tegister, register indirect, .irid Var -

ious forms of displacement, in which a register value is added to an address
value to produce the operand address.

• instruction formai defines the layout fields in the instruction. Insmiction
(01 - t-rO1 design is complex undertaking, including such ecuv.iderili ions as
instruction length, fixed or variable length, 131A mbel - ;issillned to opcode
and each operand reference, and how undressing mode is determined.

382 CHAPTER 11. / 1NS1'KUCTION SETS: ADDRESSING MODES AND FORMATS

KEY POINTS

E
r

C
g :
L.
C

n Clapter 10, we focused on whar an instruction set does. Specifically, we exam-
ined the types of operands and operations shall n-L;iy be specified by machine
instructions, This chapter kurris to the. question of how to specify the operands .

11141 operations of instruel ions. Two issues arise. First, how is the address of an
operand specified, and second, how are the bits of an instruction organized toddle
the operand addresses and operation of Thal instruction?

11.1 ADDRESSING

The address field or fields in a typical instruction format are relatively small, Wr..
would to he Able to reference a large range of locations in main memory or. for
some systems, virtual memory. To achieve this objective, a variety of addressim
techniques has been emploved, They all involve 53ome trade-off between address
range andlor addressing flexibility, on the one hand, and the number of memory rd.
L.renccs and/or the complexity of address calculation, on the other. In this section, we
examine the most common addressing techniques:

• I mmediate
■ Direct
* Indirect
■ Resister
* Register indirect
■ Displacement
* Stack

These modes are illustrated in Figure 11.1. In this section, we use the following
notation:

to) I in rnocLi Etc

I nsi mei inn

Registers

RegiNto.y i lid oci

IrDdri.vhori

I I Or...2..iu11d I

111!-IriA01..11

17 A --I
hrl,!rriory

I

IIRL2270:1
1- 11—

h Ji1c;

Ms.111.Xy

Rugis!.urs

tiIi Npl acc.incnI.

nx.:41.1.:q

!li mbo!.

Tt.17 ill . stack

register

.:13:1 Direct

11,1 / ADDRESSLNG 383

Figure 11..1 Ad d riLssing Moth:1i

A = contents of an address field in the instruction
R = contents of an address field in the instruction that rcfc.rs to a register

EA — Eictual (cfrcutive) nidrcss of thc location containing the referenced operand
(X) = contents of memory location X or register X

Table 11.1 indicates the address calculation performed for each addressing mode.

F

•

•

r

384 CHAPTER 11 / INSTRUCTION S.E.IS: ADDRESSING MODFS ANT) FORMATS

Table 11.1 Basic Addressing Mocks

Mt do Algnrit Ii In Principal Advantage Principal Disathantage

Itnraediace Operand , A No memory ref..,=Nricc: LimitEci opera rid magrkitude

Dirt = A Simplc LindEEd address space

Indirect EA -: (A) Laise address space Lapie noemory rcfGrc Rcc5

Register EA = R No .munory rcANnec: ruitIrtss space

Rovistcr indirect = (R) 84,1113-esh sprtee. Urea raernoty reference

Dip aCerat n L EA =A+ (R) Flu xibi lity Complexity
Stack EA top of stack No memory reference Lintiitd applicahili ty

Before beginning this discussion, two comments need to he made. First, virtu,
ally all computer architectures provide more than one of these addressing modes.
The question arises 4$. to how the control unit Can determine which address mode is
being used in a particular instruction. Several approaches are taken. Often, dif-
ferent opcodes will use different addressing modes. Also, one or more his in the
instruction formal um tis.ud i1 a mode field. The valuo of the mode field deter-
niincs which addreissi li g mode is Lo he used.

The. second continent concerns the interpretation of the effective address
(EA). In a system without virtual memory, the effective address will he either a main
memory address or a register, In a virtual memory S'y'Siern., the effective address is a
virtual address or a rLgister. The actual mapping to a physical address is a function
of the paging mechanism and is invisible to the programmer,

Immediate Addressing
The simplest form of addressing is immediate addressing, in which the operand is
actually present in the instruction:

OPERAND = A

This mode can be used to define and use constants or set initial values of variables_
Typically. the number will be stored in twos complement form; the leftmost hit of
the operand Field is used as a sign bil. When the operand is loaded into a data reg-
ister, the sign bit is extended to the left to the full data word size.

The advantage of immediate addressing is [hal no memory reference other
Limn the instruction fetch is required Lu obtain the operand, thus saving one niern-
ory of cache cycle in the instruction cycle, The disadvantage is that the size of the
number is restricted to the size of the address field, which, in most instruction scts,
is small compared with the word length.

Direct A ddressing
A very simple form of c.iclresising cu red .idiressing_ in which the address field con-
tains the effective address of the operand:

EA = A

11.1 f ADDRESSING 385

The technique was common in earlier generations or computers bul is not common
on contemporary architectures..lt requires only one memory reference 4i nd no spe-
cial calculation. The obvious, limitation is that it provides only a limited address space.

Indirect Addressing

With direct addressing. the length of the address. field is usually less than the word
length, thus Hi -rifling the address range. One solution is to have lht 4.Kiducss field
refer to the address of a word in memory, which in turn contains a full-length
address of the operand. This is hnown as indirect addressing:

EA = (A)

As defined earlier, the parentheses are to he interpreted as meaning contents of
The obvious advantage or this approach is that for a word length of N. an address
spice of is now available. The disadvantage is Thal instruction execution requires
two memory references to fetch the operand= one to geL its address and a second to
2et its value.

Although the number oi' words that can he addressed is now equal to the
number of different effective addresses that may be referenced at any one time is
limited to where. K is the length of the address field. Typically, this is not a bur-
densome .1 CS triction, and it can be an asset. In a virtual memory environment, all the
effective address locations can be confined to page 0 of any process. Because the
address field of an instruction is sinali. it wilt naturally produce low-numbered direct
addresses, which would appear in page 0. (The only restriction is that the page size
must be greater than or equal to 2k,) When a process is active, there wi]l be repeated
references to page O. causing it to remain in real memory. Thus, an indirect mem-
ory reference will involve, at most. one page faith rather than two.

A rarely used variant of indirect addressing is multilevel or cascaded indirect
addressing;

EA — (... (A) ...)

In this caliC, one bit of a full-word address is an indirect [lag (I). if the I bit is 0, then
the word contains the EA. IF the I bit is 1, then another level of indirection is
invoked. There does not appear to he any particular advantage to this approach, and
its disadvantage is that three or more memory references could be required to fetch
an operand.

Register Addressing

Register addressing is similar to direct addressing. The only difference is that the
address field refers to a register rather than a main memory address:

EA=R

Typically, an address field that references registers wi]l have from 3 to 5 bits, so that
a total of from S to 32 general-purpose registers can he referenced.

386 CHAPTER 11 / INSTRUCTION SETS; ADDRESSING MODES AND FORMATS

The advantages of register addressing are that (1) only a small address field is
needed in the instruction. and (2) no memory' references are required. As was dis-
cussed in Chapter 4, the memory access time for a register internal to the CPU is
much less than that for a main memory address, The .disadvantage of register
addressing is that the address space is very limited.

If register addressing is heavily used in an instruction set. this implies that the
CPU registers will he heavily used. Because of the severely limited number of rep
isters (compared with main memory locations), their use in this fashion makes sense
only if they are employed efficiently. If every operand is brought into a register from
main memory. operated on once, and then returned to main memory, then a waste•
ful intermediate step has been added. If, instead, the operand in a register remains
in use for multiple operations, then a real savings is achieved. An example is the
intermediate result in a calculation. In particular. suppose that the algorithm for
twos complement multiplication were to he implemented in son ware. The location
labeled A in the flowchart (Figure 9.12) is referenced many times and should he
implemented in a register rather than . a main memory location.

It is up to the programmer to decide which values should remain in registers
and which should he stored in main memory. Most modern CPUs employ multiple
general-purpose registers. placing a burden for efficient execution on the assembly-
language programmer (e.g., compiler writer).

Register Indirect Addressing
Just as register addressing is analogous to direct addressing, register indirect ad-
dressing is analogous to indirect addressing. In both cases, the only difference is
whether the address field refers to a memory location tar a register. Thus, for register
indirect address,

EA = (R)

The advantages and limitations of register indirect addressing are basically the same
as for indirect addressing. In both cases, the address space limitation (limited range
of addresses).of the address field is overcome by having that field refer to a word-
length location containing an address. In addition, register indirect addressing uses
one less memory reference than indirect addressing.

Displacement Addressing
A very powerful mode of addressing combines the capabilities of direct addressing
and register indirect addressing. It is known by a variety of names depending on the
context of its use. but the basic mechanism is the same. We will refer to this as dip
placement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields. at
least one of which is explicit. The value contained in one address field (value = A)
is used directly. The other address field, or an implicit reference based on opcode,
refers to a register whose contents are added to A to produce the effective address.

11.1 / ADDRPSSING 387

We will describe three of the most common uses of displacement addressing:

• Relative addressing
▪ Base-register addressing
■ Indexing

Relative Addressing

I;or relative addressing, the implicitly referenced register is the program counter
(PC). That is. the current instruction address is added to the address field to pro-
duce the EA. Typically, the address field is treated as a twos complement number
for this operation. Thus. the effective address is a displacement relative to the ad-
dress of the instruction.

Relative addressing exploits the concept of locality that was discussed in Chap-
ters 4 and 8. If most memory references arc relatively near to the instruction being
executed, then the use of relative addressing saves address hits in the instruction.

Base-Register Addreming

For base-register addressing, the interpretation is the following: The refer-
enced register contains a memory address, and the address field contains a dis-
placement (usually an unsigned integer representation) from that address. The
register reference may be explicit or implicit.

Base-register addressing also exploits the locality of memory references. It is
a convenient means of implementing segmentation, which was discussed in Chapter
8. In some implementations, a single segment-base register is employed and is used
i mplicitly. In others. the programmer may choose a register to hold the base address
of a segment, and the instruction must reference it explicitly. In this latter case, if
the length of the address field is K and the number of possible registers is N, then
one instruction can reference any one of N areas of 2' words.

Indexing

For indexing, the interpretation is typically the following: The address field
references a main memory address, and the referenced register contains a positive
displacement from that address. Note that this usage is just the opposite of the inter-
pretation for base-register addressing. Of course, it is more than just a matter of user
interpretation. Because the address field k considered to be a memory address in
indexing. it generally contains more bits than an address field in a comparable base-
register instruction. Also, we shall see that there are some refinements to indexing
that would not be as useful in Ihe base-register context, Nevertheless, the method
of calculating the EA is the same for both base-register addressing and indexing,
and in both cases the register reference is sometimes explicit and sometimes implicit
(for different CPU I ypes).

An important use of indexing is to provide an efficient mechanism for per-
forming iterative operations. Consider, for example. a list or numbers stored start-
ing at location A. Suppose that we would like to add I to each element on the list.
We need to fetch each value. add I to it, and store it back. The sequence of effec-
tive addresses that we need is A, A -h 1. A + 2, up to the last location on the

388 CHAPTER 11 I INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

list. With indexing, this is easily done. The value A is stored in the instruction's
address field. and the chosen register, called an index register. is initialind to 0.
After each operation. the index register is incremented by I.

Because index registers are commonly used for such iterative !asks, it is typi-
cal that there is a need to increment or decrement the index register after each
reference to it. Because this is such a common operation, some systems will auto-
matically do this as part of the same instruction cycle. This is known as auroindo-
lug. if certain registers are devoted exclusively to indexing, then autoindexing can
be invoked implicitly and automatically. if general-purpose registers are used, the
autoindex operation may need to be signaled by a hit in the instruction. Autoin-
dexing using increment can be depicted as follows:

EA A + (R)
(R) (R) 1

In some machines, both indirect addressing and indexing are provided, and it
is possible to employ both in the same instruction. There are two possibilities: The
indexing is performed either before or after the indirection.

If indexing is performed after the. indirection, it is termed postindexing:

EA = (A) I (R)

First, the contents of the address field are used to access a memory location con-
taining a direct address. This address is then indexed by the register value. This tech-
nique is useful for accessing one of a number of blocks of data of a fixed format. For
example, it was described in Chapter S that the operating system needs to employ a
process control block for each process. The operations performed are the same
regardless of which block is being manipulated. Thus, the addresses in the instruc•
lions that reference the block could point to a location (value — A) containing a
variable pointer to the start of a process control block, The index register contains
the displacement within the block.

With preindexing the indexing is performed before the indirection:

EA = (A .(R))

An address is calculated as with simple indexing. In this ease, however, the calcu-
lated address contains not the operand, but the address of the operand. An ex-
ample of the use of this technique- is to construct a multiway branch table. At a
particular point in a program. there may be a branch to one of a number of loca-
tions depending on conditions, A table of addresses can be set up starting at location
A. By indexing into this table, the required location can be found.

Typically, an instruction set will not include both preindexing and postindexing.

Stack Addressing
The final addressing mode that we consider is stack addressing. As defined in
Appendix 9A, a stack is a linear array of locations, It is sometimes referred to as
a pushdown list or lust-in-first-our queue. The stack is a reserved block of locations.
Items are appended to the top of the stack so that, at any given time, the block is

11.2 PF.NTTUNI AND POWERPC. ADDRESSING. MODES 389

partially filled- Associated with the stack is a pointer whose value the address
of the top of the slack. Alternatively, the top two elements of the stack may he in
CPU registers, in which case the stack pointer references the third element of the
stack (Figure 10.14b). The stack pointer is maintained in a register, Thus. references
to stack locations in memory are in fact registei indirect addresses.

The stack mode of 4iddrusr;ing is a form of implied addressing. The machine
instructions need not include a me.mory referenec but implicitly operate on the top
of the stack,

11.2 pENTtirm AND pOVVWC ADDRESSING iyipps

4,A05;--0

Pentium Addressing Modes

Recall from Figure 8.21 that the Pentium address translation mechanism produces
an address, called a virtual or effective addrem„ 1114,4 is an offset into a segment. The
sum of the starting address of the segment and the effective address produces a lin-
ear address. If paging is being used, this linear address must pass through a page-
translation mechanism to produce 4i. physical address. in what follows, we ignore this
last seep, because it is transparent to the instruction set and to the programmer,

The Pentium is equipped with a variety of addressing modes intended to a]-
low the efficient execution of high-level languages. Figure 1.1,2 indicates the logic
involved. The segment register determines the segment that is the subject of the
reference. There are six segment registers; the one being used fora particular ref-
erence depends on the context of execution and the instruction. Each segment 12g-
isIer holds the starting address of the corresponding segment. Associated with each
user-visible segment register is a segment descriptor register (not programmer
visible), which records the access rights for the segment as well as the starting ad-
dress and limit (Length) of the segment. In addition, there are two registers that may
be used in constructing an address: the base register and the index register.

'Fable 11,2 lists the 12 Pentium addressing modes. Lei us consider each of
these in turn.

For the immediate mode. the operand is included in the instruction. The
operand can be a byte, word. or doubleword of data,

For register operand mode, the operand is located in a register. For gencra I
instructions, such as data transfer, arithmetic, and logical instructions, the operand
can be one of the 32-bit general registers (14AX, 17113X. E(-:X, EDX, ESI. EDI. ESP,
ERP), one of the 16-bit general registers AX, BX, CX, DX. SI In SEJ. HP), or one
of the 8-bit general registers (AH, BH, CH, DH, AL., BL. CL, DL). For floating-
point operations, 64 - hit operands are formed by using two 32-bit registers as a pair.
There are also some instructions that reference the segment registers (CS. DS, ES.
SS : FS, GS).

The remaining addressing modes reference locations in memory. The memory
location must be specified in terms of the segrneni containing the location and
the offset from the beginning of the segment. In some cases, a segment is specified
explicitly in others, the segment is specified by simple rules that assign a segment
by default.

 Diviarement
kin instrintion;
0, 8, or 32 bit,$)

Segment
baRe

address

ssl

E
- DEL

cress righ is

Limit

Base address

Segment registers

gel rftor
SS whir

GS Cteketor
FS prim- i

ES Srlortnr
DS Selector

IS

Bas.e register

[Index register

Desuiptor regiqers
sreetive

address

Line

address

.1.19m11.2 PexiLiuru Addressing Muck Calculation

Table 11.2

Frnmcdia[t

Pentium II Addressing Modes

11.2 / PRNT1UNI AND POWERPC ADDRISSINC /1/4.11.0DS 391

Mode 0 perwid A. !withal

RelOsler c•ixerand LA — R
Dtsplacerncnt LA = (SR) i •
Bk1 se. I A = (SR) + (FS)
Base with clisplacurrirm LA = (SR) + (13) - A
SO 11241 i niMi. with displaceinem LA= (SR) + (1) Y. S — A
11.1 with incIEN Hnd displacQ.mant LA= rsR) + 05)— A
Rost with scaleck i3lcieif and displaecTrizilL LA = (SR) (1) x 5 — (FS} + A
Relarive. LA (PC) .1- A

LA = Linear act:inns.

(X') = conceras X

!..z racca rogislcr

k'i ' prt5graro counter

A - coraents of an addru-sN field in the :Instruilzion

• - 1-QiNtor
• = hme IC iti I ur

r = in tick 14$L.ri

S = SUN irle act')1.

In the displacement triode, the 4..Pperand . off et (the effective address of Fig-
ure 11.2) is contained as part of the instruction as an 16-, or n-bit displacement.
With segmenlation• all addresses in instructions refer merely to an offset in a
segment. The displacement addressing mode is found on few machines because,
as mentioned earlier, it leads to long instructions. In the case of the Pentium, the
disptaeernen I value can be as long as 32 bits, making for a 6-byte instruction. Dis-
placement addressing can he useful for referencing global variables.

The remaining addressing modes are indirect, in the sense 1 h.i t the address por-
tion of the instruction tells the processor where to Look to find the address. The base
amide specifies that one of the 8-, 16-, or 32-bit registers contains the effective address.
This is equivalent to whAll. we have referred to as register indirect addressing.

In the base with displacement mode, the instruction includes a displacement
l he added to a base register, which may be any of the general-purpose registers.
Examples of uses of this mode include. the following;

• l. hled by a compiler to point to the start of a local variable area. For example,
the base register could point to the beginning of a stack frame, which contains
the local variables for the corresponding procedure.

■ Used lo index into an array when the element size is not 1, 2, 4, or 8 bytes
and which therefore cannot be indexed using an index register, in this case,
the displacement points to the beginning of the array, and the base register
holds the results of a calculation to determine the offset to a specific element
within the array.

a Used to access a field of a record. The base register points to the beginning of
the record. while the displacement is an offset to the field.

I: '

392 CI IAPTER. 11 INSTRUCTION SETS: ADDRESSING, MODES AND FORMATS

In the scaled index with displacement mode, the instruction includes a
displacement to he added to a register, in this case called an index register. The
index register may he any of the general-purpose registers except the one called
ESP, which is generally used for stack processing. In calculating the effective
address, the contents of the index register are multiplied by a scaling factor of
2, 4. or 8. and then added to a displacement. This mode is very convenient for
indexing arrays. A scaling factor of 2 can he used for an array of to-hit integers.
A scaling factor of 4 can he used for 32-bit integers or floating-point numbers.
Finally, a scaling factor of 8 can be used for an array of double-precision floating-
point numbers.

The base with index and displacement mode sums the contents of the base reg-
ister, the index register, and a displacement to form the effective address. Again. the
base register can he any

,
 general-purpose register and the index register can be any

general-purpose.register except PSP. As an example, this addressing mode could be
used for accessing a local array on a stack frame. This mode can also he used to sup-
port a two-dimensional array; in this case, the displacement points to the beginning
of the array, and each register handles one dimension of the array.

The based scaled index with displacement mode sums the contents of the
index register multiplied by a scaling factor. the contents of the base register, and
the displacement. This is useful if an array is stored in a stack frame in this case, the
array elements would be 2, 4, or 8 bytes each in length, This mode also provides
efficient indexing of a two-dimensional array when the array elements are 2, 4. or
8 bytes in length.

Finally. relative addressing can be used in transfer-of-control instructions.
A displacement is added to the value of the program counter, which points to the
next instruction. In this case, the displacement is treated as a signed byte, word : or
doubleword value, and that value either increases or decreases the address in the
rifogram counter.

PowerPC Addressing Modes

In common with most RISC machines, and unlike the Pentium and most CISC
machines, the PowerPC uses a simple and relatively straightforward set of address-
ing modes: As Table 11.1 indicates, these modes are conveniently classified with
respect to the type of instruction.

Load/Store Architecture

The PowerPC provides two alternative addressing modes for load/store
instructions (Figure 11.3). With indirect addressing. the instruction includes a 16-bit
displacement to be added to a base register, which may be. any of the general-
purpose registers. In addition, the instruction may specify that the newly computed
effective address is to he fed back to the base register, updating the current contents.
The update option is useful for progressive indexing of arrays in loops,

The other addressing technique for loadistore instructions is indirect indexed
addressing. In this case, the instruction references a base register and an index reg-
ister, both of which may be any of the general-purpose registers. effective

11.2 e? PENTIUM AND POWERPC ADDRESSING MODFN 393

Table 11.3 PowerPC' AdLiti.ssing Modes

Mode Algorithm

LoudiStore Addressing

Intli mct EA - i$R) - D

Indirect indexed =11114.1.- (IR)

Brandt Addresing

Absolute EA = I

Relative P.A = I Pt.') - I

Indirect EA -

Fixed-Point Computation
Reg ter = Grit

I mmediate Operand = I

ilomting-Point Computation

Reeister CA = FPR

- addres6
t X1 = Lonients of X
BR = hase register
ilt = index rqi,ister
lit - link or count register
GIJR = genet-ill-purpose riLpisler

= Floating-point i'clUslat

= diVlseemen1
I - immediatowitie
I't ' program ctiouthr

address is the sum of the contents of these two registers. Again, the update option
causes the base register to be updated to the new effective address.

Branch Addressing

Three branch addressing modes are provided. When absolute addressing is
used with unconditional branch instructions, the effective address of the next
instruction is derived from a 24-hit immediate value within the instruction. The
24-hit value is extended to a 32-bit value by adding two zeros 10 its least significant
end (this is permissible because all instructions must occur on 32-bit boundaries)
and sign extending. For conditional branch instructions, the effective address of
the next instruction is derived from a 1 6-hit immediate value within the instruction.
The 16-bit value is extended to a 32-hit value by adding two zeros to its least signif-
icant end and sign extending.

With relative addressing. the 24-bit immediate value (unconditional branch
instructions) or 14-bit immediate value (conditional branch instructions) is extended
as before. resulting value is then added to the program counter to define a loca-
tion relative to the current instruction. The other conditional branch addressing
mode is indirect addressing. This mode obtains the effective address of the next
instruction from either the link register or the count register. Note that in this case

Base mister IOPR
Index rc.F_Pister ((iPR)

.1

To .;iddresN Lramlation

(b) Indirect indexed addressing

To addres::, translation

) Indirect adrcssing

Base register (CPR)

1

update
1 - - - - - - - - - - -

SignQd diNplacenicill
16

I ,ogieul address

Figure 11.3 rCde RO7mia&ddressing Modes

11.3 / INSTRUCTION PoRmNrs 395

the count register is used to hold the address for a branch instruction. This register
may also be used to hold's count for tooping, as explained earlier.

Arithmetic I nstri 'dims

For integer arithmetic, al] operands must he contained either in regisicrs or as
part of the instruction. With register addressing, a source or destination operand
is specified as one of the general-purpose registers, With immediate addressing, a
source operand appears as a I6-bit signed quantity in the instruction.

For floating-point arithmetic, all operands are in floating-point registers that
is, only register aidie:y,higrw taxed,

3 INSTRUCTION FORMATS - ...-...
.54 • ar,ro.

21T,..lrelfcr e
;!ef W4' %S1

An instruction format defines the la taut of the bits of an instruction, in terms of its
constituent parts. An instruction format must include an opeode and, implicitly or
explicitly. zero or more operands. Each explicit operand is referenced using one
cif 1he addressing modes described in Section The format must. implicitly or
explicitly, indicate1he addressing mode for each operand. IC)1' CLAtME insiruerion sets,
more than one instruction Format is used.

The design of an instruction format is a complex art. and an amazing variety
or designs have been implemented. We examine the key design issues, looking
briefly at souse designs lo illustrate points, and then we examine the Pentium and
PowerPC solutions in &Li i I.

Instruction Length

The most basic design issue to be faced is the instruction format length. This deci-
sion affects, and is affected by, InCinrilry wire, memory organization. bus structure.
CPC complexity, and CPU speed. This decision determines the richness and flexi-
bility of the machine as seen by the assembly-language programmer.

The most obvious trade -oft here is between the desire for a powerful instruc-
tion repertoire and a need to save space. Programmers want more opeodes, more
operands, mdre addressing modes, and greater address raluze. More opeodcs and
more operands make life Casier for I he programmer, because shorter programs can
he written to accomplish given [asks. Similarly. more addressing modes give the
programrru greater flexibility in implementing certain funclions, such as [able
manipulations and multiple-way branching. And, of course. with the increase in
main memory size and the increasing use of virtual memory. programmers want to
he able to address larger memory ranges. All of these things (oprodes, operands.
addressing modes. address range) require bits and push in the direclion or longer
instruction lengths. But longer irril ruction length may be wasteful. A 64-bit instruc-
li on occupies twice the space of a 32-bit instruction but is probably Jess than twice
as useful.

Beyond this basic trade-off, there are other considerations. Either the instruc-
lion length should be equal to the memory-transfer length (in a bus system. data-

396 CHAPTE1 It / INSTRUCTION SP.TS: A DDRF.SSING MODES AND FORMATS

bus length) or one should he a multiple of the other. Otherwise, we will not get an
integral number Of instructions during a letch . cvele. A related consideration is the
memory transfer rate. This null.; has not kept up with increases in processor speed.
Accordingly, memory can become a bottleneck if the processor can execute instruc-
ti ons faster than it can fetch them. One solution to this problem is to use cache meal.
ory (see Section 4,3): another is Lo use shorter instructions. Thus, 16-bit instructions
CM' be fetched at twice the rate of 32-bit instructions hul probably can be executed
less than twice as fast.

A seemingly mundane but nevertheless important feature is that ihe instruc-
tion length should he 21 Mal Liple of the. character length, which is usually S bits, and
of the length of fixed-point numbers, To see this, we need to make use of that un-
fortunately ill-defined word, woe/ [FRA183]..rhe weird length of memory is. in some
Sense, the "natural - unit of organiiiition. The size of a word usually del ermines the
size of fixed-point numbers (usually the two are equal). Word site is also typically
equal to, or at least integrally related lo. the memory transfer size. Because a com-
mon form of data is character data. we would like a word to store an integral 11LI M-
her 01' characters, Otherwise, there are wasted bits in each word when storing
multiple characters, or a character will have to straddle a word boundary. The impor-
tance of this point is such thuti 1.1-1M, when it introduced the Systern1360 and wanted
to employ S-bit rharactors, made the wreaching decision to move from the 345-bit
architect Lire of the scientific members of the 70017000 series Lo a 32-bit architecture.

Allocation of Bits

We've looked r.I some of the factors that go into deciding t he length of the instruc-
tion format. An equally difficult issue is how to allocate the bits in that format. The
trade-offs here are complex.

For a given instruction length, there is clearly a trade-off between the number
of °Nodes and the pt -awer of the addressing capability. More opcodes obviously
mean more bits in the opcode field. For >in instruct ion format of a given length, this
reduces the number of hits available for addressing, There is one interesting re-
finement 10 this trade-off, and that is the use of variable-lengih opeodes. In this
approach, there ig a minimum opcode length hut, for some opcodes additional
operations may be specified by using addii ional hits in the instruction.. For a fixed.
length instruction. his leaves fewer bits for addressing. Thus. ads feature is used for
those insiructions that require fewer operands andior les!, powerful addressing.

The following interrelated factors go into determining the use of the ad-
dressing bits:

■ Number of addressing modes; Sometimes an addressing mode can be indicated
i mplicitly. For example, certain opctide might always call for inile:';ing. In other
cases, the addressing modes must be explicit. and one or more mode.bits will
he needed.

• Number of operands: We have seen dial fewer addresses can make for longer,
more awkward programs (e.g., Figure 103). Typical instruct ions on today's
machines provide for two operands. Each operand address in the instruction
might require its own mode indicator, or the use of a mode indicator could he
limited to lust one of tfic addrcsg fields.

it.3 I INSTRUCTION FORMATS 397

• Register versus memory: A machine must have registers so that data can be
brought into the CPU for processing. With a single user-visible register (usu-
ally called the accumulator), one operand address is implicit and consumes
no instruction bits. However, single-register programming is awkward and
requires many instructions. Even with multiple registers, only a few bits are
needed to specify the register. The more that registers can he used for operand
references. the fewer bits are needed. A number of studies indicate that a total
of 8 to 32 user-visible registers is desirable [LUND77, HUCK83]. Most con-
temporary architectures have at least 12 registers.

• Number of register sets: Most contemporary machines have one set of
general-purpose registers, with typically 32 or more registers in the set. These
registers can he used to store data and can be used to store addresses for
displacement addressing. Some architectures, including that of the Pentium.
have a collection of two or more specialized sets (such as data and displace-
ment).. one advantage of this latter approach is that, for a fixed number of
registers, a functional split requires fewer bits to be used in the instruction,
For example, with two sets of eight registers, only 3 bits are required to
identify a register: the opcode implicitly will determine which set of registers
is being referenced.

• Address range: For addresses that reference memory, the range of addresses
that can be referenced is related to the number of address hits. Because this
imposes a severe limitation, direct addressing is rarely used. With displacement
addressing, the range is opened up to the length of the address register. Even so,
it is still convenient to allow rather large displacements from the resistel - address,
which requires a relatively large number of address hits in the instruction.

• Address granularity; For addresses that reference memory rather than reg-
isters, another factor is the granularity of addressing. In a system with 16- or
32-bit words, an address can reference a word or a byte at the designer's
choice. Byte addressing is convenient for character manipulation but requires,
for a fiXed-size memory, more address bits.

Thus. the designer is faced with a host of factors to consider and balance.
Hoy,. critical the various choices are is not clear. As an example, we cite one study
[CRAG79] that compared various instruction format approaches, including the use
of a stack, general-purpose registers, an accumulator, and only memory-to-register
approaches. Using a consistent set of assumptions, no significant difference in code
space or execution time was observed.

Let us briefly look at how two historical machine designs balance these vari-
ous factors.

PDP-S
One of the simplest instruction designs for a general-purpose computer was

for the PDP-8 [BELL78b]. The PUP-8 uses 12-bit instructions and operates on 12-
hit words. There is a single general-purpose register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each
memory reference consists of 7 hits plus two 1-bit modifiers_ 'The memory is divided
into fixed-length pages of 2 7 =, J.28 words each. Address calculation is based on

AC. =
SMA
SZA =
SNL =
RS —
OSR
I I LT
NIQA =

=

lsrcrenrent AC'cuniulaior
Skip on Minos Acciimul•uir
Skip oit Zero Accumulator
Skip on Nonwro Link
Reverse Skip Sense
Or with Switch Register
1-12LT

j1.1L0 AccUrnulator
Multiplier Quotient Load

398 CHAVF L 1 / INSTRUCTION SETS: ADDRESSING Mt)DELS AND FORMATS

Nitnitiry Reference I Fist nictions

7-K . I Displacement•
4

Op ixicie
0

[1_ 1 0 I Device OFicode
2 3 F 9 Il

Register Reference Instructions

CLA T CLL CMA Chill RA I R/51.1-. 1 BY.F.Tit:
4 3 6 7 9 10 I I

Group.2

1 I I 1 1 l IA
0 I 2 3 4

• ShvIA—r SZA—FSHL J .455 01.17/,TFIEFni--1
5 6 7 8 10 1 1

Group 3 rnicroinstrueliorib
1 1 1 1 1]

0 1 2 3

,A rpd.QAT c, I MOLll— 0 1 9. 0
1 5 6 7 11 9 10 l I

Input,footout ristructions

Group I microinstructions
1 1

0 1 7

pal = Directilhdirect address
ZIC Pagc 0 cr Current page
CLA = Ova. AcLumulator
CIL = CI•ear Link
CMA = CoMplement Acciontilaltw
CML = CoMplerneut Link
RAR Rotate Aecumultator Right
RAL R.OUft ALcuillIllaLOr Len.
tiSY = Byte SWap

Figure 11.4 PDI 3-8 tinsimetion Formats

references to pager 0 or the current page (page containing this instruction) as deter-
mined by the page bit. The second modifier bit indicates whether direct or indirect
addressing is to be used. These two modes can be used in combinaiion, so ihrrt an
indirect address is a 12-hil kiddrcss contained in a word of page 0 or the current page.
In addition, S dedicated words on page 0 are atiloindes "registers.' When an indi-
rect reference is made to one of these lomtions, preindexing occurs.

Figure 11,4 shows the PDP-8 instruction format. There M- V. a 3-bil opcode and
three types ,,r instructions. For opcodes 0 through 5. the format is a single-address
memory reference instruction including a page bit and an indirect hit. Thus, there
are only six basic operations. 'I'o enlarge the group of operations. opcode 7 defines
a register reference or in ic roikul ruction . in this format, the remaining bits are used
lo encode additional operations. In general, each hit (lanes a specific operation
(e.g.. clear accumulator), and thew oils can be combined in a single instruci ion. The
microinstruction strategy was used as far back as the PDF-I by 1)1.. .C' and is. in a
SQ:11.SC, a forerunner of today's rnicroprogrammed machines, to be discussed in Part
Four. Opcode 0 is the 110 operation; 6 bits are used to select one of 64 devices, and
3 bits specify a particular PO command.

11.3 / INSTRUCTION FORMATS 399

The FDP-8 instruction format is remarkably efficient, 11 supports indirect
addressing, displacement addressing, and indexing. With the use of the uprotiC ex-
tension, it supports a total of approximately 35 instructions. Given the constraints
of a 12-bit instruction length, the designers could hardly have done better.

PDP-111

A sharp contrast to the instruction set of the PDP -S is that of the PDP-10.
The PUP-10 was designed to be a large-scale time-shared system, with an empha-
sis on making the system easy to program, even if additional hardware expense
was involved.

Among the design principles that were employed in designing the instruction
set were [BELL784

• Orthogonality: Orthogonality is a principle by which two variables are inde-
pendent of each other. In the context of an instruction set, the term indicates
that other elements of an instruction are independent of (not determined by)
the opcode. The PUP-l0 designers use the term to describe the fact that an
address is always computed in the same way, independent of the opcode. This
is in contrast to many machines, where the address mode sometimes depends
implicitly on the operator being used.

• Completeness: Each arithmetic data type (integer, fixed-point, real) should
have a complete and identical set of operations.

• Direct addressing: Rase plus displacement addressing, which places a memory
organization burden on the programmer, was avoided in Favor of direct
addressing.

Each of these principles advances the main goal of ease of programming.
The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixed

instruction format is shown in Figure 11.5. The opcode occupies 9 bits. allowing up
to 512 operations. In fact, a total of 365 different instructions are defined, Most
instructions have two addresses, one of which is one of 1.6 general-purpose registers.
Thus. this operand reference occupies 4 bits. The other operand reference starts
with an 18-bit memory address field. This can be used as an immediate operand or
a memory address. In the latter usage, both indexing and indirect addressing are
allowed. The sanie general-purpose registers are also used as index registers.

A 36-bit instruction length is true luxury, There is no need to do clever things
to get more opcodes; a 9-bit opcode field is more than adequate. Addressing is also
straightforward. An 18-bit address Field makes direct addruSMTIg desirable, For
memory sizes greater than 2 18. indirection is provided. For the ease of the pro-

1
Opuixt? Regkivi - 1 1 1 indr.n !

0 x II 12 1.4 17 18

1=

indirect hit

Figure 11.5 Pl)P-1O instruction Format

Menary address

3c

400 CHAPTER 11 / INSTRUCTION SETS: ADDRESSING MODES AND FORAATS

grammer, indexing is provided for table manipulation and iterative programs. Also.
with an 18-bit operand field, immediate addressing becomes attractive..

The PDP-10 instruction set design does accomplish the objectives listed ear-
lier TLL1ND711. The PDP-1O instruction set cases the task of the programmer or
compiler at the expense of an inefficient utilization of space. This was a conscious
choice made by the designers and therefore cannot be faulted as poor design.

Variable-Length Instructions

The examples we have looked at so far have used a single fixed instruction length.
and we have implicitly discussed trade-offs in that context. But the designer rtm
choose instead to provide a variety of instruction formats of different lengths. This
tactic makes it easy to provide a large repertoire of opcodes, with different opcode
lengths. Addressing can be more flexible. with various combinations of register and
memory references plus addressing modes. With variable-length instructions, these
many variations can be provided efficiently and compactly.

The principal price to pay for variable-length instructions is an increase in the
complexity of the CPU, Falling hardware prices, the use of microprogramming (dis-
cussed in Part Four), and a general increase in understanding the principles of CPU
design have all contributed to making this a small price to pay_ However. we will see
that RISC and superscalar machines can exploit the use of fixed-length instructions
to provide improved performance.

The use of variable-length instructions does not remove the desirability of
making all of the instruction lengths integrally related to the word length. Because
the CPU does not know the length of the next instruction to be fetched. a typical
strategy is to fetch a number of bytes or words equal to at least the longest possible
instruction. This means that sometimes multiple instructions arc fetched. However,
as we shall see in Chapter 12, this is a good strategy to follow in any case.

PDP-11

The PDP-I I was designed to provide a powerful and flexible instruction set
within the constraints of a 16-bit minicomputer [BEU_701.

The PDP-11 employs a set of eight 16-bit general-purpose registers. Two
of these registers have additional significance: One is used as a stack pointer for
special-purpose stack operations, and one is used as the program counter, which
contains the address of the next instruction.

Figure HA shows the PLOP-11 instruction formats. Thirteen different formats
are used. encompassing zero-, one-, and two-address instruction types. The opcode
can vary from 4 to 16 bits in length. Register references are 6 hits in length. Three
bits identify the register, and the remaining 3 bits identify the addressing mode, The
PDP-11 is endowed with a rich set of addressing modes. One advantage of linking
the addressing mode to the operand rather than the opcode, as is sometimes done.
is that any addressing mode can be used with any opcode, As was mentioned. this
independence is referred to as orthogonality.

PDP-1 1 instructions are usually one word (16 hits) long. For some instructions,
one or two memory addresses are appended, so that 32-hit and 48-bit instructions
are, part of the repertoire. This provides for further flexibility in addressing.

Opcode 8

4

Destination

6

pc4 At. ()fret

8

Opcode

12

Memory address Destination Opcode Source

1 ()paxle Opcode Source DeNtinatiors

6

fi

Source 3 ;

n (co)1)01.0#' a a .L.... estwat.
4

 011 Opcode

10

R

1.3 3 16 4 6 6 16

10

I'

13

()r(04.0.: R Source Memory address

16

Opcode FP Source Nlemors W.11.11V.L.6

3 16

Opeode Degt. ination 1, 1e ino ry address

6 16

Opcode! Source Destination .71klemciry address 1 N.IentOry address 2

4 6 6 F . 16

Numbers below fields indicate bit length
Source and destination each contain a 3-bit addressing mode field and -a 3-hit register number
Ft' indicates one of lour 11oating-p0int registers
R indiotes one of the general-purpose registers
CC is the condition code field

Figure 11.6 Instruction Formats for the PDP-1 f

402 CHAPTER It I INSTRUCTION SETS: ADDRESSING MODES AND FORMATS

The PI)1 -1.1 instruction set and addressing capability are complex. Thi' in-
creases both hardware cost and programming cotnplexitv. The advantage is that
more efficient or compact programs can be developed.

VAX
Most architectures provide a relatively small number of fixed instruction for-

mats. This can came two problems for the progrannner. First_ addressing mode . and
opoode are not orthogonal_ for example_ for a given operation, one operand mug
come from a register and another from memory, or both from registers, 2j11t1 so on.
Second. only a limited number of operands can be viccommodated: typically up to
two or I hux. WM some c.pperations inherently require more operands, various
NM' Legies MUSE be used to achieve the desired result using two or more insi ructions.

To avoid these problems, two criteria were used in designing the VAX instruc-
tion format iSTRE781:

1. All instructions should have the "natural" number of operands,
2. All operands should have the same generality in specification.

The result is a biddy 'variable instruel ion format. An instruction consists of a 1- or
2-byte opeodc followed by from zero to six operand specifiers, depending on the
°Node. The minimal instruction length is 1. byte, and instructions op.to 37 bytes can
be constructed. Figure 11.7 gives a few examples.

The VAX instruction begins with a I -byte opeode.'fhis suffices to handle most
VAX instructions. However, as there are over 3l different instructions, t bits arc
not enough. The hexadecimal codes FD and FF indicate an extended opcode, with
the actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. An
operand specifier is, at minimum, a 1-byte format in which the leftmost 4 hits are
the address mode specifier. The only exception to this rifle is i he literal mode, which
is signaled by the pattern 00 in the leftmost 2 hits, lvaving space for a 6-bit literal.
Becmiz..e of this exception, a total of 12 different addressing modes can be specified.

An operand specifier often consists of just one byte, with the righirno!si 4 hits
specifying one of 16 general-purpose registers- The length or I he operand specifier
can he extended in one Of two ways. First, a constant value of one or more bytes
may immediately follow the first byte. of the operand specifier. An example of this
is the displacement mode, in which an 8-, Is-, or 3240 displacement is used. Sec-
ond, an index mode of addressing may he used. I n this case. the first byte of the
operand specifier consists of the 4-hit addressing mode code of 0100 and a 4-bit
index register identifier. The remainder of the operand specifier consists of I he base
address specifier, which may itself be one or more bytes in 'evil.

.rhe. reader T11 viy be wondering. ns t he author did, what kind of instruction requires
six operands. Surprisingly. the VAX has a number of such instructions. Consider

ADDP6 OP1, OP2, OP3, OP4, OP5, OPfi

This instruction adds two packed decimal numbers. OP1 and 0P2 specify the length
and starting address of one decimal string; 0P3 and OP4 spc.teify a second string.

A
I

11.3 1 INSTRUCTION FORMATS 403

Hexadecimal Explanation Assembler Notation
FOrrnat and Description

8 bits •
mrTi Opcode for RSB RSI3

Return from subroutine

01Kock. for CLRL

Register R9

Cl,R I_ R9

Clear register R9

Opeode for MOV W
Vyrortl clisptacmenl modc,
Regime': R4

356 in he illecintal

Byth displace meat mode,
Regis.' ET R I I
25 in hexadecimal

MOV Vs(356(R4), 25 . R I)

Mow a word from ad d
'hat is 356 rl uw CI 5111.e.rils

of R4 Li7 andrexs that 'IN
25 plus ciyntenis R11

•

C 1
0
5 0
4

F

Opcode for ADDL3

Short literal 5

Register mnt1i RO

Index 111-r:Eix R2
l alireci word relative
(clii,placement from PC)

Arnoutu of displacement from
PC mlniivc to Ideation A

ADD[..? 45, RO,

Add 5 R.I. a 32-bit integer in
RO and store the result in
loc:ItiDn whose ERItlicss is

s.uin of A And 4 i Mu.% HIE

conient3 of R2

Pi gime 1.13 1: ;iiiilrlc. of VAX Instructions

These Iwo strings are added and the result is stored in the deri s [ring whcnn2
length and Marting location are specified by 0P5 and OPti,

The VAX instruction !4(.1.1 provides for a wide variety of operationf; kind ad-
dressing modes. This gives a programinur_ suuh au a compiler writer, a very power-
ful and Clexible iool for developing proarams. In theory, this should Lead to efficient
machine-laziguage conipili Lions or nigh-Level language programs and, in general,
to effective and efficient use of CP1..: re.Nources. The penalty to he l r,itl for

404 CHAPTER II / INSTRUCTION SETS: ADDR.F.;.SSING MOI]ES AND FORMATS

benefits is the increased complexity of the C PL.t compared with a processor with a
simpler instruction set and format.

We return to these matters in Chapter 13. where we examine t he case for very
simple instruction sets.

11.4 PENTIUM AND POWERPC INSTRUCTION FORMATS

Pentium. Instruction Formats

The Pentium is equipped with a variety of instruction formats. Of the elements
described in this subsection, only the opcode field is always present_ Pigure 11.8
illustrates the general instruction format. Instructions are made up of from zero to
four optional instruction prefixes, a 1- or 2-byte opcode. an optional address sped.
Fier (which consists or the. ModFUm byte and the Scale Index byte), an optional dis-
placement, and an optional immediate field.

Let us first consider the prefix bytes:

• Instruction prefixes: The instruction prefix. if present, consists of the LOCK
5

prefix or one of the repeat prefixes. The LOCK prefix is used to ensure exclu-
sive use of shared memory in multiprocessor environments. The repeal prefixes
specify repeated operation of a string. which enables the Pentium to process
strings much faster than with a regular software loop. There are five different
repeat prefixes: REP. R1!PE, REPZ, REPN F., and RUPNZ. When the absolute
RF.P prefix is present, the operation specified in the instruction is executed
repeatedly on successive elements of the string; the number of repetitions is
specified in register CX. The conditional R.EP prefix causes the instruction to
repeat until the count in CX goes to zero or until the condition is met.

• Segment override: Hxplicitly specifies which segment register an instruction
should use, overriding the default segment-register selection venerated by the
Pentium for that instruction.

• Address size: The processor can address memory using either 16- or 32-bit
addresses. The address size determines the displacement size in instructions
and the size 01 address offsets generated during effective address calculation.
One of these wires is designated as default, and the address si4e prefix switches
between 32-bit and 16-bit address generation.

• Operand size: An instruction has a default operand size of 16 or 32 bits, and
the operand prefix switches between 32-bit and 16-bit operands.

The instruction itself includes the following fields:

• Opcode: One- or two-byte opcode. The opcode may also include hits that
specify it data are byte- or full-size (16 or 32 bits depending on context), diree•
lion of data operation (to or from memory). and whether an immediate data
field must be sign extended.

• ModRim: This byte, and the next, provide addressing information. The mod Wm
byte specifics whether an operand is in a register or in memory; if it is in

I
y
 Mod I HegiOptIode I

7 3 2 I
1 Scale. Index Base

7 4 3 2 it 0

.0 or 1 411 or 0 or 1 0 or 1

lastruction
prefix

Segment
er, errid e

Operand
ize

lI rt erride

Addrass
: size

°Torrid k•

A

IP. 1. 2, 3, or 4 bytes\ 1+1r ; O ur 1 0 or 1 11. 1. 2. ,or 4 11, E. 2. or 4

Instntetion prefixec . °No& ' '261.11d R.'"%1 SIR Displacement Immediate

.. ' .

'Figure 11.8 Pentium. Ii truction Format

406 C1-111'.1•ER 11 / INSTRUCTION SETS: Al.)DRESSINC; MODES AND FORMATS

memory, then fields within the byte specify the addressing mode to he used.
The ModRim byte consists of three fields: The Is.lod field (2 bits) combines
with the rim field to form 32 possible values: 8 registers and 24 indexing modes;
the RegiOpcode field (3 bits) specifies either a register number or three more
bits of opcode inftnination; the rim field (3 hits) can specify a register as the
location of an operand, or it can form part of the addressing-mode encoding
in combination with the Mod field.

• SIB: Certain encoding of the Mod Rim byte specifies the inclusion of the SIB
byte to specify fully the addressing mode. The SIB byte consists of three fields:
The Scale field (2 bits) specifies the scale factor for scaled indexing; the Index
field (3 bits) specifies the index register: the Base field (3 bits) specifies the
base register.

s Displacement: When the addressing-mode specifier indicates that a displace-
ment is used, an 8-. 16-, or 32-bit signed integer displacement field is added,

• Immediate: Provides the value of an 8-, 16-, or 32-bit operand.

Several comparisons may be useful hero. In the Pentium format. the addressing
mode is provided as part of the opeode sequence rather than with each operand,
Because only one operand can have address-mode information, only one memory
operand can be referenced in an instruction. In contrast, the VAX.carries the address-
mode information with each operand, allowing memory-to-memory operations, The
Pentium instructions are therefore more compact. However, if a memory-to-memory
operation is required, the VAX can accomplish this in a single instruction.

The Pentium format allows the use of not oniv I-byte, but also 2-byte and
4-byte offsets for indexing. Although the use of the larger index offsets results in
longer instructions, this feature provides needed flexibility. For example, it is useful
in addressing large arrays or large stack frames. In contrast, the IBM 5.670 instruc-
tion format allows offsets no greater than 4K bytes (12 hits or offset information),
and the offset must be positive. When a location is not in reach of this offset. the
compiler must generate extra code to generate 11-ie needed address. This problem is
especially apparent in dealing with stack frames that have local variables occupying
in excess of 4K bytes. As [MN/AM puts it. "generating code for the 370 is so
painful as a result of that restriction that there have even been compilers for the 370
that simply chose to limit the size of the stack frame to 4K bytes."

As can be seen. the encoding or the Pentium instruction set is very complex.
This has to do partly with the need to be backward compatible with the 8086
machine and partly with a desire on the part of the designers to provide cvc.ly pos-
sible assistance to the compiler writer in producing efficient code. It is a matter of
some debate whether an instruction set as complex as this is preferable to the oppo-
site extreme of the RISC instruction sets.

PowerPC Instruction Formats
All instructions in the PowerPC are 32 bits long and follow a regular format. 'l'hc
first 6 hits of an instruction specify the operation to be performed. In some cases.
there is an extension to the opcode elsewhere in the instruction that specifies a par-
ticular subcase of an operation, In Figure 11.9, opcode hits are represented by the
shaded portion of each format.

e't I A O ;7;i I iiv 1-iiste-r Vest register .5.r.c. register

Sic register

Srr. tvgi5ter

Nota:ie n r Rift
■-••-••••10

J ot_ .

t_h L t- register tegister

Lkest register Src register

Src register10 L'-'7
'-

Signed immediate value

Ao ki, Ot„ etc. Src register nest register

_ #C.ottl:`x- Sri-, register Dest register

Unsigned immediate value

Shift amt I Mask be in Mask end

1Coi,tie . Src register

Sit tegister

Dest register

Desk- register

Dest register

Dest iegister

Sic register

Shift amt

Src register

S'i t knit

Mask SI R.

Mask Xi)

!;.11:1

11.4 PENTIUM AND POWERPC INSTRUCTION FORMATS 407

to it 5 Bits —F-4— 5 Bits —••• 16 Hits
.. ..

ficancli Long Untnediate A i L

B7 (.LH - t , n.at:. Options Cl bit Branch displacement A L
.

•-.. c...iiii.c.11.-11
• - - - - - - -

Options
...•••-• . ,...-- ...,..e.,--00--,...., ..,,,..--,..o•sw-,...,..w.,--

CR bit =,.:;•,;-,....-......--,•.!.• , ...a..-.1---. 4. ..--.... ,--ir..,.....,.--,..•,..,----..-.... r- - " '• "-;...- ..?..;-... ' — .0.7>r .
t

(a) Branch instructions

151 Dest bit J. Source bit •

ondition register logical instructions

Source bit

*

I,d Intli ref Des register 'Base register Di_sp]aciernent

Lci I st Iridjuerl

Lei st indirect

I lest register .Base register index register J., I i pti,11,-

I)Pst register Base register Displacement

fc) Load /store instructions

(d) integer arithmetic, logical, and shittirotate instructions

Dest Register Etc Register Su.: Register Src Register:
wow-

(e) Floating-ixiint arithmetic instr uction.

A = Absolute or PC Relative b4 -bit implementations nnly

L = Link to Subroutine

0 n Record Overflow in .XEK

R Record Conditions in CR1

= OpCode Extension
S = Part of .hi it Amount Field

Figure 11.9 Power PC Instruction Formats

408 c :I i L' l'12 R. 11 f INSTRUCTION SETS: ADDRESSiNG MODES AND FORMATS

Note the, regular structure or the formats, which eascb the job of the instruc-
tion decode units. For ,H II l oadistore, arithmetic, and logical instructions, the opcode
is followed by two 5-bit register references, cnabling 32 general-purpose registers
to be used.

The branch instructions include. a link (Ll bit That indicates that the effeetiw
addrcyi of the instruction following the branch instruction is to be placed in the link
register. Two forms of the instruction also include a bit (A) that indicates whether
the addressing mode is absolute or PC' relative. For.the conditional branch instruc.
licon he CR bit field specifies the bit to tic [cm ed in the condition register. The
option!, ficld specifies the conditions under which the branch is to bc Liken - The fol-
lowing conditions may be specified:

• Branch always.

• Branch if count 0 and condition is false.

• Branch if count ,L 0 and condition is true.

• Branch if count = 0 and condition is false,

• Branch if count = 0 and condition is true.
• Branch if count 7:- 0.

• Branch if count — 0.
• Branch if condition is false-

• Branch if condition is Intic,

o i. Most instructions that result in a 0..irnpulaltion (arithmetic. floating-point arith.-
;1' inetic, logical) include a bit that indicates whether the result oft he operation should

he rccorded in the condition reaister. As will be shown, this feature is useful for
branch prediction processing.

Floating-point instructions have fields for three source registers, In many
cases. only two source regisicrs ato used. A few instructions involve multiplication
of two source regisi Lis and then addition or subtraction of a third source reuistar.
]'here composite instructions are included because of the frequency of their use. For
example, the inner product that is pan of inan!, . , matrix operations can be imple-
mented using multiply-adds.

11.5 RECOMMENDED READING

Thu 1•43 Rio cliiipter 10 arc equally applicable io the material of this Thal ter.
[BLAA971 0.5111;111N ai 1.13d discussiun Or instructicm formats and addressinF modes, In
adcJi(ion, the Nader may wish to consult EFLYNK5j for >L discussion and anairiis cif instroc-
tinn soi design issues, particularly ihusu relating to rod -rants.

BLAA97 0., ;old Brooks, F. Corn pencr Aiviriwelare; Concepts Yazd Evofugueo.
Re.adiftL MA_ Addison•Weslev, 1997.

FLYNS5 Flynn, M.7 Johnson. J.; and Wakefield. S. "On Instruction sets and Their For:
mats." 1EEE Trior.vacti(ins on Compwc:r.s ., March 1985-

basc-register addres6-ig
direct addressing
dhiplacorttoit addressing
effective address

immediate addressing
indexing
indirect addressing
instruction fitrinat
postindoxiiig,

pteindeving
✓egister addressing
register indirect .,tddre .ssing
telativi: addressing
word

11.6 / KEY TERMS, REVIEW QUESTIONS. ANI))01.t.A.1.ki 109

11.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terre

Review Questions

IL] 131 . i<!fly define immedkito addressina.
11.2 Brick define dirct addressing,

;nil; is2ci
11.4 Brikily kfin. register addressing.

11,5 Briefly define ti2gister indirect addressing.
11.6 Briefly define displacement addressing.
11.7 Briar define relative addressing.
11.8 What is the advantage of autoindexing3
11.9 What is the difference beiween postindexing and preindexing?

11.10 NA.'hat facts go into determining the use of thc addressing bits of an instruction?
11.11 What are the aclvantages and disadvantages of using a variable-length instruction

formal?

Problems

11.1 Justify the assertion that a 32•bit instruction is probably much less than twiciz k1S
Jul as a t6-bit instruction.

112 Given the following memory vaihues (11141 as oiw-addre ss machine with an accumuLator.
w hat values do the following instructions load into the accumulator?
■ Word 20 contains 40.
• Word 30 contains 50.
■ Word 40 contains
■ Word 50 contains 70.
a. LOAD IMMEDIATE 20
b. LOAD DIRECT 20
c. LOAD INDIRECT 20
d. LOAD IMMEDIATE 30

e. LOAD DIRECT 30
C. LOAD INDOZ.HCT .30

11.3 La the address stored in thc program counter be designated by the symbol x 1. Mc.
instruction stored in XI has an addross part (operand reference} V. The operand
nftded to execute. the instructic.5n is stored in the memory word Wii 11 address X3. An
index register contains the v;ilite X4. What is the relationship between these various
quantitie4 if the ilicide of the instruction is (a) direct; (b) indirect: (c) PC
relative; (d) inelexei I?

410 CHAPTER 11 ENSTRUCTION SETS: ADDRESSING MODES AND FORMATS

114 An address field in an instruction contains decimal value 14. Where is the corre-
sponding operand located for:
a, immediate addressing?
h. direct addressine3
it. indirect addressirml
d. register addressing?

e. regiskr indirect addressing?

1 15 A PC-relative inode branch instruction is stored in memory at address 620 1 , : , The
branch is made to location 510„ : . The address field in the instruction is 10 bits long.

k the binary value in the instruction?

11.6 How many times does the CPU need to refer to memory when it fetches nerd execures
an indirect-address-mode instruction if the-instruction is (a) a computation requiring
a single operand; (b) a branch'?

11.7 The IE1M 37(1 does nor provide indirect addressing. Assume that the address of ao
operand is in main memory. How would you access the operand?

118 Why was IBM's decision to move from 36 bits to 32 hits per word wrenching, and to
w horn?

11,9 to he author proposes that the PC-relative addressing modes be climi•
nated in favor of other modes, such as the use of a stack. What is the disadvantaee of
this proposal?

11.10 Assume an instruction set that uses a fixed 16-hit instruction length. Operand spec--
fiers are 6 bits in length. There arc K two-operand instructions and L zero-operand
instructions. What is the maximum number of orit-operand instructions that can be

• support ed?

11.11 Design a variable-length opcode to allow all of the following to be encoded in a 36-bit

r, instruction:
r ? ■ ingtrUClions with Iwo 15-bit a ddrc.ssis Ind one 3-bit register number

• instructions with one 15-hit address and uric 3-bit register number
■ instructions with no addresses or registers

11.12 Consider the results of Problem 10.3. Assume that NI is a 16-bit memory address and
that X, Y. and Z arc either 16-bit addresses or 4-hit register numbers. The one-adthes,i
machine uses an accumulator, and the two- and three-address machines have 16 reg-
isters and instructions operating on all combinations of memory locations and reeis•
ters. Assuming s-hit opcodes and instruction lengths that are multiples of 4 bits, how
many bits does each machine need to compute X?

11.13 Is there any possible justification for an instruction with two opcodes?

11.14 The Pentium includes the following instruction;

ibEJL =1, op2, immediate

This instruction multiplies opt, which may he either register Or memory, by the imme-
diate operand value. and places the result in op I , which must be. a register, There is
no other three-operand instruction of this sort in the instruetion. set. What is the pos-
sible use of such an instruction? Hine: Consider indexing.

12.3 Instruction Cycle :=-p•
[ii Indirect ()....cle
Dat flow

11APTER
-

CPU STRUCT
AND FUNCTION

12.1 Processor Organization

12.2 Register Organitatiou
I [se r-Vi si bit Re
Control z•nd Status Registert4.
lixarripie Miceromet;,•5.s9i. Regi*.t Organizations

A': _.....e. ,...,;71.'...f ro...z,y,....,./II,i.50.4„,..
F..

,ff,. • ,...,,,r.,•• 4e''.
 :fere .. .o.rf". , ...Fr

 ,oref'' C •.',..;... +OW ..re ..."7-417—
. ,r,..,...7- ••••,-7... -
.r.- ..„.... __...- ,........-41•Xr.r. Y........re '.. -''''-''' '#WJ •

...fir rar .". eer. orr"....7-fr

er X... e. 'p.m" ...P.. ''ar. -.... e ..e.

"07 1:Nre• .erY'r .0, .per...

,forf-r m-A- Ar-

12.4 histruetion Pipelining •

Pipelining Straton•
.• Pipeline Performance •

Deating with BranchuR
Inte[8048 ,6 Pipelining

_ .
12.5 The Pentium Processor

Register Organization
• Interrupt Processing. :,,

1.24 The PowerPC Procemor
_

Register Organization
1ntcrrupi Procumiing:.

12.7 Reconunended Rending

12.8 Key Terms, Review Questions, and Problems
Kcy Tin
Review Questions
Problems

/..., A4.: .7".
....re 7.

412 CHAPTFR, 12 / CPU STRUCTURE AND FUNCTION

KEY POINTS

• A processor includes both user-visible registers and controltstatus reOsters.
The former may be referenced, implicitly or explicit Iv, in machine instruction's.
User-visible registeu; may be general pin -pose or have a special u-se. such as
fixed-point or flooi ing-point numbers, addresses. indexes, Fi nd segment point-
ers. Control and status registers are used to control the operaiion of the CP U,
One obvious example is the program ccatnter. Another important example is
a program status word {J-SW} thait contains a variety of status and condition
bits. I hest: include hits to reflect the result of the most recent arithmetic - oper-
ation, interrupt enable bits, and an indicator of whin her the. CPU is execuling
in supervisor or user Mode,

• Processors make use of instruction pipelining to speed i.Lp execution. In
essence, pipelining involves bre.nking up the instruction cycle into a n umhyr •
of si,-..purate stages that occur in sequence. such as fetch instruction, decode
inst ruction, ruction, deterniine operand addresses, fetch operands, uxueute iiistruction.
and write operand result. Instructions move through these stages, a.s on an
assembly tine. so that in principle, each stage can be working on a difl:crent
instruction zii the _same. time. The occurrence of branches and dependencies
between iw.tructions compiicates the design and use of pipelines.

T his chapter discusses aspects of the processor riot vet covered in Part Thrce
and ,..el.s. the stage for the discussion of RISC and superscalar architecture in
('halters i3 and 14.

We begin with a summary of processor organization. Resisters, which form the
internal memory of the processor, are then analyzed. We are then in a position to
return lo the discussion (begun in Section 3.2) of the instruction cycle.. A doserip•
tion of the instruction cycle and a common technique known kL:i instruction pipelin-
ing complete our description. The chapter concludes with an examination of sonie
additional aspects. of the Pentium and PowerPC organizations.

12.1 PROCESSOR. ORGANTIZATIO.N

To understand the organizalion of the CPU, Let us consider the requirements placed
on the CPU, the things that it must do:

• Fetch instruction: '1 . 11(.2. (1:)1.. 1 reads an instruction from memory.
• Interpret instructiiin: The instruction is decoded to determine what action k

required.

12.1 / PROCF.ssoR ORGANIZATION 413

• F'etch data The execution of an instruction may require reading elate from
memory or an I/O module.

• Process data: The execution of an instruction may require. performing sc.inie
arithmetic or logical operation on data.

• iNrite data: The results of an execution may require writing data Lo. nul.rtiory
or an 110 module.

To do these things, it should be clear that the CPU needs to store some '111[1
temporarily. It must remember the location of the last instruction so [hat it in know
where to get the next instruction. II needs to store instructions and data temporar-
ily while an imtruetion is being executed- In other words. the CPU needs a small
internal memory.

Figure12.1. is a simplified view of a CPU, indicating its conncetitan in the rest
of the system via the symcmllii:i. A similar interface would be needed for any of Ihe
interconnection structures described in Chapter 3. The reader will recall IhaL t he

major components of the CPU are an arithmetic (mil fogie; (AM) and a corgi-of
taxi?' (CU), Thu ALIJ does 01,2 actual wmputation or processing of data. The con-
trol unit controls the movement of data and instructions into and out of the CFU
and controls the operation of the ALU. In addition. the figure show7:1 si minimal
internal memory, consisting of a sel of storage loe4itions, Sul led regiNgers.

Figure L2.2 is a slightly more detailed view of the CPU. The data transfer
and logic contrt31 paths are indicated, including an element labeled internal CPU
bus. This element is needed to transfer data between the various registers and the

I 111711'1.1

111111

('antral Data Acidness
bus bus bus

System.
B

Hone 12,1 The CPU wiLli the Systcm Bus

414 ['ALDER 1 2 cpu STRUCTURE AND FUNCTION

Figure 122 lRtursoaI Strnliire of kilt! cm.'

AU.;, because the ALU in fact operates only on data in the internal CPU mem-
ory. The figure also shows typical basic elements of the A UL Note the similarity
between the internal structure of the computer as a whole and the internal struc-
ture of 1he. CPU, In both ca C there is a small collection of major elements
(computer: CPU,

1/0. memory; CPU: control unit, ALU. registers) connected hy
data paths.

12.2 REGISTER ORGANIZATION

As we discussed in Chapter 4, a computer system employs a memory hierarchy. At
higher levels of the hierarch y.mernory is fasta, s (nailer, and more expensive (per bit).
Wiihin Llic CPU, there is ti set of registers that function as a level of memory ahtrvk:.
main memory and cache in the hierarchy. The registers in the CPU perform two roles:

■ User-visible registers: These enable the machine- or assembly-language pro-
grammer to minimize main memory references by optirnizin2 use of registers.

• Control ;:k Rd maths regigers:'Fhese are used by the control unit to control the
operation of the. CPU and by privileged. operating system programs to controi
the execution of programs.

121 / R_EG1STER. ORGANIZATION 415

There is not a clean separation of registers into these two categories. For
example. on some machines the program counter is user visible (e.g., Pentium), but
on many it is not (e.g.. PowerPC). For purposes of the following discussion, how-
ever, we will use these categories,

User—Visible Registers

A user-visible register is one that may be referenced by means of the machine lan-
guage that the CPU executes. We can characterize these in the following categories:

• General purpose
• Data
• Address
• Condition codes

General-purpose registers can be assigned to a variety of functions by the pro-
grammer, Sometimes their use within the instruction set is orthogonal to the opera-
tion. That is, any general-purpose register can contain the operand for any opcode.
This provides true general-purpose register use. Often, however, there are restric-
dons. For example. there may he dedicated registers for floating-point and stack
operations,

In some cases, general-purpose registers can be used for addressing functions
(e.g:, register indirect, displacement). In other cases, there is a partial or clean sep-
aration between data registers and address registers. Data registers may be used
only to hold data and cannot be employed in the calculation of an operand address.
Address registers may themselves be somewhat general purpose. or they may be
devoted to a particular addressing mode. Examples include the following:

• Segment pointers: In a machine with segmented addressing (see Section 8.3),
a segment register holds the address of the base of the segment. There may be
multiple registers: for example. one for the operating system and one for the
current process.

• Index registers: These are used for indexed addressing and may be autoindexed,
• Stack pointer: if there is user-visible stack addressing, then typically the stack

is in memory and there is a dedicated register that points to the top of the
stack. This allows implicit addressing; that is, push, pop, and other stack in-
structions need not contain an explicit stack operand.

There are several design issues to be addressed here. An important issue is
whether to use completely general-purpose registers or to specialize their use. We
have already touched on this issue in the preceding chapter. because it affects
instruction set design, With the use of specialized registers, it can generally be im-
plicit in the opcode which type of register a certain operand specifier refers to The
operand specifier must only identify one of a set of specialized registers rather than
one out of all the registers, thus saving bits. On the other hand, this specialization
limits the programmer's flexibility.

416 CHAPTER 12 / CPU STRUCTURE AND FUNCTION

Another design issue isihe number of registers, either general purpose or data
plus address, to be provided. Again, this affects instruction set design because more
registers require more operand specifier hits. As we previously discussed, some-
where between 8 and 32 registers appears optimum I LUND77], Fewer registers
result in more memory references; more registers do not noticeably reduce memory
references (e.g„ see I WILL90]). However, a new approach, which finds advantage
in the use of hundreds of registers, is exhibited in some RISC systems and is dis-
cussed in Chapter 13.

Finally. there is the issue of register length. Registers that must hold addresses
obviously must be at least long enough to hold the largest address. Data registers
should he able to hold values of most data types. Some machines allow two con-
tiguous registers to be used as one for holding double-length values.

A final category of registers, which is at least partially visible to the user, holds
condition cedes (also referred to as,flags). Condition codes are bits set by the CPU
hardware as the result of operations. For example, an arithmetic operation may pro-
duce a positive, negative, zero, or overflow result. In addition to the result itself
being stored in a register or memory, a condition code is also set. The code may sub-
sequently he tested as part of a conditional branch operation,

Condition code bits are collected into one or more registers. Usually, they
form part of a control register. Generally, machine instructions allow these bits to
be read by implicit reference, but the programmer cannot alter them.

In some machines, a subroutine call will result in the automatic saving of all
user-visible registers, to be restored on return. The CPU performs the saving and
restoring as part of the execution of call and return instructions. This allows each
subroutine to use the user-visible registers independently. On other machines, it is
the responsibility of the programmer to save the contents of the relevant user-
visible registers prior to a subroutine call, by including instructions for this purpose
in the program_

Control and Status Registers
There are a variety of CPU registers that arc employed to control the operation of the
CPU. Most of these. on most machines, are not visible to the user - Some of them may
be visible to machine instructions executed in a control or operating system mode-

Of course, different machines will have different register organizations and use
different terminology. We list here a reasonably complete list of register types. with
a brief deseription.

Four registers are essential to instruction execution:

• Program counter (PC): Contains the address of an instruction to be fetched,
• Instruction register (1R): Contains the instruction most recently fetched,
• Memory address register (MAR); Contains the address of a location in memory.
• Memory buffer register (AMR): Contains a word of data to be written to mem-

ory or the word most recently read.

Typically, the CPU updates the PC after each instruction fetch so that the PC
always points to the next instruction to he executed. A branch or skip instruction

12.2 / REGISTER ORGANIZATION 417

will also inodif!,. , the contents of the PC. The fetched instruction is loaded into an
F R, where the opcode and operand specifiers are analyzed. Lehi are exchanged with
memory using the ".viAR and MBR. In 41 bu -urganixed System : the MAR connects
directly to the 4i ddress bux, a nc3 the MRR connects direct]to the data bus. User-
visible registers, in turn, exchange data with the MBR.

The four registers just mentioned are used for he movcrnent of data between
the CPU and mcmory. Within lite CPU, data must be presented to the ALU for pro-
cessing. 'Ffie ALAI may have direct access to the NIBR and user-visible registers.
Alternatively, there may be additional buffering registers kit !he boundary to the
ALU: these registers serve as input and outpui registers for the ALL: and exchange
data with the 7v111 El and user-visible registers.

Alt CPU designs include a register or set of registers, often known as the
program surgo es word (PSW), that contain status information, 'De PSW typically con-
tains condition codes plus other stitus in rorrnation. Common fields or flags include
the following:

• Sign: Contains the sign bit of the result of the last arithmetic operation.

■ Zero: Set when the result is O.

• Carry; Set if an °petal ion resulted in a carry (addition) into or borrow (sub-
traei ion) Out of a high-order bit. Used for multiword arithmetic operations,

■ Equal:Set if a Logical compare result is equality,

• Overflow: Used to indicate 4irithmoik overflow.

* Interrupt enable/disable: Used to enable or disable interrupts.

* Supervisor; Indicates whohcr the. CPU is L.xectiting in supervisor or user
mock Certain privileged instructions can be executed only in supervisor mode,
and certain areas of memory can be accessed only in supervisor mode.

A number of other registers related to status and control might be Cound in a
particular CPU design. In addition to the NW. there may be a pointer to a block of
memory containing additional status information (e.g., process control blocks). In
machines using vectored interrupts, an interrupt vector register may be provided. I
a stack is used to implement certain functions (e.g., subroutine call). then a system
stack pointer is needed. A page table pointer k uz,ed with a virtual memory system.
Finally, registers. may be used in the control of I/O operations.

A number of factors go into the design of the control iind status register orga-
nization. One key issue is operating system support, Certain Iypes or control infor-
mation are of specific utility to the operi Li ng system. If the CPU designer has a
functional understanding of the operating system to he used, then the register orga-
nizatit-an can to some extent be tailored to the operating system,

Another key design decision is the alloeation of control information between
registers and memorv, II is common to dedicate the first (lowest) few hundred or
thousand words of memory for control purposes. The designer must decide how
much control in formai ion Nh(alki be in registers and how much in memory. The
usual trade-Of I of cosi speed arises.

418 CHAPTER 12 / CPU STRUCTURE AND FUNCTION

Example Microprocessor Register Organizations

It is instructive to examine and compare the register organization of comparable sys-
tems. In this section, we look at two 16-bit microprocessors that were designed at
about the same time: the Motorola [v1058000 ISTRI79] and the Intel 8086 1MORS781.
Figures 12.3a and b depict the register organization of each; purely internal regis-
ters, such as a memory address register, are not shown.

The MC6S(1) partitions its 32-bit registers into eight data registers and nine
address registers. The eight data registers are used primarily for data manipulation
and are also used in addressing as index registers. The width of the registers allows
8-, 16-, and 32-bit data operations, determined by opcode, 'I he address registers con.
lain 32-bit (no segmentation) addresses; two of these registers are also used as stack
pointers, one for users and one for the operating system, depending on the current ex-
ecution mode. Both registers are numbered 7, because only one can be used at a
time. The MC68000 also includes a 32-bit program counter and a 16-bit status register.

The Motorola team wanted a very re gular instruction set. with no special-
purpose registers, A concern for code efficiency led them to divide the registers
into two functional components, saving one bit on each register specifier. This seems
a reasonable compromise between complete generality and code compaction.

The Intel 8086 takes a different approach to register organization, Every reg-
ister is special purpose, although some registers are also usable as general purpose.
The 8086 contains four 16-bit data registers that are addressable on a byte or 16-bit
basis. and four 16-bit pointer and index registers. The data registers can be used as
general purpose in some instructions. In others, the registers are used implicitly. For
example, a multiply instruction always uses the accumulator. The four pointer reg.
isters are also used implicitly in a number of operations; each contains a segment
offset. There are also four 16-bit segment registers, ' l'hree of the four segment reg-
isters are used in a dedicated. implicit fashion, to point to the segment of the cur-
rent instruction (useful for branch instructions), a segment containing data, and a
segment containing a stack. respectively. These dedicated and implicit uses provide
for compact encoding at the cost of reduced flexibility, The 8086 also includes an
instruction pointer and a set of 1-bit status and control flags.

T'he point of this comparison should be clear. There is, as yet, no universally
accepted philosophy concerning the best way to organizc.CPU registers [TOON811.
As with overall instruction set design and so many other CPU design issues. it is still
a matter of judgment and taste.

A second instructive point concerning register organization design is illus-
trated in Figure 12.3c. This figure shows the user-visible register organization for the
Intel 803K6 ELAYS.51, which is a 32-bit microprocessor designed as an extension of
the 8086.' The 80386 uses 32-bit registers. However. to provide upward compatibil•
ity for programs written on the earlier machine, the S0386 retains the .original reg-
ister organization embedded in the new organization. Given this design constraint,
the architects of the 32-hit processors had limited flexibility in designing the regis-
ter organization.

I BC,7.3 We the MC650(K) already uses 32•hit registers. the MCMO20 [IACCI&4]. which is H lull 32-hit arch-
texture. use's the Ski me register organization.

Instr. Ptr
Flap

AX
BX

DX

SP
BP
Si

CS
DS
SS
ES

luenerat registers

X
EBX
ECX
EDX

ESP
EBP
ESI
EDI

t;enerat registers

urnulatur
Bast BX

C |
Data DX

Pointer & Index SP
!:Stii21... pointer BP
t Base poiiiter SI
iSource irides

Desi
Program status

Segmtni FLAGS register
Corte Instruction pointer
Data

(c) 89386—Pentitun Stack.
Extra

Program status

Data registers
DO
D
D2
D3
D4
D5
D6
D7

Address registers
AU
Al
A2
A3
k4

A5
A6
A7
AT

Program status

1-i) 8086

Program C01111 ter

Status regisitr.r

(a) MC 68000

Figure 113 Example 'Microprocessor Register Organizaiticirls

120 APTF.R. 12 or CPU STRUCTURE AND FUNCTION

In Section 3.2, we described the CPUs instruction cycle (Figure 3,9), To recall, an
instruction cycle includes the following suhcycles:

• Fetch: Read the next instruction from memory into the CPU,
• Executer Interpret the opcode and perform the indicated operation.
• Interrupt: If' inierrupi,s4.ire enabled and an interrupt has occurred, save the cur-

rent process state and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First,
we mint introduce one ,ridditional subcycie, known as the indirect eycic,

The Indirect Cycle

We have seen, in Chapter 11, that the execution of an insLruction may involve one
ter more operands in memory, each of which requires a memory access. Further, if
indirect addressing is used, [hen additional memory accesses are required,

We can think or the fetching of indirect addresses as one more insiruci ion sub.
cycle. The result is shown in Figure 12,4. The main line of activity consists of alter-
nating instruction fetch and instruction execution activiii.e. After an instruction is
fetched, it is examined to determine if' any indirect addressing is involved. If so, the
required operands are fetched using indirect addressing. Following execution, an
interrupt may he processed before the next instruction fetch.

Another way to view this process is shown in Figure 12.5, which is a revised
version of Figure 3.12, 'Ibis illustrates more correctly the nature of ihe instruction
cycle. Once an instruction is fetched, its operand specifiers rriusi, be identified. Each

Figure 12.4 The Instruction Cycle

Indirection

Operand
fetch

Indirection

Operand
store

Instruction
fetch

I,
• liel al tipic
operand.;

Instruction
operation
decoding

Multiple
rcsulN

Interrupt
check

Instruction
address
calculation

Operand
address
cal•utation

llisttuction complete,
Itch next itHtruc:Lion

Operand
address
calculation

Data
operation

for suing
for data

Het-tu.
No
i nternipr

OT VOL

Figure 12.5 Instruction Cycle Stag Diagram

422 CHAPTER 12 / CPU STRUCTURE AND FUNCTION

Atidre,ss Ihita (.4intrril
bus bus bus

MBR = bethrniary huller IVEMtiff

MAR =Memory addrc:.::.: rc8isccr
tft = instmetion register
PC = Program

Figure 116 Data Flow. Fetch Cycle

input operand in memory is then fetched. and this process may require indirect
kg addressing. Register-based operands need not he fetched. Once the oprode is exe- tp

cuted, a similar process maybe. needed to store the result in main memory.

Data Flow

The exact sequence of events during an instruction cycle depends on the design
of the CPU. Wu can, however, indicate in general terms what must happen. Lei us
assume that a CPU that employs a memory address register (MAR), a merruiry
buffer register {rvIBR}. a program counter (PC), and an instruction register (IR).

During the filch cycle, an instruction is read from memory. Figure 12,6 shows
the flow of data during this cycle. The PC coniiiiris the address of the next instruc-
tion to be fetched. This address is moved to the MAR and placed on the address
bus. The control unit requests a memory read, and the resell is piaced on the data
bus and copied into the MBR and then moved to the 1R. Meanwhile, the PC is
inuCtricn Led by 1, preparatory for the next retch,

Once the fetch cycle is over, the control unit examines the contents of the IR
to determine if it contains an operand specifier using indirect addressing. If so, an
indire'c't cycle is performed. As shown. in Figure 117, this is a si mple cycle. The righl-
mosi NI hits of the MBR, which contain the address reference, are transferred to the
M.R. Then the control unit requests a memory read, to get the desired address of
the operand into, the MBR.

The fetch and indirect cycles are simple and predictable, The execure cycle
takes many forms; the form depends on which of the various machine instructions

iMemory

CPU

MAR 7.7

< -9_

_>.

I 2.3 I NSTP-UCTION CYCLE 423

Address Data Control
bus bus bus

Figure 12.7 DatR Flow, I lidimet Cycle

is in the IR. This cycle may involve transferring data among registers_ rcad or write
from memory or I/O, and/or I hi: invocation or the All!.

Like the fetch and indirect cycles, the inierrapt cycle is simple and predictable
(Figure 12.8). The current contents of the PC must be saved so that ihc CPC eAn
resnrw normal activity all L=r . the interrupt_ Thus, the contents of the PC.' arc trans-
ferred to the MRR to lie written into memory. The special memory location reserved
for this purpose is loaded into the MAR from the control unit, it might, for 'examplc,
be a stack pointer. The PC is loaded with the atldro.s of the interrupt routine. As 2)
result, the next instruction cycle bcgin by fetching the appropriate instruction.

(.

I`C MAR

Memory

Control 1

Unit .

NI1311.Z

Address Data Control
Bus Bus lies

Figure 12.8 Data Flow, Interrupt Cycle

424 CHAPTER 12 / CPU STRUCTURE AND FUNCTION

12.4 INSTRUCTION PIPELINING

As computer systems evolve, greater performance can be achieved by taking advan-
tage of improvements in technology, such as faster circuitry. In addition, organiza-
tional enhancements to the CPU can improve performance, We have already seen
some examples of this, such as the use of multiple registers rather than a single ac-
cumulator, and the use of a cache memory. Another organizational approach, which
is quite common, is instruction pipelining,

Pipelining Strategy

Instruction pipelining is similar to the use of an assembly line in a manufacturing
plant. An assembly line takes advantage of the fact that a product goes through var-
ious stages of production. By laying the production process out in an assembly line.
products at various stages can be worked on simultaneously. This process is also
referred to as pipelining, because, as in a pipeline, new inputs are accepted at one
end before previously accepted inputs appear as outputs at the other end.

To apply this concept to instruction execution, we must recognize that, in fact,
an instruction has a number of stages. Figure 12.5, for example, breaks the instruc-
tion cycle up into 10 tasks, which occur in sequence. Clearly, there should be some
opportunity for pipelining,

As a simple approach, consider subdividing instruction processing into two
stages; fetch instruction and execute instruction, 'Fficre are times during the execu-
tion of an instruction when main memory is not being accessed. This time could he
used to fetch the next instruction in parallel with the execution of the current one,
Figure 12,9a depicts this approach. The pipeline has two independent stages. The
first stage fetches an instruction and buffers it. When the second stage is free, the
first stage passes it the buffered instruction. While the second stage is executing
the instruction. the first stage takes advantage of any unused memory cycles to fetch
and buffer the next instruction. This. is called imtruction prefeich or fetch (Pverifirp.

It should he clear that this process will speed up instruction•execution. If the
fetch and execute stages were of equal duration, the instruction cycle time would be
halved. However, if we look more, closely at this pipeline (Figure 12.9b), we will see
that this doubling of execution rate is unlikely for two reasons:

1. The execution time will generally be longer than the fetch time. Execution
will involve reading and storing operands and the performance of some oper-
ation. Thus, the fetch stage may have to wait for some lime before it can
empty its buffer.

2. A conditional branch instruction makes the address of the next instruction to
be fetched unknown. Thus, the fetch stage must wait until it receives the next
instruction address from the execute stage. The Qxecute stage may then have
to wait while the next instruction is fetched.

Guessing can reduce the time loss from the second reason. A simple rule is the fol-
lowing; When a conditional branch instruction is passed on from the fetch to the

InAtructinn

tko Simplified view

Neuf address

Instruction
aprZre0.. ..PA

14]Xeciii.fe Fetch

Result

12.4 1 INSTRUCTION PIPELINING 425

Distaoil

(to 14....xpnoded view

Figure 12.9 Two-Stage Insirticiion Pipeline

execute stage, the fetch stage fctches the next instruction in memor!,.. after the
branch instruction. Then, if the branch is not taken, no time k lost. If the branch is
taken. the fetched instruction room be discarded and a new instruction retched,

While these factors reduce the potential effectiveness of the two-stage piNline,
some speedup oc.curs. ' l'o gain further speedup. the pipeline must have more stages.
Let us consider the following decomposition of the instruction processing.

• Fetch instruction (FI): Read the nem. Opeeled instruction into a buffer.

• Decode instruction ow Determine the opcode arid the operand specifiers.

• Calculate operands (COO Calculate the effective address of each source
operand. This may involve displacement. register indirect, indirect, or other
forms of address Liileula Lion.

• Fetch operands (FO); Fetch each operand from memory. Operands in regis-
ters need riot be fetched.

• Execute instruction (ED: Perform the indicated operation and store the result,
if any, in the specified destination operand loction.

• Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal dura-
tion. For the sake of ilhistration, let us assume equal duration. Using lhis assump-
ti on. Figure 12.10 shows that a six-stage pipeline can reduce the execution time for
9 instructions from 54 time units to 14 time units.

Several comments are in order: The diagram assumes that each instruction
goes through al] six stages of the pipeline. This will not always be the case. [or
examIlle. a load instruction does not need the WO stage, However, to simplify the

426 C:HAPTER 12 / CPU STRUCTURE AND FUNCTION

Time

I , 1 2 3 I 4 I 5 1fr1 7 I 8 9 I 10 I 11 1 12 1 13 1 14 1

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

instruction 6

Instruction 7

Instruction

Instruction 9

Figure 12,10 Tirninsz Diagram for Instruction Pipeline Opclatioti

pipeline. hardware, the timing is set up assuming that each insiruction requires all
six stages. Also, the diagram assumes that all of the. stages can be performed in par-
allel. In particular, it is assumed that there are no memory conflicts. For cxamplu,
the F1, FO, and WO stages involve a memory access. The diagram implies that all
these accesses can occur simultaneously, Most memory systems will not permit that.
However, the desired value may he in c,:iche, or the FO or It/V0 stage may be null.
Thus, much of the lime., memory conflicts will not slow down the pipeline.

Sevtaa I odicr factors serve to limit the performance enhancement, if the six
stages are not of equal duration, there will be some waiting involved at various
pipeline stages, as discussed before for the two-stage pipeline. Another difficulty is
the conditional branch instruction, which can invalidate several instruction retches.
A similar unpredictable event is an interrupt. Figure 12,11. illustrates the effects of
the. conditional branch. using the same program as Figure 12..10. Assume that
instruction : is a conditional branch to instruction 15. Until the instruction is exe-
cuted, there is no way of knowing which instruction will come next. The pipeline, in
this example, simply loads the next instruction in sequence (instruction 4) and pro-

peline stages, as discussed before for the two-stage pipeline. Another difficulty is
the conditional branch instruction, which can invalidate several instruction retches.
A similar unpredictable event is an interrupt. Figure 12,11. illustrates the effects of
the. conditional branch. using the same program as Figure 12..10. Assume that
instruction : is a conditional branch to instruction 15. Until the instruction is exe-
cuted, there is no way of knowing which instruction will come next. The pipeline, in
this example, simply loads the next instruction in sequence (instruction 4) and pro-

12,4 / INSTRUCTION PIPELINING 427

seeds. In Figure 12..10, the branch is not taken, and we get the full performance ben-
efit of the enhancement. In.Fig.ure 1.2.11, the. branch is taken. This is not determined
until the end of time unit 7, Al this point, the pipdiaw. must be cleared of instrue-

Lhat arc. not useful- During unit 8, insiruction l5 enters the pipeline. No
instructions complete during time units 9 through 12.; this is the performance penalty
incurred because. we could not anticipate the branch. Figure 12.12 indicates the lOgiC
needed for pipc,lining to acuount l'orbmnulies and interrupts.

Other problems arise that did not appear in our simple two-stage organiza-
tion. The CO stage may depend on the contents of a register that could be altered
by a previous instruction that is still in the pipeline. Other such rcgisier and mem-
ory eunilicts could occur- The. Nys.11 cm must con Li fl logic to account for this type
or conflict.

To clarify pipeline operation, it might be useful to look at an alternative depic-
tion. Figures 1.2.111 and 12,11 show the progression of time horfc.orua I ly across the
figures. with each row 1.,howing [hi: progress of Lin individual instruction. Figure 12.13
shows same sequence of events, with time progressing vertically down the figure.

Time Branch l'enaltv

1 1 1 2 1 3 l 4 I 5 I 6 1 7 1 8 I 9 I 10 I 11 I 12 I 13 I 14 I

I FL I DI I co I Fi..) I Et I wol 1 1 1 1 1 1 9 I Instruction 1 41-11.4-1101-11.41-0041-11P41-11, 1 1 1 1 1 1 1 i 1 1 1 1 I I I
I I

Fl I Dl I CO I FO I El 1 1 C1 I
I I I I I I I

Instruction 2 I 141-111441-1441-0014-11141-111411-1/1 I I I I I I I

I I I I I I 1 I I I I I I I I

Instruction 1 1 1..41.) DI , co 1.6114F241:90 1 1 1 1 1 1 3

I I I I FIIDEleolloti.1 I 1 1 1 1 1 1
Instruction 4

I I I 1
-4

1
41-11.
1I I I I

I I I I r [I I in t
Instruction 5 1 1 1 1 14-114-4—kii—m

I I I I I I 1 I I I I I I I I

Instruction ti
1 1 1 1 1 1 1 1 1 I I I
I I I I I I I F"! I ! I I I ! !

Instruction 7 I I I I I 1 1 I I I ! I I I
I I I I I I I I ! l i l t ! !

Instruction 1
ki DI CO FO ET WO

5 I 1 I 1 I I I 11--0141-41441--014-0141--14110-4.1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 III III II Fl DI 11-41 Fi) 1' 0I Instruction /6 -4—or 4-10.1-4, 4-0- 4-0- 4-0
I I I I I I I I I t I I I I I

Figure 12.11 The Effoct of a CondiLional Branch on Instruclion Fiparic Operation

Figure 12.12 Six -Stage C'NJ lostruction Pipeline

428

034.p.:01," .}10}10.71oregoP50

111 1
13 12

It ti iR 17 16 15 19

16 1 15 1 14 1 13

rlc 17 16115

.orerer44,54.+107-Pe
111111 till

...10:0,97% er-Par-li:

1:1

7

9

10

II

I2

Ii

14

8

9

10

12

13

14

17 g rs

12.4 INS1 RUCTION NPR WING 429

and ciich row showing Lhc stoic of the pipeline at a given point in time. In Figure
3a (which corresponds to Figure 2,10). the pipeline is full at time 6. with 6 dif-

ferent instructions in various stages of execution. and remains full through time 9;
we assume that instruction 1' is the Iasi instruction to he executed. I n Figure 12.13n.
(which corresponds lo Figure 12.11), the pipeline is full at times 6 and 7. At time 7,

1 1 1 DI 11'0 [1 .0 1 1,1 wo

12 II

4 [4 13 E2 n 14 1.3 : 12 I U

77. 15 '4 13 I 12 I II 15 I 14 1 13 il2 I 11

ta1 No brunches

Figure 12.13 An Alternative Pipeline Depiction

1,1) W.1 Ii t as11411141.BoI 1 1.1' a 11i In

430 CHAPTER 12 / CPU STRUCTURE ANL) FUNCTION

instruction 3 is in the execute stage and executes a branch to instruction 15. At this
point, instructions 14 through 17 are flushed from the pipeline, so that at time 8, only
two instructions are in the pipeline, 13 and 115.

From the preceding discussion, it might appear that the greater the number
of stages in the pipeline, the faster the execution rate. Some of the IBM &MO
designers pointed out two factors that frustrate this seemingly simple pattern for
high-performance design [ANDE67a], and they remain elements that designer
must still consider:

1. At each stage of the pipeline., there is some overhead involved in moving data
from buffer to buffer and in performing various preparation and delivery func•
tions. This overhead can appreciably lengthen the total execution time of a sin-
gle instruction. This is significant when sequential instructions are logically
dependent, either through heavy use of branching or through memor!, , access
dependencies.

2. The. amount of control logic required to handle memory and register depen-
dencies and to optimize the use of the pipeline increases enormously with the
number of stages.. This can lead toy situation where the logic controlling the
gating between stages is more complex than the stages being controlled.

Instruction pipelining is a powerful technique for enhancing performance but
requires careful design to achieve optimum results with reasonable complexity.

Pipeline Performance
In this subsection, we develop sonic simple measures of pipeline performance and
relative speedup (based on a discussion in IHWAN931). The cycle time -r of an
instruction pipeline is the time needed to advance a set of instructions one stage
through the pipeline; each column in Figures 12.10 and 12.11 represents one cycle
time. The cycle time can he determined as

= mitx[rd + d = d l ei k

where

T„, = maximum stage delay (delay through stage
which experiences the largest delay)

k = number of stages in the instruction pipeline
ri

	

	ti me. delay of a latch, needed to advance signals
and data from one stage to the next

In general, the time delay d is equivalent to a clock pulse and -r„, >> d. Now
suppose that n instructions arc processed, with no branches. The total time required

to execute all n instructions is

Te. = [k (n — 1)] T 02.0

12.4 INSTRUCTION PIPELINING 431.

A total of k cycles are required to complete the execution of the first insiruc-
tion, and the remaining n I instructions require n — 1 cvelus- 2 This equation k

verified from Figure 12.1[1- The ninth instruct ion completes at time cycle]4:

14 = [6 — (9 — l)j

The speedup factor for the instruction pipeline compared to execution with-
oul the pipeline is defined as

/tiro- lik

T.([k + fro 1)]'r

▪

k - I)
(12.2)

Figure 12.14a plots the speedup factor as a function of the number of instruc-
tions that are executed withou1 a branch. As might be expected, at the limit x),
wc have a k-fold speedup. Figure 12,14h shows the speedup factor as a function of
the number of sta.:4es in the instruction pipeline.` Iii this ease, the speedup factor
approaches the number of instructions that can be fed into the pipeline without
branches. Thus, Ihe Larger the number of pipeline stages. the greater the potential
for speedup. I Iowever. as a practical matter, the potential gains of additional
pipeline, stages are aninIered by increases in cost, dc.]ays between stages, and the
fact that branches will be encountered requiring the flushing of the pipeline,

Dealing with Branches

One of the major problems in designing an instruction pipeline is assuring a steady
flow of instructions to the initial stages of the pipeline. The primary impediment, as
we have seen, is the conditional branch instruction. Until the instruction is actuall!,.
executed, it is impossible to determine whether the branch will he takes or 1101,

A variety of approaches have been taken for dealing with condition;i1 branches:

• Multiple streams
• Prefetch branch target
• Loop buffer
• Branch predictic.in
• Delayed branch

Multiple Streams

A simple pipeline suffers a penalty for a branch instruction because it must
choose one of two instructions to feCeh next and may make the wrong choice. A
brute-force approach is to replicate the initial portions of the pipeline and allow the

' We are being ki hie slopm: hem. The eyc10 circle only equal Ebc maximum vulva it 7 when all thd
stuger. FITE Full. At Etc bLprining, cycle Li mL inHy hex JeSS Ear 1.1.1...1. first Fri 1)1: lcw CyCl.eS.

'Note that 1.11.e x-axis is logarithmic . in Figurc 12.14a and linear in Figure 12.341'.

432 CI IAPTER 12 / CPU STRUCTURE AND FUNCTION

4 1 6 32 64 128

Number of instructions

lal

0 5 10 1 5 20

Number of stages

1h)

Figure 12.14 Sptcdup Factors with Instruction

12.4 / INSTRUCTION PIPELINING 433

pipeline to fetch both insmictions, making use of two streams. There are two prob-
lems with this approach.:

• With multiple pipelines there are contention delays for access to the registers
and to memory.

• Additional branch instructions may enter the pipeline (either stream) before
the original branch decision is resolved. Each such instruction needs an addi-
tional stream.

Despite these drawbacks, this strategy can improve performance, Examples of ma-
chines with two or more pipeline streams are the IBM 370/168 and the IBM 3033.

Prefetch Branch Target
When a conditional branch is recognized. the target of the branch is pre-

fetched, in addition to the instruction following the branch. This target is then saved
until the branch instruction is executed. If the branch is taken, the target has already
been prefetched.

The IBM 360191 uses this approach,

Loop Buffer
A loop buffer is a small, very-high-speed memory maintained by the instruc-

tion fetch stage of the pipeline and containing the n most recently fetched instruc-
tions, in sequence. If a branch is to be taken, the hardware first checks whether the
branch tarRet is within the buffer. If so, the next instruction is fetched from the
buffer. The loop buffer has three benefits;

1. With the use of prefetching, the loop buffer will contain some instruction
sequentially ahead of the current instruction fetch address. Thus, instructions
fetched in sequence will be available without the usual memory access time.

2. If a branch occurs to a target just a few locations ahead of the address of the
branch instruction, the target will already be in the buffer, This is useful for
the rather common. occurrence of IF—THEN and IF—THEN—ELSE. sequences.

3. This strategy is particularly well suited to dealing with loops. or iterations;
hence the name loop bffer. If the loop buffer is large enough to contain all
the instructions in a loop, then those instructions need to be fetched from
memory only once, for the first iteration. For subsequent iterations, all the
needed instructions are already in the buffer.

The loop buffer is similar in principle to a cache dedicated to instructions. The
differences are that the loop buffer only retains instructions in sequence and is much
smaller in size and hence lower in cost.

Figure 12.l5 gives an example. of 41 loop buffer. If the buffer contains 256 bytes,
and byte addressing is used, then the least significant. 8 bits are used to index the
buffer. The remaining most significant bits are checked to determine if the branch
target lies within the environment captured by the buffer.

Loop buffer
{256 bytes P

Instruction to be
denuded in case of hit

Must significant address bits
compared to determine a hit

434 CHAPTER 12 CPU STRUCTURF. AND FUNCTION

Among the machines using a loop huller are some or the CDC machines (Star-
100, 6600, 7600) and the CRAY-1_ A specialized form or loop buffer is available on
the Motorola 68010, for executing a three-instruction loop involving the DBcc
(decrement and branch on condition) instruction (see Problem 12.6). A three-word
buffer is maintained, and the processor executes these instructions repeatedly until
the loop condition is satisfied.

Branch Prediction

Various techniques can be used to predict whether a branch will be taken.
Among the more common are the following:

• Predict never taken
• Predict always taken
• Predict by opcode
• Taken/not taken switch
• Branch history able

The first three approaches are static: They do not depend on the execution his-
tory up to the time of the conditional branch instruction. The latter two approachcs
are dynamic: They depend on the execution history.

The first two approaches arc the simplest. These either always assume that the
branch will not be taken and continue to fetch instructions in sequence, or they
always.assume that the branch will be taken and always fetch from the branch tar.
get. The 68020 and the VAX 11/780 use the predict-never-taken approach. The
VAX 111780 also includes a feature to minimize the effect of a wrong decision. If
the fetch of the instruction after the branch will cause a page fault or protection vio-
lation, the proceswr halts its prefetching until it is sure that the instruction should
be fetched.

Branch address

Figure 12.15 Loop Buffer

12.l INSTRUCTION PIPELINING 435

Studies analyzing program behavior have shown that conditional branches are
taken more than 50% of the time [LILJ88], and so if the cost of prefetching from
either path is the same, then always prefetching from the branch target address
should give better performance than always prefetching from the sequential path.
However, in a paged machine. prefetching the branch target is more likely to cause
a page fault than prefetching the next instruction in sequence, and so this perfor-
mance penalty should be taken into account, An avoidance mechanism may he
employed to reduce this penally.

The final static approach makes the decision based on the opcode of the
branch instruction. The processor assumes that the branch will be. taken for certain
branch opcodes and not for others. fl,11-PiK1 reports success rates of greater than
75% with this strategy.

Dynamic branch strategies attempt to improve the accuracy of prediction by
recording the history of conditional branch instructions in a program. For example,
one or more bits can be associated with each conditional branch instruction that
reflect the recent history of the instruction. These bits arc referred to as a taken/not
taken switch that directs the processor to make a particular decision the next time
the instruction is encountered. Typically. these history bits are not associated with
the instruction in main memory. Rather, they are kept in temporary high-speed
storage. One possibility is to associate these bits with any conditional branch
instruction that is in a cache. When the instruction is replaced in the cache. its his-
tory is lost. Another possibility is to maintain a small table for recently executed
branch instructions with one or more bits in each entry. The processor could access
the table associatively, like a cache, or by using the low-order hits of the branch
instruction's address.

With a single hit, all that can be recorded is whether the last execution of this
instruction resulted in a branch or not. A shortcoming of using a single bit appears
in the case of a conditional branch instruction that is almost always taken, such as a
loop instruction. With only one bit of history, an error in prediction will occur twice
for each use of the.loop: once on entering the loop, and once on exiting.

If two bits are used, they can be used to record the result of the last two
instances of the execution of the associated instruction. or to record a state in some
other fashion. Figure 12.16 shows a typical approach (see Problem 12.5 for other
possibilities). Assume that the algorithm starts at the upper left-hand corner of the
flowchart. As long as each succeeding conditional branch instruction that is encoun-
tered is taken, the decision process predicts that the next branch will be taken. If a
single prediction is wrong, the algorithm continues to predict that the next branch
is taken. Only if two successive branches are not taken does the algorithm shift to
the right-hand side of the flowchart, Subsequently, the algorithm will predict that
branches arc not taken until two branches in a row are taken. Thus, the algorithm
requires two consecutive wrong predictions to change the prediction decision.

The decision process can be represented more compactly by a finite-state
machine, shown in Figure 12.17. The finite-state machine representation is com-
monly used in the literature.

The use of history bits, as just described, has one drawback: if the decision is
made to take the branch, the target instruction cannot be fetched until the target

Branch
taken?

Branch
taken?

Read next
conditional
branch 'rar

Read next
cowl itiona1
branch instr

Predict taken Predict not taken

Predict not taken

Branch
taken?

Branch
taken?

YeN.

Nrc ,,

Read next
conditional
branch Inst•

Read next
conditional
branch instr

436 CIIAPTER 12 e! CPU STRUCTURE AND FUNCTION

address, which is an operand in the conditional branch instruction. is decoded.
Greater efficiency could be achieved if the instruction fetch could he initiated as
soon as the branch decision is made. For this purpose. more information must be
saved, in what is known as a branch target buffer, or a branch history table.

The branch history table is a small cache memory associated with the in-
struction fetch stage of the pipeline. Each entry in the table consists of three ele-
ments: the address of a branch instruction, some number of hist ory bits that record
the state of use of that instruction, and information about the target instruction. In
most proposals and implementations, this third field contains the address of the tar-
get instruction. Another possibility is for the third field to actually contain the. tar-
get instruction. The trade-off is clear: Storing the target address yields a smaller
table but a greater instruction fetch time compared with storing the target instruc-
tion IRECH981.

Figure 12.16 Branch Prediction Flowchart

12,4 / INSTRUCTION PIPELINING 437

Taken

Not taken

Figure 12.17 Branch Prediction State Diagram

Figure 12.18 contrasts this scheme with a predict-never-taken strategy. with
the former strategy, the instruction fetch stage always fetches the next sequential
address. If a branch is taken. some logic in the processor detects this and instructs
that the next instruction he fetched from the target address (in addition to flushing
the pipeline). The branch history table is treated as a cache. Each prefetch to
a lookup in the branch history table. If no match is found, the next sequential
address is used for the fetch. if a match is found, a prediction is made based on the
state of the instruction: Hither the next sequential address or the branch target
address is fed to the select logic.

When the branch instruction is executed, the execute stage signals the branch
history table logic with he result. The state of the instruction is updated to reflect
a correct or incorrect prediction. lithe prediction is incorrect, the select logic is redi-
rected to the correct address for the next fetch. When a conditional branch instruc-
tion is encountered that is not in the table, it is added lo the table and one of the
existing entries is discarded, using one of the cache repl;icernent algorithms dis-
cussed in Chapter 4.

One example of an implementation of a branch history table is the Advanced
Micro Device AMD,2 1)0911 microprocessor.

Delayed Branch
It is possible to improve pipeline performance by automatically rearranging

instructions within a program, so that branch instructions occur later than actually
desired. This intriguing approach is examined in Chapter 13.

1 6:1111T{1 Branch miss
hondling

B ranch
roil ruction

.r tl res.,

Next sequential
address

1:ir el

add ITss State.

Add new
entry

I.. ['date
stkIte

438 CHAPTER 12 r C:PU sTRucrugl. AND FUNCTON

Next sequential
address

Memory

Branch tnim

(a) Predict never Ia ke.i strategy

(la} Brandt history table strategy

.105 re. I2.18 Dealing with Brunches

lkleranry

IPFAR = Instruction
prefix address re-gister

12.4 / INSTRUCTION PFETTAN1NG 439

Intel 80486 Pipelining

The 80486 implements a five-stage pipeline:

• Fetch: Instructions are fciched from the cache or from external memory and
placed into one of the two 16-byte prefetch buffers- l'he objective of the fetch
stage is to fill the prefetch buffers with new data as soon as the old data have
been consumed by the instruction decoder. Because instructions are of variable
length (from 1 to 11 bytes not counting prefixes). the status of the prefetoher
relative to the other pipeline stages varies from instruction to instruction. On
average, about five instructions are fetched with each 16-byte load [CRAW-)01.
The fetch stage operates independently of the other stages to keep the pre-
fetch buffers full.

• Decode stage 1: All c.)pcbde and addressing-mode information is decoded in
the D I stage. The required in formation, as well as instruction-length informa-
tion, is included in at most the first 3 bytes of the instruction. Hence. 3 bytes
are passed to the DI stage from the prefetch buffers. The D1 decoder can then
direct the D2 stage to capture the rest of the instruction (displacement and
i mmediate data), which is not involved in the 1)1 decoding.

• Decode stage 2: 'File D2 stage expands each opcode into control signals for the
It also controls the computation of the more complex addressing modes.

• Execute: This stage includes ALU operations. cache access, and register update.

• Write back: This stage, if needed, updates registers and status flags modified
during the preceding execute stage. If the current instruction updates memory,
the computed value is sent to the cache and to the bus-interface Write hurlers
at the same time.

With the use of two decode stages, the pipeline can sustain a throughput of
close to one instruction per clock cycle. Complex instructions and conditional
branches can slow down this rate.

Figure 12.19 shows examples of the operation of the pipeline. Part a shows that
there is no delay introduced into the pipeline when a memory access is required.
However, as part h shows. there can be a delay for values used to compute memory
addresses. That is, if a value is loaded from memory into a register and that register
is then used as a base register in the next instruction, the processor will stall for one
cycle. In this example. the processor accesses the cache in the EX stage of the first
instruction and stores the value retrieved in the register during the WB stage. How-
ever, the next instruction needs this register in its D2 stage. When the D2 stage lines
up with the WB stage of the previous instruction. bypass signal paths allow the D2
stage to have access to the same data being used by the WB stage for writing, sav-
ing one pipeline stage.

Figure 12,19c illustrates the timing of a branch instruction, assuming that the
branch is taken. The compare instruction updates condition codes in the WB stage,
and bypass paths make this available to the EX stage of the jump instruction at the
same time. In parallel. the processor runs a speculative fetch cycle to the target of
the jump during the EX stage of the jump instruction. If the processor determines

1•..tch 1)1

helell 1)1

112.

440 CHAPTER 12 1 CPU STRUCTURE Ni)A ['UNCTION

Fel ch D.1 1)2 EN: WB

Fetch 1:01 D2 EX WB

Fekb P1 1)2 EX W11

i. a) No data load delay in the pipeline

MOV Reef, Meni 1

MOV Reit2

VI()V Mena. Reg!.

b) Pointer load delii:1;

Car' 100, Merril

MON Reg2, tRegi)

CMP Regi, from [Fetch 01 1)2 EX T WE

Fetch D1 D2 I? X ice .target

Fetch Dl 1)2 I .. Ex I Targel

Itei Branch instruction timing

'Figure 12,19 8C)486 Instruction Pipeline Examples;

a false branch condition, it discards this prefeteh and continues execution with the
next sequential instruction (already fetched arid decoded).

12.5 THE PENTIUM PROCESSOR

An uliervim ur the Pentium 4 proi..,.:N...;or organization is depicted in Figure 4.13. In

this section, we. examine some or Lift details.

Regist er Organization
The register organization includes the k.1I':)wing types of registers (Table 12.1):

■ General: There arc eight 11.2-bit general-purpose registers (see Figure 2.30.
Thew rnity be used for all types or Penli urn instructions they can also hold

12.5 / THE PENTIUM PROCESSOR 441

operands for address calculations- In addition, some of these registers also
serve special purposes:For example, string instructions use the contents of the.
ECX, ESL and EDI registers as operands without having to reference theoe
registers explicitly in the instruction, As a result, a number of instructions can
be encoded more compactly.

• Segment: The six](-bit segment registers contain segment selectors, which
index into segment tables, as discussed in Chapter 8. The code segment (CS)
register references the segment containing the instruction being executed. 'OK
stack segment (SS) register references the segment containing a user-visible
stack, The remaining segment registers (DS. ES . FS, GS) enable the user to
reference up to four separate data segments at as time,

• rings: The EFLAGS register contains condition codes and various mode
bits.

• Instruction pointer! C.'onlairff the address of the cuiTent instruction.

There are also registers specifically devoted to the floating-point unit:

• Numeric: Each register holds an extended-precision 80-bit lioating-point
number..J'here are eight registers that function as a stack, with push and pop
op-erations in the instruction set.

• Controi: The 16-bit ennirol register contains bits that control the operation of
the floating-point unit, including 1he type of rounding control, single, double, or

extended precisiow and bits to enkil-plc or disable various exception conditions.

'able 12.1 Pe.ratiurn. Processor gegiskers

(a) Integer Unit

Number Length (bits) Purpose

GorterfiI 32 GeneraI-purpow user registers

Scgmerki [6 Contain sr Jsyner31. sc.leck ors

Flap, 32 Si Hlus and contra! bitr

Instruction poin ryr 3. poixitcr

(b) Floating-Point Unit

Type Iti^rrn her

S

1

1

Length (bitsi PUtp tilsic

Numeric

Control
Status

'rag wort]
Ins 111121 i on pointer

D LI U [Join i

16

16
ti

48

Hold flokitin-point numbers

Cond ea! bits
Slaws hits
sKcificts contuyis)f mune ill: rcui)..tcr)..

Fob ts to LEIS traction in tcrrup hV exception

Vpirst5 to operand iilLel rup Lud by 12x.12c.pitiort

442 CHAPTER. 12 / CPU STRUCTURE AND rUNCTION

• Status: The 1.6-bit status register contains bits that reflect the current stale of
the floating-point unit, including a 3-hit pointer to the top of the stack; condi-
tion codes reporting the outcome of the last operation: and exception flags,

• Tag word: This I6-bit register contains a 2-bit tag for each floating-point
numeric register, which indicates the nature of the contents of the corre-
sponding register. The four possible values are valid, zero, special (NaN,

dcnormalized), and empty. These tags enable programs to check the
contents of a numeric register without performing complex decoding of
the actual data in the register. For example, when a context switch is made..
the processor need not save any floating-point registers that are empty.

The use of most of the aforementioned registers is easily understood. Let us
elaborate briefly on several of the registers.

EFLAGS Register

The EFLAGS register (Figure .12.20) indicates the condition of the processor
and helps to control its operation. It includes the six condition codes defined in
Table 10.8 (carry. parity, auxiliary, zero, sign. overflow), which report the results of
an integer operation. In addition, there are bits in the register that may he referred
to as control bits:

• Trap flag (TF): When set, causes an interrupt after the execution of each
instruction. This is used for debugging.

• Interrupt enable flag (IF): When set. the processor will recognize external
interrupts.

• Direction flag (DF): Determines whether string processing instructions incre-
ment or decrement the 16-bit half-registers SI and DI (for 16-bit operations)
or the 32-hit registers CSI and EDI (for 32-bit operations).

• 1/0 privilege flag (IOPL): When set, causes the processor to generate an
exception on all accesses to I/O devices during protected-mode operation.

• Resume flag (0 1): Allows the programmer to disable debug exceptions so that
the instruction can be restarted after a debug exception without immediately
causing another debug exception.

• Alignment cheek (AC): Activates if a word or douhleword is addressed on a
nonword i r nondoubleword boundary_

• Identification flag (ID): If this bit can be set and cleared. then this processor
supports the (PhD instniet ion. This instruction provides information about
the vendor, family, and model.

In addition, there are 4 bits that relate to operatin2. mode. The nested task
(NT) flag indicates that the current task is nested within another task in protected-
mode operation. The. virtual mode (VIA) hit allows the programmer to enable or
disable 'virtual 8086 mode, which determines whether the processor runs as an 8086
machine. The virtual interrupt flag (VIF) and virtual interrupt pending (VIP) flag
are used in a multitasking environment.

16 i5 .
! '\\v,.
 , .,

A,
C M

RI
F ..W

N
—1" T L

I0 OD
F F

I T
F IF F

SZ
I'

1
_ r I.-

„
I

A
., 44

-

kb,

ID fiag DF — Direction flag
Virrual interrupi pending iF = interrupt enable. flag

VIE Viri.tral interrupt flag TV — Trap flag
AC Alignment check SF = SiQm
VM Vinual 8086 mode Zy — Zero flag

= Resume flag AF — AuNil any flag
NT — Nested task flag
10PL

 PF = Parity flag
—17n privilege level CF — Cary flag

OP Overflow flag

Figure 12.20 Peatitan II EFLAGS RyQc

444 CHAPTER 12 1 CPU STRUCTURE AND FUNCTION

Control Registers

The Pentium employs four 32-hit control registers (register CR1 is unused) to
control various aspects of processor operation (Figure 12.21). The CR0 register con-
tains system control flags,.which control modes or indicate states thAt apply gener-
ally to the processor rather than to the execution of an individual task. The flags are
as follows:

• Protection enable (PE): Enableidisable protected mode of Operation.

• rvlonitor coprocessor (MP): Only of inlerest when running programs from ear-
lier machines on the ['curium:, it relates to the presence of an arithmetic co-
processor.

• Emulation (EM): Set when the processor does not have a floating-point unit,
and causes an interrupt when an attempt is made to execute floating-point
instructions.

• Task switched (TS): Indicates that the processor has switched tasks.
• Extension type (ET): Not used on the Pentium; used to indicate supporta

math coprocessor instructions on earlier machines.
• Numeric error (NE): Enables the standard mechanism for reporting floating-

point errors on external bus lines.
• Write protect (WP): When this bit is clear. read-only user level pages can be

written by a supervisor process. This feature is useful for supporting process
creation in some operating systems.

• Alignment mask (AM): Enables/disables alignment checking.
• Not Write through (NW): Selects mode of operation of the data cache. When

this bit is set, the data cache is inhibited from cache write-through operations,
• Cache disable (CD): Enablesidisables the internal cache fill mechanism.
• Paging (PG): EnablesidiSables paging.

When paging is enabled, the CR2 and CR3 registers are valid. The CR2 reg-
ister holds the 12-bit linear address of the Iasi page accessed before a page fault
interrupt. The leftmost 20 bits of CR3 hold the 20 most significant bits of the base
address of the page directory; the remainder of the address contains zeros. 'Two
bits of CR3 are used to drive pins that control the operation of an external cache.
The page-level cache disable (PC,D) enables or disables the external cache, and
the page-level writes transparent (PWT) bit controls write through in the exter-
nal cache.

Nine additional control bits are defined in CR4:

• Virtual-8M mode extension (VME): Enables support for the virtual interrupt
flag in virtual-8086 mode,

• protected-mode virtual Interrupts (PVI): Priables support for the virtual inter-
rupt flag in protected mode.

• Time stamp disable (TSD): Disables the read from lime stamp counter
(RDTSC) instruction, which is used for debugging purposes.

3L 7 6 5 4 3 2 1 0

‘1,\WA\NAX\
Page directory base

Page fault linear address

P P
C W
I) T

•.•

A NA .

P

PCE — Performance counter enable
PUE = Page global enable
MCE — Machine check enable
PALE = Physical address extension
PSE — Page size extensions
DE — Debug extensions
TSD = Time stamp disable.
PVT — Pageetctl mode virtual interrupt
VN1L = Virtual 8086 mode extensions
PCT) — gc-level cache disable
PWT = Page-level writes transparent

Figure 12.21 Pentium II Control Registers

PO = Paging
CD — Cache disable
NW — Not write through
AM — Alignment mask
WP Write protect
NE Numeric error
ET Extension type
TS = Task switched
FM — Emulation
NIP = Monitor coprocessor
PE — Protection enable

446 CHAPThR 1 / CPU STRUCTURF AND FUNCTION

■ Debugging extensions (DE): Enables 110 breakpoirn s; This allows the proces-
sor to interrupt on 110 reads and writes.

■ Page size extensions (PSE); Enables the use of 4-Mbyte pages when set in the
Pentium or 2M-byte pages when set in the Pentium Pro and Pentium,

■ Physical address extension (PAC): EnabIcs address lines A35 through A32
whenever a special new addressing mode, controlled by the PSE, is enabled
for the Pentium Pro and subsequenl Pentium architectures (Pentium ii
through Pentium 4).

• Machine check enable (NICE): Enables the machine check interrupt, which
occurs when a data parity error occurs during a read bus cycle or when a bus
cycle is not successfully completed.

■ Page global enable (PG E); Enables the use of global pages. When POE =1
and x task switch is performed. all of the. TLB entries are flushed with the
exception of those marked global.

• Performance cannier enable (PCE)i Enables the execution of the RD.PMC
(read performance counter) instruction at any privilege level. Two perfor-

. ;e manee counters are used to measure the duration of a specific event type and
the number of occurrences of a specific event wpe.

MMX Registers

K!

R.c.E.:4] I I from Section 10,3 Lhai the Pentium MMX capability makes use of sev-
eral 64-bit data types. The MMX instructions make use of 3-bit register address
fields, so that eight MMX registers are supported, In fact, the processor does not
include specific WAX registers. Rather, the processor uses an aliasing technique
(Figure 12.22). The existing floating-point registers are used to store MMX vmuss,
Specifically, the low-order 64 bits (mantissa) a each floating-point register are used
to form the eight MMX registers. Th115. the existing Pentium a rchitecture is easily
extended to support the MMX eapabiliiy. Sonic key characteristics of the MMX use
of these registers are as follows!

a Recall that the floating-point registers are treated as a stack for floating-
point operations. For MMX operations, these same registers are accessed
directly.

• The first time that an MMX instruction is cNeeuted after any floating-point
operations. the FP tag word k marked vaiid. This reflects the change from
stack operation to direct register addressing.

■ The LMMS MMX State) instruction sets bits of the FP Lag word to
indicate that till registers are empty. It is importanl that I be programmer insert
this instruction al the end of an IvINIX code block so that subsequent floating-
point operations function properly.

▪ When a value is written to an MMX register, bits [79:64] of the correspond-
ing FP register (sign and exponent bits) are set to al] ones. This sets the
value in the FP register to NaN (not a number) or infinity when viewed as 8
fl oating-point value. This ensures that an MMX data value will not look like a
valid floating-point value.

12.5 1 THE PENTIUM PROCESSOR 447

Floating-point
tag Floating-point registers

[UNIX registers

Figurt. 12-22 klapping of MIX IZisicrs to Floating-Point Registers

Interrupt Processing

interrupt processing within a processor is a facility provided to support the operat-
ing system, II, 4illows an application program to be suspended. in order that a vari-
ety of interrupt conditions can be serviced and later resumed.

Interrupts and Exceptions
Two classes of events cause the Pontiurri to suspend execution of Lilo current

instruction stream and respond to the event: interrupts and exceptions. In both
cases, the processor &Ives the context of the current process and transfers to a pre-
defined routine to service the condition. An interrupt is generated by a signal from
hardware, and it may occur at random times during the execution of a program. An
exception is generated from software, and it is provoked by the execution of an
instruction- There are two sources of interrupts and two sources of exceptions:

Irtl urtipIs
■ Maskable interrupts: Received on the procxssor's INTR pin. 'ffie processor

does not recognize a mask able interrupt unless the interrupt enable flag (IF)
is set.

a Nonmaskablc interrupts: Received on the processor's NMI pin. Recognition
of such interrupts cannot be prevented.

448 CHAPTER 12 CPU STRUCTURE AND FUNCTION

2. Exceptions
• Processor-detected exceptions: Results when the processor encounters an

error while attempting to execute an instruction.

• Programmed exceptions: These are instructions that generate an exception
(INTO, INT3. INT. and BOUND).

Interrupt Vector Table
Interrupt processing on the Pentium uses the interrupt vector table. Every

type of interrupt is assigned a number, and this number is used to index into the
interrupt vector table. This table contains 256 32-bit interrupt vectors, which is
the address (segment and offset) of the interrupt service routine for that interrupt
number.

Table 12.2 shows the assignment of numbers in the interrupt vector table;
shaded entries represent interrupts, while nonshaded entries arc exceptions. The
NMI hardware interrupt is type 2. CNITR hardware interrupts arc assigned numbers
in the range of 32 to 255; when an INTR interrupt is generated, it must be accom-
panied on the bus with the interrupt vector number for this interrupt. The remain-
ing vector numbers are used for exceptions.

If more than one exception or interrupt is pending, the processor services them
in a predictable order. The location of vector numbers within the table does not
reflect priority_ instead, priority among exceptions and interrupts is organized into
five classes. In descending order of priority, these are

• Class 1; Traps on the previous instruction (vector number 1)

• Class 2: External interrupts (2. 32 255)

• Class 3: Faults from fetching next instruction (3. 14)
• Class 4: Faults from decoding the next instruction (6, 7)

• Class 51 Faults on executing an instruction (a 4, 5, 8. 10-14, 16. 17)

Interrupt Handling
Just as with a transfer of execution using a CALL instruction, a transfer to

an interrupt-handling routine uses the system stack to store the processor state.
When an interrupt occurs and is recognized by the processor, a sequence of events
takes place:

1. If the transfer involves a change of privilege level. then the current slack seg-
ment register and the. current extended stack pointer (ESP) register are pushed
onto the stack.

2. ' Mc current value of the EFLAGS register is pushed onto the stack.
3. Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR

interrupts and the trap or single-step feature.
4. The current code segment (CS) pointer and the current instruction pointer (IP

or ELF) are pushed onto the stack,

resumes from the point of the interrupt.

Table 12.2

instruction..rhis causes all of the values saved on the stack to be rcslored; execution

Number
'Vector

5. it the interrupt is accompanied by an error code, then the error code is pushed
onto the stack. 6.
The interrupl vector contents are fetched and /oaded ink) lhe CS and 11 3 or
EIP regktcm Execution continues from the interrupt service routine.

To return from an interrupt, the inlerrupt service routine executes an IRET

12.5 THE PINTJUM PROCTSSOR 449

Peritiuni Exception and Ink: rrupt Vector Table

Demription

Divide error. divi OverilLyw (11" CilVi Si{ In ti' /Cr{

I Dul. ,ttg ukceptit)r); include.; v,lrinu 11111L5 rinil trap:, rL IHIL it 11 4 1 4•hugging

NMI pin ittcv-rupt:

1-5,.,;)kpilini; eau NC LI I N . r :I instruction, which is a 1-byte ins tilli:LiOrt Ur,811.11 for
de htiy fang

4 INTO-fictEctc4 overflow:: occurs when the processui executes INTO with the OF
!lap_ (LL

5 Ni) range exceeded; the SOUND inArUCtion CunIpqn-cs regislr wilh atod-
stored in memory and generates an interrupt if the uontcnts of the retrixtu - is

ulit 4.)t• hounds-

6 Unacrined opcodc

7 Devi.= no available; asternpt to use ESC or WAIT iiistraLtion fails due to lack of
external dOviCe.

DClul , lo fault; two inteirilptS fiCeLly durinti: the si.1 7112 ins!" uclicm nntt erinncil he
handled serially

c) Reserved

11) Invalid task stale 2. grOcril; sezrunt descrilling a requested task is not inicialized or
not valid

11 Segment not present; requircd xcgrnc.nl no! procns

12 Stack fault: limit c,1 stack 6L .gmaint c r:ctcdcd pa- stack segment not present

13 General protecti4 prol..:.cLi on violation that does not cause another exception
(e.g.. wrisisig Li) it rcad-cm1:!.. segrnv1t)

Pauc fa ult

15 Rusurvcci

L6 Rod rl g-point error:, generated by a tloating-point aritUute tic instruction

17 Alignment check: access to a word scored at an odd hvtc uddress. DT a doublIvoiorcl
slort:ci if an address not a i»ulLiple of 4

IS VI:IChule check: model specific

vecioN, provided wlicis IN'ER signal is act i ..16 •
•

t!=p,3-.atiod;
Shatloct; interrtrpts

430 CRAFTER 12 / CPU ,STRUCTURE AND FUNCTION

12.6 THE POWERPC PROCSSOR

An overview of the Powerl 3C processor organization is depicted in Figure 4.14. In
this section. we examine some of the details of the 64-bit implementation.

Regis ter Organization
Figure 12.23 depicts the user-visible registers for the PowerPC. The fixed-point
unit includes

• General: There are thirty-two 64-bit general-purpose registers. These may be
used to load, store, and manipulate data operands and may also he used for
register indirect addressing. Register 0 is treated somewhat differently. For
load and store operations and several of the add instructions, register 0 is
treated as having a constant value ,!:ero regardless of its actual contents.

• Exception register (XER): Includes 3 bits that report exceptions in integer
arithmetic operations. This register also includes a byte count field that is used
as an operand for some string instructions (Figure 12.23a).

The floating-point unit contains additional user-visible registers:

• General: 'there are thirty-Iwo 64-bit general-purpose registers, used for all
floating-point operations.

• Floating-point status and control register (FPSCR): This 32-hit register con-
tains bits that control the operation of the floating-point unit and bits that
record the status resulting from floating-point operations (Table 12.3).

The branch processing unit contains these user-visible registers:

• Condition register: Consists or eight 4-bit condition code fields (Figure
12.24b).

• Link register: The link register can he used in a conditional branch instruction
for indirect addressing of the target address. This register is also used for
call return behavior. If the LK bit in a conditional branch instruction is set,
then the address following the branch instruction is placed in the link register,
and it can be used for a later return.

• Count: The count register can be used to control an iteration loop, as ex-
plained in Chapter 10; the count register is decrernented each time it is tested
in a conditional branch instruction. Another use for this registoi is indirect
addressing of the target address in a branch instruction.

The fields of the condition register have a number of uses. The first 4 bits
(CRO) are set for all integer arithmetic instructions for which the. Re bit is set. As
'Fable 12.4 shows, the field indicates whether the. result of the operation is positive.
negative. or zero. The fourth bit is a copy of the summary overflow bit from the
XER. The next field (CR1) is set for all floating-point arithmetic instructions for
which the Re bit is set. In this case, the 4 hits are set equal to the first four hits of
the. FPSCR (Table 12.3). Finally. the eight condition fields (CRO through CR) can

31,:r1 qgnI rri aid•

ONci: T
t)

.1! LIII 11.1.21Jii - I.LEV ;A -- 111.1E1 1.11S:,7.7.U.1{ L01.143.1U 1:.1-. 1irtod-pxt:I

uolt pup .)

452 C.HAPTER 12 / CPU STRUCTURE AND FUNCTION

Ial-Pie 123 PowizrPC 110k1iti n-Poinit Status and Cunirel Rc..!gista

Bit Definition

4.1 Exception summary. 54:1 i f ank 42xcupLiort occurs; remains sot until resuL by 1- 1. ware.

Ertable-d exception 94Arn ni pry. Sct if uny enabEed exceptloo has occurred.

Invalid operation xcer..riCS11 summary. Set if an operation cx..:;;:•rilion has occurred,

3 Overflow excepciOn. MrignitiRic tA rtsoif ExcetC14 COO be repi-43s.:mi

4 Undutflow excepdon. Result is to sm.:01 to by n ni

5 Zero divide ex&eption.. Divisor is zero and divtdc.nd i5 finite Eionwro.

I nEXNC1 exexplicin. Reloaded result ciiii4A -sirorn tn1cgirrncd,a-L rum.di of an werflow occurs
with 45vcr flow In.C.121}Lic)IL disabled.

opera ticrn exception. 7!'signaling NaN; C; 9: i -:-•x•): la (1)
11: (..K X11): E2: i:4.5(E)paviso]1 i vOlv big MN.

13 Fraction roulalud. Reatiadinp cif the Nstili ilicrcl -ncnied the CI-adjust.

1.1 Fraction inexact. ROuthie.d tesulLcItaitc.s fraciion or an civerflOW occurs wit El overflow
eNct.ption disabled.

I :Ii) Rcstl11 flap, Five-bit code specifies less than. greater Ihan. equal, unordered, quiet NaN,
±norntoli.k•ed. Idenonualized. -ttt

20 kcJim'vetl.

1.-7; I m'tiIti3 opm-altos Incuptilm. 21: sortwaro r equi3st; RILpiru root i5t. n number:
1nwii....r k'45111VT'il..1111111.151.1'111.E4 a number. an coccncIv, or a NECK

2.4 Envalid vxccpLion.
Or eer0V. Ar

r

25 ()willowxcc‘pi yin citab1.3 . y.

26 Uudevilow excQp1inn 12nd ilk
erae,..

27 Zero c

28• Itiexa•a exceptiou

.••
-W;31 Rounding con1J-t)1. Two-hit &:-!dc specifics to S10 itCSr, 1.4 P .9r• Ard I-CMa.id CC - k•Atril

IL nth 1. .1

be used with a compare instruction; in each case, the identity of lhe field is specified
in the imItnicion itself- pot both fixed-point and floaling-point compare instruc-
tiorm, the firs.t -3 hits of the designated condition field record whether the lint
operand is less than, greater than. or Lqun I to the second operand. 'the fourth hit is
the summary overflow bit for a 1i:will-point compare. and an unordered indicator for
a floating-point coraparc.

In terrupt Processing

As with any processor, the PowerPC includes a bait): that enables the processor
to interrupt the currently executing program to deal with an exception condition.

Types of Interrupts

lateimpts on a PowerPC are classified a those caused by sonic. system condi-
tion or event and those cauwd by the execution of an instruction. Table 12,5 lists
the inierrupis recognii.ed by the PowerPC.

5

SO

-

Summary overflow: set to I to indicate that an overflow occurred during the exection ol an
instruction; remains 1 until reset by software

OV = Overflow: set to i to indicate that an overflow occuned during the exectiou of aninstruction;
reset to 0 by next instruction if there is ilo overflow

CA

-

Cagy: set to 1 CO indicnie curry out of bit 0 during the execution of an instruction
Byte count = Specifics number of bytes to he transferred by Lii.a&Store String indexed instruction

(a) Fixed-point exception register (XER)

/4 8 11. 1.5 Pi /20 22 /24

. CRO CR ! CR2 CR3 CR4 CR5 CR6 CR7 1
Integer Roaiin-poini

insiruciions instructions

Compare instructions

(b) Condition register

Figure 12.24 Po.% eriir Register Formats

454 CHAPTER [2 CPU SaRUCTuRF. AND FUNCTION

Thble 12.4 Interpretation of Bits in Condition Rogithtr

t lto CR1 riti CRi
iintrger itluuthig•point (fixoct•point (floating-point

Bit irmtrucliall instructiou compare C(mkipate
position milli Rr•=111 with Re - 1) instradialli insiructiou)

r result < CI Exception summary op[---: 01)2 op I < or.,'
1: - I teiult > 0 Enabled exception opt •> up2 opl :--• opv

summary
i - 2. r sull = it ILI:valid operaiiori op! = opa opl= opt

excepti C M 2.1E1711-nary

i ' 3 Summary Ovifrilow Summary I :n45rdcred {one
overilow exception uverflov operand ig Fi Nnl\r)

mos!, or the interrupts listed in the table. are easily understood. A few warrant
furthe I comment. The system reset interrupt happens at power on and when the
reset button on the system unit is pressed, and it causes the system lo reboot. 'The
machine check in lerrupt deals with certain anomalies, such as cache parit!,. , error and
referc nce to a no: Le X istent memory location, and ma}, Lh.i .2 system to enter what
is known as a checkstop state; this stale. SLINpc.nd!i processor execution and frc4ze.5
the contents of registersunlil a neberal _ rr`hc floating-point assist enables the proCCS-

sor to invoke s.oftw.are routines to complete operations that cannot be handled
directly by the floating-point unit. such as those involving denormaEized nunabcrs or
unimplemented pooling-point opcocles.

Machine State Register
Fundarnenui I to the. interruption of a program is the Ability to recover the state

of the prOfXS7:1{) I" at the ti me of the interrupt. This includes not only the contents of
the various registers but also various control conditions reEating to execution. These
conditions are conveniently summarized in I he. WISR (Table 12.4 Again, sevcrai of
the bits in this registor vi4]rrant furtha comment.

When the privilege mode bit (bit 49) is set, the prucxssor .6; operating at a user
privilege level. Only a subset of the i n7.1 ruction set is available. When thc hit is
cleared. the processor operates at supervisor privilege lave!. This enables all of the
instructions and provides access to certain system registers (such as the rvISR) not
accessible from the user privilege level.

The values of the two floaling-point exception bits (bits 52 and 55) define the
types of interrupts that the floating-point unit may generate. The interpretation iE
as follows:

MO FE1 Interrupts that will be recugnind

0 11 Nurse

0 I Ira prc.cl4r2 TlinITZ‘CC l'elL' Fel IJI.0

I. It I mprecise recoverable

[1 Precise

006001.E

007001)

04.181.wa

I-X.190Qh

IXIA01)h

0013

000.[Oki

00D0111

I.E0011

A ‘rn mutt

Prckgtarn

Fl n;.7.-pc Fin 1
tt:ia I

Rewryucl

Reserv:L.d

System ca I I

TrHcu

Fl ing- potet assist

12.6 / THE PO WERYC PROCESSOR 455

Table 12.S 1 3owerPC Inierrupt Tab[c.

Entry Paint Interrupt Type Description

C.C.21.klh

LXJ3U1Th

{..10400E1

00 1. 1)01i

.kfachi chick

/..1 La s ctruge

R er..urved

Syqtern

InstrucLion Stara

p 1.1-11.fr er*.err
-e.rf-MV*EIE'r?rAe'Crr

- EO:re rfr'''r
.,errr ...rrrer

AL:wrtion of iho pfooesSor's hard or soft reset input
si otAU by S :Os!rnal Tone

. -

2,11 w!rtio.n. of l'EA# to the procesH3r it
cliabEcAt elteuks

Exampks: data page tau]}; 1 ielstti vicil id ion 15n

load/store

Code page rata, attempted instruction fetch.rum 1.0
me t! 1.1:1:12NN old L i on

A&Rerti on or Llsc proce.ssor's vxr12r.nal intrrr jiL inert
signal Ely external l I i. whoa. exi....f? intiirrupt

: ...recognision

1..nsuceeskil mem pc (i access mentory due to rnis-
2.1igncd operand

Floating-poilil illSerrupt; user attempts to encodiL
puivil.c..aed instruction: trap instruction executed with
spccified xtidition met: instruction

A 1..1. 011p I 10.•!xecuL4 IIcii L R-poi i nstrucci on with
11 0.:inisg poi:ni unit (lisablo.1

itX.11)1.43ginD Of the deererne tit reeiqe:r %visors external
recognttioii is C.Liablat

Execution of a system call instruction

Single-step or branch trai:e interrupt

Atrempt Lo 1..xecuLe vety n fr.:(3u4231 I , complex
11oatirg-point ope ru Lion tc.g.. opurni ion on dcaor-
inalized number)

DOE I Dh Lh rc Fttzh
OCFFFh

01010h through
02.FFFEk

Psewr.:c

impl cm En I S i 111)

speci fir)

1:13Fluiicn! inc,frui,cx by insiriation cimlutiou
h ruo.76.1pt.5 1 cil mod 0.xecution

When the single-step trace Ht (bit 53) is set 5 the processor branches to the
trace interrupt handler after the successful completion ofc4ieh instruction, When the
branch trace bit (bit 54) is set, the processor branches to the branch trace interrupt
hondler after the successful completion ()I' each branch instruction. whether or not
the branch wuslaken,

The instruction addre ,is Irlini7llation (bit 58) and data address translation (bit
59) determine whether real ridclressing is used or whether the memory-management
unit performs address translation.

456 CHAPTER 12 / CPU STRUCTURE AND FUNCTION

Table 1245 PowcrPC Machim St e Rogkter

Bit

ProunSLI i' mode
1.44
4:5 Power rhartriol.rneln 41}1 ditlis4E)142:d • ..rlf.,"."..".W.ex..."

.rfecr''
46 Inn. l.eineututiou dependent

47 Define!, whether interrupt hand1:6 173: 0243004:,

48 Exte.i.noi unnIlled;disabled

i I c gc dlric pri Ante

50 Flouting-point unit avaiiahle.kina•vailatik

51 Machine check inwrrLtros
FI no-9tine-r1cunL uxue NMI 111013e.

5.3 Sin0e.-scep trace eanblediclisablaci
. 54 Branch trncia cnnbl.cdirivRhled

Ficmiin-poilltuxceptiun Tri.Odo 1

5fi Rum:pi:ea

Most significant part of v -c..;2ption odtlmsr.. is 0C0131FFF11

iiistrucalun address li8n.561,1urs ctn. iff

5L) [Mtn addre s s LikSrimlutiOn.

60:61 Re.siL.ro2c1

62 insert:up t is remvc in hi cin onr=oviLrahl

63 Proc.osiiar is in hig nairiii!littl-endian mode

It I

. StKio.I. :1;1.. or R I

Interrupt

When an interrupt occurs and is recognized by the processor, the following
sequence of events. takes place. ;

1. The processor pla..2.; the address of the instruction to he excepted ne..xt in the
Save/Restore Register 0 (SRRO). This is t he address of the currently execut-
ing instruction if the interrupt was caused a failed attempt to eWeLILL:: that
instruction; otherwise, it is the address of the next instruction to be executed
;11' er t he uurrunt instruction.

2. The processor copies machine state COMatiOn from the N1SR to thc Sake,
Restore Register 1 (51-t R1). The bits that are depicted as unshaded in Table
i7.6 are copied. The retnaining bits of SRR I RTC. loaded with information spe-
cific to the interrupt type.

3. I'he :VI SR is set to a hardware-defined value specific to the interrupt type. For
all interrupt types, address translation is turned off and external interrupts are
d isabled,

4. The processor then transfers control to the appropriale interrupt handler.
The addresses of the interrupt handlers are stored in the interrupt 'rabic!

12.7 Itli,COMPAYNDEF) RFADTNC: 457

(Table [2.5). The base address of that table is determined by bit 57 of the
MSR.

To return from an in terrupi, 1hr,: interrupt se:rvicc routine executes an rfi
(return from interrupt) instruction. This causes the bit i,ralties saved in SRR1 to he,
restored to the MSR. Execution resumes at the localion slored in SR 12{1"

P f7, RR c ONIN4NPEP . RE41),INg

EPA TTO1 I and EMOSHID1 1 provide excellent coverage of ih pipelining issues discussed in this
chapter. [HENN91 .1 and [HWAN93] contain detailed discussions of pipelining. [50F119[1] pro-
vides an excellent. detailed discussion of the hardware design issues involved in an instruc-
tion pipeline,

[EN/ER.1.11 examines the evolution of branch prediction s(ralegies. [CRAC192] is A
detailed 91.114 of branch prediction in instruction pipelines. [LTL.:BE9 11 and [L.11181 exam-
ine various ',ranch prediction straicgies [hat can be used (o (111.e perforinn nee of

[KAI:1,911 in:at:nines the dirficulvy introduced into branch prediction
ini-r Viii (-& targe t addrelss is variable,.

Ite Intel 80486 insir uci in pipeline i described to D'AIRA911. [HREN't1{)[provides
good coverage of intezmil I 1 ri IckIN!q] rig oo the P i11.IlLan, as does [S1-1AN93 I ror i11e PowerPC.

BREV(1111 43rd', B. The In id ic pro ce News .: 80186180M5, ti,.$643101 88 80.2 .86, 80386,
80486. Pentium, Nt? neon Pro and Po?thi. !I Proce . Upper Saiddlc River, NJ:
Peel ricu 2000,

C.B.A1U92. Cragoit., H. Bram . n Strate..1 .1
. To von' . inn; and Perri e Jr.1 n ono:. ...14orii. .4%.

ton. CA: 114'...E.E. C,orripuicr Sock!' y PreNs.
Dubey, P.. and NI. "Branch Strategic: fkl()&1111g te nd {"}17tidr^i%Rtifoll, "`
Trawyrecrirypis cJeg IC:one pilaffs, Octoks 1991.

EVEHO1 Ei..ers. M., and Ych. T. "1..inderstanding Brandin: and Designing 13ranch Pre-
dicEors for High-Performanee Microproutssors." Prom-dings of Ow IEEE'. Novem-
ber 2001,

HENN91 Hennessy. .1,, and Jouppi, N. "Computer Technology and Architecture; Al!
Eyolving interaction." (. onp l ter, September J 991,

HWAN93 'Hwang. K. Advanced coonpraeo. ArchMin•bere. New York: Nle0raw..1-lill, 1993.
KAE1.91 teach, D., and 1..innia. 11'. -Branch Hist:pry Predici ion of tvloving Target

Branches Due lo Subroutine f..citrrus." Proceeding:v., Men Annual Iniernationai Syn 1 . 9
CC.Mptif2'1 ActlideeiraV, 1 9 1.}1,

1), '•Rv.i.titeirig the Branch PEdlally in Pipe.tisi.ed Processors." Computer.
July

N10511101 Moshovos. A„ and S6hi, G. "Microlrhilucturtil 111novitions: Boasting Micro-
processor Per forniHnce Beyond ScanicoudtietOr Techtiology Scaling," Procere.elings. o f
the. 1 N wthcr 2.0111.

PATTIll Pail. Y. "Reoirements, Bottlenecks, and Good Fortune; Agents for Micro-
processor .EYoluilion." Proctredingy or the EL E Novontbor 200J.

S [110195 Stanley. T. PoworPC' System Aie.hticcrurd, Reading., Addison-W egey. 1995,
8011190 Sohi, 0. `instruction issue: Logic for High Performance Interruptabl. Multi-

ple Functional 4.:nit, Pipelines Computers," IEEE Transactions on C ynputer
March 1990.

T4BA91 Tabak, D. Atir..anced ,4 kTop . oce ..rsom. New York: McGraw-Hill, 19'91.

agfre,e..4kr.

458 CHAPTER L2 r UPU STRUCTURE AND FUNCTION

12.8 KEY TERMS, REVIEW QUESTIONS, AlD PROBT EMS

Key Terms

[

branch pre.dictiou
condition code
delayed branch

flag
instruction
instruction pipeline

bl i u,Cf prefetch
program stand!. word PSW)

Review Questions
1 2.1 What general roies are performed by CPU regi8te1K?

121 Vvrhat categories of data are commonly suppcned by user-visible rcgis t ers'!'

12._3 What is ale. function CFI condition codes?

12A Vaal is a program status word?

J1,2.5 Why is a two-stage instruction pipeline unlikely It) cut the instruction cycle time in
half- cotnpared with the use of no pipeline?

12.11 List and briefly explainaril Fus li which an instruction pipeline can deal with
conditional branch instruciions.

11.7 How are history bits used for branch prediction?

Problems
12.1 a. if the last operation performed on a computer with an xw w LI was an addition

in which the two operands were 2 and 3. what would be the ',Ant. of i Ire °Flowing flan?
* Carry
■ Zero
* Over]] ow
• Sign
• Even parity
■ Half-carry

b. What if the operands were —1 (twos complement) and +1.?
12.2 Consider the tinning diagram of Figure 12.10. Assunio that there is only a two-stage

(fetch, execute). Redraw the diagram 10 show how many time units are now
n ceded Coe four instructions.

123! Consider an instruction sequence of length tt that is streaming through ille instruction
pipeline. Let p be the probabithy of encountering a conditional Or unconditional
branch instruction, and]et q be the probability that execution of a branch instruction
1 causes a jump to a nonconsecutive ddwss. Assume that each such jump requires
the pipeline to be cleared, desiroying all ongoing instruction processing, whca I
emerges from the]asl stage. Revise. Equations 12A and 12.2 to take these probabili-
ties into account.

[2.4 One limitation of the multiple-stream approach to &Ming with branches in a pipeliiie
is that additional branches will be encountered before the rirst branch is resolved.
Suggcst two additional limitations or drawbacks.

115 Consider the state diagrams of 1 -. (pre 12.2S

a. Describe the behavior or each.
b. Compare these with the branch prediction state diagram in Section 12.4, Discuss

the re iat i L!..rits of each of the three approaches l o branch prediction,

laken

Not taken

Figure 12.25 State Diaatam for. Problem I 2_5

N4 it taken

460 CHAPTER .42 / CPU 51TWCT[JRF AND FUNCTION

12.6 The Motorola 68C4x0 machines include the inskructiou Decrement and Branch Accord-
ing w Condition, which has the follotiying farm

DEcu Dn,

where cc is one of the testable conditions, DTI is a general-purpose register. and dis-
placement specifies the target addres!i relatNe lo the current address. Thu instruction
can be defined as kICOWS;

if :cc
then begin

Du := (Dr) - 1;
if Dr * -1 then PC := {PC: + .5iZMIacerrien= end

ease FC := +

When the instruction is executed, the condition first tested to determine whether
the iertniniltion coudition for the Loop is satisfied. if so : no operation is performed and
execution curitinue.s ai 1he next instruction in sequence. ff the condition is false, the
specified cla.1.a .registE.r is decrement ell and checked to see if it is less than zero. II it is
less than zero, the loop is terminated and execution continues at the next instructirm
in sequence. Otherwise. the program branches to the specified 10ea.tion. Now consider
the. following assembly. language program Iragmcni;

AGATH :Al ,
u8xL La, AGAIN
NOP

Two strings addressed by Al) and AL are compared for equalitj..; the string pointers
are incremented with each reference. DI initially contains the number of longwords
(4 bytes) to be compared.
a - The initial contents of the reOsteN are AO = $00004 -000, Al - S00005000, and

131 = $000000E17 (the 5 indiQtes hexadecimal notation). Memory between 540R)
and $60(.110 is Loaded with words $AA A A. ff the foregoing program is run, speciflic
the iminher of times the DiV,‘,41:: loop is executed and the contents 01 I [le Three re@-
Niers when the NOP instruction is reached.

h. Repeat (a), but now assume that memory between $4000 acid 54FEE is loaded with
S0000 and between $5000 and $6000 is loaded with $AA.A.

12.7 Redraw Figure 12.19c, assuming that the conditional branch is not taken.

CHAPTER 13
REDUCED INSTRUCTION
SET COMPUTERS

13.1 Instruction Execution Characteristics

13.2 The Use of a Large Register File

133 Compiler.Based Register Optimization

13.4 Reduced Instruction Set Architecture

13.5 RISC Pipelining

13.6 MIPS R4110011

13.7 SPARC

13.5 RISC Versus CISC Controversy

13.9 Recommended Reading

1.3.10 Key Terms, Review Questions, and Problems

462 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

KEY POINTS

• Studies of the execution behavior of high-[eve] language proararns have pro-
vided guidance in designing :I flew typo prOccssor architecture! the reduced
instruction set computer (RISC). Assignment statements predominate, sug-
gesting that the simple movement of data should he >irtimizod. There ate also
many IP and LOOP instructions, which suggesit. that the underlying7zeq 'Jena:
control mechanism needs to ho permit cificieni pipelining. Stud-
ies of operand reference patterns sup.est that it should be possible Lo enhance
performance hy keeping a moderate number of operands in risers

4, These studies have motivated thc key characieristics of RISC machiries 1 .j a
limited instruction set with a fixed format, (2) a]at -ge number of registers or
Lhe use a a compiler that optimizes register and (3) tin cruphl$is on
optimizing the instruction pipe.]inc.

▪ The Nimple- instruction set of a RISC lends itself to efficient pipelining.becausc.
there are fewer and more predictable cveralions peTFLirrutcd pet inslraction. A
MSC' instruction set architecture. also lends itself to the. delayed branch ted-
nique, in which branch instructions are rearranged with other instructions to
improve pipeline efficiency.

irl.00 .the development of the stored-program computer around [9511. ill; n:
have been remarkably few true innovations in the areas of computer orpiii.
zation and architecture- The following are some of the major advances since

II,: birth of the computer

▪ The family concept: Introduced by IHM with its System:160 in 1964, followed
shorth...

, thereafter by DEC. with its PDP-g. The family concept decouples the
architecture of a machine from its implementation. A set of computers is
offered, with different pricelperformance characteristics. that presents the
same architecture to the user. The differences in price and performance are
due to differenl implementations of the same architecture.

• Microprogranuaed control unit: Suggested hy Wilkes in 1951, and introduced
by IBM on the S1360 line in 1964. Microprogramming eases the task of di:-
signing and implementing the control unit and provides support for the fain
ily concept.

• Cache memory: First introduced commercially on IBM S.f360 Model 85 in
1968. The insertion or this element into the memory hio-Archv dramatically
improves performance.

• Pip-elining; A means of introducing parallelism into the essentially sec.' ttentiA
nature of a machine-instruction program. Examples are instruction pipelining
and vector processing.

• Multiple processors: 'ibis category covers a number of different organizalions
and ohjectiVes.

13.1 / INSTRUCTION EXECUTION C=I-I ARMTITICISTICS 463

Table 13.1 Characteristics of Sonic CISCs, R1NC! ,.:., and Superscalar Procvssors

Complex
Instruction Si-e

IT IS(:) Computer

Reduced
Insi Niel ion Set

(RISC) Computer
Suptrwalar

Characteristic VAX
37W L OR 11.•780

hid
p0446 SPARC

MIPS
_

R404-10 powc r PC Chia
Sl'ARC

MIPS

Year developed L973 1978 1989 1987 1991 1993 1996 1 Y9'

NMWPM' of
instru•tionN 298 303 235 94 225

Instruction size
Orocs) 2-57 1 -11 4 -1 4 4

Addressing
moats 4 22 I I 1 1 2 1

Number of
gcnend-purpose
registers

16 J6 40- -520 32 40-5,20 32

Control memor,
site Man 420 48i) 246

Cache size
64 64 ildrytcs) 1; 32 125 16—'4 2 32

To this list must now be added one of the most interesting and, potentially, one
of the most important innovations: reduced instruction set computer (RISC) archi-
tecture. The RiSC. architecture is a dramatic departure from the In.,' orical trend in
processor architecture. An analysis of the RIS(.: architecture brings into locus many
of the important issues in computer organization and architecture.

Although RISC systems have been defined and designed in a variety of ways
by different groups, the key elements shared by most designs arc these:

• A large number of general-purpose registers, and/or the use of compiler tech-
nology to optimize register usage

• A limited and simple instruction set
▪ An emphasis on optimizing the instruction pipeline

Table I3,1 compares several RISC and non-RISC systems.
We begin this chapter with a brief survey of some results on instruction sets,

and then examine each of the three topics just listed. This is followed by a descrip-
tion of two of the best-documented RISC designs.

13.I INSTRUCTION EXECUTION CHARACTERISTICS

One of the most visible forms of evolution associated with computers is that of pro-
gramming languages. As the cost of hardware has dropped, the relative cost of soft-
ware has risen. Along with that, &chronic shortage of programmers has driven up

464 CHAP i r REDUCED INSTRUCTION SET COMPUTERS

software costs in absolute terms. Thus, the major cost in the life cycle of a system is
software, not hardware. Adding to the cost, arid to the inconvenience, is the element
of unreliability; It is common for programs. both syNiem irid application, to continue
;4.) exhibit' new hugs after years of operation.

The response from researchers and industry has been to develop ever more
powerful and complex high-level prograin n; I anguages. These high-level lan-
guages (H [A.40 allow the programmer to express algorithms more concisely, take
care or much of the detail, and often support naturally the use of structured pro-
gramming or oblect-oriented design.

Alas. this solution gave rise to another problem, known as the semantic sap,
the difference between the op2nition8 provided in HLLs and those provided in
computer architecture. Symptoms of this gap are alleged to include execution in-
efficiency, excessive machine program size, and compiler . complexity. Designers
responded with architectures intended to close this gap. Key features include Tarp
instruction sets, dozens of addressing modes, and various FILL siaEernents imple-
mented in hardware. An example of the latter is the CASE machine instruction on
the VAX. Such complex instruction sets arc intended to

■ Ease the task of the compiler wriler,
• Improve execution efficienc:,, ,, because complex sequences of operations can

he implemented in microcode.
• Provide support for even more complex reed sophisticated HLLs.

Meanwhile. a number of studies have been done over the years to determine
the characteristics and patterns of execution of machine instructions generated from
1i LL programs. The results of these studies inspired sonic researchers to look for a
different approach: namely, to make. the architecture that supports the HLL sim-
pler, rather than more complex.

To understand the line of reasoning of the RISC' advocates, we begin with a
brief review of instruction execution characteristics. The aspects of cif imputation of
interest are as follows:

■ Operations performed: These determine the funeiions to he performed by the
processor and its interaclion with memory.

• Operands used: The types of operands and the frequency of their use deter-
mine the memory organization for sioring them and the addressing modes for

“..-essing them.
■ Execution sequencing: This determines the control and pipeline organization.

In the remainder of this section, we summarize, the results of a number of stud-
ies of high-level-language programs. All of the results are based on dynamic 1TLe4•
surernerns. That is, me urenients are collected by executing the program and
counting the number of times some feature has appeared or ti particular property
has held true, In contrast. static ITMISLITCMCFILs merely perform these counts OD the
source Lcxt of a program. They give no useful information on performance, because
they are not weighted relative. to the number of times each statement is executed.

Operations
A variety of studies have been made to analyze the behavior of HLL programs.
Table 4.7, discussed in ChApter 4, includes key results from a number of studies.

13-1 INSTRUCTION EXECUTION CHARACTERISTICS 465

There is quite good agreement in the results of this mixture of languages and appli-
cations. Assignment statements predominate. suggesting that the simple movemen
of 6ta is of high importance. 'Fhere is 2ilso a preponderance of conditional state-
ments (IF, LOOP). These statements are implemented in machine language with
some sort of compare and branch instruction. This suggests ihat the sequence con-
trol mechanism of the instruction set is irroportanl.

These rt.uI1s arc instructive to the machine instruction set designer, indicat-
ing which types of statements occur most often and therefore should be supported
in an "optimal - fashion. However, these results do not reveal which statements
use the most time in the execution of a typical program. That is, given a compiled
mach ine-language program, which statements in the source laLiguage cause the exe-
cution of the most machine-langua ge instructions?

Co get at this underlying phenomenon, the Patterson programs [PAP - 1 .824
described in Appendix 4A, were compiled on the VAX, PDP-11, and Motorola
68000 to determine the average number of machine instructions and meinor!, . , refer-
ences per statement I ype. The second and third columns in Table 13-2 show 1hc
relative frequency of occurrence of various HI,L instructions in a variety of pro-
grants the data were obtained by obscrving the occurrences in running programs.
rather than just the nwnber of times that statements occur in the source code. Hence
these are dynamic frequency statistics. To obtain the data in columns four and
five (machine - instruction weighted), each value in the second and third columns
is multiplied by the number cal' machine instructions produced by the. compiler.
These results are then normalized so that columns four and five show the relative
frequency of occurrence, weighted by the number of machine insiruclions per 111_1_
statement. Simiiar1y,ihe sixth and seventh eolumns by multiplying the
frequency of occurrence of each statement type by the relative number of memory
references caused by each statement. The data in columns four through seven pro-
vide surrogate measures of the actual time spent executing the various statement
types. The results suggest that the procedure wiitireturn is the most time -consuming
operation in typical I'LL programs.

The reader should be clear on the significance of Table [3,2. This table indi-
eatcs the relative significance of various statement types in an [ILL when that HELL
is compiled for a typical contemporary instruction set architecture. Some other
architecture could conceivably produce different results, However, this study pro-
duces resul ts ill iL141re representative for eon tem pora ry complex instruction set corn-

Table 13.2 Vir'cightcd Rclafivc Dynamic Fretpc.ncy ol:HLL Operatiuns [PATTS2a1

Dynamic Occurrence
PKi .al I

Machine-Instruction
Weighted

Pascal

NIerniTt -liercrenet
liveigbied
Pascal C

ASSICiN 45% 38% r3% 13% 14"
LC)C.)3) 42% 3.7 % .1.1 %

CALL 15% I k. 31% '13% 44% 45 . %.

IF 11.M . -I % 21%
0(.11'0
OTRF R

466 CHAPTER. 1.3 / REDUCED INSTRUCTION SET comPL:T-ERs

puter (CISC) architectures. 'i'hus, they can provide guidance to those looking for
more efficient ways to support FILLS.

Operands
Much less work has been done on the occurrence of types of operands. despite the
i mportance of this topic. There are several aspects the are significant.

The Patterson study already referenced [PATTS2a] also looked at the dy-
namic frequency of occurrence of classes of variables (Table 13.3). 'Fhe results,
consistent between Pascal and C programs. show that the majority of references are
to simple scalar variablcs. Further, more than 80'% of the scalars were local (to the
procedure) variabies. In addition. references to arrarAtructures require it previous
reference to their index or pointer, which again is usuall!L. , a local scalar. 'finis, there
is a preponderance of references to scalars, and these are highly localized.

The Patterson study examined the dynamic behavior of FILL programs. inde-
pendent of the underl!,. , ing. architecture, As discussed before, it is necessary to deal
with actual architectures to examine program behavior more deeply. One study,

[LUND77], examined 1) E V- 10 instructions dynamically and found that each instruc
lion on the average references 0.5 operand in memory and 1.4 registers., Similar
results arc reported in IHUCK831 for C, Pascal, and FORTRAN programs on 5/370,
PDP-11. and VAX- Of course. these figures depend highly on both the architecture
and the compiler, hul they do iiiustrate the frequency of operand accessing.

' nose latter studies suggest the import awe of an architecture that lends itself
to fast operand accessing. because this I iperatiOn is performed so frequently. The
Patterson study suggesis that a prime candidate for optimisation is the mechanism
for storing and accessing local scalar variables.

Procedure Calls
We have seen that procedure calks and returns are an important aspect of I -I LL pro-
grams, The evidence (Table 13.2) suggests that these arc i.hc most time-consuming
operations in compiled HLL programs. Thus, it will be p rofitable to consider ways of
i mplementing these operations efficiently. Two aspects are significant: the number
of parameters and variables that a procedure deals with, and the depth of nesting.

Tanenbaum's study (TANEN' found tha1 of dynamically called prow'
,lures were passed fewer than six arguments, and that 92% of them used fewer than
six local scalar variables. Similar results were. reported by the Herkeiey RISC team
I KATE.S.1, as shown in Table 13.4. These results show that the number of words
required per procedwe activation is not large. 'I.'he studies reported earlier indinted
that a high proportion of operand references is to Local scalar valiables_'[.he.!:.e stud-
ies show that those references are in fact confined to relatively few variables.

Table 113 Dynamic Pern[agtl, nt'Operanffi

Vasa C Average

wgur vulva an I.

Scalar vuriable

A rraylstructu re

1656

26%

23%

53%
24%

20%
55%

.25%

13.2 ./ THE USE OF A LARGE REGISTER FRE 467

Table 1.3.4 Procedure Argumenti and focal Scalar Variables

Percentage of Executed
Procedure Calls With

Compiler, Interpreter,
and Typesetter

Small Nona IMIleriC

Programs

:::. Hrtzurne.nts 0-7%
romerus 0--3% 0%

wbrds of argumcnis and
lucid scalars

—2(1%

"12 words of arpuinunts a nd 141% 3%
Local scalars

The same Berkeley group also looked at the pattern of procedure calls and re-
turns in FILL programs. They found that it is rare to have a long uninterrupted se-
quence of procedure calls followed by the corresponding sequence of returns. Rather,
they found that a program remains confined to a rather narrow window of procedure-
invocation depth. This is illustrated in Figure 4.16, which was discussed in Chapter 4.
These results reinforce the conclusion that operand references are highly localized,

Implications

A number of groups have looked at results such as those just reported and have con-
cluded that the attempt to make the instruction set architecture close to H I.,1,s is not
the most effective design strategy. Rather. the HLLs can best be supported b!,. opti-
mizing performance of the most time-consuming features of lypieal HLL programs.

Generalizing from the work of a number of researchers, three elements emerge
that. by and large. characterize RISC architectures. First, use. a large number of reg-
isters or use a compiler to optimize register usage. This is intended to optimize
operand referencing. The studies. just discussed show that there are several refer-
ences per I ILI.. instruction. and that there is a high proportion of move (assignment)
statements. This. coupled with the locality and predominance of scalar references,
suggests that performance can be improved by reducing memory references at the
expense of more register references. Because of the locality of these references, an
.expanded register set seems practical.

Second, careful attention needs 10 he paid to the design of instruction pipe-
li nes. Because of the high proportion of conditional branch and procedure call
instructions, a straightforward instruction pipeline will be inefficient. This manifests
itself as a high proportion or instructions that are prefetchcd but never executed.

Finally, a simplified (reduced) instruction set is indicated. This point is not as
obvious as the others. but should become clearer in the ensuing discussion.

76.2 firE CJSE OF AiIiiiGF:ILEGISYtitIPILE

Thg. results summarized in Section 13.1 point out the desirability of quick access to
operands. We have seen that there is a large proportion of assignment statements
in I Il i programs, and many of these are of the simple form A B. Also, there is
a significant number of operand accesses per 1-ILL statement, It' we couple these

468 CHAPTER 13 / REDUCE13 INSTRUCTION SET C'OMPU'TERS

results with the fact that most accesses are to local scalars. heavy reliance on regis-
ter storage is suggested,

The reason that register storage is indicated is that it is the fastest available
storage device, faster than both main memory and cache. The register file is ph!, . , s-
ically small, on the same chip as the AIA.1 and control unit, and employs much
shorter addresses than addresses for cache and memory. Thus. a strategy is needed
that will allow the most frequently accessed operands to be kept in registers and to
minimize register-memory operations.

Two basic approaches are possible. one based on software and the other on
hardware. The software approach is to rely on the compiler to maximize register
usage. The compiler will attempt to allocate registers to those variables that will be
used the most in a given time period. This approach requires the use of sophisticated
program-analysis algorithms. The hardware approach is simply to use more regis-
ters so that more variables can he held in registers for longer periods of time.

In this section, we will discuss the hardware approach. This approach has been
pioneered by the Berkeley RISC group [PATT824 was used in the first commer-
cial RISC product, the Pyramid 1RAGA831: and is currently used in the popular
SPARC architecture.

Register Windows
On the face of it, the use of a large set of registers should decrease the need to access
memory. The design task is to organize the registers in such a fashion that this goal
is realized.

Because most operand references are lo local scalars, the obvious approach is
to store these in registers, with perhaps a few registers reserved for global variables.
The problem is that the definition of local changes with each procedure call and
return. operations that occur frequently. On every call. local variables must be saved
from the registers into memory, so that the registers can be reused by the called pro-
gram. Furthermore., parameters must be passed. On return, the variables of the par-
ent program must he restored (loaded back into registers) and results must be
passed back lo the parent program.

The solution is based on two other results reported in Section 13.1- First. a typ-
ical procedure employs only a few passed parameters and local variables (Table
13.4), Second, the depth of procedure activation fluctuates within a relatively nar-
row range (Figure 4.1.6). To exploit these properties. multiple small sets of registers
are used, each assigned to a different procedure, A procedure call automatically
switches the processor to use a different fixed-size window of registers, rather than
saving registers in memory. Windows for adjacent procedures are overlapped to
allow parameter passing.

The concept is illustrated in Figure 13.1. At any lime, only one window of reg.
inters is visible and is addressable as if it were the only set of registers (e.g.. addresses
0 through N — I). The window is divided into three fixed-size areas. Parameter reg-
isters hold parameters passed down from the procedure that called the current pro-
cedure and hold results to be passed back up- Local registers are used for local
variables, as assigned by the compiler. Temporary registers are used to exchange
parameters and results with the next lower level (procedure called by current pro-
cedure). The temporary registers at one level are physically the same as the para.

1

t 12 / TIIE USE OF A LARGE REGISTER 1-'11.1!. 469

meter registers at the next lower level- 'Fhis overlap permits parameters to be passed
wilhout the actual movemeru of data.

To handle any possible pattern of calls arid returns, the number of rigis.ier win-
dows would have to be unbounded. Instead, the regisler windows can be used to
hold the Cew most recent procedure activations. Older acrivations must be saved in
memory and later restored when the nesting depth decreases, Thus. the tel ual orga-
nization of the register file is as a circular buffer of overlapping windows. Two
notable examples of this approach #arc Sun's SPA RC' architecture, described in Sec-
tion 13.7, and the IA-64 architecture used in Inters I tanium processor, described in
Chapter 15.

This organization is shown in Figure 13.2, which depicts a circular buffer of six
windows, The buffer is filled lo a depth or 4 (A eAled 13; B called C. C called ID)
with procedure D active. The current-window pointer (OAT) points 10 the window
of the currently active procedure. Register references by a machine instruction are
ofCsel pt inier to delermine the itctwil physical register. The saved-window
pointer identifies the window most recently saved in memory. If procedure D now
calls procedure E. arguments for E are place.d in D's temporary registers (the over-
lap between w3 and w4) and the k advanced by orie window.

procedure then makes call to procedure F, the ca]] cannot be made with
the current status of the buffer. This is because F's window overlaps window. 11 .
F begins to load its temporary registers. preparatory lo a call. ii will overwrite the
parameler registers of A (,Ain}.'I1 -ius., when CW1' is incremented (modulo 6) so that
it becomes equal to SWP. an interrupt occurs. and As window is saved. Only the
first two portions (A.in and Aloe) need be saved. Then, the. SWP ix increminted
and the call to I- proceeds. A ,Thtil:tr inl.errupl can occur on returns. For example,
subsequent to the activation of I when B returns to A. CV ,IP is decremented and
becomes equal to SWP. This causes an interrupt that results in i he re .slOr'enion ref
A's window.

From lhe preceding. it can be c.t!CII 111.;11 ni N-window register file can hold only
N — I procedure aetivi ions. The value of N need not be large. As w'EIS mentioned
in Appendix 4A. one study [TAM183] found that. with g windows, a save or resLore
is needed on only I% or the calls or TO urns. I li e Berkeley RISC computers use 8
windows of 16 registers each. Pyramid computer employs 16 windows of 32 reg-
isters each.

1

PLirtiRlk I el" Local 'reni.porary
1 -4.:. gi4l9.r.i., registurb r ktg isty e s

I e1 .1

u 1 tirei tp

Puramaer Local Te.inponiry
re iswrg registers registers

Figure 13.1 Overlapping Register

1,421.4..1 1 4 ' I

Rei4AC save

470 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

Currcia-

\ winchrw
pointer

Call

Riltan

Figure 13.2 Circular-Butter Organization of Overlapped Windows

Global Variables
The window scheme just described provides an efficient organization for storing
local scalar variables in registers. However, this scheme does not address the need
to store global variables, those accessed by more than one procedure. Two options
suggest themselves. First, variables declared as global in an FILL can be assigned
memory locations by the compiler, and all machine instructions that reference these
variables will use memory-reference operands. 'this is straightforward, from both
the hardware and software (compiler) points of view. However, for frequently
accessed global variables, this scheme is inefficient.

An alternative is to incorporate a set of global registers in the processor. These
registers would he fixed in number and available to all procedures. A unified num-
bering scheme can he used to simplify the instruction format. For example, refer-
ences to registers 0 through 7 could refer to unique global registers, and references
to registers 8 through 31 could be offset to refer to physical registers in the current

P3.2 f 'THE USE OF A LARGE REGISTER FILE 471

window. There is an increased hardware burden to aecommod.ate the split in regis-
ter addressing. In additiOn, the compiler must decide which global variables should
be assigned to registers.

Large Register File versus Cache

'file register file, organized into windows, acts as a small, faSL buffer rot holding a
subset or all variables that are likely to be used the most heavily. From this point of
view, the register file ads much Eike a cache memory. although a much faster mem-
ory. The question therefore arkes ;is to whel her i1 would be simpler and better to
use a cache and a small traditional renister file.

Table 13.5 compares characteristics of the two approaches. The window-based
register file holds all the local scalar variables (except in the rare case of window
overflow) of the most recent N — 1 proeedure activations. 'I'he cache holds a wlee-
flan of recenily used scalar variables. The register file should save time, because all
local scalar variables are retained. On I he other hand, the cache may make. more
efficient use of space, because it is reacting to Lhc ;...ittnuion dynamically, Further-
more, caches generally treat all memory references alike, including instructions and
other types of &Oa, Thus, savings in these other areas are possible with a cache and
not a reaister file.

A register tile may make inefficient use of space, because nol procedures
will need the full window space allotted to them. On the other hand, the cache
suffers from another sort of inefficiency: Data are read into the cache in blocks.
Whereas the register file contains only those V4iri All in use, the cache reads in 41

Nock of Ili ta, some or much of which will not be used
The cache is capable of handling global as well as local variables. There are

ustialEy many global scalarzt. but only a few of 1hern arc heavily used [KATE.3]. A
cache will dynamically discover these variables and hold them. If the window-hascd
register file is supplemented with global registers, it too can hold sonic glohril
scalars. Elow.evcr, it is difficult for a compiler to determine which globa]s will be
heavily used.

1he register file, the movement of data between registers and memory is
determined

by,
 the procedure nesting depth. Because this depth usually fluctuates

within a narrow range, thc.use of memory is relatively infrequent, Most cache Meal-

Table 13-5 Cliaroctoristic9 of Large-Register-File and Cadic
Organizations

Large Register File Cache

]deal kLickintly

individual varial , les Blocks

Compiltt-kNFix:.n4:d g3cih;ri1 wariahks ly lobo! vniablc.5

Saw u, INi3c-cl on proce.tlue bki5s2.13 oil .;:aClic.

Tics' ing

RI4r,it6r addressing 411:71.15ry : RI

1

: F

r

F

!

472 (.71 .-IAPTER 13 l REDUCED INSTRUCTION SET COMPLrl'ERS

ories.are set associative with a small set silf.c. 'lhus, there is the danger That
data or instructions will overwrite frequi.'2ntiy used variables.

I- sect on the discussion so far, the choice between a large window-based reg-
ister file and a cache is not clear-cut. There is one characteristic_ however, in which
the register approach is clearly :iuperior and which su ggests that a ea(,:he-based sys-
tem will be noliceL -Fly sEcrwer. This distinction shows up in the amount of address-
ing overhead experienced by the two approaches.

Figure 13.3 illustrates the difference. To reference a local scalar in a window-
based register rile. a 'virtual" register number and a window number are used.
'Ilicse can pass through a relatively simple decoder to select one of the physical reg-
isters. To reference. a memory location in cache, a full-width memory address must
be generated. The conip]exi ty of c his operation depend s on the addressing mode. in

set associative cliche, a portion of the. address is used to read a number of words

Instruction

ReRisiers

I):

(:411 Winnows-hosed register file

instruction.

I Iata

Compare •vi

IP Data
(b) Cache

Figure 13.3 RcEurcncing a Sci-ithr

1 13 I COMPILER-BASED REGISTER OPTIMEZATTON 473

and tags equal to the set size. Another portion of the address is compared with the
tags. and one of the words that were read is selected. It should he clear that even if
the cache is as fast as the register file, the access time will be considerably longer.
Thus, from the point of view of performanoc, the window-based register file is supe-
rior for local scalars. Further performance improvement could be achieved by the
addition of a cache for instructions only,

13.3 COMPILER-BASED REGISTER OPTIMIZATION

1..ei us assume now that only a small number (e.g., 16-32) of registers is available on
the target RISC machine. In this case, opt imit.ed register usage is the responsibility of
the compiler, A program written in a high-level language has, of course, no explicit
references to registers, Rather, program quantities are referred to symbolically. The
objective of the compiler is to keep the operands for as many computations as possi-
ble in registers rather than main memory ., and to minimize load-and-store operations.

In general_ the approach taken is as follows. Each program quantity that is a
candidate for residing in a register is assigned to a symbolic or virtual register, 'Fhe
compiler then maps the unlimited number of symbolic registers into a fixed number
of real registers. Symbolic registers whose usage does not overlap can share the
same real register. if, in a particular portion of the program. there are more quan-
tities to deal with than real registers, then some of the quantities are assigned to
Memory locations_ Load-and-store instructions are used to posil ion quattities in
registers temporarily for computational operations.

The essence of the optimization task is to decide which quantities are to he
assigned to registers at any given point in the program, The technique most com-
monly used in RISC compilers is known as graph coloring, which is a technique bor-
rowed from the discipline of topology [CHAI82. CHOW86. COU186. CHOW901,

The graph coloring problem is this_ Given a graph consisting of nodes and
edges. assign colors to nodes such that adjacent nodes have different colors, and do
this in such a way as to minimize the number of different colors. this problem is
adapted lo the compiler problem in the: following way. First, the program is analyzed
to build a register interference graph. The nodes of the graph are the symbolic reg-
isters. If two symbolic. registers are "live" during the same program fragment, then
they arc joined by an edge to depict interference. An attempt is then made to color
the graph with n colors, where n is the number of registers. Nodes that share the same
color can he assign ed to the same register, I r this process does not fully succeed, then
those nodes that Cannot be colored must be placed in memory, and loads and stores
must he used to make space for the affected quantities when they are needed.

Figure L3.4 is a simple example of the process. Assume a program with six
symbolic registers to he compiled into three actual registers. Figure I3.4a shows the
ti me sequence of active use of each symbolic register. and part h shows the register
interference graph (shading and cross-hatching are used instead of colors). A pos-
sible coloring with three colors is indicated. One symbolic register. F, is left uncol-
ored and must be dealt with using loads and stores.

474 CHAPTER 13 / REDUCBID INSTRUCTION SET COMPUTERS

I D

R1 R2

A B C D E

I

R3

if

E I
F

I
tat 'lime sew, cove of active use of registers

Figure 13.4 I . a 1) h Coloring Approach

lb) KegiNter interference graph

In general. there is a trade-off between the use of a large set of registers and
compiler-based register optimization. For example, I BRAD91 al reports on a study
that modeled a RISC architecture with features similar to the Motorola 88000 and
the ZIPS 82000. The researchers varied the number of registers from 16 to 128.
and they considered both the use of all general-purpose registers and registers
split between integer and floating-point use. Their study showed that with even sim-
ple register optimization. there is little benefit to the use of more than 64 registers.
With reasonably sophisticated register optimization techniques. !here is only mar-
ginal performance improvement with more than 32 registers. Finally, they noted
that with a small number of registers (e.g.. VI). a machine with a shared register
organization executes faster than one with a split organization. Similar conclusions
can be drawn from [HUGIA911. which reports on a study that is primarily concerned
with optimizing the use of a small number of registers. rather than comparing the
use or large register sets with optimization efforts.

13.4 REDUCED INSTRUCTION SET ARCHITECTURE

In this section. we look at some of the general characteristics of and the motivation
for a reduced instruction set architecture. Specific examples will be seen later in this
chapter_ We begin with a discussion of motivations for contemporary complex instruc-
tion set architectures.

Why CISC
Vie have noted the trend to richer instruction sets, which include a larger number
of instructions and more complex instructions. Two principal reasons have moti-
vated this trend: a desire to simplify compilers and a desire to improve. perfor-

13.4 I REDUCED INSTRUCTION SET ARCHITECTURE 475

mance. Underlying both of these reasons was the shift to high-level languages
(FILL) on the part of programmers architects attempted to design machines that
provided better support fOr

It is not the intent of this chapter to say that the CISC designers took the
wrong direction_ Indeed, because technology continues to evolve and because archi-
tectures exist along a spectrum rather than in two neat categories, a black-and-white
assessment is unlikely ever to emerge. Thus:, the comments that follow are simply
meant to point out some of the potential pitfalls in the CISC approach and to pro-
vide some understanding of the motivation of the RISC lidherents.

The first•of the reasons died, compiler simplification, Weill obvious_ The task
of the compiler writer is to generate a sequence of machine instructions for each
HLL statement. If there are machine instructions that resemble HLL statements,
this task is simplified. This reasoning has been disputed by the RISC' researchers

IHNNS2.]. [RADIS31, [PA'1182b]). They have found that complex machine
instructions are often hard to exploit because the compiler must find those cases that
exactly fit the construct. 'Pie task of optimizing the generated code to minimize code
size, reduce instruction execution count. and enhance pipelining is much more dif-
ficult with a complex instruction set. As evidence of this. studies cited earlier in this
chapter indicate that most of the instructions in a compiled program are the rela-
tively simple ones.

The other major reason cited is the. expectation that a CISC will yield smaller.
faster programs. Let us examine both aspects of this assertion: that programs will be
smaller and that they will execute faster.

There are two advantages to smaller programs_ First, beeause e program
takes up less memory, there is a savings in that resource. With memory today being
so inexpensive, this potential advantage is no longer compelling. More important,
smaller programs should improve performance, and this will happen in two ways.
Hrst, fewer instructions means fewer instruction bytes to be fetched. Second, in a
paging.environment, smaller programs occupy fewer pages, reducing page faults.

The problem with this line of reasoning is that it is far from certain that a CISC
program will be smaller than a corresponding RISC program. In many cases, the
CISC program, expressed in symbolic machine language, may be shorter (i.e.. fewer
instructions), but the number of bits of memory occupied may not be noticeably
smaller. Table 3.fi shows results from three studies that compared the size of com-
piled C' programs on a variety of machines. including RISC which has a reduced

Table 13.6 Code Sise Resistive iii RISC I

I PA'ITS2a1
11 C Programs

[KATE831
12 C Programs

111•ATS41
5 17 Programs

RISC I I.0 1.0 1.0
VAX- 1 1178D 0.8 0.67
M6tWG 1).9 0.9
78012 1.2 1.12
PDP-11170 .0.9 0,71

476 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

instruction set architecture. Note thnt there is little or no savings using a GISC over
a RISC. it r iist.1 ;ni c.ro4Eing to note that the VAX, which has 41. much more complex
instruction set than the. PDP-11, achieves very [it * Savingz, over the biter. 'Mese
results were confirmed by IBM researchers I RAD W .I. who found that the I BM 801
(a RISC) produced code that was 0.9 times the size of code on an IBM St370. The
cludy used a set of PL,II programs.

There are several reasons for the7se railicr surprising results. We have already
noted that compilers on CISCs tend to favoi simpler instructions, so that the con-
ciseness of inc. complex instructions seldom comes into pia Y. Also, because there are
more instructions on a C.ISC, longer opcodes are required, producing longer instrue-
lions. Finally, RISCs tend to emphasize register rather than memory references, and
the former require fewer bits- An exampie of this last effect is discussed prez;.cittl±f..

So the expectation that a CISC. will produce smaller pa)grorns, with the alien'
dant advantages, may not be realized, The second mc,Itivating factor for increasingly
complex instruclion sets was that instruction execution would be faster, it seems
to make. scnsc alai a complex FILL operation will execute more quickly as a Single
machine instruction rather than as a series of more prirniiive instructions. However.
because of the bias toward the use of 1[11.,fiL' simpier instructions. this may no.1 be so.
The entire control unit mull he male more complex, anclior the microprogram
control store must be made larger. to accommodate a richer instruction set. Either
factor increases the execution time of the simple insi ructions.

in fact, sonic researchers have found that the speedup in the execution of oomplcx
functions is due not so much to the power of the complex machine instructions as to their
✓esidence in high-speed control store [RADI.8.3], In effect, the control store acts as an
instruction cache. Thus. the hardware archiLcet is in the position of trying to determine
which subroutines or functionK will he used most frequently and assigning those to the
control store by implementing them in microcode. The results have been less than
unCOLINiging. On S/390 systems, instructions such as II- 41 74rib: and Extended-Precision•
Floating-Point-Divide reside in high-speed storage, while the sequence involved in sot•
brig up procedure calls or initiating an interrupt handler are in slower main memory,

Thu:5, it is far from dear that a trend to increasingly complex instruction sets
is appropriate. This has led a number of groups io pursue the opposite path.

Characteristics of Reduced Instruction Set Architectures

Although a variety of diffcreni appro2iches to reduced instruction sal :. iithitecture
have been Lakcn. certain characteristics are common to all of them:

• One instruction per cycle

• Register-to-register operations

• Simple aLldressing modes
• Simple instruction formats

Here, we provide a brief discussion of these characteristics, Specific examples are
explored later in this chapter.

The first characteristic listed is that There is one machine instruction per
machine cycle. A machine cycle is defined to he the time it takes to fetch two

13.4 REDUCED INSTRUCTION SET ARCHITECTURE 477

operands from registers, perform an ALL' operation. and store the result in a reg-
ister. Thus, RISC machine instructions should be no more complicated than, and
execute about as fast as. microinstructions on CISC machines (discussed in Part
Four). With simple, one-cycle instructions, there is little Or no need for microcode;
the machine instructions can be hardwired. Such instructions should execute faster
than comparable machine instructions on other machines. because it is not neces-
sary to access a microprogram control store during instruction execution.

A second characteristic is that most operations should he register to register,
with only simple LOAD and SIORE operations accessing memory. This design fea-
ture simplifies the instruction set and therefore the control unit. For example. a
RISC instruction set may include only one or two ADD instructions (e.g., integer
add, add with carry): the VAX has 25 different ADD instructions. Another benefit
is that such an architecture encourages the optimization of register use, so that fre-
quently accessed operands remain in high-speed storage.

This emphasis on register-to-register operations is notable for RISC designs.
Contemporary C1SC machines provide such instructions but also include memory-
10-memory and mixed registerimemory operations. Attempts to compare these
approaches were made in the 1970s, before the appearance of R SCs. Figure 13,5a
illustrates the approach taken. Hypothetical architectures were evaluated on pro-
gram size. and the number of hits of memory traffic. Results such as this one led one
researcher to suggest that future architectures should contain no registers at all
[MYER781. One wonders what he would have thought, at the time, of the RISC
machine once produced by Pyramid, which contained no less than 528 registers!

What was missing from those studies was a recognition of the fregtxnt access
to a small number of local scalars and that, with a large bank of registers or an opti-
mizing compiler. most operands could he kept in registers for long periods of time.
Thus. Figure 13.5b may be a fairer comparison.

A third characteristic is the use of si mple addressing modes. Almost all RISC
instructions use simple register addressing. Several additional modes, such as dis-
placement and PC-relative. may be included. Other, more complex modes can be
synthesized in software from the simple ones. Again, this design feature simplifies
the instruction set and the control unit_

A final common characteristic is the use of simple instruction formats. Generally.
only one or a few formats arc used. Instruction length is fixed and aligned on word
boundaries. Field locations, especially the opcode. are fixed. This design feature has
a number of benefits. With fixed fields, opcode decoding and register operand access-
ing can occur simultaneously. Simplified formats simplify the control unit, Instruc-
tion fetching is optimized because word-length units are fetched. Alignment on a
word boundary also means that a single instruction does not cross page boundaries.

Taken together, these characteristics can be assessed to determine the poten-
tial benefits of the RISC approach. These benefits fall into two main categories=
those related to performance, and those related to VLSI implementation.

With respect to performance, a certain amount of - circumstantial evidence" can
be presented. First. more effective optimizing compilers can be developed. With more-
primitive instructions, there are more opportunities for moving functions out of loops,
reorganizing code for efficiency. maximizing register utilization, and so forth. It is even
possible to compute parts of complex instructions at compile time. I car example, I he

Add rA .—B cC

Add CIEI rc
Sub EMII

Register-to-memory
1 = 104 D = 96, M = 20(1

16 16 16

A 1
Load
Add rA r7.1

Siore A

I Add B

Memory-to-memory
1 = 56, D = 96, NI :--- 152

Regisier-to-memory

(■) A ,t—B+C

8 16 16 16 4 -1-
Add B C A

Add A C B

Sub B D D

Memory-to-memory
1= = 288 M = 456

(13) A B + C; A + C; D D — B

1 = Size of executed instructions
D Size of executed data
NI =I+ D = Total memory traffic

Figure .13.5 Two Comparisons of Register-to Regisier and Memory-to-Memory Approaches

I3-4 REDIJCD INSTRUCTION S.BT ARCHITECTURE 479

5i390 Mi ,YE Characters (PvIVC.) instruction moves a string of characters from one loca-
tion to another. Each lime it is executed, the move will depend on the length of the
string, whether and in which direction the locations overlap, and what the alignment
characteristics are. In most cases, these wilt al] he kilowli at compile time.Thus,ihe com-
piler could pnicitice ain optimized sequence of primitive instructions for this function.

A second point, ; ..ilready nutted, i.s that most instructions generated by a com-
piler are relatively simple anyway. It would seem reasonable that control built
sped liea rly for those instructions and usin@, little or no microcode could execute
them faster than a comparable CISC.

A third point rclates to the use of instruction pipelining. RISC researchers feel
that the instruction pipelining technique can he applied much more effeciively with
a reduced instruction set. We examine this point in some detail presently,

A final, and somewhat less significant. point is that RISC processors are more
responsive to interrupts because inierrupts are checked between rather elementary
operations. Architectures with complex instructions .either restrict interrupts to
instruction boundaries or must define specific interruptible points and implement
mechanisms for restarting an instruction,

The case for improved performance for a reduced instruction set architecture is
strong, bui one could perhaps still make an argument for CISC. A number of studies
have been done but not on machines of comparable technology and power. Further,
most studies have not attempted to separate the effects of a reduced instruction set and
the effects of a large register file. The "circumstantial eviderirc," however, is suggestive-

111e second area of potential benefit, which is more dear-cat, relates to VLSI
implementation. When VLSI i7,1te:le(1,1he design and implementation of thg proces-
sor are fundamentally changed. Traditional processor, such as the IBM S.1390 and
the VAX, cAmsis1 of one or more printed circuit boards containing standardized 551
and MST packages, With Ihe advent of LSI and VLSI, it is possible to put an entire
processor on a single chip. For a single-chip processor, there arc two motivations for
following a RISC strategy. First, there is the issue of performance. On-chip delays
are Or much shorter duration than interchip delays. Thus, it makes sense to devote
scarce chip real estate to those activities that occur frequently. We have seen that
si mple instructions and access to [twat •.L7114]1 - 5 411.- C, in fact, the most frequent activi-
ties, The Berkeley RISC chips were designed with this consideration in mind,
Whereas a typical single-chip microprocessor dedicates about half of its area to the
microcode control store. the RISC / chip devotes only about 6% of its area to the con-
trol unit [SHER84].

A second VLSI-related issue is design-and-implementation time. A VLSI
processor is di fficuh to develop. Instead of relying on available SSUMSI parts, the
designer must perform] circuit design, [avow, and modeling at the device level. With
a reduced instruction set architecture, this process is far easier, as evidenced by
Table 13,7 781] IL in addition, the performance of the RISC chip is equivalent
to comparable MC. microprocessors. [hen the advantages of the RISC approach
become. evident.

CISC versus RISC Characteristics
After the initial enthusiasm for RISC machines, there has been a growing realiza-
tion that (1) RISC designs may benefit from the inclusion of some CISC' features

480 CHAPTER 13 I 1.2.52DUCED INSTRUCTION SET COMPUTERS

"fable 13,7 1.) s.ign mid Layout Effort rcir Sonic. Microprocessors

CPU
Transistors 1)4Aga Layout

(thousands) (person-mouths) (pet'snu-monalm)

RISC1 44 15 12
RISC. II 41 Its .12
M4581.100 (5b: NO 70
7.0...10 1R 60 10
In iet iAPA-432 110 170 90

and that (2) C1 SC designs may benufit from the inclusion of some RISC features.
The result is that the more recent RISC designs, notably the PowerPC, are nu longer
"pure" RISC and the more recent CISC designs, notably the Pentium II and later
-Pentiktm models. do incorporate SOMe RISC' characteristics,

An interesting comparison in 'MASI 195J provides soma insight into this issue.
Table 13.8 lists a number of processors and compares them across a number or chat.
acteristics. For purposes of this comparison. the Lotlowing are wrisitlenal t!,. pieal of
a classic RISC;

1. A single instruction size,
2. That size is typically 4 bytes.
3. A small number of data addressing modes, typically less than five, This para-

meter is difficult to pin down. In the table, register and Ulu& modes are not
counted and different formats with different c afrsei sizes arc, counted separately.

4. No indirect addressing that requires you to make one memory access In ga
the address of another operand in memory,

5, No operations that combine load/store with arithmetic (e.g., add from mem-
ory, add to memory),

6. No more than one memory-addressed operand per instruction-
7. Does not support arbitrary alignment of data. for loadIstore operations.
K. Maximum number of -uses of the memory m;inagemeni unit (MMI..) for a data

address in an instruction,
9. Number of bits for integer register specifier equal Lo five or more. 'Phis means

that al (east 32 integer registers, can he explicitly referenced at a time.
10. Number of bits for floating-point reaister specifier equal to four or more,

This means that at least 16 floating-point registers can be Yxpl ly refer-
enced at a time.

Items 1 through 3 . are an indication of instruction decode complexity. Items 4
through S suggest the ease or difficulty of pipelining, especifllly in the presence of
virtual memory recitnrcmen Ls. [terns 9 and 10 are related to the ability to take good
advantage of compilers.

In the table, the first eight processors are clearly RISC' architectures, the next
ruc are clearly CISC, and the last Iwo are processors often thought of as RISC that
in fact hz•r ,..c many ('IS C characteristics,

Table 13.8 Character islics of Some Processors

Processor

Number
of

in.structinn

sizes

Max
instruction

size
in bytes

Number
of

addressing

mz.Ries

Indirect

addressing

Load/store
combined

with
arithmetic

Max
number

of memory

operands

Unaligned

addressing
allowed

Max

nipmber
of MMU

uses

Number

of bits
for integer

register
specifier

Number
of bits
for FP

register
specifier

A N.11/29U0il 4 tiCt 110 3'

MIPS R201-,4.1 4 S 4 •

SPARC 1 no 110 no 4

MC8S0011. 1 4 11. 0 no 0(1 1 5 • 1

TIP PA • . e_r ors 110 no 4

IBM RT.TC 4 1 110 no 1 11 0 -44

IBM RSI61'..0.10 1 4 4 no 00 yeS 1

Inte41860 1 4 110 no 1 n 1 5 1

IflM .10,41) n(1' yes VCS 4

Intel 80486 17. 12 1.5 1101. yES. 2 yes

NSC. 32016 71 21 23 yo.s yes _Yc5 4 3

‘1068040 1 1 77 -14 yes yts ves 4 3

VAX 56 56 22 yEs. 11,,es ycs 24 4

ClIpper 4" no nu 2 44 3'

Intel 80960 1••:. 8" 110 TN) yesz' 5

Rim.. i sLi lc% FIJI conform to this di
11132 d0C-, ri i! confouri to thx_C Chal acr.s:TI,I lc.

482 CHAPTER 13 i REDUCED INSTRUCTION NET COMPUTERS

13.5 RISC PIPELINING
, „

Pipelining with Regular Instructions
As we discussed in Section 12,4. instruction pipelining is often used to enhance per-
formance. Lei us reconsider this in the context of a RISC archiLecLutc, Most instruc-
ti ons are register to register, and an instruction cycle has the following two stages:

• I: Instruction fetch.
• E= ENCQUW. Performs an ALU operation with register input and output.

For load and store operations. three stages are required!

• I: Instruction fetch.
• E.! Execute. Calculates memory address-.
• D: Memory. Register-Io-memory or inemory-toiegistu operation.

Figure 13.6a depicts the timing of a sequence of instructions using no pipelin-
ing. Clearly, [his is a wasteful process. Even very simple pipelining can substantially
improve performance. Figure i3.01) ;,lhow!, a two-stage pipelining scheme, in which
the I and E stages of two differcni. instructions are performed simultaneously. This
scheme can yield up tie twice the execution rate of a serial scheme. Two problems
prevent the maximum speedup from being achieved. First, we assume that a single-
port memory is used and that only

,
 irnc memory access is possible per stage. This

requires the insertion of a wait state in some instructions. Second, a branch instruc-
ti on interrupts the sequential flow of execution. To accommodate this with mini•
mum circuitry, a NOOP instruction can b4 inserted into the instruction stream by,
the compiler or assembler.

Pipelining can be improved further by permitting Iwo memory accesses per
stage. This vicids the sequence, shown in Figure 13.6c. Now, up to three instructions
can be overlapped. and the iniprovemcnl is as much as a factor of 3. Again, branuh
instructions cause the speedup to fall short of the maximum possible. Also, note
that data dependencies have an effect. If an instruction needs an operand that i8
altered by the preceding instruction, a delay is required. Again. this can be accom-
plished by a NOOV.

The pipelining discussed so far works best if the three stages are of approxi-
matel!,.y equal duration. Because the E stage Lain:illy involves an ALL operation, il
may be longer. In this case, we can divide into two substages;

• E,1 Register file read
• E,: ALU operation and register write

Because of the simpkity and regularity of a RISC instruction set, the design
or the phasing into three or four stages is easily accomplished. Figure 13,6d shows
the result with a four-stage pipeline-Up 111 four instructions at a time can be under
way, and the maximum poLeTlial speedup is a factor of 4. Note again the use of
NO0 Ps to account for Li ma and branch delays.

URI
I IL

11 E D I

CIE

E

E D

I E

KIM
C 4— A + B

M < C

X

F 1 F2i

TITT:

L ; 1. D

I IL L 1L,

Load A 4— M

Load B M

Add C<—A+B

Store. \1 C

Branch X

(a) Sequential execution

Load A‹—M

Load B M

NOOP

Add C— A + B

Store M C

Branch X

NOOP

(c) Three-way pipelined timing

Load A (— L Li)

Load 13 M

Add C 4.— A B

Store M C

Branch X

NOOP

(h} Two-way pipelined timing

Load A 4—

Load B 4-- M

NOOP

Add

Store

Branch

NOOP

NOOP

• (d) Four-way pipdincd timing

F.- IF.- I)

1 ::L '

D

F

1

LEI)

ffi

Figure 13.6 The Fifects of Pipelining

484 ciIAPTER 13 REDUCED INSTRUCTION SET COMPUTERS

Optimization of Pipelining

Because or the simple and regular nature of MSC instructions, pipelining schemes
can be efficiently employed. There arc few variations in instruction execution dura-
tion, and the pipeline can be tailored to reflect this. However, we have seen that data
and branch dependencies reduce the overall execution rate.

To compensate for these dependencies. code reorganization techniques have
been developed. First. let in (.74insider branching instructions, Delayed broach, a way
of increasing the efficiency of the pipeline, makes use of al-Franch that does noel Lake
effect until after execution of the following instruction (hence the term deiciye411.
'I'he instruction location immediately following the. branch is referred to as the defay
Nlo.r. This strange procedure is illustrated in Table 13.9, In the column labeled "nor-
mal branch, - we see a normal symbolic instruction machine-language program.
After 102 k executed : the next instruction to be executed is 105. To regularize the
pipeline, a NOOP is inserted alter this branch. However. increased performance is
achieved if the instructions at 101 and 102 are interchanged.

Figure 13.7 shows the result. Figure, l3- 7a shows the traditional approach to
pipelining, of the type discussed in Chapter 12 (e.g., see Figures L2.11 1.riti 1 112).
The .11:MP instruction is fetched al time At time 4. the JUMP instruction is exe-
cuted at the same time thai instruction 103 (ADD insiruci ion) is fetched. Because
a 31.11vIP occurs, which updates the program counier, the pipeline mull be cleared
of instruction 1113: at time 5, instruction 1115, which is the target of the JUMP. is
loaded. Figure 13.7b shows the same pipeline handled by a typical RISC organiza-
tion. The timing is the same. However, because or the insertion of the NOOP
insiruelion, we do not need special circuitry 1of clear the pipeline; he NOOP simply
executes with no effect. Figure 13.7c shows the use of the delayed branch. The
JIJMP instruction is fetched at lime 2, before the ADD instruction, which is fetched
at time 3. Note, however, that the ADD instruction is fetched before the execution
of the JUMP instruction has a chance to alter the program counter. Th ere fore., dur-
ing time 4, the ADD instruction is executed at the same time lhaL instruction 105 is
fetched. Thus, the original semantics of the program arc retained but one less clod
cycle is roc ired For execution.

This interchange of instructions will work successfully for unconditional
branches, calls. and returns. P'or conditional branches, this procedure cannot be

iropie 11.9 Normal and Delayud Branch

Address Normal Branch Delayed Branch
Optimized

Delayed Branch

Rio LOAD X.A L OAD X,A LOAD X,A

101 ADD 1: A ADD L,A .11!MP 105

102 JUMP 105 JUMP 1U ADD LA

103 ADD A.B Is.:00P ADD .A,6

104 SUB C..14 ADD AJEL SUFI C.13

11)5 STORE A.Z SUB C.B. STORE A,Z

106 S1 01-4. 1= A.Z

1

1)

100 LOAD X, A

101 ADD 1.A

102 .111: MP 106

103 NOOP

106 STORE A. Z

13.5 / RISC; PIPELINING 485

Time

1 1 2 1 3 I 4 I 5

1 I

100 LOAD X, A I
1

101 ADD 1. A

102 JUMP 105

103 Alit) A, 11 1

105 STORE A, Z I

(a) Traditional pipeline

(11)1 RISC pipeline with inserted NOOP

100 LOAD X, A

101 JUMP ins

102 ADD 1, A

105 STORE A, Z

I I 1
(Eh Revemerl

Figure 13.7 use of Lhc Delayed

blindly applied. If the condition that is tested kr the branch can be altered by the
immediately preceding instruction. then the compiler must refrain from doing the in-
terchange. and instead iris..121- 1 NOOP. Otherwise, the compiler can seek to insert a
useful instruction after the branch. The experience wish harsh the Berkeley RISC
and IBM SO I systems is that the majority of conditional branch instructions can be
optimized in this fashion ([1 3AT1'82a], [RADI83]},

486 CHAPTER 13 I REDUCE) INSTRUCTION SET COMPUTERS

A similar sort of tactic, called the delayed had, can be used on LOAD instruc•
tons. On LOAD insiructions, the register that is to be the target of the load is
locked by the prouessor. The. processor then continues execution of the instruction
stream until it reaches an instruction. requiring that register, at which point it idles
until the load is compleic. If the compiler can rearrange instructions so that useful
work can be done while the load is in the. pipeline, efficiency is increased.

Asa final note., we should point out than the (lesign of the instruction pipeline
should not be carried out in isolation from other npl iini 7. a I. ion techniques applied to
the system. For example, [BRAD9Ibi show.s that the scheduling of instructions for
the pipeline and the dynamic allocation of registers should he considered together
Lo achieve the greatest efficiency.

13.6 MIPS R401)(1
_er arr,f-

If ae .7-:"Prf-err.,..Werre are,
• ,arC .ferre Y.. yr. - aSerrer."-A.-

One of the first commercially available RISC chip sets was developed by MIPS
'Teehnology inc. The system was inspired by an experimental system, also using the
name MIPS, developed at Stanford 1HENN84]. In this section we look at the MIPS
84000. It has substantially the same architecture and instruction seI of the earlier
MIPS designs: the 82000 and R3000. The most significant . difference is that the
84000 uses M rather than 32 bits for all internal and external data paths and for
addresses, registers, and the ALL:.

The use of 64 hits has a number of advantages oi.rer a 32-bit architecture. Et
allows a bigger address space—large enough for an operating system to map more
than a terabyte of files directly into virtual memory for easy access. With 1-gigabyte.
and larger disk drives now common, the 4-gigabyte address space of a 32-bit
machine becomes Iiniiiing, Also, the 64-bit capacity allows the 840010 to process
data such d4puble-precision floating-point numbers and character strings,
up to eight chat deters in a single action.

The R40r)0 processor chip is partitioned into two sections, one vim aining the
CPU and the other containing a coprocessor for memory management. The proces-
sor has a very simple architecture. The intent was to design a system in which the
instruction execution logic was as simple as possible, leaving space available for Logic
to enhance performance (e.g., the entire memory-management unit).

The processor supports thirty-two 64-bit registers. It also provides for up to
128 Kbytes of high-speed cache, hail each for instructions and data. The relatively
large. cache (the IBM 3090 provides .128 to 256 Kbytes of cache) enables the system
to keep large sets of program code and data local to the processor, off-loading the
main rrwmory bus and avoiding the need for a large rcgister file with the accompa•
nying windowing logic.

Instruction Set
Table 13.10 lists the basic insiruetion set for all MIPS R series processors. Table
13.11 list the additional instructions implemented in the R4000. A]] processor
instructions are encoded in a single 32-bit word format. All data operations are reg-
ister to register; the only memory references are pure Load/store operations.

13.6 MIPS R 4000 487

The R411(111 makes no ui.;;I: of condition codes. I f in n instruction generates a con-
dition, the corresponding fldgs are stored in a gcneral-purpose register, This avoids
the nced for spocial togie to deal with condition codes as Li -Icy rifted the pipelining
mechanism and the reordering of instructions by 1he compiler_ instead. the mecha-
rasms already implemented to deal with register-value dc1, -)endencies are employed.

IA* 13-10 R-Serics Instruction St11

OP

1.11

LE--E
1.1-11-1
LW
LWL
L'afrFt

.S T3

.SH
SW
SWL
swR

Anal
ADDIU

ANDI

ORE
XDRE

LL:1

ADD.
ADD(J

SUB
SUBL:

SLTU

OR
XOR.
NOR

SLL
SRL
SRA
SLLV
S RLV
SHAY

Description

Load/Store irattrutitans
Load B yte
Load By[e Unsigmd
E..oad ITO:01 1.1

LDUCJ Haliviord. Uih.i4Ined
Loud Word

Load Word 1.4L
Load Word Righ1
Store.
S I orc Ha 1 fword
wire Word

Storu Vte'ord Leff

Sion! Word 1R.;g1.0

ArlthIllellic Instructions (All! Immediael

Add lrffriwdiaLe

Add Immediate Uns.ign.nd

Set on I .c NE Than firimediarc
Sot o Leas Than Entmediati2 Unqgried

AND lmmcdiRre

f makudi II

E lasive-OR
Load Upper EnnoodiaLc.

Arithmetic Insinktions {3-operand, R-typeji
Add
Add Unsitmcd
Suhtract
Sub1mcs Unsigned
Set on Lcss `Chau

Set on 1.,c83 Than UnAigncd.
AND

OR
Excluivr-OR

lihifl I miracli.ons

Shift 1.1A 1..4>eical
Shift .ogical.

Shift RiOn. Aviihnicijc

5filk Left Login!! Iv'ariatd.e.

ShElk Right Lq.iciAl Variable
Shin Righi Arithmetic Variable

OP

Imitruehions
NI f LT
MULTU Cnsigned
DIV Divide

1.:nhigncd
:\0111-1 1 Move from HT
MTH! Move to LEI
MELD Move From LC)
MTLO 4.11)VC' In LC)

.1 Li mp and Etranch lastructionx
.1 Jump
.TAI . Jump and].ink
J R Jump to Rep.iriEur

JALR .Jump and Link Regisicr
B EQ Branch on Equal

BNE Branch on Nol Equal
Bra ach Than (5r Equal LC art)

BGT7 Branch c,u GredLln- !hart Zero
BLTZ Branch on Loss than 7.cro
BGEZ Branch. on Crreutet Than or Equal. to Zero
BLTZAL Branch on Less than Z.c.rd. and Link
BUEZAL Branch oil &Hater Than or equal to Zero

iind Link
Coprocessor in.struclinn%

Load Word I pTCK.018ar

OIL: WOld IA) C1.33113CCSS{ Er

M I lo Coprocessor
.%/lovc Irani Coprocessor

C:onirol lo Coproceswr

rkloyc Control from Coprocenor
Coproi..emiir Oricra d on

Branch tan C7t)procchar E..True

krwric la on copt000sErn- z

LWC:7.

WIC?:

CTC7.

COP./

Special ineitrutliMIS
SYSCALL S:ystvm (Tall
TIRP.AI Break

1

488 CHAPTER 13 i REDUCED iNSTRUCTION SET COMPUTERS

Table 13.11 Additional 84000 InstruyLions

DP Description OP Desffiption

Load)Store Ingtxiictions Emption InstroctionN
LL Load Linked TGE Trap if GfeaLey Than or .1-..qual

SLOW: 4.-ontliLinnal 'EGEU 'Trap if CiTC.1 L1' Than or Equal Unsigned.

Sync TLT Trap if lac:NS Foto
]ump sund Branch iust1riiciions TL'I1.1 Trap if LlrisignW

. BT;LE1C Il on. Equal Liktly EQ Trap if Ey UiLL
SNEL liranch on Not Equal Likely TNE Trap Not Equal

EZL. Branch on [..e.s Than or Equal IA '1(31:1 Trap if Greater 'I..han or P.qual lunnwdinw
Zero Likely

BCITZL Branch on Greaser Than Ze..I0 Likely ' UHL! Gremer Than Or ECIU a I 1.:ns.iersed
Inuit di:pie

BLTZL Branch on Les-; Itinn Zero L.ikely TLTI Trap it Less Than Immediate
BGEZL Branch on {]realer Than or Equal TI..TII: Trap it Less Than 'Unsigned Im mcdi ate

Lu Zeso Likely
FiLTZ.A.f. Branch on Less Than Zero 'J'E.QI Trap
L Link LIM y
BGEZ AL Branch on Greater Than or Equal TNE] Ttap it Nol. Equal Inunediale
L Lt Zero and Link Likely
RC./.TL Brandt on Coppocessor z True Likely CIITED111.70.4.14 inStrUCtilDilS

(:L FL DTA rich (in Cop' 5LT2r.SC1T t False LI)C..e Load I) 12 . bproccmcii
SEcire Double Coprocc.Fs.or

Further, conditions mapped onto lhe register files are subject to the same eornpile-
ti me optimizations in allocation andl trctr,e t, otlICI' values stored in regbocts.

As with most RISC-hosed machines, the NIPS liSeb. n single 32-hit instruction
Length. '1'his single instruction length simplifies inOrtii:lion l'clCII and decode, and it
also simplifies the interaction of instruction fetch with the virtual memory manage-
ment unit (i.e., instructions do not cross word or page boundaries). The three
inslructiori formats, (Figure I 3.R)share common formatling opcoides and register
references : simplifying instruction decode, Tlw effect Of more complex instructions
can be. synthesized al compile LiInc-

Only [he simples[and most frequently used memory-addressing mode is
imp]cryiented in hardware. Al] memory references consist 4.)1 a 1s-bit offset from fl

32-bit register. For example, the 'Load word' in.intrUCtiOni is of the form

1w r2, (r3) word n.e .ndd.ru!L. 12 ;:i f rnn rs.gister 3 intc: t.5tr. 2

Each of the 32 general-purpo5.e rcgiA.er'S can be used as [he bme. register- One reg-
i5tcr, r0,..idways contains 0.

The compiler makes use of mu]tipio machine instructions to synthesise
addressing modes in convention01 machines. Some examples are prodded in Table
13,12 [CH0W871. The table shows the USG of the instruction Lui (load upper imme-
diate). This instruction loads [he upper hal f {,r a register with a 16-bil immediate
value, setting the lower hair 10 zcro.

opera(i in rL

I r i ork „ .,,,.!,,:, .,:,..„......-?,.....„,„,...„,,,,,.,..,.,..„„_,
f

I Opaation I rs

O ffiEllfiffirlEM2K."

13.6 / N131'S R.44.1.00 484

Instruction Pipeline
With its simplified instruction architecture,. the MIPS tit:Neve very efficient
pipelining. Ii is instructive to look at the evolution of the MIPS pipeline, as it illus-
trates the evolution of RISC pipelining in general.

The initial experimental RISC systems and the generation Of commercial
RISC prow.ssors achieve exccution spaeds that approach one instruction per system
clock cycle. To improve oh this perforinance, two classes of processors have evolved
to offer execution of multiple instructions per clock cycle: superscalar and super-
pipelined architectures. In essence, a superscalar archilect to -c replicates each of the
pipeline stages so that two or more instructions al the same stage of the pipeline can
be processed simultaneously„k superpipelined architecture is one that makes use
of more, and more nne-grained, pipeline. slages. With more Aiges, more instructions
cAri he in thc pipeline at th.c same lime, increiv,ing

Both approaches have limitations. With superscalar pipelining, dependencies
between instructions in different pipelines can slow down the syslem, Also. over-
head logic is recuired to coordimtc these dependencies, With super -pipelining, there
is overhead associated with transferring instructions from one stage to the next.

Chapter 14 is devoted to a study of superscalar architecture. The MIPS R40.10
is a good example of a RISC-based superpipe]ine architecture,

1-tyF
immodiatc)

1-type

ulliP)

R-[ype
trcgisier)

() Nutt iori
rs
rl
hininediat
Target

Shift
Function

Figure 13.8

01700Litill

Source rcgister specifier
Sourceidestination reis.ter sperititr
immediate.. branch, or adcli.ss displacemem
Jump target address
Dcsiinolii spa iffier
Shift i ni unt

runciiun spocifier

MIPS lrisiruclik-rn Pm t!s

490 cHApTER. 13 I REDUCED INSTRUCTION SET COMPUTERS

Table 13.12 Synthesizing Other Addressing Modes with
the MIPS Addre'ssing MOde

Apparent Instruction Actual Instruelion

1w r2., ...iffsea> 1 w r2, ‹16-hit (r())

lw 12, <:12-hit (Also} Ku 1 , 1, <high 16 hits of Dfisei>
1w r2. <low l6 hits of c>ffset> 01)

1w r2. (r4) lui r 1. <high IA hi

addu r I. r]. r4
lw r2. • ow](.i ,tits of offset:. ir 1)

Figure 13.9a shows the instruction pipeline of she R3000. In the R3000, the
pipeline advances once per clock cycle. The MIPS compiler is able to reorder
instructions to fill delay slots with code 70 to 90% of the lime. All instructions fol-
low the same sequence of five pipeline stages:

• Instruction fetch
• Source operand fetch from register file
• ALL-) operation or data operand address generation
• Data memory reference
• Write hack into register file

As illustrated in Figure 13.9a, there is not only parallelism due to pipelining
but also parallelism within the execution of a single instruction. The 60-ns. clock
cycle is divided into two 30-ns magus. The. external instruction and data access oper-
ations to the cache each require 60 as, as do the major internal operations (OP, DA,
IA). Instruction decode is a simpler operation. requiring only a single 30-ns stage,
overlapped with register fetch in the same instruction. Calculation of an address
for a branch instruction also ovcrlapS instruction decode and register fetch. so that
a branch at instruction i can address the !CACI - 1E access of instruction i - 2.
.Similarly, a load at instruction i fetches data that are immediately used by the OP
of instruction i while- an ALA . 1 /ski ft result gets passed directly into instruction

1 with no delay. This tight coupling between instructions makes for a highly
efficient pipeline.

In detail. then, each clock cycle is divided into separate stages, denoted as 61
432. The functions performed in each stage are summarized in Table 13,1.3.

The 840011 incorporates a number of technical advances over the 83000. The
use of more advanced technology allows the clock cycle lime to be cut in half, to
30 ns, and for the access time to the. register file to be cut in half. In addition, there
is greater density on the chip, which enables the instruction and data caches to be
incorporated on the chip. Before Looking at the final R4000 pipeline, let us consider
how the 830001 pipeline can be modified to improve performance using R400-0
technology.

Figure 1 3.9b shows a first step. Remember that the cycles in I his figure are half
as long as those in Figure 13.9a. Because they are on the same chip. the instruction

R D A[

WB ALIT Or

DA I DUB nin

E. (le

W R

.:n

RF

E .DEC •
•

CLock Cycle

J Detailed R31)00 pipeline

Cye I

1 - 1 -1.13 1-Cache kF I ALU Dil .14 D-Cache W1-31

(b) Modified R3000 pipeline with reduced latencie;-;

I Cycle CyclIL. I Cycle R 2 de

77B-1. R; ALE D -Cache C

c) Optimized R .31).E.X.) pipeline with parallel TLI .3. ral. cache accesses

Figure 13.9 Fnhaircing the R3000 Pipelirrt

TF =r im&el)
RD = Read
MEM = Manor.: access
WB = w §jck
f-f";A:hcz = Instrucriou caerm acccss
RF =i»± oporand from regime,-
D-Cachc = Data caLlit
NIB = Instruction addr&•,..; 13 -an...Aaiun
!DEC – Ins[ruLlion &code
IA = Compute mw iork .,ttIdrcss
DA = data virtual address
DTE.E1 = Dara address irdrislatiou
TC = Ddia k-HChe tag check

492 ciriaEuYiER. 13 / REDUCED !NSTRUCTION SET COMPUTERS

Table 13.13 83000 Pipulint. Siam;

Pipeline
Plum Function

IF using shu rilniikaw an instrircLion .vircualaddross to Fl ph IITSI CH I

.:1 11(1 Ll:Sti 4 I LiA" N 111W IlL11111 drCaSlprS i.

IF 112 thr cm I Hd them, Lk, LhE irisilLICLiira address.

RD 41 Return instruction from irisirugiion

GOIllipare. sags and validity or luichcli

1.P 2 Decade instruction.

Rued register file.

branch..calestlase braach target ackdress.

A1.1.1 .131 + .02 1.1. op ;ration, the arilhrrioic or Ingi Ckl I Ope.raLi0(1 IS•
perlDrrned.

A I .131 11 a brunch, docide vel-i ther the branch is to in lakw, tar nut.

mEniUTY rtft rcii.fiL (load cir store). calcutHtc data vi Luak

ALL.' TI H mLnl nry rc 1trr n Ce. Ltamlate. data virtual address Ckl I usi ng

MEM 4.11 Iry Inc wiry rLIcmhIEC. r412 n address Le•thiLa cache.

M EF I 02 IF H rLI't.rc nLL . ru L LIM data from data cache, and clicck

1413 ol Write to regisler lilt ,

and•data cache stages take only halt as long so they still occupy only one clock cycle,
Again, because of the speedup of ihe rc.gisLu file access, register read and wri1C still
occupy only half of rr clock uycle.

1[-Ice; Li-iL R4000 caches are on-chip, the virtual-to-physical address transla-
tion can delay the cache access. This delay is reduced by imptementin2 virtually
indexed caches and going Lo a parallel cache access and address trandEll Figure
L3,9c show the optimized fOtgX.) pipeline with this improvement. Hecause of the
compression of eve 11 tS, 1.11 c data cache tag check is purfouncd separately on the next
cycle after cache ziccess,

In f';u perpi pc. I i fled syz,teni, existing hardware is used several li mes per cycle
by inserting pipeline registers to split up each pipe stage- kssentially, each super=
pipeline stage operates at a mullipie of the base clock frequency, the multiple.
depending on the degree of supcxpipelining. The R400() technology has the .petal
and density to permit wperpipLdining of degree 2. Figure 13.10z1 shows Ole cvd-
mixed R3000 pipeline using this superpipelining. Note that this is essentially the
same dynamic structure as Figure 13.9c.

Further improvemcril's can he made, For the 84000, a much larger aid spe-
cial lined vals designed. This makes it possible to execute ALI! operaticfns M
twice the rate. Other improvements allow I hc QXC:CL11.100. Of loads and stores at 1vvicz
the rate. The resulting pipeline is shown i n Figure 13.10b.

Thu F 4 Il Hk hAs eight pipeline stages. meaning that ws rnany as eight instruc-
tions C4111 I)C: i n the pipeline at the same time. The pipelinc .,liivarices at the: rate of
two per dock cycle. The .eight pipeline stagQs are EN fO3lOWS1

Clock cycle
—p.

IC: RF AL/7 Al I! DC'l 1 DC2 Tel "FC2 WB
ICI 1C2 RF M ALL DC1 DC2 'I f' ./ rc2 vvB I

(a) Su])...wipillineft irnplmentaion of the opti rnit.cti 83000 pipeline

IF = Instnicrion fetch first half
IS = Inslruction Ictch second half
RF = Fetch operands fet-gri reaisler

EX — Instruction cxccutc
= Insnitaino cache

DC = Data cache
Clock cycle IM = 1).am cadie aril. half

o,
-1 !

DS
TC

= Data cache second half
= Tabu clsca.

IF IS 1-0- / EX DF 1)5 W B

IS RF E X DV DS TC %A. 13 I

R4000 pipeline

Figure 13.10 .ThoureLical R3017O and Actual 84000 Superpipclincs

494 Gil:U:11'ER 13 / RIDUCED INSTRUCTION SET COMPL:1T,RS

• instrilvtiun fetch first half: Virtual address is presented to the instruction oche
;I nd the translation look aside buffer.'

• 'In traction fetch second half: Instruction cache. out 1 11 i 1 1 . u Lic..on and the
TLB generates the physical address,

• Register Me: Three 'activities occur in parallel!

▪ Instruction is decoded and check made for inierloek conditions (i.e., this
instruction depends on the result of a preceding instruction).

c Instruction cache tag check is made.

Operands are fetched from the register file.

• Instruction execute: One of three activities can occur:

c. If the instruction is a register-to-register operation, the ALU performs the
arithmetic or logical opera tion.

O If the imorto ion is a load or store, the data virtual address is caleulated,

• lf the instruction is a branch, the branch target virtual address is calculated
and branch conditions arc checked.

• Data cache first: Virtual address is presented to the data cache and TLB.

• Data cache second: Data cache outputs the instruction, and the TLB gener-
ates the physical address.

• Tag check: Cache tag checks are performed for loads and stores.

• Write buck; Instruction 'vial! written back to register file.

SPARC (Sealable Processor Architecture) refers to an architecture defined by Sun
Microsystems. Sun developed its own SPARC' implementation but also licenses
the architecture to other vendors to produce SPARC-compatible machines. Tim.'
SPARC. architecture is inspired by the Berkeley RISC I machine. and i1 instruction
set and register organization is based closely on the BerkeIcy RISC mode].

SPARC Register Set
As with the Berkeley RISC. the SPARC makes use. of register windows. Each window
consists of 24 registers. and the total number of windows is implementation dependent
and names from 2 to 32 windows. Figure 13.1 I illu bates ail implementation that sup-
ports S windows, using a total of 136 physical registers; as the discussion in Section 112
indicates, this seems a reasonable number of windows. Physical registers 0 through 7
are global registers shared by all procedures. Each process sees logical registers 0
through 31.. 1,00w1 registers 24 through 31, referred to as jai, are shared with the coil-
ing (parent) procedure; and loaical registers 8 through 15, referred to as outx, are. shared
with any called (child) procedure, These two portions c:pverlar with other windows. Log-
ical registers lf) through a referred to aLS /0i:ids. are not shared and donut overlap
other windows. Again, as the discussion of Section 12.1 indicates, the availability of 8
registers for parameter passing should lie adequate in most cases see Table 13.4).

1 17 .• SPARC 495

Physical Logical registers
registers Procedure A Procedure 13 Procedure C

135

• Fnr

128

127

• IA

120

119
OutN/Ins

112

R31t ,
. ins

R24t.

103

. OutOns.

96

K1F. t
Outs

118c
c.

95
Locals

88

OLII s

8.0

•

Figure 13.11 SPARC' Register Window Layout with Three Procedures

Figure 13.12 is another view of the register overlap. The calling procedure
places any parameters to be passed in its out registers; the called procedure treats
these same physical registers as it ins registers. The processor maintains a current
window pointer (CW1 3). located in lhe processor status register (PSR), that points
to the window of the currently executing procedure. Thc window invalid mask
(WINI). also in the PSR, indicates which windows are invalid.

With the SPARC register architecture, it is usually not necessary to save and
restore registers for a procedure call. The compiler is simplified because the corn-

4Th CHAPTER 1:3 1 REnducEn INSTRUCTION SET COMPUTERS

piler need be concerned only with allocating the local register* for procedure in
an efficient manner and need not be eonuCTni,:d with register allocation between
procedures.

Instruction Set
Table 13.14 lists the instructions for the SPARC architecture. Most of the instruc-
tions reference only register operands. Register-to-register instructions 1 -i ve three
operands and can be expressed in the form

Rd Rsi op S2

1 „ and it,„ to re register refereno....!i; S. can refer ei1 her to 41 rcgistir or to a 13-bit iiniiic-
di2itc operand. Register zero (R,,) k hardwired with the value 0. This form is well
suited to r!,. ,pieai pt.ograms. which have a high proportion of local scalars and vonstanis.

CWP

Figure 13.12 Eight Register Windows Forming a Circular Stack in SPARC

13,7 / SPARC 497

TtbI 13.14 SPARC instruction Set

OP Oesetiplion OP Description

Load/Store Instructions Arithmetic Instructions

1...1)8EI Load 3ign.e.11 h .sc ADD Add

LDSH Load signed halfword A DDCC Add, set ice

LDEB Load unsigned byLi... ADDX Add with carry

L.DL:H Load unsigned hallword AllaDiNCC Add with carry. set icc

LD Luad word SUB. Subtract

LDD Load douhkword SUB CC Sill) LniCi, set ice

STR Store byte SUBX Sulhiniet WW1 carry'

STH SLoretalipeord SL:BNCe Subtract with carry, set icc

STD Store word MULSCX: Multiply stop, set Lee

STDI) Store douhleword Jump/Brandi lug-melons

Shift Instructions 11C(' Branch on condition

SLL Shirt kit logic:II FBCC Brandi an floating-point
con ditio n

SELL Shift right logical CBCC Brunch on coproccsmn
conilition %

SRA Shirt Tight 211M1111 e Fie CALL ColL prucoiLere

BIPOICHIL IIINiFtICtioM5 i MPL Jump and link

AND ANT) To.: Trap on condition

es. N DO C AND, set ice SAVE AdvHnec rcgigcr window

A\DN NAND RESTORE Move. mndows backward

ANDNCC NAND. set i(,..7.; RETT Routru front heap

OR oR Miscellaneous instructions

0.14C(.' OR, set lee SETH] Scr high ?..7,..' bits

0 RN NOR UMW Un im plemented IDSLFUCEi ors
(trap)

ORNCC NOR. R et ice RD Read a speciai register

X0 E2 XOR WR WTI Li.' d Sp:Cla I register

X oftcc XOR, set ice TFLILS'll Imitruction cache. flush

XNOR Exclusive NOR

X.NOROC Exclusive N'OR.:..i•I ice

Mode Algorithm SPARC I-Cquivalera Instruction Type

Tm meal ate ope rand A S2 Rcgis%1 La rEgisiel

Direct EA - A R , + .S .'7 Load. SLOie.

Ft.e.gkicr FA R Rsl' L. RegiEte.r10 rcgricr
R egi N i t1.1 mdireci EA 1:R:i It,, F it 1...i5a4.1, slDre
DispEat:emelst EA i.R .11 A Ri.; 1 t S2 LA5k14,1. ADM

498 CHAPTER 13 1 REDUCED INSTRUCTION SET COMPUTERS

The available ALL: operations can he grouped as follows:

• Integer addition (with or without carry)
• Integer subtraction (with or without carry)
• Bitwise Boolean AND, OR, XOR and their negations
• Shift left logical, right logical. or right aril hmel ic

All of these instructions, except the shifts, can °pi ionally sei the four condition
Codes (ZERO. NEGATIVE, OVERFLOW. (:'ARRY). Signed integers are repre-
sented in 32-hil twos complemen I form.

Only simple load and store instructions reference memory, Then: arc separate
load and store instructions for word (32 bits), doubleword, halrword. and byte. For
the latter two cases. [here are]nslructions for loading these quantities as signed or
unsigned num bers. Signal num bers are sign extended to fill out the 32-bit dcstina•
Li on register. Unsigned numbers are padded with zeros,

The only available addressing mode, other than register, is a displacement
mode. That is, the effective or an operand consists of a displacement from
an address conl wined in ri rcgisler:

EA =(R + 52

or EA = (Ii„) + (R 52)

depcnding tin whuther the second operand is immediate or a register rclerefice. To
perform a load or store, an extra stage is added to the insivueiion cycle. During the
second stage, the memory address is ciikulted using the ALL-.; the load or store
occurs in a third stage-' t'hi74 single addressing mode is quite versatile and can he used
to synthesize other addressing modes. as indicated in Table 13, J 5.

It is instructive to compare the SPARC addressing capability with 'hal of
the MIPS. The MIPS makes use of a I 6-bit of kr2 c, wmpared with a 13-hit offset on the
SPA RC, On Elie other hand, the MIPS does not permit an address to be constructed
from the contents of two registers.

Instruction Format

As with the MIPS R4000, SPARC uses a simple set of 32-hii instruction formats
(Figure 13.13). All instructions begin with a 2 - biL oprode, For most instructions, this

'aw 13.15 Synihesi4i ng Other Addressing Hades with SPARC Addp:=:•5sinp,
Andes

Ore - I I inr4i rdia t. constailt Op Des(Lip

Call format Op PC-Relative displacement

22 2 1 4 3

7 c 3 22
SETHI
format

Immediate constant

30

• - •

Figure 13.13 SPARC Instruction Formats.

Branch
format

Floating-
point

format

General
formats

13.7 / SPARC 499

is extended with additional opcode bits elsewhere in the format. For the Call instruc-
tion. a 30-bit immediate operand is extended with two zero hits to the right to form
a 32 -hit PC - relative address in twos complement form. Instructions arc aligned on a
32-hit boundary so that this form of addressing suffices.

The Branch instruction includes a 4-hit condition field that corresponds to the
four standard condition code bits, so that any combination of conditions can he
tested. The 22-hit PC-relative address is extended with two zero bits on the right to
form a 24-biz twos complement relative a ddress. An unusual feature of the Branch
instruction is the annul bit. When the annul bit is not set, the instruction after the
branch is always executed. regardless of whether the branch is taken. This is the typ-
ical delayed branch operation found on many RISC machines and described in
Section 13_5 (see Figure. 13.7). However, when the annul hit is set, the instruction
following the branch is executed only if the branch is taken. The processor sup-
presses the effect of that instruction even though it is already in the pipeline. This

500 CHAPTER. 13 / REDUCED INS'fRI.ICTION SET COMPUTERS

annul bit is uscful because it makes it easier for the COnlitiliZT it) fill the delay slot
following a conditional branch. The instruction that is the target of the branch can
always be put in t]ie delay slot, because if the branch is not taken, the instruction
can be annulled. The reason this technique is desirable is that conditional branches
are generally taken more than. half t]ie time.

I he II instruction is a special ins.;truction used to load or store a 32-bit
value. This feature is needed to load and store addresses and large constants. The
SETH I instruction sets the 22 high-order bits of a register with its 22-hit immediate
operand, nd zeros out the low-order 10 bits. An irntn.ediate constant of up to 13 hits
can be.wecified in one of the general l'orrnIes. and such an instruction could be used
to fill in the remaining HI hits of the register. A load or store instruction can also
be used to achieve a direct addressing mode. To load a value from location K in
memory, we could use the following SPAR(' instructions:

NrE ;lo:aa iligb-orAer 272 hLts of ddar42SS.

K iri=o registGr LB

- tiu(K)1, atrE ;load conten:= Df K rS

The macros %hi and %Iu art: lised «) define immediate operands consisting of
the appropriate address hits ot a location. This use of SETHI k similar to the use
of the LUI instruction on the MIPS (Table 13,12),

The floating-point format is used for IThating-point operations. i W 0 S ou rce
and one destination registers are designated.

Finally, all other operations. including loads- slores. arithmetic, and ic.qical
operations use one of the last two formals shown ilk Figure 13.13, One of the forEnats
makes use of two source registers and a destination register. while the other uses one
source regisler, one I:4-hit immediate operand, and one destination register.

13.8 RISC VERSUS CISC CONTROVERSY'
. .;;--&=645-ef*Irr-ifA00 ,e,..erfor

For many years the general tren4 I in computer architecture and organ isation has
been toward increasing processor complexity: more instructions. more addressing
modes. more Speci al ized registers. and so on. The RISC movement represents a fun-
damental break with the philosophy behind that trend. Naturally, the appearance
of RISC' systems. and the publicafion of papers by its proponents extolling RISC
virtues. led to a reite1ion frorn tho!,e involved in the design or CISC architectures,

The work that has been done on assessing merits of the RISC approach can
kc grouped into two categories .:

• Quantitative: Attempts to compare program size and execution speed of pro-
grams on RISC' and CISC machines that use cumparabJe technology

• Qualitative: Examination of issues such as high-level language support and
optimum use of VLSI rca I estate

Most of the work on quantitative assessment has been done by those working
on RISC: systems I PATT82b, HEAT 84. rxr-rs4]. and it has been, by and large,
favorable to the RISC approach. Others have =mined. the issue and come away

CO11i Ic\ithrEMliofl

set computer ((ASC.)
delayed branch
delayed load

high-kyel language (HLL)
reduced instruction set

computer (RISC)

reOsicr file
register window
SPARC

502 cH.A1Y1'Elt 13 / KEDUCED INSTRUCTION SET COMPUTERS

13.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

13.1 What are some typical distinguishing characteristics of RISC orgaiiiiation2

13.2 Briefly explain the two basic approaches used to minimw.e register-memory opera-
t ions on RISC. machines.

13.3 If a circular register buffer is used to handle local variables for nested procedures.
describe two approaches for handling global variables:.

13.4 What are some typical characteristics of a RISC instruction set architecture?
13.5 What is a delayed branch?

Problems

13..1 Considering the call-return pattern in Figure 4.16, how many overflows and under-
fl ows (each of which causes a register savelrestore) will occur with a window size of
a. 5?
h. 8?
c.

13.2 In the discussion of Figure 13,;.. it was stated that only the first two portions of a Win-
dow are saved or restored. Vir'lly necessary to save the temp/1r ai IeTisters?

13.3 We wish to determine the execution time for a given program using the various
pipelining schemes discussed in Section [3.5. Let

N = number of executed instructions
D = number of memory accesses

— number of jump instruct ions
For the simple sequential scheme (Figure 13.6a), the execution time is 2N T D stages.
Derive formulas for two-stage. three-stage, and four-stage pipelining.

13.4 Consider the following code fragment in a high-level language:

tar r in -1 loo2
+ QM.VAL

end loops

Assume that 0 is an array of 12-hyte records and the VAL.. field is in the first 4 bytes
of each record. Using WNW) code, we can compile this program fragment as follows:

ECX,. ECX 11 .010 I

FAX, 'KZ, 32 r DoL ciffu% in EAK
tax, Q[UX] VA!' C:el.:.

AUD S. EflX

DR' ECX

A•E I.,F : = Ler:

13.9 RECOMMENDF.D RFADING 501

unconvinced ICOLW85a, FLY N87, DAN-187], There are several problems with
attempting such comparisons I SERI_861:

• There is no pair of RISC and CISC' machines that are comparable in life-cycle
cost. level of technology, gate complexity., sophistication of compiler, operat-
ing system support, and so on.

• No definitive test set of programs exists. Performance varies with the program.
• It is difficult to sort out hardware effects from effects due to skill in compiler

writing.
• Most of the comparative analysis on RISC has been done on "toy" machines

rather than commercial products. Furthermore, most commercially available
machines advertised as RISC. possess a mixture of RISC and CISC character-
istics. Thus. a fair comparison with a commercial, "pure-play" C1SC machine
(e.g., VAX, Pentium) is difficult.

The qualitative assessment is, almost by definition, subjective. Several re-
searchers have turned their attention to such an assessment ICOLWK5a, WALL851,
but the results are, at best, ambiguous, and certainly subject to rebuttal I PA'118.5b]
and, of course, counterrebuttal [COLW85b].

In more recent years, the RISC versus CISC controversy has died down to a
great extent, This is because there has been a gradual convergence of the technolo-
gies. As chip densities, mid raw hardware speeds increase. RISC systems have
become more complex. At I he same Lime, in an effort to squeeze out maximum per-
formance, CISC designs have focused on issues traditionally associated with RISC,
such as an increased number of general-purpose registers and increased emphasis on
instruction pipeline design,

13.9 RECOMMENDED READING

'Tex nhoo ks with :45)0(1. LA IV eoI 124..! Rim concepts are IWARD901. [PATT9SI. and [HENN961.
IKANE92 .1covers the commvi(Aill MIPS machine in detail. IMIRA92] provides a good

Overview of the MIPS R4000. I BASH911 discusses the evolution from the. R3000 pipeline to
the 84000 superpipeline. The SPARC k covered in some detail in [DEWA9U1.

8.4.M1191 Bashteen, Lai, J. and lqullan, J. "A Superpipeithe Approach to the MIPS
Architecture. - Proceedings, CO M PCON Spring '01 Fu.bruaq, 1991.

DEW .4911 Devikr, R.. and Snooqui. M. 141kroprocessors: A firrip-oruoter's.Vicw, York!

l cG raw-Hill, c..6. raw- 1•!.)90.
HENN96 Hennessy, J., and Patterson, I), Computer Architecture: A QUandielfiVO Ap-

proach. San Mateo, CA: Morgan. Kanfinano, 1996,
KAINE92 Kane, G., and Heinrich, J. MIPS RISC Arch; torture. Englewood Cliffs, N.

Prentice Hall. 1992,
M1RA92 Mirapuri, Woodocre. M.; and Vasseghi, N. "The MIPS R4000 Processor."

IEEE Micro, April 1 W2.
P ATI% Pattemm. D., and Herincssy,.T. C7omputer Organizariop and Das. ign: TIhr 1 fardwaril

Software II-lieu-Pa. Sari Mateo. CA! Nforgan Kaufmann, 1998.
1NARD90 Ward, S., and lialskad, R, Compurafion Str• iEercs. Cambridge, MA: MIT

Press, 1990.

1
F. r;
11
-a

13,10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 503

-This 'anagram makes use of the 'MU L instruction, which mul1iplies. the second
operand by the immediate value in she third operand and places the result in 1he first
operand (see Problem 1.0,13). A RISC advocate would like lo demonstrate that a
clever compiler can eliminate unnecessarily complex insi ructions such as IMUL. Pro-
vide the demonstration by rewriting the above 810x 8n program without using the
I M11, instruction.

13.5 Consider the following loop:
:=

f K. := to IOC 60
S E = E - K!

A straightforward translation of this into a generic assembly language would look
something like this:

LD RI, C . ved .L.,13 uf E R:1
LD R2, value ef f if. R2

LP SUP R1, RI, R2 ;= S - K

135Q :a0, U.:417 tf R = 1C)
is17213 i317rt.mept K

LP ec star= cf _cop

A compiler for a RISC machine will introduce delay slots info this code .4o Mill the
processor can employ the delayed branch mechanism, The J b1P instruction is ro
ideal with, instruclion is always followed by the 51.111 in traction: bore-
(ore, we can ...imply place a copy or IllySt Ili i nso Limon in [fie delay slot after the
AI P. The RN) presents a difficult}?. W a ea n • Ie the t he lode as is, heca use the ADD
instruction s.c..ould then he execuied one loo many times. Therefore. a NOP instruc-
tion is needed. Show the resulting code,
Add entries for the following processors to Table 13.8;
a. PtNitium III ..J

h. PowerPC
13.7 In many cases. common machine instructions that are not !islet] as part of the MIPS

instruction set can be, synthesized with a single. MIPS instruction. Show this fol . the
1r1

a. Register-to-register move
h. butrement, decrement
c„ Complement
d. Negate
e. Clear

13.8 A SPARC implementation has .LK register windows. What is the number N of physi-
cal registers?

133 SPARC is lacking a number of instructions commonly found on CISC machines.
Some of these are easily simulated using either register RO. which is always set to .0,
or a constant operand. These simulated instructions are called pscudoinstruetions
and are reco.E.,rnized by the SPARC. compiler. Show how to simulate the following
pseudoinstructions. cash with a single SPARC instruction. In all of these. src and dst
refer to registers. iliar, A store to RO has no effect.
a. YIONI src, dst d. NOT dsi
b. COMPARF srcl, src2 e. NEC tist
c. TEST srel f. INC dst

13.10 Consider the following code fragment
it ic > I r

L != 4

el me
T. := - I,

g. DEC 41,1
It, C dst
i. NOP

304 CHAPTRR. 33 / RIDUCED INSTRUCTION SET COMPUTERS

A straightforward translation of this statement into $1 3'.2t RC assembler could take the..
following form:

-5 thL 21.11 2 rluad hLg.:a-Drder 22 biE of ad: ess
rcf ioDeition K Lato reuLster r2

Ld frKrA + %].:8 Joati.f.ELE5 oY locaDLcn f. ir.LQ f8
crp rfi, lc 03rape,i0 ccIELeiL.s te le
Die Ll ; bxana 10
:top.
aehi 5):9
Ld [FE:rD 1 %10; 11, %r9 :lnad 2on7.ento of 1c)r.F_r.i.op N jnrc,. 79
Lric ;NrE4 :add 1 ro

trIO

▪ 51
5r9, 11r1C :t 1c(Lj] ; store intc 1ca7.Lcn L

Ll: set ..M
ld - %r12 ;load ccnDoat Lccation K intu t=2
dec %1.- 12 ...d1:3 -LtwoL _ = LOTEI tf12
sethi qcr.fl
s Stri2, Futr13 + ;FAcr:, : or2aLi.i.r. I

The code.coutairts a uop attu wash brauch instruction t& per.rnit tielayctlimineli oper-
ation.
a. Standard compiler optimizations that live CIO *1111 RISC' machines; are

gcnerally cffective in being able to perform two transformations 4)11 the ibleiZO[fla
elide. Notice. that two of the loads are unnecessary and that the. two stores can be
imrged if the stork: is rnovcd to a differcnt place in thc code. Show the program
Om . making two changes,

h. It now pa:Nil-AL,
 hi NrI'1it1n4rtrr1t oplintif;ilions peculiar LE.1. SPARC. The n op af(V"

the ble can he Fi2.1}hict'Ai h. mu FiL•i iik- (ion into tha(delay slo(and Sc(-
Ong the annul l i1 on the Nu irt ,Lotici ion [..'N[ressed at, blo,a L11, Show 411E; program
after this change-

r'. Them arc now two unnecessary instructions. Remove these and show the resulting
program.

CHAPTER 14
INSTRUCTION-LEVEL
PARALLELISM AND
SUPERSCA LAI& PROCESSORS

14.1 Overview
Su persca(ar v rslis Superpipelined

14.2 Degigu Isgues
Irmtruct]on-1.4:Ncl Purkllelismiirid Machine, ranzilarF•m
Instruction Issue Policy
Register Renanling
Machine Parallciism
Brana PredieLion
Superscalar Execution
Superscalar Implementation

14.3 Pentium 4
FronL End
Oul-uf-e..)rEr Exocution is
Integer Enid Fioting-Poin# Ex.uction Units

.1 4.4 Power PC
Powe r1-"C 601
Branch Processing
Poweil)C 62.0

14. Recommended Reading

14.6 Key Terms, Review Questionm, and Problems
Key Terms

evic.w Questions
Problems

506 CHAPTFP, 14 / INSTRUCT1ON-LEVEL PARALLEIT.4 M.

KEY POI Nas
• A supcirsc;)1.ar processor is one in which multiple independent instruction

pipelines are used. Each pipeline. conskts of multiple stages, 21 o that each
pipeline can handle multiplc instructic,nis at a time. Multiple pipelines intro,
duce a new level oiparaileiistn. enabling inultipio.strcarns of instructions to he.
processed at a time. A superscalar processor explr.lit . iivhut is known as instruc-
tion-level parallelism, which refers Ire the degree to which the instructions of
a program can be executed in pnaliel,

• A superscalar processor lypically fetches multiple instructions at a time and
then attempts to find nearby instruetions that arc independent of one another

(..1 emi therefore he executed in parallel. 11 the input to One instruction
depends en the output of a preceding instruction, then the latter instruc-
tion cannot complete execution at the smne time or before the former in.
struction, Once such dependencies have been idani ified, the processor may
issue and complete instructions in an o] -der that differs from that or the ofig-
ilia] machine code.

• The processor may eliminate sortie unnecessary dependenciin by the use of
additional registers and the renaming of register references in Lhe tit gina I cede.

• Whereas pure RISC processors 0.1 . e11 employ delayed branches to masimiec
the utilization of t he illStrliCi ion pipeline. this method is kc s appropriate to a
superscalRr machine. Instead. most supc rsca jar machines use traditional brand)
prediction methods to improve citieieney.

ASuperscalar impleinentation of a processor archiieeiurc is one in which corn-
mon instructions-integer and floai ing-point arithmetic, loads. Flores, anti
conditional branches..--can be initiated simultaneously .ii nd executed hide.-

penden tly. Such implementations raise a number of complex design issues related
to the instruction pipeline.

Superscalkir design arrives oil I he senile hard on the heels of RISC.' architec-
ture, Although the simplified instruction set architecture of a RISC machine lends
itself readily to Kuperscalar techniques, the superseakir ipproach can be used on
either a RISC' or CISC architecture.

Whereas the gestation period for the arrival of commercial RISC' machines
from the beginning of true RISC research with the IBM 801 and the Berkeley RISC
I was Stro2.11 or eight years, the first superscalar machines became commercially
available within just a year or Iwo of the ctrining of the term superscafim The L$' -
scatar npprL e has now heeornc...• the standard method for implementing high-
pe[101 iii.iiiiec microprocessors.

In this chapter, we begin will h an overview of the superscalar approach. von-
irasting it with supcipipelining. Next, we present the. key design i ,,,sile., associated
w.ilh supuscihn- impleiricribition. Then we look at several importhiii examples of
supursealar architecture,

Integer register file }looting -point register file

Pipefined
functional

units

"illW i. wad
V A wild,:

• A
r :

,4

ii, ovERvii).'(..' 507

14.1 OVERVIEW "W
The term superscatur. first coined in 1987 1AGERK7], refers to a machine that is
designed to improve the performance of the execution of scalar instructions. In most
applications, the hulk of the operations are on scalar quantities. Accordingly, the
supersealar approach represents the next step in the evolution of high-performance
general-purpose processors,.

The essence of the superscalar approach is the ability to execute instructions
independently in different pipelines, The concept can he further exploited by allow-
ing instructions I n he executed in an order different from the program order. Figure
14.1 shows, in :.T.enera I terms, the superscalar appri.ich. There are multiple. func-
tional units, each of which is implemented as a pipeline, which support parallel exe-
cution of sevend instructions. In this example, two integer. two floating-point, and
one memory (either load or store) operations can he executing at the same time..

Many researchers have investigated superscalar-like processors, and their
research indicates that some degree of performance improvement is possible.. 'fable
14.1 presents the reported performance advantages. The differences in the results
arise from differences both in the hardware of the simulated machine and in the
applications being simulated,

Superscalar versus Superpipelined

An alternative approach to achieving greater performance is referred to as super-
pipelining, a term first coined in 1988 IJOUP881. Superpipelining, exploits the fact
that many pipeline stages perform tasks that require less than half a clock cycle. Thus,
a doubled internal clock speed allows the performance of two tasks in one external
clock cycle, We have seen one example of this approach with the MIPS R4000.

Figure 1=1.2 compares the two approaches_ The upper part of the diagram illus-
trates an ordinary pipeline, used as a base for comparison. Hie base pipeline issues
one instruction per clock cycle and can perform one pipeline stage per clock cycle.
The pipeline has four stages: instruction fetch, operation decode, operation exert'.

Memory

Figure 14.1 General Superscalar Organization ICO1titE95

lti

508 ciltAPTER 14 / INSTRUCTION-LEVEL PARALLELISM.

Table 1.4.1 Reported Speedups of Supersea tar. Like Machines

Reference Speedup

prIAD7111 L.s
[1c UCK72 .1 8
I WEISS41 1,58
I ACOS86I 2.7
[S0HI90] 1.S
ISIMI'FRY] 2.3
1.1 011PS9h] 7,2
I LEFL91 I 7

lion, and result write back. The execution stage is crosshatched for clarity. Note that
although several instructions are executing concurrently, only one instruction is in
its execution stage al any one time.

The. next part of the diagram shows a superpipelined implementation that is
capable of performing two pipeline stages per clock cycle. An alternative way of
looking at this is that the functions performed in each stage can be split into two
nonoverlapping parts and each can execute in half a clock cycle. A superpipeline
implementation that behaves in this fashion is said to be of degree 2. Finally, the
lowest part of 1he diagram shows a superscalar implementation capable of execut-
ing two instances of each stage in parallel. Higher-degree superpipeline and super-
scalar implementations are of course possible.

Both the superpipeline and the superscalar implementations depicted in Fig-
ure 14.2 have 1hc same number of instructions executing at the same time in the
steady state. The superpipelined processor falls behind the supersealar processor at
the start of the program and al each branch target.

Limitations

The superscalar approach depends on the ability to execute multiple instructions
in parallel. The term instruction-level parallelism refers to the degree to which, on
average, the instructions of a program can be executed in parallel. A combination
of compiler-based optimization and hardware techniques can he used to maximize
instruction-level parallelism. Before examining the design techniques used in super-
scalar machines lo increase instruction-level parallelism. we need to look at the fun-
damental limitations to parallelism with which the system must cope. fJOHN91] lists
five limitations:

• True data dependency

• Procedural dependency

• Resource conflicts

• Output dependency

• Antidependency

We examine the first three of these limitations in the remainder of this section. A
discussion of the last two must await some of the developments in 1hc next section.

Writo Decode NmOVN tOOtA 121

14.1 / ciATERIT.F.N.v 509

True Data Dependency

Consider the Co lowing selLtence:

ado. r2 load rho col-. tents of r2

pus the contents of xi

rcove r3 w1 ;load regster .r3 the contonLs of fi

The second instruction can be fetched and dccoLlud but L.innot c until the first
instruction eNccuM. The reason is that the second instruction needs [lath produced
b the first instruction. situation is referred to as a true data dependency (also

called flow dependency or write-read dependency).

K14.4.64.1.1114.t

1111111111111.m. _Mil

mm m C:•:•3 ME
El ES: -J Mil

11111111111 6*' 'IP

**

4110.1rVi

I I I I
I I I I
i I 1 I
I I I I

I i i
Siiperpipelined 1

i I I
I I I
i i t

I i i
I r I I I
I I I I I
I I I I I
I I I I I

i 4.1.! i ..-.p uiperwAlar
i I i I

I I I
I I I
I I i

6 I I

0 3 4 5 6 7 N
Time in bum: Eveles

Figure 14.2 Coin NO son of Supelvalar and Superpipcline Approaches

1 I I I i
I I I I

lime machine 1
I I I

I I
1

1111111111MSS
1111111R-V:

r 7..1E1
MOM=

En Oil KZ ME
MN MO EOM

I I
I I

111111111M

I _ I

7.11 • 4, 4, 4, 4 11. 4.4.-4•
IP IP NI

I 2

WI-11e

iL I

10

Iq

it/branch

12

iS

Kw; II
Adm",
kTE ***

111111 5g:1111111 or 1

AIL all. .411. 4

V11111111 totototo

'49M LAW

I I I I
' No dependency 1 I
I I I I
I I I I
I I I I
I I I I

I I I I r
!

Data depentt nev i
.111 uses. data computed h► if))

I 1 P I

I I I I I
I Il I I I

I I I I I
I I Pmcedural dependency I
I I I I I

I I I I J
I I I I I
I I I I I

! Resource conflict I
100 and i I use the same 1
!functional unit)! I

jil

it'46.4.001

47,
43.117.4171

A& 1J reee
1111111111a11111.

310 APTFR I:1 INSTRUCTION-LEVEL PARALLELISM

Execute

II 2 3 4 5 7 8 9
Thou in base cycles

Eiger' 14.3 Eacel of Depo -ulLnuich

Figure 14.3 iilustrates this dependency in a superscalar machine of degree 2.
With no dependency, two instructions can be Iciched exectucd in parael, [f
there is a da1.0 dependency between the first ond second instructions, i hen the sce-
ond instruction is dehoied as many clock cycles as required to lenlore the depen-
dency. In general, any instruction must be delved unlil all of its input values have
been prodkcCil s

1 SinL[rl12 Suihr pipeline, Ihe aforementioned sequence of instructions would
C:itNt: no dchly. I lowc ,.. cr. consider 1h1 following, in which one of the loads is from
incniory rusher than from a register:

Load ri, cff ;load reg3LeT ri convent:, of
ir.ernory add.fes ef

MOve 1- 3 r ri 'load regLste1 r3 tha of rl

14.2 .1 DF-SIGN ISSUES 511

A typical RISC processor takes two or more cycles to perform a load from
memory because of the delay of an off-chip memory or cache access. One way to
compensate for this delay is for the compiler to reorder instructions so that one or
more subsequent instructions that do not depend on the memory load can begin
flowing through the pipeline_ This scheme is less effective in the case of a superscalar
pipeline: The independent instructions executed during the load are likely to be exe-
cuted on the first cycle of the load. leaving the processor with nothing to do until
the load completes.

Procedural Dependencies

As was discussed in Chapter 12, the presence of branches in an instruction
sequence complicates the pipeline operation. The instructions following a branch
(taken or not taken) have a procedural dependency on the branch and cannot he
executed until the branch is executed, Figure 14.3 illustrates the effect of a branch
on a superscalar pipeline of degree 2.

As we have seen, this type of procedural dependency also affects a scalar
pipeline. Again, the consequence for a superscalar pipeline is more severe. because
a greater magnitude of opportunity is lost with each delay,

If variable-length instructions arc used, then another sort of procedural depen-
dency arises. Because the.length of any particular instruction is not known. it must
he at least partially decoded before the following instruction can he fetched. This
prevents the simultaneous fetching required in a superscalar pipeline. This is one
of the reasons that.superscalar techniques ;ire more readily applicable to a.R1SC or
RISC-like architecture, with its fixed instruction length.

Resource Conflict

A resource conflict is a competition of two or more instructions for the same
resource at the same lime. Examples of resources include memories. caches. buses,
register-file ports. and functional units (e.g.. ALL adder).

In terms of the pipeline. a resource conflict exhibits similar behavior to a data
dependency (Figure 14.3). There are some differences, however. For one thing,
resource conflicts can he overcome by duplication of resources, whereas a true data
dependency cannot be eliminated. Also. when an operation takes a long time to
complete, resource conflicts can he minimized by pipelining the appropriate func-
tional unit.

14.2 DESIGN ISSUES

Instruction-Level Parallelism and Machine Parallelism

POUPS9a] makes an important distinction between the two related concepts of
instruction-level parallelism and machine parallelism. Instruction-level parallelism
exists when instructions in a sequence are independent and thus can be executed in
parallel by overlapping.

512 CHAPTER. INSTRUCTION-LEVEL PARALLELISM

As an example of the concept of instruction-Level parallelism, consider Elio fol-
towing two code fragments POUP89131: •

Load R_ <- R2 Add R3
R3 1 11" Ada R4 (— Fe, , R

7-1 - K. 2 [Re).] R.::

The [hree instruetion:i On Ihc kit are inKlependent, ;.]ncl in theory all llffee could be
executed in In conirast : the ttu-cc instructions on the right cannot be exe-
cuted in parallel because the second instruction uses the result of the first, and the
third instruction uses the resull of the second.

Instruction - level parallelism is cictermined by the frequency of true data
dependencies and procedural dellendencies in the code. These factors, in turn, are
dependent on the instruction set architecture and on the application. Instruction.
Level parallelism is also determined by what POIJI-)89411 refers lo as operation
latency! the lime until the result of an iiis[i lad ion is available for use as an operand
in a subsequent instruction. The Latency determines how much of a delay a data or
procedural dependency will cause.

Machine parialleli rn is a measure of l he ;Ibility ()I' the processor to take achan-
[age or instruction- level paollelisrn. k determined by the num-
ber of instructions that can be fetched and executed at the same lime (the number
of parallel pipelines) and by the speed and sophistication of the Mechani2!km2.., that the
promsKIT uses to find inclepenclent insl ructions..

Both instruction-level and machine parallelism arc important factors in
enhancing performance. A program may not have enough instruction-level parallel-
km to take full advantage of machine parallelism, The use of a fixed - length instruc-
[kin set irchiteeture, as in a HISC, cnhanees instruction - level parallelism. On the
other hand, limited machine parallelism will Iimil performance no matter what the
nature of the program.

Instruction Issue Policy

As was mentioned, nthchine parallelism is nut simply LI matter of having multiple
instances of each pipeline stage. The processor must also be able to identify instruc-
tion-level parallelism and orchestrate the fetching. decoding, and execution of
instructions in parallel. [JOI-r4911 uses the term instruction issue to refer to the
process of initiating instruction execution in the processor's functional units and the
term instruction issue policy to refer to the protocol used to issue instructions.

in essence, the processor is trying lo look ahead of the current poinl of CNA>
cation to locale instructions Carl be brought into thy. pipdhic and executed.
Three types of orderings are important in this regard:

■ The order in which instructions are fetched

• The Order in which instructions are cNecuted
I The, order in which instructions update the contents of register and memory

locations

The more sophistic4111lhe proccs ,;or..1he less it is hound by a strict relation-
ship he weep these orderings. To optimize utilii.alion of Hie various pipeline ele-

14.2 1 DESIGN MILTS 513

thc processor will need to alter one or more of these orderings with respect
to the ordering to he. found in a strict sequential execution. The one constraint on
the processor is that the result must be correct. Thus, the processor must accom-
modate the various dependencies and conflicts discussed earlier.

In general terms, we can group superscatar instruction issue policies into the
following categories:

■ In-order issue with in-order conviction

• In-order issue with out-of-order completion
■ Out-of-order issue with out-of-order cornpleiion

In-Order Issue with In -Order Completion

The simplest instruction issue policy is to isuC instructions in the exact order
'hal would be achieved by sequential execution (in-order issue) and to write results
in that srmic. order (in-order completion). Not even scalar pipelines follow such a
si mple-minded policy. However, it is uscful to consider this policy as a baseline for
comparing more sophisticated aPProacllw-

F'igure 14,4a gives an example of this policy. We assume a superscalar pipeline
capable of fetching and decoding two instructions at a time, having three separate
functional units (e.g., two integer arithmetic and one floating-point arithmetic), and
having two instances of the write-back pipeline stage. The example assumes the fol-
lowing constraints on a six-instruction code fragment:

• I] requires two cycles to execute.
• 13 and 14 conflict for the same functional unit,

• IS depcndN on the value produced by 14.
■ 15 and 16 conflict for a functional unit,

Instructions are fetched LINO at LI lime aired passed lo the decode LIDA. Because
instructions are fetched in pairs, the next two instructions must wait until the pair of
decode pipeline slagcs has cleared. To guarantee in-order completion. when there
is a conflict for a functional unit or when a functional unit requi rex. more lhan one
cycle to generate a result, the issuing of instruction temporarily stalls.

In I his cx;imple, the elapsed time. from decoding the first instruction to writ-
ing the 1w4 results is eight cycles.

In-Order Issue with Out-of-Order Completion

Out-of-order completion is used in scalar RISC processors to improve the per-
formance of instructions that require multiple cycles. Figure 14.0 illustrates its LISc.

cart a supersealar processor. Instruction 12 is allowed to run to completion prior to H.
This allows I to he completed earlier, with the net result of a savings of one cycle.

With out-of-order completion, any number or inslrucLion.s may be in the Q.:W-

t.:A.11 km stage at any one time, up to the maximum degree of machine parallelism
across all functional units, Instruction issuing is stalled by a resource conflict, a data
dependency, or a procedural dependency.

In addition to the aforenieniioned li mitations, a new dependency. which we
referred to earlier as an output dependency (also called write-write dependency),

Wriir

Dccotic

Cycic

2

3
4

5

Window Dccodc.

514 CHAPTER 14 / INSTRUCTION-LEVEL PARALLELISM

(a) 1n-orderi a.ntl in-order compicuon

(1-0 In- }Ilia issw and out-oi -order completion

3
4

5

7

. Cycle

7

4

5

6
7

(C..! 00-014.5 1:(10: i LI I:, pritk (an-o) prder eorapletion

Figure 14.4 Sziperscalar Instruction Issue and Completion Policics

4i nscs. The rohowing cock!. Ir.igrne.ni illustrates this dependency (op reprcsenLs nny
opewion):

:1: R3 op R

L2 ; !"?.4 + 1
: R3 R5 1

=4: F7 (— R3 Dp

Instruction 12 canna execute before instruction II, becausc ii needs the result
n register R3 produced in 1.1 this is an exiimple or true data dependency. as
described inSection 1 4.1. Similarly, 14 must frI. because it uses a rosult pro.
di,2eLl Ii 13. .thoui the relationship between I] and 13? There is no daLs

http://Ir.igrne.ni

14:2 / DESIGN ISSUES 515

dependency here. as we have defined it. however. if 13 executes to completion prior
to I1, then the wrong value of the contents of 1-1=; will be fetched for the execution
of 14. Consequently, 13 must complete after 11 to produce the correct output values.
To ensure this, the issuing of the third instruction must be stalled iI its result might
later he overwritten by an older instruction that takes longer to complete.

Out-of-order completion requires more complex instruction issue logic than
in-order completion. In addition, it is more difficult to deal with instruction inter-
rupts and exceptions. When an interrupt occurs, instruction execution at the current
point is suspended. to he resumed later. The processor must assure that the resump-
tion takes into account that, at the time of interruption, instructions ahead of the
instruction that caused the interrupt may already have completed.

Out-of-Order issue with Out-of-Order Completion

With in-order issue, the processor will only decode instructions up to the point
of a dependency or conflict. No additional instructions are decoded until the con-
flict is resolved. As a result, the processor cannot look ahead of the point of conflict
to subsequent instructions that may he independent of those already in the pipeline
and that may he usefully introduced into the pipeline.

o allow out-of-order issue, it is necessary to decouple the decode and execute
stages of the pipeline,. 'This is done with a buffer referred to as an instruction win-
dow. With this organization. after a processor has finished decoding an instruction.
it is placed in the instruction window. As long as this buffer is not full, i he proces-
sor can continue to fetch and decode new instructions. When a functional unit
becomes available in the execute stage, an instruction from the instruction window
may he. issued to the execute stage. Any instruction may he issued. provided that (1)
it needs the particular functional unit that is available and (2) no conflicts or depen-
dencies block this instruction.

The result of this organization is that the processor has a lookahead capabil-
ity, allowing it to identify independent instructions that can be brought into the exe-
cute stage. Instructions are issued from the instruction window with little regard for
their original program order. As before, the only constraint is that the program exe-
cution behaves correctly.

Figures I 4.4e illustrates this policy. On each cycle, two instructions arc fetched
into the decode stage_ On each cycle, subject to the constraint of the 'buffer size, two
instructions move from the, decode stage to the instruction window. In this example.
it is possible to issue instruction 16 ahead of 15 (recall that 15 depends on 14, but 16
does not). Thus. one cycle is saved in both the execute and write-hack stages. and
the end-to-end savings, compared with Figure 14,4b, is one cycle.

The instruction window is depicted in Figure 14.4c to illustrate its role. 1 low-
ever, this window is not an additional pipeline stage. An instruction being in the
window simply implies that the. processor has sufficient information about that
instruction to decide when it can be issued.

The out-of-order issue, out-of-order completion policy is subject to the same
constraints described earlier. An instruction cannot be issued if it violates a depen-
dency or conflict. The difference is that more instructions are available for issuirw,
reducing the probability that a pipeline stage will have to stall. In addition, a new
dependency, which we referred to earlier as an autidependency (also called read-

.r

516 C.FIA11TER t4 / INSTRUCTION-LEVEL IPARALLRIJSM

write dependency). arises. The code fragment considered earlier illustrates this
dependency!

IL : R3 R3 op R5
12 ; R5 - 1

3 R3 (— R5 — 1
14: R^ R3 op R4

Instruction 12. •annot complete execution before instruction [2 begins execu-
ti on and has fetched its operands. This is so because 13 updaces register R. v.rhich
is a source operand for 12. The term toirlidependicncy is used because the colp.traint
is similar to that of a true data dependency, but reversed: Instead of the firs! ar t ILLC•

(i on producing a value that the second instruction uses, the second instruction
destroys a value that the first instruction uses.

Register Renaming

When oui-ol-order instruction iSSLIirig and/or out-of-order instruct ion completion
are allowed. we have seen that this gives rise to the possibility of output dependen-
cies and antidependencies. These dependencies differ from true data dependencies
and resource conflicts. which reflect the flow of data through a program and the
sequence of execution. Output dependencies and antidependcneics. on the other
hand, arise because the values in registers may no longer reflect the sequence of
values dictated by the program flow.

When instructions 4Lre issued in sequence and complete in sequence, it k
possible to specify the contents of each register at each point in the execution. When
out-of-order techniques are used. the values in regisi ers cannot be fully known at
each point in time just from a consi4lerai ion of thL' sequence of instructions dictated
by lite program. In effect, value!, al e in conflict for the use of registers. and the
processor must resolve th(we conflicts by occasionally stalling a pipeline stne.

Antidependencies and output dopenciencies tiro hOLII examples of storage con.
tlicts. Multiple:instructions are competing for t he use of the same register locations.
generatin;, pipeline constraints that retard performance. The problem is made more
acute when iegistet optimization techniques arc used (as discussed in Chapter 13).
because these compiler techniques attempt to maximize the use of registers, hence
maximizing 1 he number of storage conflicts.

One method for coping with these types of storage conflicts is based on a
traditional resource-conflict solution: duplica ion of resources. In this context, the
technique is referred to as register renaming, In essence, registers are allocated
dynamically by the processor hardware. and they are associated wilh the values
needed h instructions at various points in time. When a new register value is created
(i.e., when an instruction executes that has a register as a destination operand). a new
register is a ilocatcd for that value. Subsequent instructions that access that value
as source operand in that register must go through a renaming process: The regis-
ter references in those instructions must be revised to refer to the register conlitining
the needed value_ Thus, the minic original register reference in several different
instructions may refer to different actual registers. if different values are intended.

14.2 / DESIGN issu.es 517

Let us consider how register renaming could be used on the code fragment we
have been examining:

1: R3 L, <— R3, Op a5,
: R4„ <— R3, + 1

R3 + 1
14: R7, <— H3,. op R4,,

The register reference without the subscript refers to the logical register ref-
erence found in the instruction. The register reference with the subscript refers 10 a
hardware register allocated to hold a new value.. TiLVIten a new allocation is made for
a particular logical register, subsequent instruction references 10 that logical regis-
ter as a source operand are made to refer to the most recen I ly allocated hardware
register (reccnt in terms of the program sequence of instructions).

Iii this example, the creation of register R3,, in instruction I3 avoids the anti-
dependency on the second instruction and the outpul dependency on the first in-
struclion, and it does not interfere with the corrcet value bcing accessed by 14. The
result is ihat 13 can be issued immediately; without renaming. 13 cannot be issued
until the first instruction is complete and the second instruction is issued.

Machine Parallelism
In the preceding, we have looked a1 three hardware techniques that can be used in
a superKalar processor to enhance performance! duplicikn of resources, oul-of-
order issue, and renaming. One study that illuminates the relationship among these.
techniques was reported in j511 [1 .89]. The study made use of a simulation that mod-
eled a machine with the characteristics of the MIPS R2000, augmented with various
superscalar features. A number of different program sequences were simulaicd.

Figure 14.5 shows the results. In each of the graphs, the vertical axis corre-
sponds to the mean speedup of I he superscalar machine over the. scalar machine.
The horizontal axis shows the rcsulis for tour alternative processor organizations.
The base. machine does not duplicate any of the functional units, but it can issue
instructions out ()I' order. The second configuration duplicates the toad/stone func-
tional unit that accesses a data cache. The third configuration duplicates the ALU.
.end the fourth configuration duplicates both load store and AI, . in each graph,
results arc shown for instruction window sizes of 8, 16, and 32 instructions, which
dictates the amount of to okahead the processor can do. The difference between the
two graphs is that, in the second, rep isl et renaming is allowed, Thia is equivalen1 to
saying Ihal the firm graph reflects a machine that k limited by all dependencies,
wheteaN I he second graph corresponds to a machine that is limited only by t rue
dependencies.

The two graphs. combined, yield some importani conclusions. The first is that
it is probably not worlhwhile to add functional units without register renaming.
There is some sl ight improvement in performance. but at the cost of increased hard-
ware complexity. With register renaming, which eliminates antidependencies and
outpul dependencies, noticeable gains are achieved by adding more funciional
units. Note : however, Thal there is a significant difference in the amount of gain
achievable between using an instruction window of 8 versus a larger instruction

Speedup
With renant hig

Speedup

4

2

tl

Without renaming

bast. —idist —011.1 —both

S2
.5

%
az

c¢
m

aN
SW

A
kO

N
N

O
V

V
V

.

NA
NA

MM
at

W
IR

E
FT
If

fint
_

4

518 CHAPTEP, 1 ,1 1 1NSTR .1. C. T PARALLELISM

8 1C).

32.
Window (cinist ructions)

Figure 14.5 Speedups or Various Machine Organizations, without procodund
Dependencies

window. This indicares aim if the instruction window is too small, data dependen-
cies will proicrul erreelivc utiliaition of the extra functional units the processor
must he able Lo look quite far ahead to find independent instructions to utilize IhL
hardware more fully.

Branch Prediction

Any high-performance pi pelined rnachine must address the issue of dealing with
branches. For example. the Intel 80486 addressed the problem by ft:II:Fling both
the next sequential instruction after a branch and speculatively fetching the
branch target instruction_ However, because. there are two pipeline stages be-
tween prefetch and execution, this strategy incurs a two-cycle delay when the
branch gets taken.

With the advent of RISC machines, Ihe delayed branch sir:mew,/ wras ex-
plored, I his allows laic:. processor Lo calculate the result of conditional branch
instructions before any unusable instructions have been prefetcbcd. With this
method, the processor always executes the single ins1rurt inn that immediately
follows the branch. 'fhis keeps the pipeline full while the processor fetches.a new
instruction stream.

With the development of supersealar machines, the delayed branch strategy
has less appeal. 'Hie reason is that rriultirtic instructions need to execute in the delay
slot, raising several problems relating to instruction dependencies. Thus, su pc:m:4u
machines have returned to pre-RISC techniques of branch predie1ion, Some, like
the rowerl'C NM. use a simple static branch prediction technique. More sophisti-

Static
program

lastnictiou !retch
and branch
prediction

In:Aruct ion
dispatch

r -

Instruction
issue.

Instruction instruction
execuiion reorder and

commit

11,2 L)ESIGN 'ISSUES 519

rated processors. such as the PowerPC 621) and the Pentium 4, use dynamic.branch
prediction based on branch history analysis.

Sup erscalar Execution

We are now in a position to provide 4Lil overview of .supmcalar execution of pro-
grams; this is illustrated in Figure 14.6. The program to be executed consists of a lin•

sequence of instructions. This is the static program as written by the programmer
or generatud by the conviler. The instruction fetch process. which includes branch
prediction. is used to form a dynalirliC. hil -Cani Of instructions, This stream is exam-
ined for dependencies, and the processor nix' remove artificial dependencies. The
processor i hun dispatches the instructions into a window of execution. In this win-
dow_ instructions no longer form . ,;equenlial stream but are structured according
to their true data dependencies. The prcwessor perrorms the e xeen i on stta ge of each
instruction in an order determined by the true data dependencies and hRrdware
resource avai Finally, instructions are conceptually put back into sequential
order and their results arc recorded.

The final step mentioned in the preceding paragraph iw relurcil to as coinnar•
ti.v, or refiring. the instruction. This step is needed for the following reason. Because
of the use or parallei, mulIipie pipelines. instructions may complete in an order dif-
ferent from that shown in the statie program. Further, ihe. use. of branch prediction
and speculative execution means that some instructions rnav complete. execution
and then musl be abandoned because the branch they represent is J101 taken, There-
fore, permanent sloragc mid program-vkibie rK•gi4ers cannot be updVed immedi-
ately when instructions complete execution. Results must be held in sonic Sod Of
Iemporory storage that is usable by dependent instructions and then made pertna-
richt wheel ii is determined Ihat the sequential model would have executed the
instruction.

INI Wow of
execution

Figure 144 Conoepnial Derrietion cif Superscalar Processing ESIvIITY5

520 CHAPTER 14 1 INSTRUCTION-LEVEL PARALLELISM

Superscahr Implementati 011

Based on our discussion so lar, we can make some general comments about the
proecssor hardware required for the superscalar approach. [SMIT951 lists the fol-
lowing key elements:

• Instruction fetch strategies that simultaneously fetch multiple instructions,
often by predicting the outcomes of. and fetching beyond, conditional branch
instructions. These functions require Lhc use of multiple pipeline fetch and de-
code :stages- and branch prediction logic.

• Logic for determining I rue dependencies involving register values, rind
mechanisms for communicating these values to where they axe needed dur.
ing execution.

• Mechanisms for initiating, or issuing, multiple instructions in parallel

▪ Resources for parAlel execution of multiple instructions, including muniplc pipe.
li ned functional units and memory hierarchies capable of simultaneously ser-
vicing multiple memory references,

• Mechanisms for committing the process state in correct order,

14..3 PE,INITItai 4 aa"..f.;c3a. er
.roe ea:fel.:.5ePie" •,:•,,,X.e.ro,,..--44,-sPrirY, ".."-> •lrIP-F4-'••::••:•:;•;•, :•.::.

f".
..f.•••••• e -

Although the concept of superscalar design is generally associated with the RISC
architecture, the same superscalar principles can be applied to a C.T.SC machine. Per-
haps the most. notable emimpic or this is the Pentium. The evolution cif supcirRealat
concepts in the Intel line is interesting to note. The 80486 was a siva ightforward
traditional C'ISC' machine, with no superscalar elements. '1 . he. original Pentium had
a modest superscalar component, cunsisling of the use of two separate integer
execution uniis. File Pentium Pro introduced a full-blown superscalar design- Suh-
&equent Pentium models have refined and enhanced the superscalar design.

A general block diagram of the Pentium 4 wa. ,, shown in Figure 4.13. Figure
14.7, based on one in [C At depicts thc mime structure in a way more suitable
for the pipeline discussion in this section. The operation of the Pentium 4 can be
surnmari2ed as follows:

L proce,ssc Yr I '
L' tales instructions from memory in the order of are stalie program,

/ Each instruction is translated into one or more fixed-length RISC instructions,
known as micro-operations, or micro-ups.

3. The processor executes the micro-ops on a superscalar pipeline organization,
so that the micro-ops may be execuled out or order.

4. The processor commits the results of each micro:op execution in the proces-
sors register set in the order of the original program flow.

In cited, the Pentium 4 architecture consists of an outer cis(' shell with an
inner RISC core. The inner RISC micro-ops pass through a pipeline with at least 20
stages (Figure 14.8): in some cases, Lha micro-op requires multiple execution stages,

r.

—p

A

AUL: AIL!: ess .c..n11.1-.:n ion unit
871:1 largil:1 !Juno'
D -TE.R (.1 1.1A 1111111y

1 -1- 1. .13 In xtYLIeliOn transliinon iwk h; it

(1.11)':11' [4.

IT Starr

PAW
radii]
NINA

TA
 D

-C
ac

he
 a

nd
 1

)

1:2 ^'9LCIlr #} r4fl 4:45ni.r4

11
11

1
&

1.
11

-1
3

et
ch

lik
et

hi
e

1 4 P1 -: N 1 IL1V1 1 521

figum 14.7 Protium 4 Nock Diagrurri

resulting in an even longer pipeline, This contrasts with the five-stage pipeline (Fig-
ure [2.1(x) uw..t.1 on the Intel N.86 processors and on the Pentium.

We now truce k operation of the Penli urn 4 pipeline. using Figure 14. 14 litP illus-
trate its operation.

Front End

Generation of Micro-Ops

Thu Punli urn 4 organization include an in-order front end (Figurk.l. I4,{la) that
can be considered outside the scope of thc pipeline depicted in Figure I4.K. Phis
front end feeds into an LE instruction cache, culled the trace cache, which is where

oXr.,27WrePt+WeSearcr.1 -:errlir

I 2 3 4 • 9 10 II 112. 1t t 15 16 17 Ili 1g rtfl
N.No i'ach Rl+nnnlc Que. Seh Nrch 4th Dbsp Dist, It FIR% ur 1.11-ire
-J - - - -

TC Ne.L EP (nice iniclw nexr imtruction pointer Itenuryu:. - re0a rninE RF =
TC Feccli = tracc c.v.; hi: 4e1c11 (21.1C: = cuing = cacuute

= Fkuh suhedulinF. 1-1 s = 11agN
Disp = Dispuich E31' Ck 15.r.utu1i

Figure 14,8 Pcilliurn 4 PiNiii-R!

— = 5 . ' .

•BTBA

Tease cliche
1-•

. 1.
}{enarn-viaticw

I JAM 11.2.17CUES

:Schedulers
. 4 4 4 4 1 1

FP R

-

€' Integer RF

- r2 .
.....

—I—

1 1
Li D-Cklail and D-TLB

FP RI I intcur RF

1 1.]
Lt D-Cache and D-TLB

Nu
Fl

an
IF

 d
cF

-4
FL

F!
4i

j 4
4.

1

NTH &

Schedulers

B 1-T1.11.

I
Fetch/decode

I

'Iracc cache

FP RF
.0

inItTer RF

nem
▪ Irate carke

Rena alluc

i.t op Qumes

Schechkiers

S.

r -

I

= t:
7-

BTB & 1-TLB

Feititielecucle

"4.

Fiermencialloc

pip Queues

•

Schedulers

FP RE Integer RF

LI. D-Cukhe D-TLB

II & 1-11.1i

I
Fetchidecode

f(4
0-

0.
1a

pi
l J

O
17

01
1.

0.
1.

14
P9

 (1
.`F

q.
11

 .p
 Jl

T
3
n

7

R
JJ

.

FP
FP

L1 1'-Cache and D-TLB

1E
03

 p
uu

 @
lim

a z
q

.110P QueueS

k1
11

11
.14

F3
. p

u
ll

Renaraei'aillcoe

QIIPIIE5

F e tc hid ec ode

'1'race cliche g ip
7

7

411 1
I FP RF I Inleiter RF

t

3

1.1 n-TI .n

I
1,1 D-Cnche and 11-T1.11

MB & 3-TLB
4

Renameingne

;W
it

.)
 V

I

ra
ts

ig
a

x
 (i)

a

& 1-Tt.n

Fekkidisetude

Trace cache L..
1

Rename/allot

1
}lop Queues

—1_
Schedulers

31
;0

1.
1.

3 '
p

oo
l"

 (
41

=EMT MEM
1.11 RP Integer RI:

13 111 & I-11.B ---j•—•

Fetch/derrick..

'!'race cache

R e ua wrialloc

pop Queues

1 1u
lo

lu
a

1
)T

 A
p

t.
.)

ScheduJers

P Integer RF

L

Li II-Cache and li•TLB

n
it

q
u

p
g

a
s

d
(-

cu
a

1
}y

 0
1)

BTB & I-TLR

L 1. D-Cache and D-T1.11

INF

10
.1

.1
11

El
a p

u
n

 a
y
)1e

41. Trace cache

FP RE

vokat

EM.
Integer RF

°A 13.1 FR1

Schedulers

L
ietch/deeed

j
I Renarne/alloc

pup Queues

111B & 1• .no

Trace cache du,

44444 4 I
FP RE InIeger

1 •
li•Cache and LI- I 1.11

Reinionehblkw

1

pop Queues

11-Cache and I)-TLB

BTB &

_1
[---.'etch/deco(le

Schedulers Ji
m

a
.]

 31
:1

N1
1.

1.
3

14
1u

Ri
g

BTB & 1-11.1s

.1
pop Queues

ETRE
FP RF Integer RN

I. 1 D-Cache and 6-TI13

Felt:bidet-ode

1
Trace cache

7

il
u

p
7

 pU
R

 31
11

31
10

i mp Queues

Schedule

LI D-Cache and D-11.14

1
Rename/aline

the pipeline proper begins. Usually, the processor operates from the ince cache;
when a Irace cache miss occurs, the in-order fron1 end feeds new instructions into
the trace cache.

With the aid of the branch target buffer and the instruction lookasidc buffer
(51 - B & I-TLB), the fetchidecode unit fetches Pentium 4 machine instvuctions from
the 1.2 cache 64 bylcs at a time. As a default, instructions are fetched sequentially,
so that each L.2 cache line fetch includes the next instruction to be fetched. Branch
prediction via the BTB 3r 1-TLS unit may alter this sequential fetch operation.
The ITLB translates the linear instruction pointer address given it into physical
addresses needed Lo access the L2 cache. Static branch prediction in the front-end
BTB is used to determine which instructions to fetch next.

, Once instructions are fetehed, the fetch/decode unit scans die bytes to deter-
mine instruelion boundaries; this is a necessary operation because of the variable
1CJI ath of Pentium instructions. The decoder translates each machine instruction into
from one to four micro-ops, each of which is a 118-bit RISC instruction. Note for
comparison 1hat most pure RISC machines have an instruction length of just 32 bits.
The longer micro-op length is required to accommodate the more complex Pentium
operations. Nevertheless, the micro-ops are easier to manage than the original
instructions from which they derive.

The generated micro-ups are stored in the trace cache,

Trace Cache Next Instruction Pointer

The first two pipeline stages (Figure 14.9b) deal with the selection of instruc-
tions in the trace. cache and involve a separate branch prediction mechanism from
that described in the previous section. The Pentium 4 uses a dynamic branch pre-
diction strategy based on the history of recent executions of branch instructions. A
branch target buffer (EITB .) is maintained that caches information about recently
encountered branch instructions. Whenever a branch instruction is encourocred in
the instruction stream. the BTU is checked. If an entry already exists in the BTB,
then the instruction unit is guided by the history information for that entry in deter ,
mining whether to predict that the branch is taken. If a branch is predicted, then the
branch destination address associated with this entry is used (0E prefetching the
branch target insiruction.

Once the iitz,tritction is executed, the history portion of the appropriate enlry
is updated to reflect the result of the branch instruction. If this instruction is not rep-
resented in the Eira then the address of this instruction is loaded into an entry in
the 1-11I-3; if necessary, an older enlry is deleted.

The description of the preceding two paragraphs fits, in general terms. the
branch prediction strate gy used on the original Pentium model. as well as the later
Pentium models, including Pentium 4. However, in the ease of the Pentium, a rela-
tivehy. simple 2-bit history scheme is used. The later Pentium models have much
longer pipelines (20 staes for the Pentium 4 compared with 5 stages for the Pentium)
and therefore the penalty for misprediction is greater, Accordingly, the later Pen-
tium models use a more elaborate branch prediction scheme with more history bits
to reduce.the misprediction rate.

The Pentium 4 BTB is organized as a four-way set-associative cache with 512.
lines, Each entry uses the address of the branch as a tag. The entry also includes the

14.3 / PENTIUM 4 525

branch destination address for the last time this branch was taken and a 4-bit his-
tory field. Thus use Of four history hits conlrasIs with the 2 bits used in the original
Pentium and used in most superscalar processors, With 4 bits. the Pentium 4 mech-
anism can take into account a longer history in predicting branches. The algorithm
that is used is referred to as Yeti's algorithm 1YEH91 J. The developers of this algo-
rithm have demonstrated that it provides a significant reduction in mispi ediction
compared to algorithms that use only 2 bits of history [EVER98].

Conditional branches that do not have a history in the 1#TR are predicted
using a static prediction algorithm, according to the following rules:

• For branch addresses that are not IP.relative, predict taken if the branch is a
return and not taken otherwise.

• For IP-relative backward conditional branches, predict taken. This rule
reflects the typical behavior of loops,

• For IP-relative forward conditional branches, predict not taken.

Trace Cache Fetch

The trace cache (Figure 14.9c) takes the already-decoded micro-ops from the
instruction decoder and assembles them in to program-ordered sequences of micro-
ops called traces. Micro-ops are fetched sequentially from the trace cache, subject
to the branch prediction logic.

A few instructions require more than four micro-ups. instructions arc
transferred to microcode ROM, which contains the series ()I' microlops (five or
more) associated with a complex machine instruction. For example, a string instruc-
tion may translate into a very large (even hundreds), repetitive sequence of micro-
ops. Thus, the microcode ROM is a microprogrammed control unit in the sense
discussed in Part Four, After the microcode ROM finishes sequencing micro-ups for
the current Pentium instruction, fetching resumes from the trace cache.

Drive

The fifth stage (Figure 14.9d) of the Pentium 4 pipeline delivers decoded instruc-
tions from the trace cache to the rename/allocator module,

Out-of-Order Execution Logic.

This part of the processor reorders micro-ops to allow them to execute as quickly as
their input operands are ready.

Allocate

The allocate stage (Figure 14.9e) allocates resources required for execution. It
performs the following functions:

• If a needed resource, such as a register, is unavailable for one of the three micro-
ops arriving at the allocator during a clock cycle, the allocator stalls the pipeline.

• The allocator allocates a reorder buffer (R014) entry, which tracks the com-
pletion status of one of the 12h micro-ups that could be in process at any time.

526 CHAP FR 14 / 1NS'rRUCTION-f PARA11F1 I MO

• The allocator allocates one of the 128 integer or floating-point register entries
for the result data value of the micro-Op. and pmsibly a load or store. buffer
used to track one of the 4 loads or 24 stores in the machine pipeline.

• The allocator allocates an entry in one of the two micro-op (-11.1 QL,LCS in front of
the instruction schedulers..

'The ROB is a circular buffer that c210 hold up to 126 micro-ops and also con-
tains the 128 liardiA ,are registers. Each buffer entry consists of the following fields;

• State: indicates whether this micro-op is scheduled for C.ncx2Lition. has been dis-
patched For execution, or has completed execution and is ready for retirement.

• Memory Address: The address of the Pentium instruction that generated the
micro-op.

▪ Miero.op: The actual operation.

• Alia', Register: If the rmcro-op refe.renees one. of the 16 a rchitecturat registers,
this entry redirects that reference to one of the 128 hardware registers.

Micro-taps enter the ROB in order. Micro-ups are then dispatched from the
ROB to the Dispatch/Execute unit out of order. The criterion for dispatch is that
the approphate execution unit and all dflth item s required for this micro-
op arc available. Finally, micro-n1t ti e retired from the ROB in order. To accom-
plish in-order retirement. micro-ops are retired oldest first after each micro-op has
been designated as ready for retirement,

Register Renaming

Mc: rename stage (FigurC• I 4.9c) rentaps. references LO the 16 architectural reg-
isters (8 floatinst-poini register!, plus FAX, 12BX, ECX, EDX, ESL EDI, EBP. and
ESP) into a set of 128 physical registers. The stage removes false dependeneie.
caused by a limited number of architectural registers while preserving the true data
dependencies (reads after wriles).

Micro-op Queuing

After resource allocation and register renaming, micro-cps are placed in one
of two micro-op queues (Figure i4.90, where they are held until

and
room in

the schedulers. One of the two queues is for memory operations (loac.N nd stores)
and the other for micro-ups clo noi involve memory references. Each queue
obeys a PIPO (first-in-first-out) ilkcipline, but no order is maintained between
queues. That is, a micro-op may be [cad out of one queue out of order with respeci
lo micro-cps in the other queue. This provides greaher flexibility to the schedulers,

-lip Scheduling and Dispatching

The schedulers (Figure /4.Ug) , are responsible For retrieving micro-ops from
he niicro-op queues and dispatching these for execution. Each scheduler looks for

micro-ops in whose status indicates that the micro-op has all of its operands. If the
execution unit needed by that micro-op is nvailable, then the scheduler fetches
he micro-op and dispatches il to the appropriate execution unit (Figure 14.9h1.

Up to six micro-ops can be dispatched in one cycle. If more than one micro-op is

1/ / POWI-RPC 527

available for a given execution unit, I hic n the scheduler dispatches them in sequence
from the q1euu.'1'his is a sort or F110 disciptine that favors in-order execution, but
by this time the instruction stream has been so rearranged by dependencies and
branches that it is substantially out of order.

12our pork attach the schedulers in the execution units. Port 0 is used for both
integer and floating-point instructions, with the exception of simple integer opera•
Lions and the handling of branch mispredietions. which are allocated to Port 1. In
addition. NI MX execution units are . allocated between these two ports. The renEllin -

inv. ports are for memory loads and stores.

Integer and Floating -Point Execution Units

The integer and floating-point register files are the source for pending operaliom
by the execution units (Figure Tile execution units retrieve values from the
register files as well as from the f.I dam cnche (Figure 14.9j). A separate pipeline
stAge i used to compute flags (c.g., zero, negative); these are typically the input to
a branch instruction.

A subsequent pipeline. stage performs branch checking (Pigurc 14.9k). This
function compires [he ncrual br.iinch result with the prediction. If a branch predic-
tion turns out to have been wrong, then there are micro-operations in various stages
of processing that must be removed from the pipeline, The proper Inancli destina-
Hon is I hen provided lo the Branch Predictor during a drive sta2e (Figure 14.91),
which req.:irk the whole pipeline from the new target address.

14.4 POWERPC

he].'awed'(: architecture is a direct des.cvridani car the 113M 603. the RT PC.". and
the 1 S/6001..t, the last also referred to as xih imptementat ion of the POW FJ-3.
architecture. Alt of these are RISC' machines, but the first in the series to exhibit
superscalar features was the RSI6000. The first implementation of the PowerPC
architecture, the 61[1, has a super.sc.Hlar design quite Siittflzu to that of the RS/6000.
Subsequent PowerPC models carry the superscalar concept further. In this section_
we focus on the 601, which provides a good example of a RISC-based superscalar
design. At the end or the section, we briefly consider thc 620.

PowerPC 601

Figure 14.111 is a general Vie.W of the flit organization. As with other superscatar
machines, the fill is broken up irno independent functional units to enhance oppor-
tunities for overlapped execution. In particular, the core of the 601 consists of three
independent pipelined execution unils: integer. floating-point, and branch process-
ing. Together, these uniLS Cain execute three instructions tit a time, yietding a super-
scalar design of degree 3.

Figure 14.1.1. shows a]odcal view of the 601 archii L N tire, emplmsizing the flow
of instructions hOwe..eri func1iumil The icteh unit ean wretch up to eighi
ilistructions ,tit a time from the cache. The. cache unit supports a combined insiriAl ioni

528 CHAPTER 14 1 INSTRUCTION-LEVEL PARALLhLISN't

data cache and ii.4.responsihIc for feeding instructions to the other units and data to.
the regisiers. Cache arbitration logic sends the address of Ihe highest-priority access
to the cache.

Dispatch Unit

The dispatch unit takes instructions frorn the cache and loads them into the
dispatch queue, which can hold Light instructions at a time, It processes this stream
of instruetion.s to Iced a steady flow of instructions to the branch processing. inie-
ger. and floating-point units. The upper half or the queue simply acts as a burlier to
hold instructions until they move into the lower half. Its purpose is to elmLIIL that
the dispatch unit is not delayed waiting for instructions from the cache. In the lower
half_ instructions are. dispatched according to the following scheme:

■ Branch procesxing unit: Handles all branch instructions_ The lowest such
in!,truetion in the bottom half of the dispatch EARICite is issued to the branch pro•
cessing unit if that unit can accept

• FluatiNNFIFint Unit: handles all floating-point ins! ruei ions, The lowest such
instruction in the bottom half of the dispatch queue is issued to the floating.
point unit if the instruction pipeline in that unit is not full.

* Integer unit: Handles integer instructions, load/stores between th ,;2, registcr
files and the cache, and integer compare instructions. An integer instruction is
only i2-:.sued after it ha.!, tilLered to the bottom of the dispatch queue.

Allowing branch and floating-point insi ructions to he issued out of order from
the dispatch queue helps keep he instruction pipelines in the branch processing and
li mning-point units full, and it moves instructions through the dispatch queue as
rapidly as possible.

.56 Bi to

lestructionfetth

256 Bits 125-R tl
1,2/Eikis

interface
inAti

cliche (32 :1;,11-311!..

111b11-ger unit

Rig.,

L -
Flodfing-poini

u nit

M Bit:,

Brandi
prrii:nsing

Figure 14.10 PowerPC #301 Block Diagram

[Usti liuCirr .1

InNrr lluffer
I

Distkiteli unit

litti;2

iLI.Vot

Di41;LILL11 buffer 2.
1)isimiL11 buffo! . 2

I 3 kimiL1i huflL1 I

I ; iIL 11 hulli'r [7

Integra unit prraele.991ft . 0,011

Branch
writ batik

I ntcger
iirithincbc

I11I 1'I

load
write hack

Iii Lruk tI t}n

lrsreger

• P{!'ini
%11}(.2

ftral}C'h
nic

1

5): 12

1);51..k

12-10Errinwroint ttnii

14.4 / POWFRPC 529.

re,-,r, r. Cycle boundary

 - - - - - - - - -1 U1111 br11)114,1MFY

lor;truction roW
C:oniplaion tag now retch unit

11-•-•-m.aam.m.ma.an-a•

.11.4:eSS

Cache unit

Flom 14.11 Powci PC h0.1 SuucLurc 11)0(1-T94f

http://-m.aam.m.ma

Dispatc
11.erode
Execute
Predict

Branch
instructions

530 CHAP•I'VR 14 1NSTIWCTION -LEVEL PARALLELISM

Integer
instructions

Load/store
instructions

Floating-point
instructions

Fetch Dispatch
Decode

Em a ,)Write r ite hd

treicil 1)isimiell
Decode

Adlir pi] Cache 'Write buck

Fetch Dispatch

KaarrimmikiHnr4,5§.27:4*-A.gnpyr.-„npyff.x.r..§ w}p97-...-_,9p-,2,..-,1-„,

Dccode Execute]. Exteute2

./5g,...-

Ville back

Figure 14.12 PowerPC 601 Pipclinc.

The dispatch unit also contains logic that enables it to calculate the prefeta
addres.s. 11 contin ues fetching instructions sequentially until-a branch inslruclinti
moves into the lower half of the dispaieh queue. When the branch processing mit
processes an instruction, it may update the prefetch address so that succeeding
instructions are fetched from the new address and entered into the dispatch queLm..

Instruction Fipeiin es

Eigurc 14.12 illustrates the instruction pipelines for the various units. There
a common fetch cvet r43.1" I in2StrUci i(}11S; this occurs haore an ins1ruction k
patched to a particular unit The second cycle begins with the dispatch of an instruc-
tion to a particular unit. This overlaps with other activities within the unit. During
each clock cycle, the dispatch unit considers Ihe bollorn four en tries; of the
Lion queue and dispatches . up to three ihsLructions.

For branch instructions, the second cycle involves decoding and executing
ins l ructions as well as predicting branches. The. last activity is discussed in the nest
subsection.

The integer unit deals with instructions that cause a loadistore operation with
memory (including floating-point load/store), a register—register move, or an ALU
operation. In the caw (..11 a load/store, there is an address generation cycle ruikyviud

sending the resulting address to the cache and, if neeesarli..., a write-back cycle.
For other instructions. the cache is not involved and there is an execute cycle fol-
lowed by a write back to register.

Floating-point inslrucl ions. lrhowa.mitt r pipelinc., but there ;Ire two executc:
cycles. reflecting the complexity of floating-point operfitions.

14:4 / POWERPc 531

SeVLtrul additional points are worth noting. The condition register contains
eight independent 4-bit condition code fields. This allows multiple condition codes
to be retained, which reduces the intedoek or dcpcndeney between instructions, For
evimple, the e..f.m-npilcr can transform thc sequence

cra-r.p2x.E

crr.par e

to the sequence

c cAr.pa -ze
c. mpare

bra .cis
brar...T.h

RCC4iLLM,2 C'..Lch functional unit can send its condition codes to different fields in
the condition register, interlocks between instructions caused by sharing of condi-
tion codes can be avoided, •

The prexonce of ihc. Save and Resume registers (SRRs) in the branch proces-
sor allows it to handie simple interrupts and software interrupts wii houi involving
logic in the other functional units. Thus. simple operaling tlyslcm7.;crvices can he per-
formed rapid]v without complicalcd stab: Iminipulation or synchronization between
the functional units.

Because the 601 can issue branch and floating-poinl instrudions out of order,
controls are needed to ensure proper execution. When Lk dependent v exists (i.e._ when
an instruction needs an operand that has yet to be computed by a previous instruc-
tion), thc pipeline in the corresponding unit stalls.

Branch Processing
The key to the high performance of a RISC or superscalar machine is its ability to
opiirni .i.e. the nse of the pipeline. Typically : the most critical element in the design is
how branches are handled. In the PowerPC, branch processing is the responsibility
of the branch unit, The unit is designed so that in many cDsus. branches have no
effect on the pac.12 of execution in the other units; these type of branches are referred
to as zero-cycle branches. To achieve zero-cycle branching, the following strategies
are employed:

1. Logic is provided to scan through the dispatch buffer for branches. Branch
1arget4iddre;ises ;ire gerwr2Jtcd when a branch first appears in the lower half of
the queue and no prior hrailehes are pending execution.

532 CHAPTER 14 / INSTRUCTION-LEVEL rAitALLELISM

2. An attempt is made to determine the outcome.of conditional branches. If t4
condition code has been set sufficient[!,/far in advance, this can he determined
In any case, as soon as a branch instruction is encountered, logic determines
if the branch

a. Will be la kcn this is the case for unconditional branches and for conditional
branches whose condition code is known and indicates a branch.

hi, Will not he taken; this is the case for conditional branches whose condition
code is known and indicates no branch.

c. Outcome cannot yet be. determined. In this ease, the branch is guessed to
he taken For backward branches (typical of loops) and guessed not to be
taken for forward branches, Sequenlial instructions past the branch instruc-
tion are passed to the execution units in a co nditional fashion. Once the
condition code value is produced in the execution unit, the branch unit
either cancels the instructions in the pipeline and proceeds with the fetched
target if the branch is taken, or !iigrtak ror the condiiionaal instructions to be
executed. The compiler can use a single bit in the instruction coding to
reverse this delaull behavior.

The incorporation of a branch prediction strategy based on branch history was
rejected I-Fccause. the designers felt that a minimal payoff would be achieved.

As an example of the branch prediction effect, consider the program of Figure
14.13 and assume that the branch processor predicts 1hal the conditional branch
instruction is nol taken (the default case for a forward branch). Figure 14.14a shows
the effect on the pipeline if in fact the branch is not taken. In the first cycle. the dis-
patch queue is loaded with eight instructions, The first six instructions are integer
instructions and are dispatched one per cycle to ilie eger unit, The conditional
branch instruction cannol be dispatched until it progresses to the lower half of the
dispatch queue, which happens in cycle 5. The branch unit predicts that this branch
will not be taken, and so the next instruction in sec] LIW1Ce is tIondiiionally chspatched
(inditlatc(.1 by a D'). The branch cannot be resolved until the compare instruction exe-
cutes in cycle 8. At ihat time, the branch processor confirms that its prediction was
correct, and execution continues. 'There arc no delays, and the pipeline is kept full,

Nolte that no instructions are fetched during cycles 4 throughi. This is because
the cache is busy during I hose cycles with the cache access stage of the five load
instructions. Even so, the inso-nei ion stream is not delayed, because the dispatch
queue can hold eight instructions.

Pigurc I 4.14b shows the result if the. prediction is incorrect and the branch is
taken. In Lliis f::.1!,W, the three instructions starting at the IF must be flushed, and
fetching resumes with instructions Starling xl 1A, S1-':. Asa result, the VWC.1..1k stage
of the integer pipeline is idle for cycles' and 10. resulting in a two-eyele loss hccatisc:
of the incorrect prediction.

PowerPC 620

The f2(1 is I he first 64-bit implementation of the Powei.PC architecture. A notable
feature of this implementation is that it includes six independent execution units:

14.4 1 PowEP,Pc 533

• Instruction unit
• Three integer units

• 1-.041dIstoN: unit
• Floating-point unit

This organization enables the processor to dispatch up to four instructions simulta-
neously to the three integer units 4i nci one rloating-point unit.

The 620 employs a high-performance branch prediction strategy that involves
prediction logic, register rename buffers, and reservation stations inside the execu-
tion units. When an instruction is fetched, it i' issigned a rename buffer to hold
instruction results temporarily, such as reyimur stores. Because of the u se ()I' rcnarnu
buffers, the processor can specaol[rsivefv e. tc:aade instructions based on branch pre-
diction; if the prediction turns out to be incorrecl, then the regilts of the speculative
instructions Call be flushed without damaging the register file. Once the outcome or
a branch is confirmed, Temporary results can be written out permanently,

T.aelt unit has two or more reservation stations, which 614.1.rc: dispatched instruc-
tions that must be held up for the results of instructions. This feature clears
these instructions out of the instruction unit, enabling it to Continue dispaiching
instructions to other execution units.

(a 21
a

01Se
a

i bicidi of

- o - - d e;

(a) C code

m..9=et(r1
:12=b(r1.4)

✓107dr1,12)
✓:1=er1.16)
cra=r8,C.
ELgE,L7r0/gt= 1..3e

T:2=r8,r12
✓12=r12,r9
:712=r12. ,2: ,3
r4=r12,r:::L.
2“.c .1)=rd

r12=r12,r8
r12=r9,1c:2
r1.2=r1 ,-L2
r4=r12,rli
a{r:O=r4

r91 poLnts t.o a,
/71+4 points to b,

*r14•5 points to c,
r1+12 point'.2 to d,

fi r I.+LE poinr.9 to e :
Ricad a
Oload b
4load c
41Qad
41ad e
4con,nare itndint.e
Obranch if btt

>k add
Oadd
*acid
fl add
#soret
4unc.onditionai branch

Itstlbtract
Osuhtra=

4store

IF:

ELSE:

1WZ
1 Wz
'l ea
lwa
1WZ

bc

add
add
adcl
add
stw
b

5eW

OUT:
(b) Assembly cod

Figure 14.113 Codlc E.N.Hrrspl.c. wit h Branch IVELS941

534 CHAPTER 14 1NST1kL:CTION-LEVEI. PARALLELFSM

1 2 4 5 6 ; e 9 La 11 12 13 14 15 14.
r8.3(t1) Y G E C W

twa r12=b•LI.41 P • i a
LWZ r9-cir1,B) • D E 2 li
Lwz rIC,d(f1.221 D C

F D E C U
=1-5,r8.:1 n a

'Lc Er E,cr:;:igt=Lalscl p • • S
IF; au'd D' E I

nit! 1- .12,r12,x9 ? • • • •

D 6
add k- 12-r12,r1C 7 D E
.1,31 r4 , 1. 12,Y11 F C E 1.%■
cu.+ alra)=xd • C a C
15 c .

ELSE: E.J1f r12re,r12

subf r12=rL2,11
IT.Lbt r12=rt2,1.12
uubf 14=r12,r11
374

(a) Correct prediction: Branch was not taken

r=a?rj.:

l wz f1==hir'..,4;

l wz r9=L(r1.9j

rIC =d1-1,12)
r11=e.(1-1,16

c:Tpi crp=f9.4

IF: add :12.rS.112
add r12=r12,r9

nEd T12=r12.1-10
1T:9d x1==]2 ; r1

ttw

• COT
ELSE:aubf r12f8,r12

ahbE ri2=r12,r9
• r22=s112,r10

• rd=r1.5., YLI
137W

Oaci

1 2 2 4 5 0 7 8 5 10 11 12 13 14 15 1
P n 3 C. II
F • E C

D E C
F • R

D

D E
F. • 8

F • •

F

F P E
D F

F • 1:
3
F. 7. • C

(13) Incorrect prediction: Branch wa.s taken

F= fetch
D =dispatch/decode
E= execute/address

C =cache access
W writeback
S dispatch

Figure 14.14 Branch Pmdiction: NoL Taken !NE/S94]

'Pho 620 can speculatively execute up to rour unresolved kaneh inMructions
(versus ono for the 601). Bruch prediction is based on the use of a brunch hislory
mble with 2448 entries. Si/inflations run by the PowerPC designers show that the
branch prediction sitieoes rate is 90% /THON194].

14.5 r RECOMMENDED READING 535

14.5 RECOMMENDED READING

IJOHN911 remains a relevant and excellent hook-lengt It treatInent 4)1 qiperscalai LIr:41 n_
Worthwhile survey articles on the subject are [SVIrl'95] and [SI MA97]. [J01.; P891]
instruction-level parallelism. looks at various techniques for maximizing parallelism, and CO 31-
pares supersealar and superpipelined approaches using simulation_ Two recent papers that
pritvide good coverage of superscalar design issues are [PATT01I and I MOSI-101 I_

[POPE9J] provides a detailed look at a proposed supersealar machine. It also provides
an excellent tutorial on the design issues related to out -of-order instruction policies. Another
look at a proposed system is found in [KUGA91]; this article raises and considers most of the
import atil doL:ig n issues for superscalar implementation. [LEE91 examines software tech
niques rh;li used to enhance s u pc rsealar performance. [WALL91] is an interesting study
of the extent iii which instruction-level parallelism can he exploited in a supersealar processor.

Volume 1 of [IN 11201a] provides general description of the Pentium 4 pipeline; more
detail is Provided in [1 \'i'1- 01

[POTT941 is a detailed examination of instradion pipelining on the PowerPC 601,
[SHAN95] also provides good coverage_

NNW Hinton. G., cz al, 'The Mieroarehitecturc of the Pentium 4 ProcE:ssor. - hue?
Teehnology Journal, Q1 2001. lutrAeveloper.intel.coinhechnology!itil

INTEOIa Intel Corp. IA-32 Intel Architecture Software DeYeloper's Manual (2 Poirimes).
Document 245470 a nd 24547 L Aurora, CO. 2001.

INTEOM Intel Corp. Wei Pentium 4 Processor Optimization . Refcrence Manual. Docu-
ment 2489M-04. Aurora. C.'0. 2001. hilp:Alevetoper.intel.cornAtesignipentium4iman-
uals124-894Klit m

.101-IN91 Jobrison. hl. Supc.rwaiar ,Wieroprocessor Design. Englewood Cliffs, NI: Pren-
tice Hall. 1991,

JOUP$9a Jouppi. N.. and Wall. D. "Available Instruction-Level Parallelism for Super-
scalar and Superpipelincd Machines." P•oceedings.. Third International Confirence on
A rchiteLtural Support for Progran tin nts Langti.age'S mil Operating Systems, April 1980.

KLIGA91 Kuga, Murakami. K.: and Tomica, S. "DSNS (Dyllarnic;111! ,i-huarcl
Statically.code-seheduled, Nonuniform .Superseatary Yt1 A Ili ither Superscalar
Processor Architecture. - -C7orriprio- rrhifiectrirc J [In [991..

LEE91 Lee, R.: Kwok, A.: and Briggs. "Tlic Floating Paint Performance u(a Super-
scalar SPARC Processor:" Proceediri.;,.... Fourth Interria04-mal Conferetue Architec-
tural Support Pr PrOgrantMtng .fne .:;r wkres ffini Operating Sy !....erns„A„pril 1991

MOS11111. Moshovos, A.. and Sohi. G. "Microarchitectural Innovations: Boosting Micro-
pupa, fir forroun cc Beyond Semiconductor Technology Scaling." Proceedbrgs of
the Noveitilya 2001.

PAr1111 Putt, Y. - Requirements, Bottlenecks. and Good Fortune: Agents for Micro-
procesSor Evolution.' Proce .eriin,e•s of the IEEE, November 2001.

POPE91 Popescu. V._ et al. "The Metailow Architeetme." Micni, Jane 1991.

POTT94 Potter. et id, "Resolution of Data and Control-Flow Dependencies in the
PowerP(.- (101." I kl..E .4ilicro, October 1904,

SU A N4.5 Shanley, 1'. Perwera" S .y.S1Cri2 A rchitecrure. Reading. MA: Addison•Weslcy. 1995.

SIMA97 Sims, D. '•Superscalar instruction Issue." 1.6F ' Mt.cro,Seriterrik.v,r1Ortotxt 1()Ln.

instruction 'IV in 41 C

machine parallelism
out-or- artier completion,
utat-of-lvdcr issue
output dependenq
pracc dti rai dapendvicy

. araidependency
branch prediction
in-order issue
in..-ordQr cornpIutiott
instruction isso
instruction , level parallelism

536 CI-EAPTER t 1 I INSTRUCTION-LEVEL PARALLELISNI

sron.95 smith, : J., and Sohi, (3. The Microarchitecture clF Superscalar P.rocessors," Pre).-

eftclings of the IEEE. nc cenil-Rrt9V3..

1r' ALL91 Wall, D. '•1.ini1s IFt instruction - Level Pmc .aretkth}s, Rir.orcle trieeer-
teenioreal a}/JP:VetECT On A rchieeco fro) Seipport for PreJgreem.Pree)q Ltengrurges irrrel {)per-.
along Sy...lems, April 1901,

Key Terms

regi L'.1" renaming
resource conflict
snperpi
supersealar
true darn dependency

Review Questions
14.1 What is the essential characteristic of the superscalar approach lo processor design? .
14.2 What is the difference between the supersealar and superpipelined approaches?
14.3 What is instruction-level parallelism?
14.4 Briefly define the following terms:

■ .Frite tlata dependency
• Procedural dependency
■ Resource conflicts
• Output. dependency
■ Araidependeney

14.5 What is the distinction between) ins1ruction-lcv el I and machine parallelism?
I4A List and briefly define three types of supersealar instruction issue policies.
14-7 What is the purpose or an instruction window . ?
14.8 'hal is register renaming and what is its purpose
14.9 What are the key elements of a supersealar processor organization?

Problems
mi. When out. of .order completion is used in a superscalar processor. resumption of exe-

cution after interrupt processing is complicated, because the exceptional condition
may have been detected as an instruction that produced its result out of order. The
program cannot be restarted at the instruction following the exceptional instruction.
becati."0 Subseci uenE instructions have already completed. and doing so would cause
cheso ii IkI 31.14.:11c)lis to be executed twice. Suggest a mechanism or mechanisms for deal-
iiig will' 115i ,

14.2 Consider the following sequence nr instructions, where the syntax consists or an
tpcodc followed by the destination register followed by one or two source rettistersi

14.6 / KEY TERMS, REVIEW QUESTIONS AND PROBLEMS 537

a2, Al, 2
I LOAD' 6, 11R3.

AND RI, Rt.,
3 ADD R1, 75, RO

SRL R7, RO, 8
5 OR R2, R4, .7';

R1, 3, R4

V! LOAD R6, [R5:

?2, 71, 76

11: AND ?3, 15

A 5.c..;11rrEC the use Of '1'1 1{11.3r -Stilge I1i1 ,4 EiI1t i i L.11. ch....code/issue. execut.L., write 1.-Fack,
pipeline shigesiaki . irk! clodk cycle except for the execute stage. For

sirlrl I 111[4 ii' ..tit inctie ;lad iir,tructioris, the c.xecute stage takes une cycle,
hill fall a 1 .0All ['tom memory, five e I s ire consumed in the execute stagc,

we have a simple scalar pipeline but allow otol-of-order exec:01110o, Wet eau
construct the following table tor the execution of the. first seven instructions:

Instruction Frith IF:XeCUIV Write Buck

0 I.)]
7 :1

I I 0 4 !..I

7 7 .•-;

3 3 4 10 I1

4 4 5 6 7

5 6 8 I0
(.1 {.. 7 9 I '2, %

I I w L'1.21Ci4J.S 4411 1, 1
k1 (thk: the CILICk cycle al. which each

i i4.12ins end, ErhIasLC, rii 115i, the second ADD instruction (insiruc..
Lion 1 thipenik 1.0A I) IIKIE dui ion (11E...1 tiierion I) ror one of its operands, th.
Becatiso the LOAD iciAttiL -tioit I I v clock cycles, and the issue logic encciunters
the ElenuoLlein ADD ir hl fuel of ici . clucks, ihu issuc logic must delay 1.1.1c ADD
Instruction I'iir i hre c clock cycles.. With an out-of•order capability : [tic processor can
stall instruction 3 at clock. cycle. 4, and then move on LC issue the following Olive nide-
Re.ndent instructions, which Enter Execution at clocks 6, 8, and 9. The LoAn finishes
execution at clock 9. and so the depundeni ADD can be launched into execution on
dock [(1.
a. Complete the preceding table..
b. 11?...!rli 1 111.4 ;•,k1)11:, assuming no otit -or -order capabiliv, What is the savings using the

capolAility'1
e. Redo the tablu, assuming a•superscalar implementation that can haudly two in-

structions at a time k .it each stage-

143 [n the instruction queue in the dispatch unit of the PowefPC 601, insttudion.- fE;iw Est
dispatched out of order w the hranch processing and Iloalin42-puint but instruc-
tions intended for the integer unit must he dispaieha only from the luittoin of the
queue. Why this limitalionl

14.4 Produce a figure similar to Figure 14. L4 for the following LR.150. 6:

Brarivii preditition; taken:. correct pro.liction: branch WAS taken
h. litanch predici taken: incorte.ct prediction: branch was not taken

14.5 Consider the following assembly larignago program!

Store
(write
hacki

Execute stage

Vhdfiplier

Fetch I Decode I
stage stage

—

I
(II

1 r

ill t m3 in2
S

•
I • al a2 •

I do •	
 N2 Ea

p
Stindrtnt

538 CHAPTER 14 INSTRUCTION-LEVEL PARALLELISM

T1: MOVE. Rj RT. /Rj :R7
12: Lr d3 R8. {R3 /38 <—

13: Arf;I:i Fl=., F3, 4 /R3 + /
r4 Load .7.9.
IF.: ThI).7. (F.) r 1!•RA1

This program includes write -write, read -wrike, and write -read dependencies. Show
these.

14.6 Figure 14A5 shows an exampte of a superscalat processor organization. The prom ,
scar can issue two instructions per cycle if there is no resource conflict and no data
dependence problem. There arc essentially two pipelines, with four pro-uessing. stages
(fetch, decode. execute, and store). Each pipeline has its own fetch decode and stun
unit. Four functional units (multiplier.. adder, logic unit, and load unit) arc available
for use in the execute Stage and arc shared by the two pipelines on a ds.nainic bast
The Iwo storc tiniN can be ciynarnically used by the two pipelines, dopending on avail.
ability at a particular There is a lookallead window with ils own fetch and
decoding ingic. This window is used for instruction lankabead for out-of-order
instruction issue,

following program tot execute!] oil (INS processor,

Ii t Lcad Al ; A i .R.1 4• ke7=y IA)
1.2 Add R2, RI /R2 <-- :R2 + R;1)/
13 Add R3, R4 f- + R14)/
14: `1u1 P4, R5 /R4 ;P ,U +
15r C.1%rp P /R6 (R6) /
16 r T'.i1 R6, F.'? /R:J. + R

H. What dependencies exist in the program.

b. Show the pipeline activity for this program on the processor of Figure 14.15 using in.
order issue. with i 11 .order completion policies and using a presentation similar to
Figure 14,2,

e. Repeat for in-order issue with out of•order completion.

d. Repeal for out-cif-order issue with out-of-order completicin.

Figure 14.15 A Dual -Pipeline SuperseHlkir Processor

14.6 / KEY TERMS. IkEVIEW QUESTIONS, AND PROBLEMS 539

From 44.

To y,

1 1

TO X

(a)

From -Pm' I I I

TfIi r- To x

From

To

rç z

Figure 14.16 Figurc for Problem L4.

14.7 Figurc 14.10 i. from a paper oil .supi.ltrscaliir &sign. Explain the L]ire u pi s of tk.
fio:urc, and &rimc w x. y, and

CHAPTER 15
THE IA 64 ARCHITECTURE

15,1 helotivatioa

15.2 General Organization

15.3 Predication, Speculation, and Software Pipe lining

Instruction Format
Assembly-Languagc Format
Prcdicatt:d Excculion
Control Speculation
Data SNculation
Softi,vare Pipelining

15.4 IA-64 instruction Set Architecture

Ragister Stack
Curreml Frame lk.Ur1;:er ow] Previous Fmk'lion Stare,

'11 15.5 It-0111PM Organization

15.6 Reconnuended Reading and Web Sites

15.7 Key Term?, Review Quesi and Problems

Key '1ernas
Rcview Qunt ions
Problems

542 CHAPTER 15 THE IA-64 ARCHTTECTURP

--------- - - - ----- - • •

KEY POINTS

• The LA-64 instruction set architecture is a new approach to providing Turd-
ware.support for instruction-level parallelism and is significantiy different that
the approach taken in yverscalar architectures,

• 'i .he most noteworth!,.: features of the IA-64 arcin [eel Lire arc hardware s.upport
for predicated execution, control speculation_ data spc.cu[atiort, and software
pipeiining.

• With priAicated execution, every IA-64 instruction includes Ei reference to a
[-bit predicai regisLer and only executes if the predicate value is L Orue).
This enables the processor to speculatively execute both branches of an
statement and only commit after the condition is deli:mined,

• With control speculation, a load instruction is moved earlier in the program
and its original position replaced by a cheek instruction. The early load s.;Lvt:.s
cycle time; if the Load produces an exception, the exception is not activated
until the chui.:k instruction determines if the load should have 1. -5een taken.

• With chin speculation, a load is moved bci'ore a store in struction that mi0t.
alter the memory location that is the. source of the load. A subsequent check
is made to assure that the load receives the proper memory vise.

• Software pipelining is a technique in which instructions from multiple itera-
Eions of a loop are enabled to execute in parallel.

w itli the Pentium 4, the microprocessor family Thal began with the 8086
and I hat has been the most successful computer product line e ,L.er
appears to have come to an end. Intel has teamed up with Hewlett-

Packard (HP) to develop a new fiz1--hit architecture. called IA-64, IA-64 is not El
64-bit extension of biters 32-bit x86 architecture_ nor is ii an adaptation of IllcwIca.
Packard's 64-hit PA-RISC architecture. Instead, IA-64 is a new architecture that
builds on years of research at the we companies and pit universities. The architec-
I Lire exploits the vast circuitry and high speeds available on the newest gcnoraiions
or microchip; by a systematic use of parallelism. IA-64 architecture represents a si,
nificant departure from the trend to supersca]ar schemes that have dominated
recent processor development.

We begin this chapter with a discussion of the motivating factors for the new
architecture. Ncxl, we look at the general organization to support the architecture.
We then examine in some detail the key features of the IA-64 architecture that pro-
mote instruction-Level parallelism. Filially, we Look a(the IA-64 imslruction set archi-
tecture and the Itanium organization.

MOTIVATION 543

15.1 MOTIVATION

The, basic concepts underlyinr2. IA664 are as follows.:

■ Instruction-level parallelism that is explicit in the machine instructions rather
than being del Qrmincil AL rim lime by the processor

* Long or very long instruction words (LINV/VLIW)

• Branch prodica tlgn (ni)i. the same ihin2, as branch prediction)

* Speculative loading

[Mel .tind H P refer to this combination of concepts as explicitly parallel inslruC-
iian computing (EPIC). Intel and HP use the term EPIC to refer kJ the. technology,
or collection of techniques. I A -64 is an actual inAtruction rct architecture that is
intended for implemenivition using the EPIC technology. The first Intel. product
based on this IA-64 is referred to as lianium. Other products will follow. based on
the same IA-64 architecture.

Tablc... 15.1 sLimmarizes key di ITerc.ricc!, helmecu LA -64 and a traditional super-
Sea I ar 21 pprozich.

For Intel, the move to a new architecture, one that is not hardware compati-
ble with the xSfi instruction architcolure, i;'.; a momentous decision. But it is driven
by the Llicc ilex of the iechnology. When the x86 family began. back in the laic 1970,
tlie processor chip had tens of thousands of transistors and waS Sin CNs.0 111 141 I I y scalar
device. Thai is. instructions were processed one li me. with little LI no pipelin-
ing. As the number transisl ors increased into the hundreds of thousands in 1hiz,
mid-1980s., Intel introduced pipelining Figure 112.1.S). Meanwhile, .E.)1 hur man-
ufacturers were attempting to take advantage of the increased 1. ra.m,istor count and
increased speed by means of the RISC' approach, which enabled more effective
pipelining, Li nd la Let the superscalar/RISC. combination. which involved mul
execution. units. With the. Pentium, Intel made zr 11.1 0deS1 14.) use superscalku.
techniques, gnawing two CISC instruct ions to cxecute it of lime. 'Then_ the Pentium
Pro and Pentium II through Pentium 4 incorporated a mapping from CISC instruc-

1'Ab1e 1.5.1 PraLliiional Supers.cular versus IA-64 Architcillurc

Siiiicrscalar 1 4-64

RESC - Il aC: instructions...one. pi.kr word 1.z.i S.C-ILFW LDst rvciiorm bundlud into gcCitipS Cif 1..Eifee

Multipl:2 pilTillIC-] CXZCL.11.1011 1.11111 LS Mull iple parallel ...:•xN111 ion kalils

Nxnrdcrq ki nd OPI.ilrillrC!.; liKE11.101011 slrekint
io T1.111 L1111.2
_ .

Reonlurs dad opciniivos iii3lru4tion Ntrcarn at
i_DELS1)11V Linl.:.3

Brandt fil'OdiCt it)1.1 wit h h spcculoieivc il..xcciiii(1T]
of ORO path

Speculative excuukitn) akinp h431.1t paths of a
branch

Loads dithi from 1.13 01101' .y o.rily Mica neoiled.
iiiid tries so find ell:: diviii in clic ciiclics ririi

.vc.:si .ciiid _s _3.}.1 .)12:(1T12 .IS riecided. arid Spc.culiiii I I dl I I i
still tric.s Ia rind data in tlii2 caukie; first

544 CHAPTER 15 l THE 1A-6.4 ARCI -11TECTURE

lions to RISC-like micro-operations and the more aggressive use of superscalar.
techniques. This approach enabled the effective use of a chip with millions of trarl•
sistors. But for the next generation processor, the. one beyond Pentium, Intel and
other manufacturers are faced with the need to use effectively tens of millions of
transistors on a single processor chip.

Processor designers have few choices in how to use this glut of transistors. One
approach is to dump those extra transislors into bigger on-chip caches. Bigger caches
can improve performance to a degree but eventually reach a point of diminishing
returns, in which larger caches result in tiny improvements in hit rates. Another
alternative is to increase the degree or 5IJperscaling by adding more Execution units.
The problem with this approach is that designers are, in effect, hitling a complexity
wall. As more and more execution units arc added. making the processor "wider,"
more logic is needed to orchestrate these units. Branch prediction must be improved,
OW-of-order processing must be used. and longer pipelines must he employed. But
with more and longer pipelines, there is a greater penalty for misprediel isrn, Oui-ef•
order execution requires 4i large number of renaming registers and complex inter-
lock circuitry to account for dependencies. As a result. today's best processors can
manage at most to retire six ilIMI'LLCijOils per cycle, and usually less.

To address these problems, Intel and HP have come up with an overall design
approach that enables the e •ketivc, use of a processor with many parallel execution
units. The heart of this new approach is the concepi o[explicit parallelism, With this
approach. the compiler statically schedules the. instruetions.at compile time, rather
than having the processor dynamically schedule them at run time. The compiler
determines which instructions can execute in parallel and includes Ibis information
with Ihe machine instruction. The processor uses this informal lo perform paral•
Eel execution. One 44.1vantEigc of this approach is that the EPIC processor does not
need as much complex circuitry .t7:1 an out-or-order superscalar processor. Further,
whereas the processor has only a matter of nanoseconds to delermine putenl ia] par-
allel execution opportunities, the compiler has orders of inagn itudc morn time in
examine the code at leisure and see the program as a whole.

15.2 GENERAL ORGANIZATION

As with a nv processor architecture. IA-64 can he implemented in a variety of
organizations. 1;igure 15.1 suggests in general terms the oreanization of an IA-64
machine. The key features are 215 1 . {1110W:;.;

• Large number of registers:Thu I A-64 instruction Format assumes the use of 256
registers: 128 64-hit registers for integer, logical, nd general-purpc.i.sc use, and
12g 82-hit registers for floating-point and graphic use. There Tire also 64 1-hit
predicate regkters used for predicated execution, as explained subsequently.

• Multiple execution units: A typical commercial superscalar machine today
may support four parallel pipelines, using four parallel execution units in
both the integer and ItoaIing-point portions of the processor. It is expected that
1 A-64 will he implemented tin xv7,11cinS with eight or more parallel units.

15.2 I GENERAL ORGANIZATION 545

r R = Gcncrul-inirposc or inieger'reisior
I- H. =I-loafing-point or graphic:, register

PR = predicate register
3211 = lkixecution unit

Figure 15.1 Gent.ral Organization for IA•i4 Architccturc

The register file is (wile. large compared with n -i mi R[S(' and superiicAar
machines. Thc reason for this IN dial ai large number of registers is needed to sup-
port a high degree of parallelism. In a traditional supersca]ar machine, the machine
language {and the assembly language) employs a small number of visible registers,
and the processor mum l he se onto larger number of registers usi ng register renam-
ing technique.s and dependency analysis. Because We wish to make parallelism
explicit and relieve the processor of the burden of register renaming and depen-
dency analysis, we need a large number of explicit regislETS-

The nutniler of esceui ion units is u function of ihe number of transistors avail-
able in a particular implementation. The processor will exploit parallelism to the
.extent that it can. For example. if the machine language instruction siro.iim (es
that eighl integer instruction may he 1:2 ›: ccuted in parallel. a Tyroces!,or with four
integer pipelines will execute ihese in two chunk z,.. A processor with eight pipelines
will execute all eight instructions simultaneously.

Four types of execution unit are defined in the IA-64 ..irchitecture!

• I-unit: For integer urit hinetie. shift-kind-add, logical, compare, and integer mul-
ti media instructions.

• M-unit: Load and store between register and memory plwi:ionle integer ALI;
o[IcratiunS.

• B-unit: Branch instructions.
• iro„iruclicinN.

5415 CHAPTER 15 / 1'HE 1A-64 A.R.CHITECTURE

TWA 15.2 Relationship between Instruction Type and Execution Unit

Instruction Type Desrriplinii 1.:".c.cution Unit Type
. _

A
_

integer ALU 1.unit or.M.unit

I Non-ALU intem 1-unit

M Mcinory M-unit

P floating pm-1i F-tniii

B Branch 13-unit
l

L I X Extended I-onit/13-unic

Each I.A-64 instruction is categorized into one of six types. Table 15.2 lists the
instruction types and the.exectition unit types on which they may be executed.

15.3 PREDICATION, SPECULATION, AND
SOFTWARE PIPELINING

This suction looks at the key features of the IA-154 architecture that support
instruction-level paraiiehsrn. First, we need to provide an overview of the IA-64 in-
struction format and, to support the exEimples in this section, define the general
format of lA-64 assembly language instructions.

Instruction Format

I A-64 defines a 128-1 -iii bundle that contains three instructions, called syllables, and
a template field (Figure 15.2a). 'File processor can 1'0.6 instructions one or more
bundles at a time: each bundle fetch brings in three instructions. The template field
euntains in l'ormation that indicates which instructions can be executed in parallel.
The interpretation of the reit -Th.11e field is not confined to a single bundle. Rather,
the processor can look at multiple bundles to dctermine which instructionp. may
be executed in parallel. For example, the instruction stream inav be such that eight
instructions can be execuied in parallel. The compiler will reorder instructions
so that these eight instructions Daman contiguous bundles and net the lerrlphle hiss SO
that the processor knows that these eight instructions re independcnt.

The bundled instructions do not have to be in the original program order. Fur-
ther, because of the flexibility of Lite template field, the compiler can mix indepen-
dent and dependent instructions in the Ndrtle bundle. Unlike some previous VLIW
designs, IA-M does not need to insert null-operation (NOP) instructions to fill in
the bundles.

Table 15.3 shows the interpretation of the possible values For the 5-bit tem-
plate field (some values are. reserved and not in current use). Tire template value.
accomplishes two purposes:

PR
Major
opcodc

15.3 / PREDICATION, SPECULATION, ANL) SOFTWARE PIPELINING 547

128- b it hut idk

L struction slot 2 Instruction slot I .11n

Instruction slot 0
Tem-
plate

41 al 5

t a) IA-64 binallc

41-bit instruction

II)} General 1A-64 instruction format

Major
opoude Other modifying hits1 GR3 GR2 GRI PR

4 10 7 7 7

(C) Typical 1A-64 instruction format

PR — Pprdi•ale register
OR = General or floating-point register

Figure IS/ 1A4iLl instruction Fortnai

1. The field specifics the mapping of instruction slot, to execution unit types. Not
possible mappings or instructions to units are available,

2. The field indicates the presence of any stops. A stop indicates to the hardware
that one or more instructions before the stop may have certain kinds of re-
source dependencies with one or more instructions after the stop. In the table,
a heavy vertical line indicates a stop.

Each instruction has a fixed-length 41-hit format (Figure 15.2b). This is some-
what longer than the lraditional 32 -bit length found on RISC and RISC' superwalar
machines (although it is much shorter Than the 118-bit micro -operation of the Pen-
tium 4). Two factors lead to the additional hits. First, IA-t4 makes use of more reg-
isters than a typical RISC machine: 128 integer and 128 floating -point registers.
Second, to accommodate the predicated execution technique. an IA-64 machine
includes 64 predicate registers. Their use is explained subsequently.

Figure 1.5.2c shows in more detail the typical instruction format. All instruc-
tions include a 4- hit major opeode and a reference to a predicate register. A/though
the major opcode field can only discriminate among 16 possibilities, the interpreta-

548 CHAPI'FR 'THE 1A-64 ARCHITECTURE

Table 15.3 Template Field Encoding and Instruction Sc(.N.lapping

Template Slut 111 Slot 1 Slot 2

IX1 M-ursiL [-unit I-unii

LI.1 M-urkil. 1 -snit 1 - unil

112 1.1-unit I-unit 1-unit

IY3 h3-unit T-unit 1 - unit

LF4 M -urkli 1.--untl X-11nit

05 M-uni1 L-unis X-1.11111.

Og rirl•unii M-ullil E-unit

04 !‘rl-unlit M-unit [-unil

OA M-unit M-unit [-unh

IIB '24 ,unis NI -unit 1 - unit

OC M- unit F-unil. f-unil

OD M-unit F-unil I - unii

OE NI-unil Ivl-ursil. F-unit

OF N1-unit Pvl-anit F-unit

10 M -unit I -Lull t B-111114

II M -unii. 1•unit B-uttic

42 Nef-unit B-unit 13 -uniL

1,3 M - 1.131i1. B -unit B -unit

13•unit 1 L6 Th -unit El-unit

t7 13-u11O B-unit B-unit

l's N -uriii M -unit B - unii

19 M-u101. ht -unit B-unil

I C M-nrni F•unit l3-unit

I n M-unii F-tiit 1:5 - unit

lion or the major opcode field depends on the ternpl.ate2 valuu nd the locifi.ion

instruction within zi hundlf: (-Fable. 15.3 .1hus affording more possible opcodes. Typ-
ical instructions also include reference registers. leaving 1.0 bits for
ether in rormation needed to fulby specify the instruction.

Assembly-Language F ormat

As with i:iny machine instruction set. an assembly language is provided for the con-
venience of the pro@,rafarner. The sissUnbler or compiler then translates each assail-

15.3 / PREDICATION, SPECULATION, AND SOFTWARE U1 549

bly language instruction into a 41.-bit JA-04 instruction- The gencrffl format of an
assembly language instruction is

[cip] mnerrionic[-r : dt?,5LL=src

where

cep Specifies a 1-bit predicate register used 0} qualify the. instruction. If
Inc value of 1Vgkier is I (true) at execution time, the instruction
executes and the result is committed in hardware. It the va [Lie is 1.•.11:',112,
the result of the instruction is not committed but is discarded. Most
I A-64 instructions may he qua li lied by a predicate but need not be. To
4.account for in instruction [hat is not predicated, the cip value is sc1
to 0 and predicate register zero always has the constant vahJe of 1.

nrnemonic Specifies the name of an IA-t4 insi ruei ion.

COM"? Specifies one or more instruction completers, Separtitcd by periods.
which are used to qualify the mnemonic. Nol Fill insiroutiLms require
the Use of a eompicrer.

ifrvl Specifies one or itlOrC destination operands, with the typic,a1 case being
a single destination.

4TE'' Specifics one or more source operands. Most instructions have two or
more source operands.

On line, any el7eiraelers Lo the right of a double slash - IC are created as a
comment. Instruction groups and stops are indicated by a (10131.111. W.11147011ln An
instruction group is defined as a sequence of instruciions that have no read after
write or write after write dependencies- .]'he processor earl issue these without hard-
ware checks for rel.!ister depe.ridehrie. I Jere is a simple example;

=dB r= = [r5] /i First gyDup
acd r3 = x - , r4 / SecpnCi L.Tr up

The First instruction reads an : ..z.-hyte value from Ihe mcmory [ocation whose
address is in register r5 and then placeNil -wt value in register it The second instruc-
tion adds the contents of rl and M. and places the result in r3. Because Ihe second
instruction depends on the value in rl, which is changed by Ihe first instruction, the
t wo instructions cannot be in the same group (or pnillel execution.

Hero is. a rylone cumpJe example, with multiple register flow dependencies:

1d2 rl 7
 [L- 51 // .E; rst group

sub r6 = r8; ;; // FLrgt group
= rl, 174 i/ 8econd

F.r.E1 - r12 /i Second

'fhe [am instruction stores the contents of r]2 in the memory location whose
address is in r6.

We are now ready to look at the low - key mechanisms in the IA-64 architec-
ture 10 support instruction-Level paza lielism:

550 CHAPTER 15 / THE IA-64 ARCHITECTURE

• Predication
• Control speculation
■ Data speculation
• Software pipelining

Figure 15.3, based on a figure in [HALF97I, illustrates the first two of these tech-
niques, which are discussed in this subsection and the next.

Predicated Execution

Predication is a technique whereby the compiler determines which instructions may
execute in parallel. In the proce.ss_ the compiler I; i u..m.nates branches from the pro-
gram by using conditional execution. A typical example in a high-level language is
an if-then-else instruction. A traditional compiler inserts a conditional branch at the
if point of this construct. If the condition has one logical outcome, the branch is not
taken and the next block of instructions is executed, representing the then path; at
the end of this path is an unconditional branch around the next block, representing
the else path. If the condition has the other logical outcome, the branch is taken
around the then block of instructions and execution continues at the else block of
instructions. The two instruction streams join together after the end of the else
block. An IA-64 compiler instead does the following (Figure 15.3a):

1. At the if point in the program, insert a compare instruction that creates two
predicates. If the compare is true. the first predicate is set to true and the sec-
ond to false: if the compare is false, the first predicate is set to false and the
second to true.

2. Augment each instruction in the then path with a reference to a predicate reg-
ister that holds the value of the first predicate, and augment each instruction
in the else path with a reference to a predicate register that holds the value of
the second predicate.

3. The processor executes instructions along both paths. When the outcome of
the compare is known, the processor discards the results along one path and
commits the results along the other path. This enables the processor to feed
instructions on both paths into the instruction pipeline without waiting for the
compare operation to complete.

As an example. consider the following source code

if (a&s,b)
= J I t;

falae

Source Code:
k = k +

else
< k - 1

i = i -

[Mt ructii wr "71
Instruction 4 'Irisrnaction 7 InAructii in $1

Triskrnetjun C.1;
i P 'I . !.

.4%44

-I. This ins In lc I ion
chcck.;
;FE..1:;ia. I i ii is OK,
,1 lc. CPT - .lacs . not
repc iv an c.:4.c.-cpi

41%

'4 " 4.4 % x, k

instnietion
I load data

InsinieliQn 8 [ilbtroction 6 In_struction 91

(Ill Spec:Wm-lye loading I a) Preclicaiicrn

Figare 15.3 1 A-64 Predication and Spcculativc Loadin

1. •rhe ennIrnior ic.:Ins the
mill112C Cot142 r.1 - 1! :111

upcoming lo. id imsiTLii:1 1 011

S. II Temp...C.; hi! 11521. 1. :
inwris it sllucuI alivu 14 'di!

'here w1(1 d SIM312.1.1L1.1iVe

01;VA ilrirrixdiateiy he fury

thse upend ii 5ri !hat wifl
theeL1iIta ; i ruiruc Lion q!.

2. Al n3n r inw, this
:Oda': I ti•C data

lierN.Te it is
ri.:•.:. ded. 3r the boat would.

ait exeepio11. the
C1)U postpones re poi tin2
the exception.

5. Fn r. ffrr i, t...1.-05-1.
has hotsiod the Ice;!
Allow ghc hrf.inch,

Tri...rrtEction 7

.1.;4.).12 CU! alit 42

11'21

IIi4 Lrie'tiun
I P21.

; Ins(niction I
I

TristruLtiim 2 •

3, All instructiori
fi long this path point
ict predicate register
El,

2. The CI ?furl kur Ell... SigT1S El

rurdic.ate Tep ster LE) each
instruction.,

according E0 lb; path.

4. A insET:Jc rions
alien paill pain
to predicate Teister
P2.

fustrinftion 4
41-1.)

CPU I hej2.ins executing
berm 1141111 pa I h.s

;Instruction 5

it...,\ 6. C.P-(c.an exc....1Hr.
irKITLICliCIDS from chili...17n ,
paths in parallel kx{!aa1 :: 111p.

rhet. have no mugua I
dependeneics.

Vv11t.11 CPU loiows the /13a.strucricin. 9
cornpkire. outcoine. L discard!, (f32)
results 1311311 iii lid pail].

bast ruerion 8

Instruction 3
Firma!)

Insartul ion 7

..inisErkicti.1141 6

4 1A p s v •%V

The Cirrapilur mishi TCRIT2FI ■ gi:: TiY-Irtic.b.ans In E hls order. pa.aill:2.
II 4 Lind 7 . 5 and 33, rind 6 and 9 for parallel tir.c.n.

xi „rt ox•s • k

lusitruci Eon 2

Speculative
toad

.4

illstrualdri 4
(PO

• 44} 14

i
!Pl . ;

V V.

compiler
ropfacod this load with
the speculative load
above. so iostruction
deal no actual Iv
Eppecif in the pm...2s ani.

.E nst-iructirru Instruction 1

I risl FOC L in 3
; heal ictst

552 CHAPTER. THE 1-11-(1.4 ARdlITECTURE

Two if statements jointly scicci eort hrec possible e xccu ti on paths. This can
be compiled into the following code, using the Pentium assembly language. The pro-
gram has three conditional branches and one unconditional branch instructions:

rxr1) ; c=ompare a with 0
je Li ; branch to Li if a =
curl b, 0
le Li
adti j r i ; j J -F

Assembly Code: jimp 13
{nip

IL

add. :c, 1 ; k=k-FL
jrr.p L3
sub 3. ; k k -

In the Pentium assembly language, a semicolon is used to delimit a commcnk,
Figure 15-4 shows a flow diagram of . this assembly code. This diagram breaks

the assembl!,.y language prograiti into separate blocks of code. For each block that

Figure 15A Fxample Pre.dioi

15.3 PREDICATION,. SPECULATION, AND SOFTWA.P.I. PIPELINING 553

executes conditionally, the compiler can assign a predicate. Thest.: predicates are
indicated in Figure .15.4. Assuming that all of these. predicates have been initialized
to false. the resulting IA-64 assembly code is as follows;

Predicated Code:

:1 cmp..F,q p1. p 2 . = c, , ;:
:2 (p2) car p1, p3 = 0, b
3 (p3) add j = L, j

(p1) cay..ne p4. p5 = 0, c
fp4) add k = 1, k

;6 fp5) add k -1 k

add =

Instruction (E) compares the contents of symbolic register a with th it sets the
value of predicate register pl. to I (true) and p2 to 0 (false) if the relation is true.and
will set the value of predicate p1 to 0 and p2 lo 1 if the relation k false. Instruction
(2) is to be executed only if the predicate v2 is true (i.e., if a is true, which is equiv-
alent to a ;& 0). The processor will fetch, decode, and begin executing this instruc-
lion, -?1,11 only make a decision as to whether to comthil the resu]1 after it determines
whether the value of predieHtc register t,l is I or 0. Nli that instruction (2) is a
predicate-generating instruction and is itself predicated. This instruction requires
three predicate register fields in its format.

Returning lo our Penguin program, the first two condilional branches in chic
Pentium assembly code are translated into tv,..o IA-64 predicated compare instruc-
tions. If instruction (1) sets p2 to false, the instruction (2) is not executed. After
insiruction (2) in the IA-64 program, p3 is true only if the oilier it sIat6,rrient in the
source code is true. Thal is, predicate p3 is true only if the expression (a AND El) is
true (i.e., a T 0 AND h 0 0). The then part of the outer if statement is predicated
on p3 for this reason. Instruction (4) of the 1A-64 code decides whether the addi-
lion or subtraction instruction in the outer else part is performed. Finally, 1 he incre-
ment of i is performed unconditionally. Looking at the suurce code and then at
the predicated code, we see that only one of instructions (3), (5 .). and (6) is to be
executed. In an ordinary supersealar processor, we would use branch prediction lc}
guess which or the three is to be executed and go down that path, If the processor
guesses wrong, the pipeline must be flushed. An IA-64 processor can begin execu-
tion of all three of these instructions and, once the values of the predicate registers
are known. commit only the results of the valid instruction, Thus. we make use of
additional parallel L'XI:Cul ion units Lo avoid Ale delays due to pipeline flushing.

Much of the original research on predicated execution was done at the Uni-
versity of Illinois. Their simulation studies indicate that the use of predication results
in a substantial rcclueti4pn in &mimic branches and branch mispri2dictions and a sub-
stantial performance improvement for processors with multiple parallel pipelines
(e.g,, IMAHL941. IMAHL9.51).

Control Speculation
Another key innovation in IA-64 is control speculation. also known as speculalive load-
ing. This enables the processor 10 load data from memory before the program needs
it, to avoid memory latency delays. Also, the processor postpones the reporting of

554 CHAPTER 15 / TI-IL IA-64 ARCHITECTURE

exceptions until it becomes ncixs,sary to report the exception. The term hoist is used to
refer to the movemeni of a load instruction to•a point earlier in the instruction stream

The minimization of load latencies is crucial to improvinv performance. Typ-
ically, early in a block of code, there are a number of loid openitioli.s that bring data
from memory Lo registers. Because memory, even augmented with one or Iwo Icy-
els of cache, is slow uompared with the processor, the delays in oblainingthlta from
memory become a bottleneck. To minimize this, we would like to rearrange the
code so that loads are done as early as possible. This can be done with any compiler.
up lo point. l'he problem occurs i r we attempt to move a load across a conlrol flow,
You cannot unconditionally move the. load above branch because the load may
not actually occur. We, could move the load conditionally; using predicates. so that
I he data could he retrieved from memory but not committed to an architectural reg.

until the outcome of the predicate is known; or we can use branch prediction
techniques of the type we saw in Chapter 14. The problem with this strategy is that
the load can blow up. An exception due ul invalid address or a page fault could be
generaled. If this happens. ilia~ o i , would have. to deal with the exception or
fault. causing a delay.

Flow, then, can we move the load above the branch? The solution specified in
I A-64 is the control speculation, which separates the load behavior (delivering the
value) from the exception behavior (Figure 15.3b). A load instruc1ion in t he origi-
nal program is replaced by two instructions:

■ A speculative load (Id-s) executes the memory fetch. performs exception
detection, but does 110f deliver the exception (call the OS routine that handles
the exception). This ld.s instruction is hoisted lo an appropriate point earlier
in the program.

■ A checking instruction (chk.$) remains in the place of the original load and
delivers exceptions. This chk.s instruction may be predicated RID that it will only
execute if the predicate is true.

If the ld.s detects an exception.. it sets a token bit associated with the target
register, known as the Nol Thing (Na]') hit. the corresponding chk.s instruction
is exceuied, and if i he Nal' hit is set, the clik.s instruction branches to an excepaorl-
hantlEing routine.

Let us look at a simple example. taken from [INTEiHla, Volume -I i, Here is the
original program:

Lp1) br sorr.e_Label
1d8 rl =
add r2' - I- 1, r3

C..sic;1

/ Cycl42

/./ Cyc_e. 3

rirsL iiisLrucLion branches if predicate pl is true (register p1 has value. 1).
Note that the branch and load instructions are in the same instruetion group, even
though the load should not execute if the branch is Laken. IA-64 guarantees that if
a branch is taken. later instructions. even in the tame instruction group, are not C.Xe•

cutest, 1A-64 implementations may use branch prediction to try I o i mprove effi-
ciency but must assure against incorrect resailV!:.. Finally. note that the add instruction
it delayed

by,
 at least a clock period (one cycle) due to the memory latency of the

load operatit,n.

15.3 / PREDIC,ATION, SPbCULATION, AND SOFTWARE PIPELINING 535

The compiler can rewrite this code using a control speculative load and a check:

lda.s r: = !r5: F; /./ cycle -2
ofrier instrotions

// C'ycie 0
rl, reco'vQfy ;.yule 0

add r2 = rl, x3 /i ,'L'ycle 0

We can't simply move the Load instruction above the branch instruction, as is,
because the load instrucl ion may cause an exception (e.g., r5 may contain a null
pointer). instead, we convcrl the load to a speculative load, Ed 8.s. and then move it.
The speculative load doesn't immediately signal an exception when deluded: it just
record; that fact by setting the NaT bit for the target register (in this case. H.). The
speculative load now executes unconditionally at least two cycles prior to the
branch. The chk,s instruction then cheeks to see if the NaT bil is set on 11- 11 not,
execution simply falls through to the next instruction. If so, a branch is taken icy a
recovery program. Note that the branch, check, and add instructions are a]] shown
as being executed in the Namc clock cycle. However, the hardware ensures that the
resulis produced by the speculative had do not update the application statc. (c Hnge
the coniniis of rl and r2) unless two conditions occur The branch is not taken
(pt = 0) and the check does not detect a deferred exception (r1.NaT - 0).

There is one other important point 1(5 note about example. If there is no
exception, then the speculative load is an actual load and takes place prior to the
hranch that it is supposed to follow. If the branch is taken, then a Ioad has occurred
that was not intended by the original program. The program. as written. assumes
that rl is not read on the taken-branch path- If r1 is read on the taken - branch path,
then the compiler must use another registet to hold the speculative result.

Let us look at a more complex example, used by Intel and HP to benchmark
predicated programs and to i [Iasi rale the use of speculative loads, known as the
Eight Queens Problem. The objective is to arrange tight q LleeT1S on a chessboard so
that rtt, queen threatens any other queen. Figure 15.5a shows one solution. The key
line of source code, in an inner loop, is the following;

if ((b[j] == true) && OE ri 1 j] 17. rue) .z2& (c[i

where 1 j = K.
The queen conflict tracking Tricehanism consists of three Roolean arrays that

track queen status for each row and diagonal. TRUE means no queen is on that row
or diagonal; FALSE means a queen is already there. Figures 15.5b and c show the
mapping of the arrays 10 the chess board. All array elements are initialized to
]' RUE. The B array elements 1-8 correspond to rows l-8 on the board, A queen in
row ot sets b[n] to FALSE, C array elements are numbered from -7 to 7 and corre-
spond to the difference 1)ciwtcn column and row numbers. which defines the diag-
onals that go down to the right. A queen at column 1. row I sets 401 to FALSE. A
queen eMumn I. row 8 sets cH 71 to FALSE. The A array elements are numbered
2- l6 and correspond to the sum of the column and row. A queen placed in column
1, row 1 sets a[2] to FAL-SE. A queen plaual in column 3, row' sets alSiio FALSE.

overall program moves through the columns, placing a queen on each col-
umn such that the new queen is not attacked by a . queen previously placed on either
along a row or one of the two diagonals.

)

i•c) a array

556. CHAPTER 15 /THE IA-154 ARCH IF lU

11) b Rriti arrays

Figare 15 The Eight Ou Bens Prohlein

A 1:1traightforward Pentium assemIlly program includes three Icxids itnd thrce-
licanchcs;

ea :er cc . ntsof locat:w

: BR: tc yeffiEter r2

Aim,erobly Code:

=ID 2.

jr..

4I 62aL

{5; cmp rl, 1

(6) jr. L2

(7) V rb,

(UJ cmp r5, 1

19) in.. L2

(.r then pozE:.

1:1)L2: L: cDce for wee

In thepreceding prounl, the notation & symbol ins tin immediate address for
Loe,atiDn x, Using speculative loads and predicated execution yields, the following:

13.3 / PREDICATION, S PECULA PION. AND SOFTWARE PIPELINING 557

1: mov rl = &[3(r

most r = La[L + j]

i ^n«MI ad. ress of

h:j1 to rl

nu= r3 = .Stc[: - j 4 71

? 4; .d8 x2 = t r1J /i toad iniract N/La. rl

(5 1d.f; x = [r3]
ldB.s r6 = [r5]

Code with
Speculation and

Y7
Q:12)

crip.eq pl, p2 = 1,

Predication: .:1=?) rZ, rEtc very_a fixup for ic. Lac.1

Ue; crip.eq p3, p4 =, r4

11: (p0 br L2

chk, r6. recove.rv_a i/ fixup for l•adLag b

1 3: cmp.pc n5, p5 = L.

1 1J: (pa) br L2

;15iL1; code of

‹clode for 191;Re

The assembly program breaks down into three basic blocks of code, each of
which is a load followed by a conditional branch. The address-setting instructions
4 and 7 in the Pentium assembly code arc snit * arithmetic calculations these can
be done anytime, so the compiler moves these up to the top- 'C'hcn the compiler is
faced with three simple blocks, each of which con sists of a load, a condition calcu-
lation. and a conditional branch. Then: seems little hope of doing anything in par-
allel here. Furthermore, if we assume that the load takes two or more dock eycics,
we have some wasted time before the conditional branch can be executed. What the
compiler can do is hots the second and third Loads (instructions 5 and 8 in the Pen-
tium cock) above all the branches. This is done by putting a speculalive load up top
(IA-64 instructions 5 and 6i and leaving a check in the original codc block (IA-64
instructions 9 and 12).

This iransformitiion rrmkes it possible to execute all three loads in parallel and
to begin the loads early so as to minimize or avoid delays due to load latencies. the
compiler can go further by more aggressive use of predication. and eliminate two of
the three branches;

[1

(2)
(3)

mov r1
rt•.7 f3 7 La[i
MGV r5 = Rc[i

r2 = (TI.]

+ j]
- j - 71

Revised Code r4 = [L- S]
with Speculatilla =de.s rs = [r5]
and Predication:

(8) (7:)
crrip,eci p1,

r4,

p2 = 1. -.T2

(9) (D -1) LTA.p.eg n3, n4 = 1, r4
(10) p.3) r6. xeccvery_b

J11) cmp,eq p5, = 1, ,z5
(p) hr L2

(13)L= <code for then path}
(14)L2: <code for elFe

http://LTA.p.eg

558 CHAPTER 15 / THE 1A-64 ARCHITECTURE

We already had a compare that generated two predicates. In the revised code,
instead of branching on the false predicate, the compiler qualifies execution or both
the check and the next compare on 11 -N... true predicate, The elimination of rivo
branches means the elimination of 1\'.{ potential mispredictions, so that the savings
is more than just two instructions.

Data Speculation

In ri COI-AM! .spcculaiion, a toad is moved earlier in code StNi LlenCe to compensate
fur load latency, and a check k made to assure that an exception doesn't occur if it
subsequenth.,.

, turns out that the load was not taken. In data speculation, it load is
mowil kr.fore, a store instruclion [hat might aIter Zh u vnenlory 10Chtion that is the
scores or the load. A subsequent check is made to L. that the load receives the
proper memory value. To explain the mechanism, we use an example Taken from
[I NI'at]a. Volume J.].

Consider ;he following program fragment:

r8 [r4j = r:2 /I Cycle
r6 = [r] ;; // Cycle D

rE - r E7 ;r // Cycle 2
st8 [r18] = r5 I/ Cycle 3

As written, the code requires four instruction cycles to execute. If registers r4
and r do not contain the same memory address, ;hen the. More l hrough r4 cannot
affect the valLie the eoniained in I'S; under this circumstance, it is safe. to
reorder the load and store to more quickly bring the value into r6, which is needed
subsequently. However. because the. addresses ill r4 and rS may be the sarrie or.over-
lap, such a swap is no 'Safe- IA-64 oNrcroomcs 1h is problc.m with the use of . a tech-
nique known as advanced load.

r6 (2- 31 :;

st8 [r4] = r12
r6 = [raj

rac34 r5 = r L I H

sL2 [r18: - 1-3

// Cycle -2 or eamlier: advesiced load
// insLrac=ions
ii Cycle 0
// Cycle Q. hec -,c load
././ Cycle 0
II cycle 1

lore we have nItTve.d the Id instruction earlier and converted it into an
advanced load. In addition to performing the specified load. the ldS,a instruction
writes its source. address (address contained in FS) to a hardware data structure
known 2IS the Advanced Load Addrcss (ALAT). Each IA-64 store instruc-
tion checks the ALAT for entries that overlap with its target address; if 4i match is
found, the ALAT entry is removed. When Ihe original ld8 is converied to an Ida
inst ruction and movcci, the igifl iI po.sition of that instruction is replaced with a
check load instruction, ldS.c. Wien the check load is executed. it checks the ALAT
for a matching address. If one is found, no store instruction between the iidvanued
load aud the. check load has iilkered the source address; of !lie load, and no action is
taken. I lowever, if the etteLk load instrUction does not find t matchin2 ALAT entry,
then the load operation is performed again to assure the correct TCfitilk,

13.3 PR_ED1CAT1ON, SPECULATION, AND SOFTWARE PIPELINING 559

We rhay also want tO spwola tiv4;[y cac.eutc. insLructio]is IhaL are data dependent
on a load instruction, together with the load itself. Starting with the same original
program, suppose we move LL both the load and the subsequent add instruction:

lda.a r6 // cycle -3 or earlier: advanced load

olner instrzictLons

ado; r5 r6, r7 // Cycle -L; ade that ki4e.:3 r0
// 07.er ir.ntr..LctLne.

std [r.4] = rig i cycle 0

16, recover Cycle 0; check
.L.Fac:11! i/ pn'=nt ffimr. jump t recover

m_#; frnI - rc cycle 0

f lere we use a ehk.a instruction rai her ihan an ILI 3,C instruction to validate the
advanced load. If the chk.a instruction determines that the load has failed, it cannot
si mply recxecute the load: instead. it branches to a recovery routine to dean up:

Recover:

1d8 r6 = [re:1 ;; // reload r6 iron
adn r5 = r6, :; // L1= add

br back // fump bac= . to main code

This technique is effective only if the loads and stores involved have. little
chance of overlappin.

Software Pipelining

Consider the following loop:

1d4 r4 - :r5] , 4 ;;
add 17 - r4, rg

[r6 = r7, 4

br.c-oop Ll ;;

2: load poeLncl 4

// cycle 2

i/ Cycle 3; store .costi.r.c 4

Cyo.le

This loop adds a constant to one vector and stores the result in another vector
(e.g, y[i] = x[i] I c), The .Ed4 instniclion loads 4 bytvs from memory. C he qualifier
", 4" at the end of the instruei itm signals that this k the base update form of the load
instruction; the address in 5 is incremented by .4 atter the load takes place. Simi-
larly. the st4 instruction stores four bytes in memory and the address in r6 is incre-
mental by four 4(.21- t he More, 'Vlic hr.cluop inMruclion. known Lis a counted loop
branch, uses the Loop Count (LC) application register. If the LC register is greater
than zero, it is decremented and the branch is taken. The initial value in LC is the
number or ilerations of the loop.

Notice that in this program, there is virtually no opportunity for instruction-
level parallelism within a loop. Further, the instructions in iteration x are all exe-
cuted beforc. iteration .v 1 begins. However, if there is no address eon flic1 between
the load and store (r and poin1.10 nonoycrIvping muniory locarion.9_ then uti-
lization could be improved by moving independent instructions from iteration x • I
to iteration x. Another way of saying this is that if we unroll the loop code by iwtu;illy

560 CHAPMR I ITHEIA-(J4 A.RCHITEC ruRE

writing out El new set of instructions for each ieratio± then there is opportunity to
increase parallelism, Let's see what could be done with five iterations:

la4 r32

Ld4 1. 34
add r36

= [r5].
-
-
= r32,

4
4
d

r5

;r
;

;

1/
/1
//

Cycle
Cycle
..7Arcle
Cycle

0
1
2
2

r:35 = Lx 72.1. 4 // Cycle -;1.
a 2 = r2s, r 17.: ZZ 7.2vcle

st4 [1- 61 = f36, 4 ;r /1 Cycle 3
la4 r36 = [r5]. 4 /I Cycle 3
add r R= r?4, Cycle 4

s=4 [r6 - - L. 37, 4 ;; 7/ Cycle 4
add -L- 39 = r35, r9 ZZ Cycle 5

1- .0. 4 t; Cycle 5
add L4C. - r3 G, Cycle G

= r39. 4 ;; /1 cycle 6

57,4 .r Ed = r.10, 4 ;; /1 Cycle 7

' thi program compIL:tes 5 iterations in 7 cycles, compared with 20 cycies in the
original iooped prOgrarn, This assunii,:s 1h.at there L WILF memory ports o that a
load and a store can be. executed in parallel. This is an example. of software pipelin-
ing, .i npli gcriii; to hardware pipelining. Figure 15.6 illustrates the process. Parallelism
is achicycd grouping toptlwrinsirtictions from differen1 iterations. For this to
work, the temporary registers used imide the loop MLA(Ile c hriged foreach iterEi-
tion Lc] avoid register conflicts. In this case, two temporary registers are used fr4 anti
r7 in the origimil program), in the e.xpanded program, the regiger numher of each

(W10.

Cycle I

Cycle 2

Cycle ,1

Cycle 4

Cycle 5

['vete 6

Cycle 7

Figure 15-6 .cifilwarc Pipelining Exnrnplc

15.3 PP,EDICATION, SPECULATION, AND SOFTWARE PIPELINING 561

register is incremented For each iteration, and the register numbers are initialized
sufticierdly far apart tO avoid overlap.

Figure 15.6 shows that the software pipeline has three phases. During the pro-
log phase, a new iteration is initiated with each Clock cycle and the pipeline gradu-
ally fills up. During the kernel phase, the pipeline is full. achieving maximum
parallelism, For our example, three instructions are performed in parallel during the
kernel phase, but the width of the pipeline is four. During the epilog phase_ one iter-
ation completes with each clock cycle.

Software pipelining by loop unrolling places a burden on the compiler or
programmer to assign register names properly. Further, for long loops with many
iterations, the unrolling results in a significant expansion in code size. For an inde-
terminate loop (total iterations unknown at compile time), the task is further com-
plicated by the need to do a partial unroll and then to control the loop count. IA-64
provides hardware support to perform software pipelining with no code expansion
and with minimal burden on the compiler. The key features that support software
pipelining are as follows:

• Automatic register renaming: A fixed-sized area of the predicate and floating-
point register files (p16 to p63: fr32 to frI27) and a programmable-sized area
of the general register file (maximum range or r32 to r127) are capable of rota-
tion. This means that during each iteration of a software-pipeline loop, regis-
ter references within these ranges are automatically incremented..Thus. if a
loop makes use of general register r32 on the first iteration, it automatically
makes use of r33 on the second iteration, and so on,

■ Predication: Each instruction in the loop is predicated on a rotating predicate
register. The purpose of this is to determine whether the pipeline is in prolog,
kernel, or epilog phase, as explained subsequently.

• Special loop terminating instructions: These are.branch instructions that cause
the registers to rotate and the loop count to decrement.

This is a relatively complex topic; here, we present an example that illustrates
some of the IA-64 software pipelining capabilities. We hake the original loop pro-
gram from this section and show how to program it for software pipelining, assum-
ing a loop count of 2(X) and that there are Iwo memory ports:

mcn, - 199 /i lop cryJnr, regisrer ro 19 9 ,
// WI1lc ecual6 loop corn:: - 1

no ec = 4 // Set epilog co-1n ._ regiFt:.er
// 7.o number of epilog 6LageE 1

mov -1-:‹16;; I/ oriS - 1; rest -
1..f..4 r32 - :rS: e 4 // Cycle 0

(p17) Empty stage
(p18) add 173!, r34, r9 Cycle
Up -19 s=4 - r6: = z .36, 4 f,! Cycle 0

br.etc; LL :; 11 Cycle C!

We summarize the key points related to this program:

P16 P17 1 P18 P1.9 LC EC

4

4

bc.ccop

hr.ctop

hi clop

hr.acip

Mobil •

st4 hr.ctop

• • • ••

st4 1-Ir.cl op

st4 hr.ctop ti

s1 1 br.ctup 9

st4 brxtop 0 fi 11

0

riri

562 CHAPTER 15 / TI-FE IA-64 ARCHITECTURE

1. The loop body is partitioned into multiple Wages, with zero or more instruc-
tions per stage.

2. Execution of the loop proceeds through three phases, During the prolog
phase, a new loop iteration is started each time around. adding one stage to
the pipeline. During the kernel phase, one loop iteration is started and one
completed each time around; the pipeline is full, with the maximum number
of stages active. During the epilog phase. no new iterations are started and one
iteration is completed each time around. draining the software pipeline.

3. A predicate is assigned to each stage to control the activation of the instruc-
tions in that stage. During the prolog phase. pi() is true and p17. p1S. and p19
are false for the first iteration. For the second iteration, p16 and p17 are Inlet
during the third iteration pi6, p17, and p18 are true. During the kernel phase.
all predicates are true. During the epilog phase, the predicates are turned to
false one by one. beginning with p16. The changes in predicate values are
achieved by predicale , register rotation,

4. All general registers with register numbers greater than 31 are rotated with
each iteration. Registers arc rotated toward larger register numbers in a wrap-
around fashion. For example, the value in registers will be located in register

+ 1 after one rotation: this is achieved not by moving values but by hard-
ware renaming of registers, Thus. in our example, the value that the load
writes in r32 is read by the add t wo iterations (and two rotations) later as r34.
Similarly, the value that the add writes in r35 is read by the store one iteration
later als 06.

Table 15.4 Loop Trace for Stiftwarc Pip-dining Example

Execution Unitilastrudion
Cycle

tI 14.14

I 1d4

1d4 add

3 1d4 add

• •

100 1d.4 add

•• P• • .1. ••

1114 arid

21X1 add

201 add

2(12

State Whine br.ctop

13.4 1 IA-64 INSTRUCTION SET AKCHITECTUR_E 563

5. For the br.ctop instruction, the branch is taken if either LC > 0 or EC > 1.
Execution of br.ctop has the following additional effects: if LC > 0. then LC
is decrennerned; this happens during the prolog and kernel phases. If i.c =
and EC > 1, ..1 2.0 i decremented; this happens during the epilog phase. 'The
instruction also control register rotation. lf LC > 0. each execution of br.ctop
places a I in p63. With rotation, p63 becomes pie). Feeding a continuous
sequence of ones role} the predicate resisters during the prolog and kernel
phases. If LC = 0, then hr.c1op sets p63 to O. feeding zeros into the predicate
registers during the epilog phase.

Table 15.4 shows a trace of 1he execution of this example,

IA-64 INSTRUCTION SET AREHITECTURi

,Figure 15.7 shows the set cat 3.42 ;.Nters available to application programs. That is :
these registers are visible to applications and maybe read and, in most coxes, written.
The register sets include the following:

• General reOsters: 12 general-purpose M-hil registers. Associated with each
register is a NaT bit used to track deferred speculative explained
in Section 13.3. Registers r0 through r31 are referred to at, t,hltiC; program
reference to any of these references is literally interpreted. Registers' r32
through r127 can be used as rotating registers for soft 'arc pipelining (dis-
cussed in Section 1.5.3) and for register stack implementation (discussed sub-
sequently in this section). References to these registers are virtual, and the
hardware my perform register renaming dynamically.

* Floating -point registers: 128 82-bit registers for floating-point numbers. This
size is sufficient to hold IEEE:. 754 double extended format numbers (see Table.
9,3). Registers fr0 through fr3 I ;ire static, and registers fr32 through fr127 can
be used as rotating registers for software pipelining.

• Predicate registers: Cam# i -bit registers used as predicates. Register pro is always
set to 1 to enable unpredicated instructions. Registers prO through pr13 are
static, and registers pc16 through pri63 can he used ws rotating registers for soft-
ware pipelining.

■ Branch registerx: 8 64-bit registers used for branches.
■ Instruction pointer: Holds the bundle address of the currently executing IA-

64 instruction.
• Current frame marker: Holds state information relating to the current general

register stack frame and rotation information for fr and pr registers.
• User mask: A set of single-bit values used for alignment traps. performance

monitors, and to monitor fl oating-point register usage.
• Performance monitor data registers: Used to support perforrimncc. monitor

Branch registers
63 0

brO
brl

Application registers
63 0

ar0 i KRO

KR7 ar7

arl 6
arl 7
ar18
arl 9

coy ar32

Instruction pointer
63 0

IP

Current frame marker
37 0

CFM 1

 arl27

FC R
•

User mask
5 0
L_ J

Performance monitor
data registers

63
prric10
pmd1

•

ar36 UNAT

ar40 FPSR
•

ar4 4 ITC

are4
ar65
a r56

ar21

ar24
ar25
ar26
ar27
ar23
ac29
ar30

EFLAG
CSD
SSD

CFLG
FSR
FIR
FDR

PFS
LC

pr15
pr16

•

EC

RSC
BSP

BSPSTORE
RNAT

0 frO
fr1
fr2

rO
r1
r2

0

w

a)

fh

General registers Floating-point registers
81

fr31
fr32

•

Predicates

prO
prl
p2

•

•
I

EC p

▪

r63 ❑
•

•
I
I . I

x127

1
63 0 NaTs

•
•
•

fr127

Processor identifiers
6-3

cpuid0
cpuidl

could,

Figure 15.7 IA -64 Amlic-alion Thug's= Sot

15.4 / IA-64 INSTRUCTION SET ARCHITECTURE 565

• Processor identifiers.: 1)Gscribc Farmessor implurneiiialiort-daptndunL features.
• Application registers: A collection of special-purpose registers. Table 15.5 pro-

vides 21 brief definiWon of each.

Register Stack

1 he register stack mechanism in IA-64 avoids unnewssary movement of data inio
and out of registers at procedure eal I return. The nreehani SIT) autornaticalhj

, pro-
vides a called procedure with a new frame. of up to 96 registers (r32 through.r127)
upon procedure entry. The compiler specifies the number of registers required IT Y
procedure with the ailtie instruci ion, whidi s.peViCiefi hel, W mariv of these girt; local
(used only within the procedure) and how MAW,' are output (used to pass parame-
ters Io a procedure called by this procedure). When a procedure ca]] occurs. the
I A-64 hardwme rt.:names registers so that the local registers; from the previous frame
are hidden and what wcre the output registers of the calling procedure now have
register numbers starting at r32 in the called procedure. Physical registers in the

r32 through r 127 are allocated in a circular-buffer fashion to virtual registers

fable 15—C I .A-6-4 Application Regist e rs

Kurill21 ruil1o.1217 3 l< R 1)-7) Conveyinformari on from the operating sysl cm to the
application,

Register stack configuration (ESC) Controls the operation of the:register stack engine (RSE).

RSE 13ackin store prim ler (FISP) lioldri the address in memory that is the r,LIFI2 Ii3e2Lion .i. w
r32 ill the current stack. frame

RSE Backing store poinler to millTIOry
slimes (IISPSTORE)

H oids. the add rc cs in enennon) Lci which 11-1.: RSE will ,:pii3
ilw nest vriluc.

R.SE NaT coilect i on rcgtsler (AN A'l) Used by Elie R b... w r cm poraril,v hotel Nai hits when it 1.-.
spilling general registcrs.

Cprn parc and exchange. value (CCV) Contains the compare value used as the third sourt:..
operand in the cgiprie1]s instruction.

User Karr collection re Oster (UN AT) Fixed to temporarily hob.] NaT bits wheri.s.aviii:J. ;old
TtiN L{ItiDg g1.11{:Tai 3 • g .

B LOU!, Yr iih th e idg.rii] and AN !.i:ill

ilISEructium;.

FloaLin-poinl. gailiS Te.giter (Fps R) CaniIDIa tTO1zi, CC I LI ndin .F mode., pf6i2isic }11 1.1331 mil. 1100.,
kind othel cOnircil hits for floatirig-pOini. inStr➢ CtiOnA.

Iniervak time CCI LI rilxr OTC) C:ounts up irl El fixed ri2 !at i unsh i p to the p1131:EXSOT 1:101±
frequency,

Prc}iou's functi on stale (F.ES) Saves value in CE1y1 rcgier and relatcd information-

Loop count (LC) Used in counted loops and is clecremented by counted ,
loop• .type branches.

Epilog count (EC) Lid for couniin the final (epilo[?.) stMe in Modulo-
seiseduld loops.

Local A [girtput

sot_ . -2 1

Stacked general
registers

Loual A 7001101J1 Al
so r..

=

Output B.

4— m)11., I 9--0-

566 CHAPTER 15 r THE LA-ry4 ARCHITECTURE

associated with procedures. That is. the next register allocaled afLer 1. 127 is r32.
When necessary, ihe hardware moves register contQnls hel wean registers and mem-
ory to free up 2iddiiional registers when procedure calls occur, and restores consents
rrorn memory Lo registers as procedure returns occur.

Figure 15.8 illustrates register stack behavior, Pic11(.14 .2 insiruetion includes
sof {size of frame) and sol (size of locals) operands lo specify the required number
trf registcrs. 'These I ue.!.4 are stored in the (TM register. When a cal] occurs, the sel
and sof values from the CFM are stored in the, soi and sof fieids of the previous func
tion state (PFS) application register (Figure 15.9)- Upon return these so] and sof
values must be restored from th4,:. !he CPM. To a nested calls and returns,
vreivious valUe:S of the PFS fields niust be saved through successive calls so th4it they
can be. restored through successive returns. This is a function of 1.111 .2 411 hoc instruc•
lion, which designates a general register 10 save the current volue of the PFS fields
hcforc they Lire ovcrwritten from the CFM fields.

instruction execution

C kr's. prc WA!

Lal I

Cz]lues 11:11[1e (proc13)
aftcr call

;111(.54.!

Crailic; (FT! lc B.)

alitcr

return

Catier':.; Crartle.. rproL A
ides return

Frame markers

CM] PEIiipfrni
..; 0E sor sill'

LY J.... 14 LI

-4— sol : ,= 14 —+

Figure 15.8 Register Stack Behavior on Procedure. Call and Return

pi1c I !

count

38

6

I

RSC

BSP.
BSPSTORI-1.

RNAT

PFS

EC

(. FM

Figure 15.9

31

61

1 63

RS1 NaT collection

2 4 6 I .t

56

7 7 .4 7

rrh.pr rrb.fr n-b.gr sor s4A sof

Formats of Some IA-64 Registers

11 1 2 2

I I
mode

k i ficI r5

568 CHAPTER 15 / TI-EE IA-61 ARGHITECTUlt,E

Current Frame Marker and Previous Function State

The CFM register describes the state of the current general register stack fr rne.
associated with the currenay active. procedure. It includes the following fields:

• 1.01'; Size of slack frame
■ soh Size of Locals portion or stack frame

• son size of roiAting portion of stack frame; this is a subset of the local portion
that is dedicated Lo s.oftware pipelining

• register rename h e values: Values used in performing register rotation gen.
erat, floating -point and predicate registers

The PFS register contains the following fields:

▪ pfm: Previous tramc nlarki,:r.: of Ihc fields of the cFro
• pee: Previous epilog count
■ ppl: Previous privilege level

15.5 rrArsllum aftGANizATIoN

Intel'; Z Lardurn processor is Ihe first implementai ion of the I A-454 instruelion set
architecture, The Itaniurn organi?.ation blends superscIlar features with support for
the unique EPIC. -related IA -64 features. Among the t‘uperscalar features are a six-
wide, ren......%tagc-deep hardware pipeline, dynamic prefetch, branch prediction. and a
register scoreboard to oplirniv.c for compile lime nondelerminitim. EPIC'-related
hardware includes support for predicated execution_ control arid data speculation,
and software pipelining.

Figure k a general Nock diagram of the I tanium organization. 'The Ito•
nium includes nine execution units: Lwo integer, iwo 1104iting-point, Iwo inernery,
and three branch execution units. Instructions are retched through an Ll instruction
cache ;I nd fed into a buffer that holds up to eight bundles of instructions. When
deciding.on funciiorra I uni Es For instruction dispersal, the processor views al mast
Iwo instruction bundles at a time. 'rke. processor can issue a maximum of six insirtic•
Li ons per clock cycle,

the orpiniwai ion is in some ways simpler than a conventional contemporary
superscalar Itanium does not use reservalion reorder
buffers. and memory ordetirt2 buffers, all replaced by simpler hardware for specu-
lation. The register remapping hardware is simpler than the register aiiasing typical
of superscalar machines. Register dep endency-detection logic is absent, repla ced by
explicit parallelism directives prccoinputed by LH software.

Using branch prediction. the fetchlprefetc]i engine can speculatively load an
Ll instruction cache= 10 minimize cache misses on instruction fetches. The fetched
code is fed into a decoupling buffer [hat can hold LE F : to eight bundles of code.

Three levels of cache are used. The LI cache is split into a 16 -kbyto instruc-
tion cache and a lb-]chute data cache, each 4-way set associative with a 32-byte

128
integer regisier;

Ifi-kbyte
dual-port
LI data
cache

I ni eger
aud MI:

unils

4-Mbyte
1.11

cache

•

15.6 / RECOMMENDED READING AND WFB SITES 569

1.6-kbyte
LI instruction cache and

fctchinrefetch engine
ITLB

IA-32
decode

and

Branch
prediction buffer I Decoupling

(8 bundles)

Iii nch lad
predicate

1

Kra iich
11111 is

4 ■

Bus controller

Figure 15.10 Ranh= Processor Organization ISHAR0101

]inc size, The 96 -kbyte L2 cache is 6-way set associative with a 64-hyte line sire, [he
4-Mhyte L3 cache is 4 -way set associative with a 64 -byte line size. The LI and I.
caches are on the processor chip: the L3 cache is off-chip hut on the same package
as the processor.

15.6 RECOMMENDED READING AND WEB SUES

ifill:CKCX71 provides an overview of IA-64; another overview is IDUL098I. [SCHLMa] pro-
vides a general discussion of EPIC; a more thorough treatment is provided in [SCHLOOb].
Two other good treatments are 111WLI011 and IKATHOl [CHASM and [I IWI.:98] provide
introductions to predicated execution. Volume 1 of IINTEMal contains a detailed treatment
of software pipelining; two articles that provide a good explanation of the topic. with exam-
ples. arc VARP01] and IBHARi-1U!.

For an overview of the hani um prueessor architecture, see [SH.A kW]; INTEMbi pro-
vides a more detailed treatment.

Both rrRIEall and [MARKOOI contain more detailed treatments of the topics of this chap-
ter. Finally: for an exhaustive look at the TA-64 architecture and instruction set. see

execution unit
explicitly parallel instruction

computin (EPIC)
hoist
I A-64 architecture

instruction completer
instruction go 'up
Itaniurn
major opcode
Na" I' bit

ad van ced load
branch predication
bundle
control speculation
datitspoeulation

570 CRAMER. 15 / THE IA-64 ARCHITECTURE

BIIAROO Bharandwaj. J.. et al. "The Intel IA.64 Compiler Code Generator:' IEEE,
Micro. ScptemberlOctober 2000.

CHASOO Chasin. A. "Predication. Speculation. and Modern CPUs.' Dr. Dalthrs Journal,
May 2000.

DLL0911 Dulong, C. "The IA-CA Architecture at Work." Compurer, July 1918.
HUCIi00 Huck, c...1 al. 'introducing the IA-64 Architecture." IEEE Micro. Septum ,

her: October avu.
HWU98 Hwu, W. "introduction to Predicated .F.xecut i on " Computer, January 1998.
HINUO1 Hwu, W.: August, 0.; and Sias. J. - Program Decision Logic Optimization Using

Predication and Control Speculation: . Pro(re.!eleiNS of The !FEE. November 2001.
INTE00a Intel Corp. lad IA-0 A reirlirYiNOT SuPwai beS -elopery Manual r4 vr}lnotr'sl.

Document 245317 throuvIt 2.46A2ti. Aurora, CO, 2000.
1NTRO0b Intel Corp. Thulium Pri.lreWSirF M ic' r (tarn Ikkrence Pr Software 00 -

mizothm. Aurora, CO, Document 2447:1_ August 2000,
.11 ARPII1 Jarp, S. "Optimizing IA-64 Pei tormance.." bobb's few,- no& July 2001.
14: Arm KatImil. Sehlansker. M.: and Rau, B. "Compiling for F.PIC Architectures,"

P r in.'s Mr MEE, Now.mber 2001.
V1.411100 \lark stein, P. IA-64 and Elementary Fatu'rioor. Upper Saddle River, KJ:

Prop 1.:r• 11:;11 r I R. 2000.
SCHLOOn Schlansker, •.; and Rau, B. "EPIC: F.xpliciLly Parallel Instruction Computing."

Computer, February 2000.
SCIILAIOb Schtansker. M.: and Rau, B. E .;:l n rirchnecUrre for if:Striorrif»t-Levri'

Parallel Processors, HPL Technical Report 11PL-1999- II. lIewlell-Packard labo-
ratories (www.hpl.hp:corn). February 2000.

SRA ROO Sharangpani...11. and Arona, K. "lianiuni Processor Microarchitecture." IEEE
!Wien.), SepLe.mheroctub.a 201.n.

TRIE01 Triebel, Iranian? Ari,thilecuire for Software DeVelopers, Intel Press, 2001,

ROCOITITrteridC il Vileh

• Itanium:lnters site for the latest information on IA-64 and Itanium.

• IMPACT: This is a site at the University of Illinois, where. much of the research on
predicated execution has been done, A number of papers on the subject arc available;

15.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

I comparimm p2

not present

not prescnI.

0

0

{.1

0

0

15.7 1 KEY TERMS, Et.1:..viEW QUESTIONS, AND PROBLEMS 71

• predicate register
predication
register stack
software pipeline
--- - •

speculative loading template field
Slack frame very long instruction word
stop
ff.C...t1krble.

Review Questions
15,1 What are the different types of execution units for IA -64?
15.Z. Explain the use of the template field in ;in IA -6.1 bundle.
15.3 What is the significance of a stop in the instruction stream?

15A Define predication and predicated execution.

15.5 How can predicates replace a conditional branch insirtiction?

L5.6 Define con1rol speculation.

15.7 'INhat is the purpose of the NaT bit?

15.8 Define data speculation.

15.9 What is the difference between a hardware pipeline and a software pipeline?

15.10 Virrhal is the difference between stacked and rotating regrsters?

Problems
15,1 Suppose that an IA-64 opcodc accepts ihrec registers as operands and produces one

register as a result. What is the maximum number of such opcodes that can he defined
in One major opcode [arni]y? •

15.2 At a certain point irk an IA-64 program, Ihere are LO A •typo instructions and six
floaling-point instructions. Ihat can be issued concurrently. How many syllables !nay
appear without any stops hetwcun them?

15.3 In Problem 1 s.2,

a. How man's.. cycles am required for a small LAM. impierneniation haying one floating-
point urkii, two integer units. and Iwo memory units?

b. How many cycles are required for the Itanium organisation of Figure 15.10?

15.E An algorith in ChM can utilize four floating-point instructions per ma lt , is coded for IA-
64. Should instruction groups contain four limning-point ()reran.' in••••? What are the
consequences if the machine on which the rypigram runs has fewer four floating-
point units?

15.5 In Section 15.3, we introdueed the following constructs for predicated execution;

p2, D3 = a, h
ODL) croD,CL.A 2, .33 = a, h

where. orel is a relation, such as eq, ne. etc.: p1. p2. and p3 are predicate registers; a is
either a register or an immediate operand; and h is a register operand.

Fill the following truth table;

572 cHAVEM. / 1A-(14 AK(...1.-1.t TPC•11...:P.1..

I . For the predicated program ASection 15.3, which iinpleirieJits the flowchart of Fig ,
urc L5.4. indicate
41, Those hum ructions [hot can he eNecuted in. parallel
h. Those instructions that can he bundled into the same 1A-0 ,1 instruction bundle

15-7 Consider Ihe following suurce cude scgmcnt:

for (i DJ c 101:.;)

-t (A[ij <)
j = j - 14.

= -

WTI.% •a COMSrondinigl Pentium assembly code segment.
h. Rewrite as an /A4.r4 assembly code segmcnt using predicated execution technive„.

15.8 Consider the following C program fragment dealing with float a .211.1:111 .1

a IL:
C j

The compiler cannot establish thal i i. hut has rcasoli that it probably

H. Write an 1A-64 proform Limn!! :Irl ;RIv .,incze.1 toad to impleinClit this C program.
rhv tl oal A m m1aGm1 mm(iy mgeG is are r iid Innpy, respectively.

h. Recode the program using predication instead of the advanced load.
c. What LLTC the advantages and disadvanlages. of [he two approache4. compared with

cach other'?
153 .60.9ume: th .:41 a si nk. registi,:r firaim k created with si7e eq altoSOF= 48. If the size

or the. [Ewa! register siroitip is SOf 16 :
a. How many output registers (SOO) are there?
b. Which registers are in the local and output repister groups'?

The Control Unit

,e„rw-.:11=
-0-e-

eeoe-
, -

f.rileyrre're-e-

0‘;er
ea5.

1....< rrallrer -Orr
e,,,r4

In Part Three., we focused on Inaeh'inee instructions and thc. opmmion:s per-
formed by the processor to execute each instruction, Vit'hat was lc it out of

iS exactly 1101V eitCh individual operation is caused to happen. This
is the job of the coin rol

The controi unit is tEurt portion of the procesor that actuatfy cattwes
things to happen. The control twit issueN controi signals external ,to the
proccsor to cause data exchange with me3nory and 110 modules. The con-
trol unit also issues control signak inIvrnal to the processor lo move data
between registers, to cause the ALU to pert(inn a. specified function, and to
regulate. other internal operations. Input to the control unit consists of the
instruction register, kags, and control signals from external sources (e.g.,
interrupt signals).

eeee e
e'ree&-

Chapter 16 Control Unit Operation
In Chapter I 6, We (UM to a discussion of how processor functions are per-
buried or, more specifically; how the widow.; elements or the processor are
controlled to provide these functions, by means of the control unit. It is
shown 1ha E each insErucl ion cycle is made up of a set of micro-operations that
generate control signals. Exeetil ion is accomplished by the effect of these
control signals. emanating from the control unit to the AFAT, nd
system interconnection structure. Finally, an approach to the implementation
of the .conttol unit, referred to as hardwired implementation, is presented.

574 / illE t__(.1.1\11U,L

Chapter 17 Microprogramined Control

Chaptcr 17. }1/4'(;.' KC. /K-tom cOnCepl of mice qt lea.(L to an elegant
powerful approach to control unit impicmentation, known SE. microprogramming,
En es6ence, lk -pwer-level programming lan2tiage is dveloped, Each instruction in
the machine 1.4inguage of the procesma traos»Led ito a scttacnce of
contfol writ instructions. These Joi,ver-lcvel instructions aye referred to as micro-
instruction2i, and the process of translation is referral to as microprogramming. 'Hit!
chaptcr (lc:scribes die layout of a conlrol memory conLaiMng n vriklrprogrAii, [en
each machino instruclion is dc..e.ri bed. 'rho sEructurt and function of the micro-
programmedcontrol unit CUD then I:Fe explained,

CHAPTER 16
CONTROL UNIT OPERATION

16.1 Miero-Operations

The Fetch Cycle
The Indirect Cycle
The Intel-mil Cycle
The Execute Cycle
The instruction Cycle

16.2 Control of the Processor

Functional Requirements
Con trol Signals
A Coolrol Signals Example
Internal Proces..sor Organization
The lintel :308.5

16.3 Hardwired implementation .

Control Unit !FINN
Control Unit Logic

16.4 Recommended Reading

16.5 Key Terms. Review Questions. and Problems

Key Terms
Review Questions
Problems

576 Alfr I ER 16 / CONTROL UNIT OPERATION

KEY. POINTS

* The execution of an instruction involves the execution of a sequence 01' sub-
cps, generally called cycles, Fur example, au execution ma!• , , consist of fetch,

indirect, execute, Intl inlerrupt cycles. Each cycle is in turn made up of a
so.itience of more. fundamental operations. called iniero -Operations. A 8i4,,112
micro-t-Fperation generally involves a transfer between registers. a transfer
between Lk register and an external bus. or a simple ALL' operation.

• The control unit of a proce ssor performs two ia!,ks: l) It causes the ffocessor
to execute micro-operations in the . proper sequence, determined by the pro-
gram being executed, and f2 it generates the control signals that cause each
micro-operation to be executed.

• The control signals generated by the control unit cause the opening and clos-
ing of logic gates, resulting in the transfer of dal a in and from regiSters and the
operation of the ALL

•

One teehnique for implementing a control unit is referred to ax hardwired
implementation, in which the controt min is a ccmtioatcrisl eircuii. Jis input
logic signals. governed by the current instruction. arc transferred into
a set of oulput control signals,

I n _'h;ipter 10, we pointed out (hal z.J. mLtchinc instruelion set goes a Long way
I o...,..;ir,1 defining the processor. if we know the machine instruction set, including
an understanding of the effect of each opcode and an understanding of the

iL.Ii.lressing modes, and if we know the 5ei of user-vi5d)le registers. i hen we krKrk
thc functions that the processor must perform. This is not the complete picture. We
must know the external interfaces, usually through a bus. and how interrupts are
handled. With this line or reasoning, the following list of those things needed trP
specify the function of a processor emerges!'

L Operations'. (orodes.)
2. Adire.ssing modes
3. Registers
4. 110 module interface
5. Memory. module
6. Interrupt processing structure

This list, though general. is rather complete. Items 1 through 3 are defined by the
instruction Set. I teni ,, 4 11“.1 5 are typically defined by sped Lying the system bus, Item
6 is defined partially by the system hus and p;irlinlEv by the type of support
processor offers to the operating system.

This list or six iLfm-m mighi be termed the functional requirements for a proces-
sor. They determine what a proulssor must do, This is what occupied us in Part

16, rya ...Kt-F(0FR ArrioNs 577

Two and Three. Now. we turn to the cluei ion of how these functions are performed
or, more specifically. how the various elements of the processor are controlled to
provide thcse functions. Thus, we turn to a discussion of the control unit, which con-
trols the operation of the processor.

16.1 MICRO-OPERATIONS

\V have seen that I ht. operation of a computer, in executing program. consists of
rs sequc...nce of instruction cycles, with one machine instruction per cycle. Of course,
we must remember that this sequence of instruction cycles is not necessarily the
same as the written sequence o.1 irv;tructions that make up the program, because of
the existence or branching instructions. What we are referring to here is the execu-
tion time sequence of instructions.

‘Ve have further seen that each instruction cycle is made up of a number of
smaller units. One 111-itli vision that we found convenient is fcieiL indirect, execute,
and interrupt, with only fetch and execute cycles always occurring.

To design a control unit. however, we need to break down the description
further. In our discussion or pipelining in Chapter 12, we began Lo sec that a further
decomposition k possible. ln fact, we will see that each of the smaller cycles involves
a series of steps : each of which involves the processor registers. We will refer lo
these steps as micro -operation..'1 . 1 - ,I. Felix nrinro refers to the fad that each stela in
very simple and accompiishes vary tithe. Figure MI depicts I he relationship among
the various concepts we have been discussing, To sumrnalie.e, Lhc execution of a pro-
gram consists of the sequential execution of instructions. Each instruction is exc-
culed during an insi ruction cycle made. up of shorter subcycles fetch, indirect,

Program mciillon

Ilion.. 16.1 Constituent Elements of a Program ExtCLI(kul

578 CHAPTER 16 / CONTROL UNIT OPERATION

execute. interrupt). The performance of each suhcycle involves one or more shorici
operations, that is, micro-operations.

Micro-operations are the functional, or atomic. operations of a processor, In
this section, we will examine micro-operations to gain an understanding of how
the events of any instruction cycle can be described as a sequence of such micro
operations. A simple example will he used. In the remainder of this chapter, we the!'
show how the concept of micro-operations serves as a guide to the design of the
control unit.

The Fetch Cycle

We begin by looking at the fetch cycle, which occurs at the beginning of each
instruction cycle and causes an instruction to be fetched from memory, For pur-
poses of discussion, we assume the organization depicted in Figure 1.2.6. Four reg-
isters are involved:

• Memory address register (MAR): Is connected to the address lines of the sys-
tem bus. It specifies the address in memory I'nr a read or write operation.

• Memory buffer register (MR): Is connected to the data lines of the system bus.
11 contains the value to be stored in memory or the last value read from memory.

• Pregnant counter (PC): Holds the address of the next instruction to be fetched.
• Instruction register (R): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of view
of its effect on the processor registers. An example appears in Figure [6.2. At the
beginning of the fetch cycle. the address of the next instruction to he executed is in
the program counter (PC); in this case. the address is 1100100, The first step is to
move that addrc.•.ss to the memory address register (MAR) because this is the only
register connected to the address lines of the system bus. The second step is to bring
in the instruction. The desired address (in the MAR) is placed on the address bus,
the control unit issues a READ command on the control bus. and the result appears
on the data bus and is copied into the memory buffer register (MBR We also need
to increment the PC by 1 to get ready for the next instruction. Because these two
actions (read word from memory. add 1 to PC.) do not interfere with each other, we
can do them simultaneously to save. time, The third step is to move the contents of
the MB R to the instruction register (1R). This frees up the vIBl(for use during a
possible indirect cycle,

Thus, the simple fetch cycle actually consists of three steps and four micro.
operations. Hach micro-operation involves the movement. of data into or out of a
register. So long as these movements do not interfere with one another, several of
them can take place during one step, saving lime. Symbolically, we can write this
sequence of events as follows:

(— (PC:.
MER Memory.
PC (PC) +

4-- (MBR)

r.22 C E%1?,11. 0 Gi G 0
000100'..):60.0100VH.)

OIDOCI0001.1.1100!(-.T ..
h!' 'I) poouoi oci000

MAR
MBR

PC
JR

AC

5.56 ,70666MT

MAR
MfiR

JR
AC

16,1 rvta: 0-0PERATioNs 579

Q000000- 0
031[)ct Goo-

no.° Go600liDoi

(a) Beginning (c) Second step

(h) First step

Figure 16.2 Sequence of Events. Fetch

(d) Third step

where I is the instruction length. Wc need 10 make several Comments about this
sequence. Wc assume that a clock is available for timing purposes and tho emits
regularly spaced clock pulses. Each clock pulse defines a time unit. Thus, all time
units are of equal duration. Each micro -operalion cxn he performed within the time
of a single time unit. The notation (L i , t„ t,) represents successive time units. Iii

words, we have

• First time unit Move contents of PC to MAR.

•

Second ti me unit: Move contents of memory location Teeificd by MAR to
MBR. Increment by I the contents of the PC.

• Third time unit Move contents of MHR I R.

Note that the second and third micro-operations bosh take place during the second
time unit. The third micro-operation could have been grOuped with the twirl h with-
out affecting the (etch opera lion:

t. (PC
L n i•MR. <— Memory

PC (— T

ZR ; 2.1ER

The groupings of micro-operations must follow two simple rules:

1. The proper sequence of events must be raovecd. Thus (MAR (PC)) must
precede. MBR e Memory) hoc iuse the memory read operation makes use of
the inidecs in the MAR.

X80 CHAPTER. 16 CONTROL UNIT OPERATION

2. Conflicts must he avoided. One should not attempt to read to and write front
the same register in one time unit. because the results would be unpredictable.
For example. the micro-operations (MBR <— Memory) and (IR MRR1
should not occur during the same time unit.

A final point worth noting is that one of the micro-operations involves an addi•
tion. To avoid duplication of circuitry, this addition could be performed by the
ALL. The use of the ALZJ may involve additional micro-operations, depending on
the functionality of the ALL' and the organization of the processor. We defer a dis•
cussion of this point until later in this chapter_

II is useful to compare events described in this and the following subsections
to Figure 3.5, Whereas micro-operations are ignored in that figure, this diseussion
shows the micro-operations needed to perform the subcycles of the instruction cycle.

The Indirect Cycle

Once an instruction is fetched, the next step is to fetch source operands. Continu-
ing our simple example. let us assume a one-address instruction format, with direct
and indirect addressing allowed. If the instruction specifies an indirect address, then
an indirect cycle must precede the execute cycle. The data flow differs somewhat
from that indicated in Figure 12.7 and includes the following micro-operations:

t: MAR (— (IR ii-Vi(iress)
; <— Memory

TP.1.7iddres,$) CAER fAdaroiF;)

The address field of the instruction is transferred to the MAR. This is then used
to fetch the address of the operand. Finally, the address field of the 1 R is updated
from the MBR, so that it now contains a direct rather than an indirect address.

The. IR is now in the same state as if indirect addressing had not been used,
and it is ready for the execute cycle. We skip that cycle for a moment, to consider
the interrupt cycle.

The Interrupt Cycle

At the completion of the execute cycle. a test is made to determine whether any
enabled interrupts have occurred. If so, the interrupt cycle occurs. 'Mc nature of this
cyCle varies greatly from one machine to another. We prescra a very simple
sequence of events, as illustrated in Figure 12.K We have

t 113R (PC
t L MAR 4 SaveAcir-a

PC 4- Rout,Lne_Ac",dress
tilettufy : MET;

In the first step, the contents of the PC are transferred to the MBR, so that
they can be saved for return from the interrupt. Then the MAR is loaded with the
address at which the contents of the, PC are to be saved, and the PC is loaded with
the address of the start of the interrupt-processing routine. These two actions may

16.1 MICRO-C.PERP5.111 -.)NS 581

each be a single micro-operation. However. because most processors provide mul-
tiple types and/or Levels of interrupts, it may Lake one or more additional micro-
operations to obtain the save_address and the routine_address before they can be
transferred to the MAR and PC, respectively. In any case. once lhis is done. the final
step to store the MBR, which contains the old value or the PC into memory, 'Fhe
processor is now ready to begin the next instruction cycle.

The Execute Cycle

The fetch, indirect, and interrupt cycles are simple and predictable.
Ma ch involves a

small. fixed sequence of micro-operations and, in each CAW, the same micro-opera-
tions arc repeated each tune around.

This is not true of the execute cycle, For a machine with N differen opCOdeS,
there are N different sepienees of micro-operations that can occur. LeL us; consider
several hypoi helical examples.

First. consider an add instruction:

ADD R1, X

which adds the contents of the location X to register RI. The following sequence or
micro-operations might occur:

VAR fIR.:address)
MER Memory'

<— +.R1 (MER!

We begin with he IR containing the ADD instruction. in the first step, the
address portion of the IR is loaded into the MAR. Then the referenced memory
Location is read. Finally, the contents of R1 and MBR are added by the AIX. Again%
this is a simplified example„.Nilditional micro-operations may be required to extract
the register reference from the IR and perhaps to stage the AL, U inputs or outputs
in some intermediate registers..

Let us look at two more complex examples. A common instrueth PT] is incre-
ment and skip if zero:

ISZ

The content of location X is incremented by L. If the result is 0. the next instruction
is skipped. A possible sequence or IILicro-operations is

E MAR (11.7.1:adciress) I
t, FIER Xemory
t, MBR (MBR) -
t... Memo r-

y
- (MBR)

(•alR.) = CO then {?C. (PC .: - I)

The new feature introduced here is the conditional action, The PC is incre-
mented if .!v1 B1.?..) = This test and action can be implemented as one micro-

582 CHAPTER 16 CONTROL L NI OPERATION

operation. Note also that this micro-operation can be performed during the same
ti me unit during which the updated value in MB R i stored back to memory.

Finally, consider a subroutine call instruction. As an example, consider a
branch-and-save-address instruction:

BSA X,

The address of the instruction that follows the RSA instruction is saved in location .
X, and execution continues at location X — I. The saved address will later be used
for return, This is a straightforward technique for providing subroutine calls. The
following micro-operations suffice:

WAR (— CFR
1,113F. PC)
PC <— (iR. ,:address)

(NBR)
PC ; PC) .1 T

The address in the PC at the start of the instruction is the address of the next
instruction in sequence. This is saved at the address designated in the IR. The lat-
ter address is also incremented to provide the address of the instruction for the nest
instruction cycle.

The Instruction Cycle

We have seen that each phase of the instruction cycle can be decomposed into a
sequence of elementary micro-operations. In our example, there is one sequence
each for the fetch, indirect, and interrupt cycles, and, for the execute cycle. there is
one sequence of micro-operations for each opeode.

To complete the picture, we need to tie sequences of micro-operations
together, and this is done in Figure 16.3. We assume a new 2-hit register called the
immtetion cycle code (ICC), The ICC designates the state of the processor in terms
of which portion of the cycle it is in:

00: Fetch
01: Indirect
10: Execute
1I: Interrupt

Al the end of each of the four cycles, the ICC is set appropriately. The indi-
rect cycle is always followed by the execute cycle. The interrupt cycle is always fol-
lowed by the fetch cycle (see Figure 12.41. For both the execute and fetch cycles, the
next cycle depends on the state of the system.

Thus, the flowchart of Figure 16.3 defines the complete sequence of micro-
operations, depending only on the instruction sequence and the interrupt pattern.
Of course. this is a simplified example. The flowchart for an actual processor would
be mote complex. In any case, we have reached the point in our discussion in which
the operation of the processor is defined as the performance of a sequence of micro-
operations. We can now consider how the control unit causes this m2quence to occur,

11 (Interrupt) DO (Fetch)

RE!..ad
address

Execu te
instruction ICC = 10

\\\ III
YQs

/Interrupt \
far enabled

. interrupt? /
10

rcu Indirect
addressing?

Fetch,
instruction

Yes

ICC .= 11 ICC =00

16.2 / C:ONTROL OF THE PROCESSOR 583

1-Igiire 16..3 Ficywchart Ii Instructil.Fn

16.2 CONTROL OF THE PHOCESSOR

Functional Requirements

result of our analysis in the preceding section. we have decomposed the bc-
haviOr or funclioning of the processor ink elemcni.nry o r i,:rations, callcd icro-
operations.

By,
 reducing the operation of [he pi .cluessai to its most fundamental

level, we are able to define exactly what it is that the control unit must cause tc.)
happen, Thus, we can define the fiinctional requfremenrs for the control unit: those
functions that the. control unit must perform. A definition of these functional re-
quirements is the basis for the design and implementation of the control unit.

'With the information at hand, the following three-step process leads to a char-
eicrizaLion of the cornrol anti;

L Define the basic elements of the processor.

2. Describe the micro-operations that the processor performs.

3. Determine the functions that the control unit must perform Lo cause the miCro-
opf.l.TaLiorVs i« he performed.

We have already performed steps I and 2. Let us summarize the Icsuit:,;- First,
he basic funetionai elements the processor are alc f011owirig!

584 CHAPTER IF, 1 CONTROL UNIT' OPERATION

• ALU
▪ Registers
▪ Internal data paths
• External data paths
▪ Control unit

Some thought should convince you that this is a complete list. The. Al .11 is the
functional essence of the computer. Registers are used to store data internal to thr
processor. Some registers coniain status information needed to manage instruction
sequencin.g (e.g., a program status word}_ Others contain data [hail go 10 or come
from the ALU. memory, and I/0 modules. Internal data paths 41E0 toed to move
data between registers and between register and ALL. External data paths link reg-
isters to memory and I/O modules, often by means of a system bus. The control unit
causes operations to happen within the processor.

'rho execution of a program consists of operations involving these processor
elements. As we have seen, these operations consist of a sequence of micro-opera-
tions. Upon review of Section 16.1, the reader should see that all micro-operations
fall into one of the following cateaories!

• Transfer data from one register to another.
• Transfer data from a register to an external interface (e.g., system bus).
▪ Transfer data from an external interface to a register.
• Perform an arithmetic or logic operation, using registers for input and output.

Al] of the micro-operations needed 10 perform one instruction cycle, including all
of the micro-operations to execute every instruction in the instruction set. (all into
one of thew cittegories.

We can now be somewhat more explicit about the way in which the control
unit functions. The control uni t Furrorms two basic lasky:

• Setptencin The control unit eauseN the processor 0.11 step through a series of
micro-operations in the proper sequence, based on the. program being execute,a

• Execution: The ctphlrol unit causes each micro-operation to be performed.

The preceding is a functional dewript ion of what the control unit does. The
key to how the control unit operates is the use of control signals.

Control Signals
We have defined the elements that make up the processor (ALL'. registers, Lima
paths) and the micro-operations that are performed. For the control unit to perform
its function, it must have inputs that allow it to determine the state of the system
and outputs that allow it to control the behavior of the system. Thctie are the exter-
nal specifications of the control unit. laternall! F , the control unit must have the logic
required to perform its sequencing and execution functions. We defer a discussion
of the internal operation of the control unit to Section 16.3 and Chapter 17. The
remainder of this section is concerned with the interaction fictwccn the control unit
and the other elements of the processor.

16-2 / CONTROL OF THE PRocEssoR 585

Figure 16.4 is a geneniI mode] of the control unit, showing all of iis inputs and
outputs. The inputs /Ire as fa lows:

* Clock: Tki:i is how the control unit - keeps time. - The conl rot 'mil causes one
micro-operation (or a sci of simillEaneous micro-operations) to be performed
for each clock pulse. This is sometimes referred to as the processor cycle time
or the dock cycle time.

• Instruction register: The opcotic of the current instruction is used to determilic
which micro-operations to perform during the execute cycle.

■ Flags: These arc ncethAl by the control unit to determine the st4i r us or the
processor and the outcome of previews ALL' operations. For example, for the
ineromenl-and-skip-if-zero (JSZ) instruction, the control unit will increment
the PC if . the 4c:tio flag is set.

■ Control signals front control hus:'1 . hu control bus portion of the system hus pro-
vide., signals to the control unit, such as interrupt signals and acknowledgments.

The outputs are as follows!

• Control signals within the processor: These are two types: those the] cause
data to be moved from one register In another. and those that activate specific
ALL functions.

• Control signals to control bus: These are also of two types: control signals lo
memory, and.control signals to the I/O modules.

The new element T hat has been introduced in this figure is the control sigma
Three types of control signals arc used: those that activate an ALE! function, those
that activate a data path, and those that arc signals on the external system bus or
other external interface. ALL of these signals are ultitmitcly a ppl ied dirco Iv as binary
inputs to individual logic gates.

instruction register

Control .5ignak
within CPU

•
Flags • •

Control
unit

Control. sjg-na Ls
from system bus

Clock

Figure 16.4 ?41.0c11 of the Control Unit

Control !..g.nals
ILO system 1}115

Control
bus

586 CHAPTER 16 f CONTROL UNIT OKRA1 ION

Let us consider again the fetch cycle to sec how the control unit maintains
control. The control unit keeps track of Where it is in the instruction cycle. Al a
given point, it knows that the fetch cycle is to be performed next. The first step is
to transfer the contents of the PC to the MAR, The control unit does this by acti-
vating the control signal that opens the gates between the bits of the PC and the
bits of the !OAR. The next step is to read a word from memory into the MBR and
increment the PC. The control unit does this by sending the following control sig-
nals simultaneously:

• A control signa] that opens gates, allowing the contents of the MAR onto the
address bus

• A memory read control signal on the control bus
• A control signal that opens the gales, allowing the contents of the data bus to

he stored in the MBR
• Control signals to logic that add 1 to the contents or the PC and store the result

back to the PC

Following this, the control unit sends a control signa] that opens gates between the
MBR and the IR.

This completes the fetch cycle except for one thing: The control unit must
decide whether to perform an indirect cycle or an execute cycle next. ' fo decide this,
it examines the IR to see if an indirect memory reference is made.

The indirect and interrupt cycles work similarly. For the execute cycle. the
control unit begins by examining the opeode and, on the basis of that, decides which
sequence of micro-operations to perform for the execute cycle,

A Control Signals Example

To illustrate the functioning of the control unit, let us examine a simple example.
Figure 16.5 illustrates the example. This is a simple processor with a single accumu-
lator. The data paths between elements are indicated. 'Ihe control paths for signals
emanating from the control unit are not shown, but the terminations of control sig-
nals are labeled C. and indicated by a circle. The control unit receives inputs from
the clock, the instruction register. and flags. With each clock cycle, the control unit
reads all of its inputs and emits a set of control signals. Control signals go to three
separate destinations:

• Data paths: The control unit controls the internal flow of data. For example,
on instruction fetch. the contents of the memory buffer register are transferred
to the instruction register, For each path to be controlled, there is a gate (indi-
cated by a circle in the figure). A control signal from the control unit tem-
porarily opens the gate to let data pass.

• ALU: The control unit controls the operation of the ALU by a set of control
signals. These signals activate various logic devices and gates within the ALU.

• System bun: 'I -he control unit sends control signals out onto the control lines
of the system bus (e.g., memory READ),

The control unit must maintain knowledge of where it is in the instruction
cycle. Using this knowledge, and by reading all of its inputs. the control unit emits

6.2 1 CONTROL OF THE PROCESSOR 5$7

•0.11

Control
signals

Clock

Figure 16.5 Data Paths and Control Signals

a sequence of control signals lIuiI muses micro-operations to occur. I . uses the dock
pulses Io time the sequence tai events., ki [ow ing time between events. for sina] lev-
els to sLa ham. Talle 61 indicates the control signals that are needed for 'some of
the micro-operation sequences described carlier. For simplicity, the data and Con-
trol paths for incrementing the PC and for loading the fixed addrcssc!, int() the PC
and MA R ;ire not shown.

It is worth pondering the minimal nature of the control unit. The cons rcrl Linn
is the engine that runs the entire computer. It does this based only on knowing the
instructions to be executed and the nature of the results of arairrictii: rind logical

Table 16.1 Micro-Opc.ratiums and Cornrell Signals

Micro-Operations Timing Control Sigmas

(PC)
MEIILOTy

]'{' r(FC)+ I
13! (MBR)

indifuet:

i is MAR CIR(Addressi$ C,

t2; MI31i Mcinciry

L3! 1RI:Address) e— (ME3R(AddrcNs0 C,

LI: 1 1f3R E (PC) C,

t2; MAR 4— SaVi!-NdlirCSS• •

PC (— Rotnaw-Nklitress
L3- lvkinory .(• (MBR)

Irittrrap(:

34x,vi ts.:•• ,:slet11

C y, - Ny'liCirl

Foie IT

588 ci 1APTER CONTROL UNIT OPERATION

opuations (e.g., positive, overflow, cic,). It never gets to see the data being
processed or the actual results produced: And i l Quntrois everything with a few con-
trol signals to points within the processor and a Few control signals to the sysLctn bua-

Internal Processor Organization

Figure 16.5 indicatus the use of a variety of data paths. The complexity of this type
of organization should be clear, More typically, some. sort of internal bus arrange-
ment, as was suggested in Figure 12i, will be used.

Using an internal processor bus, Figure [6.3cai he rearranged as shown in
Figure 1(-1.h. A Nilltgle iniernal bus connects the ALU and al] processor rq.iste.
Oates and control signals rf1-1,: provided for movement of data onto and off the bus

Control
unit

Internal
CPU bus

Figure 16.6 CP1 . 1 with internal Bus

t6.2 I CONTROL. OF THE PROCESSOR 389

from each register. Additional control signals control data transfer to and from the
system (external) bus and he operation or the ALU.

Two new registers, labeled Y and Z. have been added to the organizalion.
These are needed for the proper operation of the ALL. When an Ope1-4+1jOn involv-
ing Ewo ipperands i perrornicti, now can 1 -ic ohudllcd from the internal bus. but the
other must be obtained from another source. The AC. could be used for this pur-
pose, but this limits the flexibility of the system and would not work wi Li proces-
sor with multiple general-purpose registers. Register Y provides temporary storage
for the other input. The A LIH is a combinatorial circuit (see Appendix A) with no
internal storage. Thus. when control signals activate an ALL:function, the input to
the ALL is transformed to the output. 'Thus. the output or the AU; cannot he
directly conneeied to the bus. b4cau7 ,.e this output would feed hack to the input Reg-
ister Z provides temporary output storage. With this arrangement. an operation to
add a value from memory to the AC would have the following steps;

MAR 4- 1: :R i address)
MER Y_emory

, ; (19-1I)
(AC', + ("Z)

1.. z AC (—

Other organizations are possible, but in genera[. some sort of internal bus or
set of internal buses is used. The use of common data paths simplifies the interoon-
ncction layout and I he eontro] (lithe processor. Another practical reason for the use
of an internal bus is to save space. Especially for microprocessors, which may occupy
only a 11 .4-inch square piece of silicon, space occupied by interregister connections
must be minimizaed.

The Intel 8085
'1 .0 illustrate some of the concepts introdu0..!{ 1 1 11111-, far in this chapter, let us consider
the Intel 8085. Its organivation is Nhown in Figure 16.'7. Several key components that
may not be self-explanatory arc as follows:.

• Incremeuteridecrementer address latch: Logic that can acid I. to Or subtract
rrtlin the conLeTsis .or the slack roinlcr or prOgrMn counter. This saves time by
avoiding the use of the A LI.J for this purpose.

■ Interrupt control: This tnodule handles multiple levels of in1errup1 signals.

• Serial I/O control; This module interfaces to devices that communicate 1 bit at
a time.

Table I rp.2 describes the external signals into and out of the KfIK.5. These are
linled to 1he eikternal system bus. 'E .hesc Signals arc the inierface between the 8085
processor and the rest of 1.1112 system (I iigure 16.8),

The control unit is identified as having two components labeled (1) instruction
decoder and Machine cycle encoding and (2) timing and control. A discussion of the
first component is deferred until the next section. The essence of the control unit is
the timing and control module. 'This. module includes a clock and accepts as inputs

Internipt control

IN to RST 6.5 TRAP

I NTR R.S i 5.5 Rsr 7.5

Ready I told Kesel in
Ail,—AD,
Address/data tills

-
Address bus

(g) c (&)
Reg. Re
D (8) E (8)
Reg. Reg.
11 (8) L (8)
Reg. Reg.
Stack (16)
Pointer
Program (16)
Counter
Incrementer/ (16)
Decremen ter
Address l.atch

Instruction
decoder
and
machine
cycle
encoding

Register
array

Timing and control

CEN Control Status IntdA. Reset

I
Cllr Out

I -TT T-T TT-4
RD 1.1dR ALE Sc S, /0/M HLDA Reset out

Power j +.5 V
supply L (;VD

NI

(S) (8)
Accumulator temp_ reg.

(51
Flag
nip-flops

(8)
Arithmetic
logic
unit
(A LU)

SID SOD

ri-

t
Serial I /0
control

8-bit Internal data his

Figure 16.7 Intel 8081. CPU Block Diagram

16.2 / CONTROL OF THE PROCESSOR 591

Fable 16.2 Intel 8085 External Signals

High Address (A1-AR)
itdrfreS. Dahl SiyI)11J1:

The high-order g bits of a 1 fi-hi1. address.
AddiremurDabi (AD7—A1}0ni

The lower-order H bits of a Its-bit address or 8 hits of data.. This multiplexing saves on pins.
Serial Inpni Delo (SID)

A single-bit input to accommodate devices that transmit aeii:ilfc tone hit at a time),
Serial Output Dula (SOD)

A single-bit Out put to accommodate devices that receive

riMing and Control SiviaLs .
CLK (OCT)

The system clock. Each cycle represents one's slate. The CLK sienal goes to peripheral chips and
synchronins their liming.

Xl.
These signals come from all external crystal or other device to drive the Internal clock generator.

Address Latch Enabled (ALE)
Occurs during the first clock slate of a machine cycle and causes peripheral chips to store the address
lines, This allows the address module memory.) to recognize that it is being addressed.

Slants (SO, SD
Control signals used to indicate whether a read or write operation is taking place.

Used to enable either U0 or memory modules for read and write operations,
Read Control (RD)

Indicates dim the selected memory or I'O module is to be read and that the data bus is available for
data transfer.

'Lille Control (MR)
Indicates. that data on the data bus is to he written into the selected inemnri or I/O location.

Memory am/ Itiitietrett Symbr•1.i'
Hold

Requests the. CP1.s to relinquish control and use of the external system bus. The CPC will complete
exec-10k m of the instruction presently in the IR and then enter a hold state, during which nu signals are
inserted by I he CPI, to the control. addres, or data buses. During the hold slate, the bus may be used
for DMA operations.

Hold Acknowledge IHOLDA)
This control unit output signal acknowledges the HOLD signal and indicates that the bus is now available:

READY
Used to synchronin the CPC wit h sLtiwei memory or UO. de ities. When en addressed device iissens
READY, the CP1 1 may proceed with an input (DBIN) or output 1WRt operation, Otherwise, the CPU
enter+. a w ait state until i he device is ready.

imermpi-kelated SignolY
TRAP

Restart Interrupts (RST 7.5. 6.5.
Interrupt Request (1NTR)

These lines are used by an external Lievice to interrupt the CPU, 'The CPU will not honor the
request if it is in the hold state or if the interrupt is disabled, An interrupt is honored only at the
completion of an instruction. The interrupts are in descending order of priority_

Acknowledge
Acknowledge'. in interrupt.

cpti
RESET IN

Causes the contents of the PC to be set to zero. The CPU resumes execution al location 7,0-0_
RESET OUT

Acknowledges that the CPU has been reset_ The signal can he used to reset the rest of the system.

VCC
Voltage and Gtrorrnel

+5 volt power supply
USS

Electrical eround

592 CI IAPI'F.R 16 / CONTROL um -r

X,

01 ,EIAATION

ct

X, 39 HOLD

Reset tut 399 HLDA

SOD 4 37 CLK {Out)
SID 36 Resekin

Trap 6 35 Ready

R5f 75 7 FA1 I0//71

RST 6,5 8 33 S,

RST 5.5 • 9 32 RD

11%29 R tri 31 WR

AD

11

12

3D

29

—I AI-1,

.3„

AD, 13 A„

AD ; 14 27 Au

AD, 15 26 A,,

AD E ift 25 Al2

AD 1.̀., 24 A : ,
AD, 18 23 A : ,,

AD ? 19 22 A,,
111„, 2D 21 AK

K

Figure 116,8 Inic] &{185 Pin C'onfiguraljou

the current instruction and some external control signals. f (Pulpit consists of con-
trol signals to the other components, of the processor plus control signals to the
external system bus.

The liming of processor operations is synchronized by the clock and can-
irolled by the conirol unit with control signals. Each instruction cycle is divided into
from one to five machin e. cycles: each machine, cycle is in turn divided into from
three to five stares. Each state lasts one clock evelc. During a state, the processor
performs one or a set of simultaneous micro-operations as determined by the con ,
11-01 signals,

The number of machine cycles is fixed for a given instruction but varies from
one instruction to another. Machine cycles are defined 10 be equivalent to hug
accesses. Thus, the number of 1/Lachine cycles for an instruction depends on the
number of times the processor must conirriunic4itz with external devices. For exam-
ple, if an instruction cons.isis of two 8-bit portions, ihcn two machine cycles are
required to Teich the instruction. if Ihat instruction involves a 1-1 -Fyte memory or 110
operation. then a third machine cycle is required for execution.

Figure 16.9 gives an e4inapie of 8085 timing, showing the value of external con-
trol signals- Of course, at the same lime, the control unit gcneraies internal control

3 MHz CL

A„ -

Al - AD,

ALP. /

wR

10/171.

PC Out WZ Out PC -t 1 ;. PC ! ee TR

Instruction 'etch

C• rco ale PC: byw —› 4 w

Output liseicirtt5ry read

Flury. 16.9 DiaArtun for mid 808.5 OUT Lrit:truction

594 CHAPTER 1() CON L1&OL UNIT OPERATION

signals that control internal data transfers. The diagram shows the instruction cycle
for an OUT instruction. Three machine cycles (M I , M 3, M) are needed. During the
first, the OUT instruction is fetched. The second machine cycle fetches the second
half of the instruction. which contains the number of the I/O device selected for out-
put. During the third cycle, the contents of the AC are written out to the selected
device over the data bus.

The Address Latch Enabled (ALE) pulse signals the start of each machine
cycle from the control unit. The ALE pulse alerts external circuits, During timing
state T, of machine cycle M 1 , the control unit sets the 10/NN signal to indicate that
this is a memory operation. Also, the control unit causes the contents of the PC to
he placed on the address bus (A.. through AO and the address/data bus (AD,
through ADO, With the falling edge of the ALE pulse, the other modules on the
bus store the address.

During timing stale T,. the addressed memory module places the contents of
the addressed memory location on the address/data bus. The control unit sets the
Read Control (RD) signal to indicate a read, but it waits until '1 to copy the data
from the bus. This gives the memory module time to put the data on the bus and for
the signal levels to stabilize. The final state, T4 , is a bus idle suite during which the
processor decodes the instruction. The remaining machine cycles proceed in a sim-
ilar fashion.

16.3 HARDWIRED impuiviEN-iiiiarW

i-

We Imve discussed the. control unit in terms of its inputs, output., and functions. We
now turn to the topic of control unit implementation. A wide variety of technique.
have been used. Most of these fall into one of Iwo categories:

• Hardwired implementation

• Microprogrammed implementation

In a hardwired implementation, the control unit is essentially a combinatorial
circuit. Its input logic signals are transformed into a set of output logic signals, which
are the control signals. This approach is examined in this section, Microprogranuned
implementation is the subject of Chapter 17.

Control Unit Inputs
Figure 16.4 depicts the control unit as we have so far discussed it. The key inputs are
the instruction register. the clock, flags. and control bus signals. In the case of the
flags and control bus signals. each individual bit typically has some meaning (e;g..
overflow). The other two inputs, however, are not directly useful to the control unit,

First consider the instruction register. The control unit makes use of the
()Node and will perform different actions (issue a different combination of control
signals) for different instructions. To simplify the control unit logic, there should be
a unique logic input for each opcode. This function can be performed by a decoder,
which takes an encoded input and produces a single output. In general. a decoder

16.3 HARI)WIRFD IMPLEMENTATION 595

will have n. binary inputs and 2." binary outputs. Each of the 2' different input pat-
terns will ;.ictiyatc a single unique output. Table .16,3 is an example. The decoder for
a control unit will typically hays to he more complex than that, to account for vari-
able-length opcodes. An example or I hc digital logic used to implement a.decoder
is prescrfled in Appendix A.

'the clock portion of the control unit issues a repetitive sequence of pulses.
This is useful for measuring the duralion of micro-operations. Essentially, the period
of the clock pulses must be long enough to allow the propagation of signals along
tlatit paths and through processor circuitry. However, as we. have 8L2[1, the control
unit emits different control signals at different lime units within a single instruction
cycle. Thus, we would like a coupler as input to the control unit. with a different
control signal being tiwd and so forth. At the end of an Ins lrucl ion cycle:,
the control unit must feed back to the counter to reinilializc it all

With these two refinements, the control unit can lie depicted, as in Figure
16.10,

Control Unit Logic
To define the hardwirc0 impIernentation of a control unit, all that remains is to dis-
cosZi Lhc inicrnal logic of the control unit that produces output control signals as a
function of its input signals,

Table 16.3 A. Decoder with Fuur Sixt4.24.11 Outputs

II 12 13 14 01 02 1 U 04 05

0

(](I

(1

07 0/ 09 010 OIL0E2 1- 013 014 01.5 •01fi

0 0 0 0 43 ci• ! 0 0 41 0

0 9

0 n .0 0 0 0 0 ; 1

., i ..=.
1

0

4.I

0 I 0 0 0 0 I) 0 Si •0 it

0

0 0 0. 1 0

' E 0 13 0

LI

Ii

0

0

0

9 0 0 Li 0 0 0' U

1

1 t) 1 0

0 U 1 1 0 0 I) 0
4

1.1.

0 Q 0 0 0 0 0 0.
• -

. 0 I

ti

3

I

0

13

0

E

0

0

0 C' 0 0 0 0 (I 0 0

3

1 0 0 0

I) 0

0

0
,

0 0 I) 0 0 41 0

0

0

0

. 0

0 0 0

I I 0 .0 0 4i

0

0

0

0 . 0 0 0 1 0 0 0 0

.1 1.---- 3 E 1 0 F) 0 0 0 0 1
--i.---

I - 0

0 0 0 41 0

1

I

ii

ii

0

0

0'

0 0 ti 0 0 41 0 1) 0 0 0 0: 0 0 0

1

0

Li

0 l

0

I)

0

0

II

IF T

41 0 1 0 0 0 0 0

0

0 0 0 11

0 1

0

0

0

0 41 0 LI 0 II 1

0
.. _.._

0 I ii
9,--

1 1 0 0 0 IF 1 0
4-

0 0

0 . 0

0 0 0 41

1

I:

J.

L

0

0

0 0 0 0 1 0 0 0 0 0

1 0

0 0 I 0 1)

1 : 0 0 1.

43

0

0

• 0

0

0 0 0 0 • 0 0 0
--L-
0

.
' 0 0 0

I 1 0 0 1 0

a

0 0 0 , 0 0 0 . 1.0. 41 41

0
. I I I. I. 0 1) 0 0 0 0 0 Q 0

.. ..
0 U I

596 CHAPTE.R 16 A CONTROL UNIT OPERATION

Clock
T2 Control

unit
Timing
generator

•
Flags • •

•
•

T„

I
Control signals

Figure 1.6.10 Control Unit with Decocted Inputs

Essentially, what must be done is, For each control signal, to derive a Boolean
expression of that signal as a function of the inputs. This is best explained by exam-
ple. Let us consider again our simple example illustrated in Figure 16.5. We saw in
Table 16.1 the micro-operation sequences and control signals needed to control
three of the four phases of the instruction cycle.

Let us consider a single control signal, C,. This signal causes data to he read from
the external data bus into the MBR, We can see that it is used twice in 'Table 16.1. Let
us define two new control signals. P and 0. that have the following interpretation:

Pc .= 02.
PQ = 0:
?Q= 1C
Q= 11

Fezch Cycle
Incnrect Cycle
txecute Cycle
Tnterrupz Cycle

Then the following Boolean expression defines C,:

C ., = P • Q • T7, + P • 0 •

That is. the control signal O a will be asserted during the second time unit of both the
fetch and indirect cycles.

This expression is not complete. C', is also needed during the execute cycle.
For our simple example, let us assume that there are only three instructions that
read from memory: LDA, ADD, and AND. Now we can define C, as

I
C,

C 5 = P 0 • T2 -I- P • Q • + P • Q • (1....DA -I- A DD + AND) • T2

16..5 PER MS. REVIEW QUESTIONS, AND PROBLEMS 597

This same process could be repeated for every control 6ignal generated by the
processor. The resull would he a set of Boo]esn equal ion:i ihat derine the behavior
of the control unit ;ind hence of the processor.

To tie everything toget her. the control unit must control the state of the
instruction cycle. As was maitioned, at the end of each subcycle (fetch, indirect,
execute, interrupt), the control unit issues a signal that causes the Liming generator
to reinitialize. and issue 'f,. The control unit must also set the appropriate values of
P and Q to define the next subcycle to be performed.

The reader should be able to appreciate that in a modern complex processor,
the number of Boolean equations needed to define the control unit ix very large.
The task of implementing a cornbinAtorial circuit that satisfies all of these equations
becomes extremely difficult. The result is that a far simpler approach, known as
inie.`ropmgrainnang. is usually used. This is the subject of the next chripler.

16.4 RECOMMENDED READING

number of textbooks I I t mi I Ehc bask. principles of control unit function; two pall ictilarly
clear treatments are in [HA Y.E981 and INIAN00]1..

HAVV98 1-11:q0s, 3. Compuipy. A rrliire oto re. ,10.1d Or gym i z: vii on, Nc.vii York: McGraw-Hi]] .
1998.

A1AN0111 Islme,.M. Logic cord Computer Des4m f, rn, ir.intoJtu !Vol' ,
PrefiricE• Nail, I WI.

16.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terris

control bus control signal
conto.5.1 path control unit

hardwired implementation
microopera

Review Questions
16.1 Explain the distinction Between (he written scqucecc and the time sequence of an

instruction.
16.2 What is the relatinnshipl -peiwen in.structions and micro-operations?
163 What is the overall function of a proctssur's control unit?
16.4 Outline a three , stap process dint leads to a ellaractai2ation of chi control unit.
16..5 What basic tasks does a control unit pc.rforrn?
1(0 Priividc a typical list of the inputs and outputs of ec.itrill
1fi..7 Lig! three Cypcs of control signals.
16.N. Elijah explain what is meant by a hardwired iinplemotalion of a control unit.

598 CHAPTER 16 / CONTR,01, UNIT OPERATION

Problems
[6.1 Your ALU can add its 14ko input registers, and it can logically complement I lie bits of

eith&r input register_ but it cannot 6ubtrau. Numbers arc to be stored in twos com-
plement representation, L,isl the tilierooperations yoLli control unit must perform to
cause a subtraction,

162 Show the miero•operations and control signals in the same fashion as Table 16_1 for
the proccssor in Figure 16.5 for the rollowing instructions:

• Load Accumulator
• Store Accumulator
▪ Add to Accumulator
• AND w Accumulator
* Jump
■ Jump if AC - 0
■ Complement Accumulator

16.3 Assume that propagation delay along the bus and (haw gh the ALU of f=igure L6,6 are
20 and /00 as, respectively. The time required lot ruglster to copy data from thu buE
is 10 ns. What is the Oink:. lhat must be allowed for
a. trace ferring data rroni one register to another'?'
b. incrementing the program courur -.)

1.6.4 Write the sequence of micro-operations required rot the bus structure of Figure 16.6
to add a number to the AC when the number is
a. an immediate operand
13: a direct-address operand
f. an indirect-address operand

16.5 A stack is implemented as shown in Figure L0.14, Show the sequence of micro ,
operations Fo r
21. popping
b. pushing the stack

F,r5000. , .045 5. 0,,,,. ,...A:ffrtrefr:::
;
..40S541.*:

• 0. 'C.' ,..".0.01: - .04•:;', • 0.• 01

04'.4frr
. :*rjr.ger l5-4.V.

-
5K...V.000,4:

46PAP.,71,15
, 5f7

• -.00=roeir./0 '.0r

...VP.
•er fr:rli'orr. "1 .0000°. . .o.07 -or.9`. -0r-Z .0•

;

:".'r 7•." ,f'',.' ' Z.,4W4.1}ft:r; fer 7.....e• Cr .,,, , p ...,,' ..0r,..".
:,'- '

:""r/70',.•::04(5,.. ';(';:;7- "".0•AlV.0:00'; '1,'"Zr; •••••.,;&,0. Z. 00 5:0.. 4.7 :
'1,...0r,Z.vr;0••••:„...1„,....y.d.............. :0• •-_......."„s., _......"' 4..,„

-IP' .0.,07,fr,.....,,q 0:::: :....•.•4; F 0%.05, ..: .
..}.o.

.---,7 ,:•

MICROPROGRAMME
CONTROL.

":".>",".• .r0Fry
.0.C3W

•Fr

icluirmiroat[ins
Microprogranamed C.o.ntroi Unit .
V•'ilkes Controi
Advantages and 1)isativantilgo.:

17.2 Microinstruction Sequencing
Design C.:onsidc.rations
Sequencing Techniques
Address Generation
L.S1-11 Vticroinsimeiion Svqiiencing'

17.3 Microinstruction Execution • •

A. Taxonomy of
• icroinstroerion 1::ncoding
,S1- I. Microi n staid:ion Execution .•

IBM .3033 klierylmtruetion Exccution.

174 II sson He2e.: ;r;.
Microinstruction Format
MicroF.cgtm•ncer
Rugistc.i•ed AL.(.

11.5 Applications or Microprogramming

17.6 Reoommended Reading

17.7 Key Terms, Review QuestiorA, arid Problems
Key rictms

Questions
Problems

17.1 Bilk trincepf3 .

6011 CHAPTER 17 / MICRCOROGRA1v1MED CONTROL .

KEY POINTS

• An alternative to a hardwired control unit is a microprograrnmed control unit ;
in which the logic of the control unit is specified by a microprogram. A micro-
program consists of a sequence of instructions in. a microprogramming
language_ These are very simple instructions that specify micro-operations,

• A microprogrammed control unit is a relatively simple logic circuit that is
capable of (/) sequencing through microinstructions and (2.) generating con-
trol signals; to execute each microinstruction.

• As in a hardwired control unit, the control signals generated by a microin-,
struction are used to cause register transfers and ALL) operations_

T. h.e. ye

II,K5 l]. Wilkes proposed an approach to control unit design that was
term microprogram as first coined by M. V. Wilkes in the early 1950s

IW
.. - .:Organized and systematic and avoided the complexities of a hardwired

implementation, The idea intrigued many researchers but appeared unworkable
because it would require a fast, relatively inexpensive control memory.

The state of the microprogramming art was reviewed by Datamation in its
February 1964 issue. No microprogrammed system was in wide use at that time, and
one of the papers I I II 11,641 summarized the then-popular view that the future of
microprogramming "is somewhat cloudy. None of the major manufacturers has evi-
denced interest in i he technique, although presumably all have examined it."

This situation changed dramatically within a very few months. IBM's System360
was announced in April, and all but the largest models were mierc.iprogrammed.
Although the 360 series predated the availability of semiconductor ROM, the
advantages of microprogramming were compelling enough for IBM to make this
move. Since then, microprogramming has become an increasingly popular vehicle
for a variety of applications, onc of which is the use of microprogramming to imple-
ment the control unit of a processor. That application is examined in this chapter.

17.1 BASIC CONCEPTS

Microinstructions
The control unit seems a reasonably simple device. Nevertheless. to implement a
control unit as an interconnection of basic logic elements is no easy task_ 'I . he design
must include logic for sequencing through micro-operations. for executing micro-
operations, for interpreting opcodes. and for making decisions based on ALL flags.
It is difficult to design and test such a piece of hardware, Furthermore, the design is
relatively inflexible. For example, it is difficult to change the design if one wishes to
add a new machine instruction.

An alternative, which is quite common in contemporary OW processors, is
to implement a microprogrammed control unit.

17.1 BASIC. CC_INCEIY.FS 601

roinstruction add TeSS

p condition
- nconditional

ZEE}
Overflow
Indirect bit

Sys tom bus otintrol signals
int rnal CPU control signals

(a) Horizontal microinstruction

Nlicroirish-OCd011 address
 Jump condition

} Function codes

(b) Vertical microinstruction

Figure 17.1 Typical Microinstruction FOnnals

Consider again Table 16.1. In addition to the use of control signal.., each
micro-operation is described in symbolic notation. This notation looks suspiciously
like a programming language_ In fact it is a language, known as a inicroprogranuning
language. Each line describes a set of micro-operations occurring at one time and is
known as a microlivaraction. A sequence of instructions is known as a micropro-
gram, or firmware, This latter term reflects the fact that a microprogram is midway
between hardware and software. It is easier to design in firmware than hardware.
but it is more difficult to write a firmware program than a software program.

How can we use the concept of microprogramming to implement a control
unit! Consider that for each micro-operation, all that the control unit is allowed to
do is generate a set of control signals. Thus, for any micro-operation, each control
line emanating from the control unit is either on or off_ This condition can, of course,
be represented by a binary digit for each control line. So we could construct a con-
rro, word in which each bit represents one control line. Then each micro-operation
would be represented by a different pattern of is and fls in the control word,

Suppose we string together a sequence of con irol words to represent the
sequence of micro-operations performed by the control unit. Next, we must recog-
nize that the sequence of micro-operations is not fixed. Sometimes we have an indi-
rect cycle sometimes we do not. So let us put our control words in a memory, with
each word having a unique address. Now add an address field to each control word,
indicating the location of the next control word to be executed if a certain condition
is true (e.g.. the indirect bit in a memory-reference instruction is Also. add a few
bits to specify the condition.

The result is known as a hurizontai inicrginstructic% an example of which
is shown in Figure 17,1a. The format of the microinstruction or control word is as

• • I •

Jutrip to indirect or execute

•
Jump t ❑ FP
■ •
Jump to ieth
Jump to opccide TOU tine

• ■
■

Jump to Itch or interrupt
• •
Ju

▪

mp to it.lvh or interrupt

f

•
• • rJump to Itch or interrupt

Mil2 CHAPTER 17 / MICROPROCRAMMED CONTROL

follows. here. is one bit for each internal proeussor control line and one bit for each
system bus control line. There is a condition field indicating the condition under
which there should be a branch. and there is a field with the address of the micro-.
instruction to be executed next when a branch is taken. such a microinstruction h
interpreted as follows:

1. To execute this microinstruction, turn on all the control lines indicated by a I
bit; leave off al] control lines indicated by a 0 bit. The resulting control signals
will cause one or more micro-operations to he performed.

2. 11 the condition indicated by the condition bits is false, oxeculc the next
microinstruction in sequence.

3. If the condition iridie.ri Led by the condition bits is true, the next microinstruc-
tion to be executed is indica ted in the address field.

Figure 17.2 shows how these control words cw microinstructions could he
arranged ltl a co land mummy. The microinstructions in each routine are to be exe-
cuted sequentially, Each routine ends with a branch or jump instruction indicating
where to go next. 'IhCre is a special execute cycle routine whose only purpose
to signify that one of the machine instruction routiric (AND, ADD, and so on) is to.
be executed next. depending on the current opcode.

Fetch
cycle
routine

Lidi red
,7ycle
routine

interrupt cycle routine

F.xecute cycle lvginning

AND routine

ADD routine

•
■
■ •

IOF routine

Figure 17.2 Organization cir C'ciiitroJ Mom ory

Read

Sequencing
logic

17.1 / BASTC CONCEPTS 603

I Control address register

Figure 17.3 Control ll..:nit \tic], mrchitecturc

The control memory of Figure 17.2 is .a concise description of the complete
operation of the control unit. It defines the sequence of micro-operations th he per-
formed during each cycle (fetch, indirect, execute. interrupt), and it specifies the
sequencing of these cycles. If nothing else. this notation would he a useful device for
documenting the functioning of a control unit for a particular computer. But it is
more than that. It is also a way of implementing the control unit.

Microprograrnmed Control Unit

The control memory of Figure 17.2 contains a program that describes the behavior
of the control unit. It follows that we could implement the control unit by simply
executing that program.

Figure 17.3 shows the key elements of such an implementation. The set of
microinstructions is stored in the control memory. The control addre.vs regisfrr con-
tains the address of the next microinstruction to he read. When a microinstruction
is read front the control memory. it is Li mtNferred to a control buffer regiver. The
left-hand portion of that register (see Figure 17.1a) connects to the eon I rol lines
emanating from the control unit. Thus, reading a microinstruction from the control
memory is the same as executing that microinstruction. The third element shown in
the figure is a sequencing unit that loads the control address register and issues a
read command.

Lot us examine this structure in greater detail, as depicted in Figure 17,4.
Comparing this with Figure 16.4, we see that the control unit still has the same
inputs (IR. ALU flags, clock) and outputs (control signals). The control unit func-
tions as follows:

Control
unit

Mco.der

, LL
nags w513'f.-
clock ►

Sequencing
!nee

.ss1:3f: 115*.p- Control address register

Head

Control
memory

604 CHAPTER 17 / Is/lICROPROGRAMMED CONTROL.

Instruction regbier

Control signals Control signali%
within CPU to symiem IPA

Figure 17.4 Functioning of Microprogrammed Control Unit

1. To execute an instruction, the sequencing Logic (mil iisu s a HEAD roinniand
to the control memory.

2. The word whose address is specified in I he control address register is read into
the control buffer register.

3. The content of the. control buffer register generates control organs and next-
address information for the sequencing logic will.

4. The sequencin logic unit loads a new address into the control 4ithirt:•Ss regis-
ter based on the next-address information from I he control buffer register and
I he f IA: flogs.

All this happens during one clock pulse.

17A r BASIC CONCEPTS 605

The last step just listed needs elaboration. AL the conclusion of each microin-
struction, the sequencing Logic unit loads a new address into the control address reg-
ister. Depending on the value of the AL'S flags and the control buffer register, one
of three decisions is made;

■ (et the nest instruction: Add 1 to the control address register.
• Jump to a new routine based on H jump microinstruction: Load the address

field of the control buffer register into the control address register.
• Jump to a machine instruction routine: Load the control address register based

on the opecrde in the I R.

Figure 17.4 shows Iwo modules Labeled clecodo .. The upper decoder translates
the opcodc of the IR into a control memory address. The lower decoder is not used
for horizontal microinstructions but is used for vertical microinstructions (Figure
17.1b). As was mentioned, in a horizontal microinstruction every hit in the control
field attaches to a control line. In a vertical microinstruction, a code is used for each
action to he performed [e.g., MAR (PC)], and the decoder translates this code
into individual control signals. The advantage of vertical microinstructions is that
they are more compact (fewer bits) than horizontal microinstructions. at the
expense of a small additional tinourit of logic and time delay,

Wilkes Control

A.s was mentioned, Wilkes first proposed the use of a microprogrammecl control
unit in 1951 EWILK51 I. This proposal was subsequently elaborated into a more
detailed design I WILK53j. It is instructive to examine this seminal proposal_

The configuration proposed by Wilkes is depicted in Figure 17.5. The heart of
the system is a matrix partially filled with diodes. During a machine cycle, one row
of the matrix is activated with a pulse. 'this generates signals at those points where
a diode is present (indicated by, a dot in the diagram). The first part of the row gen-
erates the control signals that control the operation of the processor. The second
part generates the address of the row to be pulsed in the next machine cycle. Thus,
each row of the matrix is one microinstruction, and the layout of the matrix is the
control memory.

At the beginning of the cycle, [hi:. address of the row to be pulsed is contained
in Register 1. This address is the input to the decoder. which, when activated by a
clock pulse, activates one row of the matrix_ Depending on the control signals, either
the opcode in the instruction register or the second part of the pulsed row is passed
into Register II during the cycle. Register II is then gated to Register I by a clock
pulse. Alternating clock pulses are used to activate a row of the. matrix and to trans-
fer from Register II to Register I. The two-register arrangement is needed because
the decoder is simply a combinatorial circuit; with only one register, the output
would become the input during a cycle, causing an unstable condition.

This scheme is very similar to the horizontal microprogramming approach
described earlier (Figure / 7,1a). The main difference is this: In the previous descrip-
tion, the control address register could he incremented by .one to get the next ad-
dress. In the Wilkes scheme. the next address is contained in the microinstruction,

MI6 CHAPTER 17 MICROPROGRAMMED coNTRoi.

From
instruction
register H

Register II

Register 71

Address
decoder

•

•
•
•

• • •

▪

Co' fulitional
CADntrols...grkelz signal

Figure 17.5 Wilkes's Mieroprograrnmed Control Unit

To permit branching, mw TrIUS1 o nl.iin 1 wo Kidraqs parts. controlled by a condi-
tional signal (e.g„ flag), as shown in the figure.

Havin•g proposed this scheme, Wilkes provides an exam * of its use to imple-
ment the contra[unit of a simple machine. This example, the first known dcsign uF
a microprogrammcd processor, is worth repeating here bccause it illustrates many
of the contemporary principles of inicroprogramining.

The processor of the hypothetical machine includes the following registers;

A multiplicand
H ncurnulittor (leas! -significan I. hal kl
C accumulator (most-significant half)
I) shift register

In addition, there are three registers and two 1-bit flags accessible only to Ow con.
Irc^l aril, The registers are as follows;

E serves as both a memory address register (MAR) and temporary storage
F program counter
▪ another temporary register; used for counting

Table 17.1 lists the machine instruction set for this example. Table 17.2 is the
complete sei of microinstructions, expressed in symbolic form, I hal implemcnrs

C113C1c. —0-

17.1 / BASIC CONCEPTS 607

Table 17.1 Machine Instruction Set for Wilkes Example

Order Effect or Order
A u CTitec) C e) tc Ac{'

H n C(N) Lc} fir ,
117 e C (A cc2) (-(e lo 'Lc , where CO) -= 1)
T C{.4(4.1) In (I to A cc

Urr COCCI Lu n

fi r .C7414cLi x 2 I
" to A

OtAcc) 2" in Acc
Ci n [F --.- E mnslc.r can I n ...I; II' [I,

]gnc ire Ii. E., 11TOCC.:2d 4021- L.111y }

I ...I Read lleNt cl:Ilarecte:r CIII LDilut rrthch SED into n

Sc nd C:(n) to out put nichanisrrs

No1P91.11.111:. U.I;c1.1 M1.1 I

A cc N3Lini::34"if I I 1 , 1 I .: LYI. d{.:CUTL1L110.1..}7

A fr, — I y: I ;r441-rilm.; - ; I 11..1 1;1 .1..-gu11tdiiiiiT

. 10;...11-11 I.

OA') eonic II Ls;; 3 ; ; NI L T en siorag...; 1;s:;; 1;;;;; I

the controt unit. Thus. a total or 38 microinstructions is all that is required to define
the system completely.

The first full column gives the address (row number) of each mierdnstruction.
Those a ddresse=s eorrcsponding to opcodes are labeled, Thus, when the opcode for
the add instruction (A) is encountered, the microinstruction to locai ion 7 7, is exe-
cuted. Columns 2 and 3 express the actions to be taken by the ALU and control unit.
respectively. Each symbolic expression must be translated into a set of control sig-
nals (microinstruction Fins). Columns 4 2ind 5 have to do with 1he setting and use of
the two flags (flip-flops). Column 4 specifies the signal that scis the flag. For exam-
ple, MC, means that flag number 1 is set by the sign hit of the number in register
C. lIcolumn 5 contains a flag identifier. then columns 6 and 7 contain the two alter-
native microinstruction addresses to he nsed. Otherwise, column t4 specifics !he
address (.11- the next microinstruction to he letchcd.

1 mi ruetions 0 through 4 constitute the fetch cycle. Microinstruction 4 presents
the opcode to a decoder, which genenues the address of a microinstruction corre-
sponding to the machine instruction to be fetched. The reader should he able to
deduce the complete functioning of the control Mil from a careful study of Table 17.2.

Advantages and Disadvantages

The principal advantage of the use or micn3prognimming It implement a control
wail is that it simplifies the design of the control unit. Thus, it is both cheaper and
Less error -pri.,ne to implement, A irtirdwired control unit must contain complex logic
for sequencing through the many miero-operations of the insiruclion cycle - On the
other hand, the decoders and sequencing logic unit o[a microprogrammed control
unit are very simpie pieces of logic,

608 c.:HAPTER MICROPROC.MAMMED CONTROL

Table 17,2 MikiroiOstrUctions fur Wilkes Example
:Notation: A. 13, Cstand for the Vdrious registers in the arithmetical and Canto] register units. C' Las t)

ktliii.CaD2.5 that the switching circuits connect the output of register C to die input register 0; (1.) Lo C
and cases that the outpus register of A is connected to the one input of the adding unit (ihc oti pu I of D is
permanent.... connected 10 the other input). and the output of the adder Li) C A riorneriunl syl1LbDI
?? in C1u01.i•u Slandu for t so, 1-4.c. whow gulped I Its(' nurnfici..ii in !mils of ill.. E,i4i EisnificHnt

0

A r i kit met i ca1 Unit
Ct]titrull

Register Unit

Conditional
Flip-Flop

NE :N1 NA ic to

i int rut: duo

So. 1.7h.e 11 1

F El , ii; 4incl ir... t

I ((; to - 1') to F 2 .

.-. S.Li.)r Li) Cr 3

4 E to decoder —

A 5 C to D 16

S 6 C to D 17

/1r 7 :impe to l'i 1)

V 8 Store to A 21

7' q C to S1.1.31-12 25

I; i LI
_... .

R 11

(. kt) S'LOT42 0

14 I....) 0 1: go 6 1 9

L 12 C 9 to D EAU G 22

0 1.:k E.01 (t)C', Ig

I 14 irspill In Sicirc 0

0 • 15 Ston.. to Output I.)
—

16 t o - Store .' Lo C D

L7 (D. - SKITEJ L{I. (1)

I. 1 1) 1

19 1> co B (RI' (C; - `1 9) to E 2[s

20 C to D (I).r', 2]

7I f.) i 4.1. C (R)

V.1 `I') to E

1 I] I)

22 0 to C (L}`: 23

23 8 to L> ,: 1)E, 24

24 .r./ 1 0 R (.) 1 12 4

25 `0 . so ii :Zts

2.(1 B co { 1)

27 `0 . Li} C ' kV Lul E lg

17.2 I MICROINSTRUCTION SEQUENCING 609

Table 172 +.1.1.1 rimmed)

Arithrnelicat Unit
Ccititroi

Register IAA

Coth
I

liiioii.;11 Neu 7..licrii-

Flip- FIAT itistruclion

Sct 1 .1. s.2. 0 1

28 If 1.(5 /) P. TO (i MU i 29

21.1 D to 8 (R) K.: • `1%) to E .3i

32 RI C. Lo V (R) (2)Es I 33

.31 D to C 2 2S- 33

(JD —it) to C. 2 2S 33

B B to D (1 A 31

34 D to B .(R) 35

35 C L O Jr) {10 I 36 37

4...) 0 so .C . 0

.. . (0 A) to C' L.

I kiRt11 tih1f1.111%! SW.;Lchink)eJL LIi1 II .11:ihnulic unit AFL arr: need h;.1h.r1 IIit I ii ELE11 1.11121.11 Jii&i1 01 ale
!v.-Oster Cis plot.] it Ilic 1)1;:Lc f 112}Z=41 13 LI u micro-Aporations, aid (he most
EjtktLifiClir11 digit 01 r..:j1iN ■ci in:11%h! g I II • i for rtleltra);?111),

rlic p.i!..s Ilir nis),1:..ipmi:IL)Inl cl it .1' iup,ist,r B to the le,igt.
r i.,%::.,1 1%. g is.% %., I I: • i n%

The principal disadvantage of a microprogrammed unit is that it will he
somewhLit slowur i kein 4 hardwired unil of comparble tcchnoltrgy. Despite this
microprogramming is the dominant technique for implementing control units in
conternporar.,.

, CISC, due to its ease of implementation. RISC processors, with their
si mpler instruction rormat% typically use hardwired control units- We now examine
the m ieroprc Tin mined 4ippro.wh in greater cleWil.

17.2 MICROINSTRUCTION SEQUENCING eAgrr .01= erelryr,„,-erfr:Aerefreer;Are9.4vVw .̀i.}.9.1",
•

The two basic tasks performed by a atieroprograinimcd control unit are as follows;

• rilicroinstruction sequencing: Gel the next microinslruction from I he utyn1roE
Memory,

• Microinstruction execution: Generate the control signals needed to execute
the microinstruction.

In designing a control unit, these tasks must be considered together, because
both affect the format of the microinstruction and the lirrting of the control unit, In
this section, we will focus on si2quencing and say as iittie as possible a bouE format
and timing issues. These issues are examined in more detail in the next section,

610 CHAPTER 17 I M1CROPROGRAMMED CONTROL

Design Considerations

'Iwo concerns are involved in the design of a microinstruction sequencing lechniqw:.:
the size of the microinstruction anc,lthc address-generation time. The first concern
is obvious minimizing the size of the control memory reduces the cost of that corn-
poncril. The second concern is simply a desire to execute microinstructions as fast
as possible.

In executing a microprogram, the address of the next microinstruction to be
executed is in one of these categories:

■ Determined by instruction register

* Next sequential address

▪ Branch

The, first category occurs only once per instruction cycle, ust after an instruction
is fetched. The second category is the most common in most designs. However,
the design cannot be optimized just or sequential aeeess. kranches, both condi•
lional and unconditional, are a necessary part 0] a microprogram. Furthermore.
microinstruction sequences tend to be short; one out of every three or four micro-
instructions could he 21 branch [SIEW82]. rhus, ,s irnpoliatiL Lo design compact.
time-efficient techniques for tnicroinstruetion branching.

Sequencing Techniques

Based on the current microinstruction, condition flags, and the contents of the
instruction register. a control memory address must be generated for the neat
microinstruction. A wide variciy or technique ,; have been used, WQ. 1:411 group them
into three general categories, as illustrated in Figures 17.6 to 17.8. These categories
are based on the format of the address information in the microinstruction:

• Two addresf., fields

• Single addrc!. Field
• Variable format

The simplest approach is to provide two address fields in each microinstruc-
tion. Figure 17,6 suggests how this information is to be used. A multiplexer is pro-
vided [hal sere air destination ror both address rielthi plus I he instruction register,
Based on an address-selection input, the multiplexer transmits either the opcode
or one of the two addresses to the control address register (CAR). The CAR is sub-
sequently decoded to produce the next microinstruction addro”. The address-
selection signals are provided by a branch logic module whose input consists of
control unit flags plus hits from the control portiOn Or the microinstruction.

Although the two-address approach is simple, it requires more bits in the
microinstruclion than other approaches. With some additional logic, 'savings can
be achieved. A common approach is to have a single address field (Figure 17.7). With
this approach. the options for next address are as follows:

Address
decoder

Control
memory

Address
selection

kindtiplexer
Branch klaEs •

I logic

CAR

,

ControL
Address

1
Address

2
03R

17.2 J MIC1L01NSTRUCITON SEQUENCINC.: 611

III

Figure 17.6 Branch Control Logic. Two Address Fields

* Add resA field
* Instruction register code
I Next sequential address

The address-selection signals determine which option is sele.6ted. This approach
reduces Ehe number of address fields to one. Note, however, that the address fi dd

willsoften nut he wicfl, TM's, Eh.crt is some illaii6encv in the microinstruction cod-
ing scheme.

Another approach is to provide for two entirely different microinstruction for-
rnais (Figure 17.8). One bit designates which formal is being used- In one format,
the remaining hi Is ;ire used to virliv;ite eon Li-01 sigrth Is. In the other formai, sonic bits
drive the branch logic module, and the remaining bits provide the address. With the
first format, the next address is either the next sequential address or an iiddres ,,
derived from the instruction register- Willi the second format, either a conditional
or unconditional branch is being specified. One disadvantage of this approach is [hal
one entire cycle is consumed with each branch microinstruction- With I he other

Address
decoder

Ccinrrol
memory

+1 CAR Cl3R ContrO Address

Branch
logic

Multiplexer I Flags
Address
selection

612 CHAPTER 17 / MIC R °PROGRAM MED CONTROL

appr9ac1ics, vicldrcs;71 generation occurs as part of the same cycle as control. signal
?eneration, control mcmory acceSses.

The approaches just described are gcneral. Specific implementations will often
involve a variation or combination of these techniques.

Address Generation

We have looked al the sequencing problem from the point of view of format con-
siderations and general logic requircmcnbl. Anoi her viewpoint is io ccJrisider the
various ways in which the next address can be derived or computed.

'table 17,3 lists the various address generation techniques. These can be.
divided into explicit techniques, in which the address is explicitly available in the
microinstruction. and implicit techniques, which require additional logic to gcno.-
41 to ihe address.

We have essen tinily dealt with the explicit techniques. With a two-field ap-
proach, two alternative addresses are available with each microinstruction. Using
either a single address field or a variable format, various branch instructions can be
inipiernenied. A conditional branch instruction depends on the following types of
information:

• AL[!

• Part of the opcode or address mode fields of the rwichinc ims1ruction

Figiire 17.7 13nrich Coritrul. Sirsg142. Address Field

 Branch
nags. logic Multiplexer L

Address decoder

Contrcd
memory

CBR

Branch
control Ent-irr!
field iieId

Gate I
and
Cunction
logic

Enable

CAR 1

Address
Iicl d

-H

L IR

'17,2 / MICROINSTRUCTION SEQL'ENCING 613

Figure MK Branch Control Logic, variable Format

• Parts of a selected register, such as the sign bit
• Smuts hits within the control unit

Soieral implicit techniques are also commonly used. One of these. mapping,
is required with virtually all designs. The opcode portion of a machine instruction
must be mapped into a microinstruction address. This occurs only once per instruc-
tion cycle.

Table 17.3 Microinstruction Address Generation Techniques

Explicit Implicit

Two-fickl Mapping
UncondiLioneMI branch Addition
Conditional branch Residual control

t
BA (8)

Figure I7.9 I BM 3033 Control Address Register

BB(4)
I

BDI(4) 1317)
E3 C(4) BE(4)

614 CI IAPTER 17 / MJCROPRC)CR.AMMED CONTROL.

00 07 08 09 10 12

A common implicit technique is one that involves combining or adding two
portions of an address to form the complete address. This approach was taken for
the IBM Si360 family EI'LICK671 and used on many of the S/370 models. We will use
the IBM 3033 as an example.

The control address register on the IBM 3033 is 13 bits long and is illustrated
in Figure 1.7.9. Two parts of the address can he distinguished, The highest-order 8
bits (00-)7) normally do not change from one microinstruction cycle to the next.
During the execution of a microinstruction, these 8 bits are copied directly from au
K-bik field of the microinstruction (the BA field) into the highest-order 8 his of the
control address register. This defines a block of 32 microinstructions in control
memory, The remaining 5 hits of the control address register arc set to specify the
specific address of the microinstruction to be fetched next. Each of these hits is
determined by a 4-bit field (except one is a 7-bit field) in the current tnicroingroc-
firm; the field specifies the condition for setting the corresponding bit. For example.
a hit in the control address register might he set to.1 or 0 depending on whether a
carry occurred on the last AL1.1 operation.

The final approach listed in Table 17.3 is termed reyidual control. This
approach involves the use of a microinstruction address that has previously been
saved in temporary storage within the control unit. For example, sorni.2 microin-
struction sets come equipped with a subroutine facility. An internal register or stack
of registers is used to hold return addresses, An example of this approach is taken
on the 1.,S1-1.1, which we now examine.

LSI-11 Microinstruction Sequencing

The LSI-11 is a microcomputer version of a PDP-11, with the main components of
the system residing on a single board. The LSI-11 is implemented using a micro-
programmed control unit [SEBE76].

The LSI-11 makes use of a 22-bit microinstruction and a control memory of 2K
22-bit words. The. next microinstruction address is determined in one of five ways:

• Next sequential address: In the absence of other instructions, the control unit's
control addres7., register is incremented by 1.

■ °rode mapping; At the beginning of each instruction cycle, the next microin-
struction address is determined by the opeode.

• Subroutine facility: Explained presently.

17.3 1 riveR.0ENSTRucTiciN F.xEcuTioti 615

• Interrupt testing: Certain microinstructions specify a test for interrupts. Eau
interrupt has occurred, this determines the next microinstruction address.

■ Branch: Conditional and unconditional branch microinstructions are used.

A one-level subroutine facility is provided. One bit in every microinstruction
is dedicated to this task. When the bit is set, an 11-bid return register is loaded with
the updated contents of the control address register. A subsequent microinstruction
that specifies a return will cause. the control address register to be loaded from the
return register.

The return is one form of unconditional branch instruction. Another form of
unconditional branch causes the hits of the contro] address register to be loaded
from 11 bits of the microinstruction. The conditional branch instruction makes use
of a 4-bit test code within the microinstruction. This code specifies testing of vari-
ous AM.' condition codes to determine the branch decision; If the condition is not
true, the next sequential address is selected. If it is true, the 8 lowest-order hits of
the contro] address register are loaded from 8 bits of the microinstruction. This
allows branching within a 256-word page of memory,

As can he seen, the LSI-11 includes a powerful address sequencing facility
within the control unit, This allows the microprogrammer considerable flexibility
and can ease the microprogramming task. On the other hand. this approach requires
more control Linn logic than do simpler capabilities.

'Ile microinstruction cycle is the basic event on a microprogrammed processor.
Each eyelc is ma dc up oil' 1 wo parts: fetch and execuict. The fetch portion is deter-
mined by the generation of a microinstructitrn address, and this was dealt with in the
preceding section. This section deals with die execution of a microinstruction.

Recall that the effect of the execution of a microinstruction is to generate
eoril rol signals. Some of these signals control points. internal to the processor. The
remaining signals go to the external control bus or other external interface. As an
incidental function, the address of the next microinstruction is determined.

The preceding description suggests the organi .e.: a Lion of a control unit shown in
Figure 17. Ltil. This slightly revised version of Figure 17.4 emphasizes the focus of this
section. The major modules in this diagram should by now he clear. The sequenc-
ing logic module contains the logic to perform the functions discussed in the pre-
ceding section. It generates the address of the next microinstruction. using as inputs
the. instruction register. AL[! flags. the contro] address register (for incrementing).
and the control buffer register. The last may provide an actual address. control bits,
or both. The module is driven by a clock [hal determines iht timing of the micro-
instruction cycle.

The control logic module generates control signals as a function of some of
the bits in the mieroin ,s1rudion. Ii should he clear that the format and content of the
microinstruction will determine the complexity of the control logic module.

616 CHAPTER 17 / MICROPROGRAMMED CONTROL

inslruction
register

Al,U flags d.§§,1,,zec.s45p
Sequencing

logic

Control addittsti register

Control
inenuitv

4
L Conirol rtgister I

p srfr rrr

Internal External
control control
signals signals

Figure 17.111 Control Unit Organinition

A Taxonomy of Microinstructions

Nlicroinstruction can be classified in a variety of ways. Distinctions that arc com-
monly made hi the literature include the followin4:

• Vcrticaiihorizont4i1
* Packetkunpacked

■ HardIsoft microprogramming
* Direct/indirect encoding

All of iheRe bear on the format of the microinstruction, None of these terms has
been used in a consistent, precise way in the literature, However, an examination of
th e pairs of qualities serves to i I lurninatc microinstruction de s ign f11 k In

17.3 / MICROINSTRUCTION EXECUTION 617

the following paragraphs, we first look at the key design issue underlying all of these
pairs of characteristics, and then we look at the concepts suggested by each pair.

In the original proposal by Wilkes [WILK51], each bit of a microinstruction
either directly produced a control signal or directly produced one bit or the next
address. We have seen, in the preceding section, that more complex address se-
quencing schemes, using fewer microinstruction bits. are possible. These schemes
require a more complex sequencing logic module. A similar sort of trade-off exists
for the portion of the microinstruction concerned with control signals. By encoding
control information, and subsequently decoding it to produce control signals, con-
trol word bits can be saved.

How can this encoding be. done? To answer that, consider that there are a total
of K different internal and external control signals to be driven by the control unit.
In Wilkes's scheme, K hits of the microinstruction would he dedicated to this pur-
pose. This allows all of the 2 1 possible combinations of control signals to be gener-
ated during any instruction cycle.. But we can do better than this if we observe that
not all of the possible combinations will be used. Examples include the following:

• Two sources cannot be gated to the same destination (e.g., C,. and C, in Fig-
ure 16.5).

• A register cannot be both source and destination (e.g.. C ; and C: in Figure l(15 .).
• Only one pattern of control sig,nals can be presented to the ALI] at a ti me.
• Only one pattern of control signals can be presented to the external control

bus at a time.

So. for a given processor, all possible allowable combinations• of control
signals could be listed, giving some number Q < 2' possibilities. These could be
encoded with log.:Q bits, with (log,Q) < K. This would be the tightest possible form
of encoding that preserves all allowable combinations of control signals. In practice,
this form of encoding is not used, for two reasons:

• It is as difficult to program as a pure decoded (Wilkes) scheme. This point is
discussed further presently.

• It requires a complex and therefore slow control logic module_

instead, some compromises are made. These are of two kinds:

• More bits than are strictly necessary arc used to enaxle the possible combinations.
• Some combinations that are physically allowable are not possible to encode.

The latter kind of compromise has the effect of reducing. the number of bits, The
net result. however, is. to use more than lo2. 3Q bits.

In the next subsection, We will discuss specific encoding techniques. The re-
mainder of this subsection deals with the effects of encoding and the various terms
used to describe it.

Based on the preceding, we can see that the control signal portion of the
microinstruction format falls on a spectrum_ At one extreme., there is one hit for
each control signal; at the other extreme, a highly encoded format is used. Table 17.4

618 cliAin ER 17 MICROPROGRAMMED cor-;rikoL

Table 17.4 The Microinstruction Spectrum

Characteristics

I:ne.ncodEd

Many bits

I) snil..r.d or flaTkiVi2re

Difficult hi program

Curi.CUtrency fully exploited

Link: or 110 centre] 14.50.4. -
r as! uxuruLiun

perfOrlIlariee

Hit;h1!.. encoded

hcw hitF.

Artrculul LW {f 11 1.'51111.' alr 52:

to program

COrICUTreLlCy 110i fully.cxploitEd

Curriph2N. contra 10.1.23c

SI OW e'xecLILi{riL

C}ptimizR programming

Termini to

Soft

Unpacked

HorrAorikal
Kira

shows that other characteristics of a mieroprograrnmed control unit tlso fall a]ong
..i.pectritin and that these spectra are, by and large, determined by the degree-of-

en cod i tig spectrum.
The second pair of items in the lable is rather obvious. The pure Wilkes

sehen-Ki. will require the M051 bits, ShiDUILI 411M) he apparent that this extreme pre-
sents the most detailed view of the hardware. Every control signal is individually
controllable by the microprouammer. Encoding is done in such a way as to aggre-
gate funciion,s or resources, so chat the inicroprogrammer is viewing the processor
at a higher. lesf., detailed level. Furthermore, the encoding is designed to 42-.ise l h
microprogramming burden. Again, it should be clear Thai the Task c.i.funderstandin
and orchestrating the use of all the control signals is a It one As was men-
tioned, one of the consequences (J1 encoding, typically, is to prevent the use of cep.
Min otherwise aiiown hie combinations.

The preceding paragraph discusses microinstruction detlign from the micro-
programmer's point of view. Bill the degreC of cricodi lig also can be viewed from its
hardware effeeLS. Wilk it purl: uncncoded format. little- or no decode logic is needed:
each bit generates a particular control signal. As more compact and more aggre-
gated encoding schemes are used, more complex decode logic is needed. This, in
WM, may affect performance. More time is needed to propagate signals through the
gates of the more complex control logic module. Thus. the execution of encoded
microinstructions takes longer than the execution 01 uncrtcoded ones.

Thus, all of the charaetcYristics iisied in Table 17.4 fall a]ong a spectrum of
design Kinatv.gie. In general, a design that falls toward the left end of the tipectrum
is intended to optimize the performance of the control unii. Designs iownrd the right
end are more concerned with oplimizing the process of microprogramming. Indeed,
microinstruction 7,;(AS TIC2.411- the right end of the spectrum look very much like
machine instruction sets. A good example of this is lhe LS1-1 1 design, described
later in this section. Typically. when the objective k simply to implement a control
unit, the design will he near the left end of the spectrum. The IBM 3033 design, dis-

17.3 MICROINSTRUCTION EXECUTION 619

cussed presently. is in this category. As we shall discuss later. some systems permit
a variety of users to construct different microprograms using the same microin•
struction facility. In the latter cases. the design is likely to fall near the right end of
the spectrum.

We can now deal with some of the terminology introduced earlier. Table 1'1.4
indicates how three of these pairs of terms relate 10 the microinstruction spectrum.
In essence, all of these pairs describe the same thing but emphasize different design
characteristics.

The degree of packing relates to the degree of identification between a given
control task and specific microinstruction bits. As the hits become more parked, a
given number of bits contains more information. Thus, packing connotes encoding.
The terms horizontal and vertical relate to the relative width of microinstructions.
[SIEW82] suggests as a rule of thumb that vertical microinstructions have lengths in
the range of 16 to 40 bits, and that horizontal microinstructions have lengths in the
range of 40 in 100 bits, The terms hard and soft microprogramming are used to sug-
gest the degree of closeness to the underlying control signals and hardware layout.
Ilard microprograms are generally fixed and committed to read-only memory. Soft
microprograms are more changeable and rn c suggestive of user microprogramming.

The other pair of terms mentioned at the beginning of this subsection refers
to direct versus indirect encoding, a subject to which we now turn.

Microinstruction Encoding
In practice, microprogrammed control units ;ire not designed using a Rare. un-
encoded or horizontal microinstruction format. At least some degree of encoding is
used to reduce control memory width and 10 simplify the task of microprogramming.

The basic technique for encoding is illustrated in Figure 17.11a. The micro-
instruction is organized as a set of fields. Each field contains a code, which, upon
decoding, activates one or more control signals.

Let us consider the implications or this layout. When the microinstruction is
executed, every field is decoded and generates control signals. Thus. with N fields,
N simultaneous actions arc specified. Each action results in the activation of one or
more control signals. Generally, but not always. we will want to design the format
so that each control signal is activated by no more. than one field. Clearly, however,
it must be possible for each control signal to be activated by at least one field.

Now consider the individual field_ A field consisting of L bits can contain one
of 2 codes, each of which can be encoded to a different control signal pattern_
Because only one code can appear in a field at a time, the codes are mutually exclu-
sive, and, therefore, the actions they cause are mutually exclusive,

The design of an encoded microinstruction format can now he stated in sim-
ple terms:

▪ Organize the format into independent fields, That is, each field depicts a set
of actions (pattern of control signals) such that actions from different fields can
occur simultaneously.

• Define each field such that the alternative actions that can he specified by the
field are mutually exclusive. That is, only one of the actions specified for a
given field could occur at a time.

Decodu
logic

Decode
logrk.

•1 • 1 1
Decode
logic

•

620 (.9Fli1i.' i F.l i 7 / MICROPROGRAMMED CONTROL

Field

Field

Field • •

I

Conrrol signals

fa) Direct encoding

• I •

Field I

Field Fog

Decode
logic

Decode
logic

ContrDI signals

(b) indirect encoding

Figure 17.11 NJ icroin1Lruction Encoding

Two approaches earl he taken to organizing the encoded microinstruction into
fields: functional and resource.. The fitntlif»tal etwoffing method identifies functions
within the machine and designates ficid5 by function type- 1-;or example., if various
sources can he used for transferring data to the accumulator, one field can be des-
ignated for this purpose. with each code specifying a different source. Resource
encoding views the machine as consisting of a set of independent resources and
devotes one field to each (e.g._ f.'(l, memory, Alt:).

Another aspect of encoding is whether it is direct or indirect (Figure 17. lib).
With indirect encoding, one field is used to determine the interprcia Lion of another
field. For e-qnysple, consider an Al ,T,J Thal is capable of performing eight different
arithmetic operations and eight different shift operations. A 1-hit field could be used
to indicate whether a shift or arithmetic operation is to be used a 3-bit tick] would
indicate the operation. This technique generally implies two levels of decoding,
increasing propagation delays.

Figure 17.12 is a simple example of these concepts. Assume a processor with
a single accumulator and several internal registers. such as a program counter and a
temporary register for A19.1.! input. Figure 17.12a shows a highly vertical format. The

17.3 1 KIC.IWINTP-UC.TION EXECUTION 621

Sump1p register tranefer.5

U 1 0 1 010 1

Cl L) () ; 0 0 1 I I I I

0 0 0 1 0 I ;

MDR -4— Register

Register MDR

MAR 4— ReWstar

Register

MCITLUT)' (FpurationN
select

[g ook) G o o l d Read

0 1 0 1 1:0 . 0 1 1 0 1 0 1A:ri

Special sequencing operations

0 1 1 I) 0 41 1 0 0

CSAR -4— Decoded MDR

DILY3)11010' CSAR Constant
in next byte)

0 1 1 0 0 1 0 1 1 Skip

ALL operations

0111

O i l I I , 0 1 ' I I

. 1
1 1

0
I

1 0

4.1 ijo

1 0 1 1 1 1 1 1 i! 1 0

ACC 4— ACC - Reginter

ACC ACC - Register

ACC -4— Register

Register 4— ACC

ACC 4— Register 1

0 1

Register
sdect

(a) Vertical miCroinStruction repertoire

0 1 2 3 4 5 C., 7 13 9 10 11 12 •E 14 T9.16.17 IS

I I I I 1— —1 1 1 1 1 1 1 1 1

Held 1 2 3 4 5 6

Field definition
- Register transfer

2 - (vIernory operation.
3 -Sequencing operation
4 - ALL: operation

- Register selection
fi - Constant

(b) Nl,r]i.onrel microinstruction format

Figure 17.12 Alternative Nlicroinviroci ion l'orinats for a Simple fvlachine

622 CHAPTER 17 / MICROPROGRAMIO.B1) CONTROL

firm 3 bits indicate the type of operation, the next 3 encode the operation, and the final
2 select an internal register, Figure 17 12b is a more horizontal approach, although
encoding is still used. In this case, different functions appear in different fields.

LSI-11 Microinstruction Execution

L.S1-1,1 [SEBE76] is a good example 01' a vertical microinstruction approach. We
look first at the organization of the control unit, then at the. microinstruction format,

LS1-11 Control Unit Orguni,ation

The LSI-1 1 is the first member of the PDP-1 I family that was offered as a sin•
gle-hoard processor. The hoard contains three LS1 chips, an internal bus known as
the microinstruction bus (MIB), and some additional interfacing logic.

Figure 17.13 depicts. in simplified form, the organization of the 1.S1-11 proces-
sor, The three chips are the dicta, control. and control store. chips. The data chip
contains an 8-bit ALU, twenty-six N-bit registers, and storage for several condition
codes. Sixteen of the registers are used to implement the eight 16-hit general-
purpose registers of the PDP-11. Others include a program status word, memory
address register (MAR), and memory puffer register. Because the ALU deals
with only 8 hits at a time, two passes through the AIA.: are required to implement
a 16-hit PDP-I 1 arithmetic operation. This is controlled by the microprogram.

The control store chip or chips contain the 22-hit-wide control memory. The
control chip contains the logic for sequencing and executing. microinstructions, It

Address Control
store

/22
22

0. Microinstruction bus
16

Control
chip

Data
chip

'4
16

taus control
and other Bus logic 4
processor
board logic

LSI-11 system hus

Figure 17.13 Simplified 131ock Diagram cif 1 he I .S I I Prucolor

17,3 MICROINSTRIJC1 ION a-Ica:1)170N 623

Control data register

Ccmrrol
store

Controi address mgister

Microprogram —

sequence
control

Kellam register.

Instruction register

[NT

Translation
array

Figure 17.14 OrgarsiAai kin 01 the LSI-11 Control unit

contains the control address register, the control data register, and a copy of the
machine instruction register.

.1he MIB ties i1] the components together. During microinstruction fetch, the
control chip generates art 1]-bit address onto the NUB. Control store is accessed.
producing a 22-bit microinsLruction, which is placed on the III. The low-order
16 bits go to the data chip, while the low-order 1K hits go to the control chip. The
high-order 4 bits control special processor board functions.

Figure 17.14 provider; a still simplified bi.LE more deLii led look at the LS.1.-/
control unit: The figure ignores individual chip boundaries. The address sequencing
scheme described in Section 17.2 is implemented in iwo modules. Overall sequence
control is provided by the microprogram sequence control module. which is capa-
ble of incrementing the microinstruction address register and performing uncondi-
tional branches. The other forms of address calcuiation are carried out by a separate
rrans[alion array. This is a combinatorial circuit that a.cnerates an address based
on the microinstruction, the machine instruction, the microinstruction program
counter, and an interrupt register.

624 CHAPTER t7 r MICROPROGRAMMED CONIKOL.

Thu 1ransiation array comes into pla!,. , on the following occasions:

• The opcode is used to dcierminu thy. sta rt or

• At appropriate ti mes, address mode bits of the microinstruction are tested to
perform appropriate addressing,

• Interrupt conditions are periodicaLly tested.

• Conditional branch microinstructions arc cvgillialled,

LSI- I I M iCTIF instructi4F II Format

The LS1-I L uses 4i n ex I remely vertical microinstruction format, which is oak
22 hits wide, Thu microinstruction set strongly resembles the PDP-1 I machine.
instruction set that it impLements. This design was inlendcd optimii.e the perfor-
mance of the control unit within the constraint of a vertical, easily programmed
design. 'rabic 17.5 lixix some of the 1_,S.1-1 1 microinstructions.

Figure 17.15 shows the 22-bit LSI-11 microinstruction formai. ' ['he high-order
4 bits control special functions on the prom.ssor board. The translate bit enables the
[1- 41risth Lion array to clic k Cor pending interrupts. The load return register hil is used
At the cad of a Mier0rOUtifie to cause the next microinstruction address Lo ire Loaded
from the return register.

The remaining 1.6 bits 41TC Wit:1i for highly encoded micro-operations. ThC: far•
mad is much like a machine instruction, with a variable-length opco4.1u arid one or

more operands.

Table 17.5 Some LSI 11 Microinstructions

Arithmetic Operations
Add ward (byte, 111Crril

Tem word;'Fete, litcrak)

fricrethem word (byte) 1}v I

Increment word (1v}.1.0 by 2

Ni::garc wnrd (hym)
Canditiimally irturernorn Idcurcineisi) by L'

C:unditionall:v add word (byre)

.Add word (hyte) mat cnrry
Canditi.ursull:y add 131giLs

Sul tract word (byte)

Compare word (byw. literal)
S'ubtracl ward { hyi C} with carry

DeCi'd'Elierit ward (byte). by 1

Logical Operailons
AND word (byre, titeral)
Tr:sr word (hyi,7)
OR word iFylc)

Exclwiwe-014. (bys.i3)

Flit c.1....:ar word (hyic).
Shift .0,151a fhytcj right (112f1.) with (wilhow 1 iii1

Coittyletisertt wind (11).1e)

Ocneral Operations
MOV
Jump
RuurEs
Conditioital jump.
Set (reset) L1a,9,3
Load G kiw

MC.)V ward
Ciperatiuns

Input word (bloc.)
inpui $taltEs word (kiy(vj

1.<{m4.1
Wrilu
ker.H.1 (wrili2) Lind loci-ern:ant word {byte) i
Read Ixyritti i Lind iiici:2111e1}L word {byte) by
Rid (wi ire) ocknowlodge
Ouipul. word {byte, stat us?

Encoded micro-operanoris Special
Functions

17.3 / Kic..B.20 ,1NsiiRUCT ION F.X17CUTION 625

4 1 1 1. 6

I Lnad return register
Translate

(a) Format d the full] 1.,9I-n microinstruction

11

Dp,-ode Jump address

Unconditional jump microinsrruction format

4 4 8

OpcoJe
Test
code

Jump address

Conditional lump microinstruction Ibrrriat

4 4

Opcode T Litcral value I A register

Literal microinstruction forrnat

4 4
A

Opcode register tester

Rglster microinstruction format

(b:i Format of the encndaci part of the L51-11 inicronstruction

fligunr. k7.15 L.S.1-1 1 Microinstruction Format

IBM 3033 Microinstruction Execution

The standard I.BM 301 control memory consists of 4K word ,;. Thc first half of these
(11.000-071'17) contain 108-bit microinstructions, what.: the remainder (0800-1FFE)
are used to store 126-bit microinstruclions. rhe format is depicted in Figure 17.16.
Although this is a rather horizontal format, encodin.g is still extensively used, The
key fields of that format ire summarized in Table

The A Lti operates on inputs from four Lic.di -Lii.ed, non-user-visible registers,
A, B. C. and D. The microinstruction format contains fields for loading these rcais-
ten.; ['Tom user-visible registers_ performing an ALU :ind specifying a user
visible register for storing the result, There arc also Ileitis for loading and storing
data between registers and memory.

The sequencing mechanism for the IBM 3033 was cliscursscd in Section 17.2.

ALL Control Fields

AA(3) Load A register from uric: 01 data registers
ARO) Load B register from one of data registers

AQC C') Load reiister 1:11)(11 011 12 O !LILL f registers

ADO .' 1.cukd I) registur From 4.5(u.'e dHkarugislQr!::

A F.0.1 Rouse. specified A hits to ALIJ
AF1:4) Rout. specified 13 bilk lo ALL!

AGN Spc.rifin. AL.1. drribm,•111.9. cip2ralton nn A inInput

AH{I) Specifies ALL; on B input
A..1(1) Speeilifies D or 13 ininput L. ALL: B side
AK(4) Rciat4,. arithmetic outpuL Li, shifter

C1-3(1 .) Activ.m sinker
C' '(5) Specifies logical and carry . functions
C.E(7) Spcciiitn ;hilt :A mount

CA(3) I .ond F Ngidor

Sequencing and Branching Fields

Al.(1 I Era/ operaiiO31 and perform branch
i high-order hits 01417) N . c PEI kr() I Add ro5 register

/ili(ii .Spec corid it10 11 for Et3ts Lag hti g of control address re gist er
Specifics cortdilhin for seltiag of control address regist er

BED(4) Specifies condiii(in fcw scuL irl g hit 10 of ciin trial n:gis tor
B144t SpecifieN coaiithon rod. sckting his 11 of conirol addrcs, Ngisic r

B[4) Speciilos condition for swain 1)1i 12 of control address 113gi stet.

CB Cr CG

Storage address Sh1fr vontrol Local storage 3eliscullaneo

▪

u

▪

s controls

125

DB DO DE

' I
Testing and condition code setting

Figure 17.16 1 BM. 3113 3 Microinstruction Format

Table 17.6 IBM 3033 Microinstruction Control Fields

BH CA CB r

626 CHAPTER 17 / MIC.ROPROC.RAMMED CONTROL

0

AB AC ! AD AE AF AG •A)-1. IAL!

36

I • yi
B, C, D regimen,.

z-

AriEhmetic Shift

71

BA BB BC BD BF. BF BT-1

72

Next address Storage add Tes.

107

12A Micro ins truction

Next microcode address

Microcode mar).
32K x] 2-8 :ails

15

Control and
microinstruction

Microinstruction
pipeline register

DA31-DAID
32

AC «K,32
regigerecl. ALU

ACTRFA7
Floating-point and
integer procesror

ACTSSI.S
rnicrosequeneer

32 4

System Y hue

32 I
15

Local data
ULM-1101y

321C x 32 bit3
PC/AT

interftior

17.4 / Ti #800. I27

- -

. .

.0. a, •

The Texas Instruments 880 10 Software Development Board (SDB) is a mieropro-
grammable computer card. The.system has a wrritable control store. imple-
monied in RAM rather than ROM. Such System does not IleilieVi2 the speed or
density of a microprogrammed sysleln with a Ram control store. However, it is use-
ful Yor developing protoiypes and for educational purposes.

The 8800 S.D.8 er_Insistii of the following components {Figure 17.17}:

• Microcode rueniory
▪ iCIOSC([Uen CCF

• 32-bit A 1.L.1
• Floating-point and integer processor
• Local data memory

16

Figure 17.17 TI 8800 Block Diagram

628 ClIAPTER 17 / MICROPROGRAMMED CONTROL

Two buses link the internal components of the system. The DA bus provides
data from the microinstruction data field to the ALL, the floating-point processor,
or the mierosequencer. In the latter case, the data consists of an address to he used
for a branch instruction. The bus can also he used for the ALL or microsequencer to
provide data to other components. [he System Y bus connects the All) and floatine-
point processor to local memory and to external modules via the PC interface.

The hoard fits into an IBM PC-compatible host computer. The host computer
provides a suitable platform for microcode assembly and debug.

Microinstruction Format
The microinstruction format for the 8800 consists of 128 bits broken down into 3U
functional fields, as indicated in Table 17.7. Each field consists of one or more bits,
and the fields are grouped into five major ca tegories:

• Control of board
• ,S847 floating-point and integer processor chip
• 8832 registered ALU
• 8818 microscquencer
• WCS data field

As indicated in Figure 17.17, the 32 bits of the WCS data field are fed into the DA
bus to he provided as data to the ALM, Floating-point processor, or microsequencer.
The other % bits (fields 1-27) of the microinstruction are control signals that are
fed directly to the appropriate module. For simplicity, these other connections are
not shown in Figure 17.17.

The first six fields deal with operations that pertain to the control of the
board. rather than controlling an individual component. Control operations include
the following:

▪ Selecting condition codes for sequencer control. The first bit OF field I indi-
cates whether the condition nag is to be set to I or 0, and the remaining 4 bits
indicate which flag is to be set.

• Sending an 110 request to the PCIAT.
• Enabling local data memory readlwrite operations.
• Determining the unit driving the system Y bus. One of the four devices

attached to the bus (Figure 17.17) is selected.

The last 32 hits are the data field, which contain information specific to a par-
ticular microinstruction.

The remaining fields of the microinstruction are best discussed in the contest
of the device that they control. In the remainder of this section, we discuss the
microsequencer and the registered ALU, The floating-point unit introduces no new
concepts and is skipped.

Mic.!rosequencer

The principal function of the 8818 micmsequeneer is to generate the next microin-
struction address for the microprogram. This 15-hit address is provided to the
microcode memory {Figure 17.17).

17.4 / Ti .H of 629

` Tale 17.7 TI 88(X) Microinstruoriors Formal.

Field
Number

Number
of Bits Descrip1i on

Control of Board

L .5 Select condision code input

2 I krobleiclisnl-ilt. exlernid 1.:0 r:LNAL.teS1.i.i.,.n.al

2 Enable,:disable local data memory road/writ c i5perkiliotts

4 1 Load status/do no load status

5 2 I1eurnunci. unit driving Y b.us

6 2 Dett.rrrtine unit driving DA bus

8847 Iiinaiing Point ttnd Integer Procesv,ing Chip

1 rcgi S I CT COT1LTD: LECICk. 111.1 not cluck

iitt}St significant or loins(5/g113 riCA L hiss lor Y bus

C register claim ScrUTCC:

10 4 Seteet 1E .F .E or FAST mode ifif ALL' and MUL

I I 8 Scti...keL.:.:ources for chits operands; RA rcgiRtu .s. FOR registl2r.q, P regi3ter.

5 regi3ter. C register

1 2 I R.1:1.R:fiictcr Cn111.1- nl - clock, do not rIoL.14.

1 3 I k A re ? isIerssLro1:cicxk,Llo liras clock

1 4 '2 DALu source uoirllirriation

15 .2 Enable...disable papclinc registers

1.6 1 i 4l-1,-1.7 AU; runclion

P832 Registered ALL!

17 2 Wriic unable/disable itnizi output to Ec I ucLe d i eginer: most SIgnificortl, tthlr, kirst

signilioini hHII

I x 2 Sukci re.d.istEr filu dirLa source.: DA bus, [)13 hos. Al,[I Y 11[1X- output s....sieni
Y bus

19 3 Shift instruction modther

2U I Carry in: lorcc.. do run el5rce

...i.

22

2

2

Sgl ALI? Ilurtiveat ion mode:: 32. 16, Or hits

to .. niti....p.......Nor: l' el2iRR::T Ilk:, 1)13 bus, MQ rueister Select inpui 9 Ili I

23 I S.c.lcct inpuE to R rnolli I ...p.cx UT:. rogiEM lilt., DA bus

24 •fi :iult.ci rc.gistur in tile C for WY.i Le:

25 6 Select register ill rile 8. tbi . read

26 11 Seleci regisior in tilt A for wril.c

2 7 g ALI i funcIrcin

8818 kliernseqruencer

Control input %gunk to i1,c M g

PiCS Data Field

16 Most siFnificaitil Ellis or wribiblu coritrcil store data field

signiRcunt hits cif writul-rl u C1.51111.31 store data Reid

_

630 CHAVIT:R.17 / MICR.OPKOCRANINIPT) CONTROL

The next address can be selected from one of live sources:

1. The microprogram counter (MP() register, used for repeat (reuse same ad-
dress) and continue [increment address by 1) instructions,

2. The. stack, which supports microprogram subroutine calls as well as iterative
loops and returns from interrupls,

3. The DRA and DRB ports, which provide two additional paths from external
hardware by which microprogram addresses ein be generated. These two
purls 411- C conneeLed. Lo the most significant and least significant 16 hits.. of
the DA bus, respectively. This allows the microsequencer Io obtain die next
instruction address from the WCS data field ()Mlle etirrem microinstruction or
from a result calculated by the ALI:,

4. Register counters RCA and RCB, which can be used for additional address
storaae.

5. An external input onio the bidirectional Y port to support external interrupU..

Figure 17 7 18 is a logical block diagram of the 8818. The device Qunsisls or the
following principal functional groups:

■ A l6-bit microprogram counter (NIPC) con wiling or a rqzister and an incrementer

• Two register counters- RCA and RC.13, for counting loops and iteratiorm stor-
ing branch addresses, or driving external devices

I A 65-word by L.6-bit stack. which allows microprogram subroutine calls and
interrupts

• An interrupt return register aitd Y output enable for interrupt processing at the
microinstruction level

■ A Y output multiplexer by which the next 4iddress can be selected from MPC,
RCA. RCB, external buses URA and DRB, or the stack

Registers/Counters

The registers RCA and Rai may he loaded from the DA bus, either from the
current mieroinstrue1ion or irons the output of the ALU. The values may be used
as counters to control the flow of execution and may be auLornLiticaRy decrcmeiited
when accessed. The values may also be used as microinstruction addresses to be
supplied to the output multiplexer, Independent control of both regisn,:rs during
a single microinstruction cycle is supported with Ihc exrcption of simultaneous
decrement of both registers,

Stack

The stack allows multiple lcvels of nested calls or interrupts, and it can he used
Lo support branching and looping. Keep in mind that these opera Li ons rcl'er to
the control unit, not the overall processor,. and that the addresses involved are those
of microinstructions in the control memory,

Six stack operations are possible;

1. Clear, which sets the stack pointer to zero, emptying Ike stack
2. Pop, which decrements the stack pointer

17.4 miii) 631

DA_11-1DA16
[DRA)

a

DA15—DAIX)
(DREI.)

Sta.. k

Dual
regislersimanters.

Interrupt
return

register

Y output
\ multiplexer

Microprogram
Counter/

incrernenter

Next microcchde
address

Figure 17.18 TI SSA Microsoquencer

3. Push. which raas the contents of the. MPC, interrupt 1-01,1171 register, or DRA
bus onto the stack and increments the stack pointer

4. Road, which makes the addrc.m. indicated by the read pointer available al the
oulpul multiplexer

5. Hold, which comes the address of the stack pointer to rcrnain unchanged
6. Load stack poinlc.r, which inputs the seven [east signi]'icant bits of DRA to the

s lack pointer

632 CHAPTER 17 i .MICROPROGRAM 41P.1] CON'IROL

Control of Microsequencer

hi mierosequencer is controlled primarily by the 12-bit field of the current
microinst ruction. field 28 (Table 173). This field consists of the following subfields:

• OREL (1 bit): Output select. Determines which value will be placed on the
output of the multiplexer that feeds into the DRA bus (upper left-hand cor-
ner of Figure 17.18). The output is selected to Time from either the stack or
from register RCA. DRA then serves as input to either the Y output multi-
plexer or to register RCA.

• SELDR (1 bit): Select DR bus. if set to 1, this hit selects the external DA bus
as input to the DRA/DRB buses. if set to 0. selects the output of the DRA
multiplexer to the DRA bus (controlled by OSEL) and the contents of RCB
to the DRI3 bus,

• ZERO1N (1 bit)• Used to indicate a conditional branch. The behavior of the
mierosequeneer will then depend on the condition code selected in field I
(Table 17.7).

• RC2—RCO (3 bits): Register controls. These bits determine the change in the.
contents of registers RCA and R(.13. Each register can either remain the same.
decrement, or load from the DRAIDRB buses.

• S2—S0 (3 hits): Stack controls. These bits determine which slack operation is
to he performed.

• NIUX2—MUXO: Output controls. These bits, together with the condition code
if used, control the Y output multiplexer and therefore the next microin-
struction address. The multiplexer can select its output from the stack, DRA,
DRB, or MPC.

These bits can be Net individually by the programMer. However. this is typi-
cally not done. Rather, the programmer uses mnemonics that equate to the hit pat-
terns that would normally he required. Table 17_8 lists the 15 mnemonics for field
28. A microcode assembler converts these into the. appropriate bit patterns.

As an example, the instruction 1NC88181 is used to cause the next micro-
instruction in sequence to he selected, if the currently selected condition code is 1.
From Table 17.8. we have

INN 8=81 = OC.00 .̀..'021111:

which decodes directly into

• OSEL = 0: Selects RCA as output from DRA output MU X: in this case the
selection is irrelevant.

• SELDR = 0: As defined previously; again. this is irrelevant for this instruction.
• ZEKOIN = 0: Combined with the value for MUX, indicates no branch

should he taken.
• H = 000: Retain current value of RA and RC.

• S = .111: Retain current state of stack.

• MLA = 110: Choose MPC when condition code DRA when condition
code = O.

17.4 / TI titiOth 633

Table 17.8 SN I g M icrosequencer . icroiristritetion Bits {Field 28}

Mnemonic Value. Description

RS . 114818 00300006:1110 Reset in SU uction

El RAM181 01104011 [000 Branch to DRA instruction

BRAiSIS0 01000011 I I 10 Branch Lo DRA instruction

INC881.81 000000111110 Continue instruction

INCSRES41 001000001000 . Con tinue instruction

CA I.M1R1 0101A01 mom 31iiirr) t o subroutine at address Speeirwri by DRA

oh otX101411110 CALKH1K1 Jump rn subroutine at address Specified by DRA

k 1-.:1 NM, Zi 01)0000011 0 1 0 Return from subroutine

VLSHWilti 01104X10] 10111 Push interrupt return address onto stack

POP8818 1000210010000 Retort from interrupt

LOADDRA 00001011 11 10 Load DRA counter from DA bus

LOAD DR B 000110111110 Load DRB counter from DA bus

LOAD DRA B 400110111100 LA }NJ D R Am R [i

DECRDRA ()LOW] I 1 1I00 Decrement DR A coon tar and branch it not zero

DFCRDRB 010101111 WO I)ecronc.nt DR B counter ;Ind branch ii not vcr()

Registered ALU
The 8832 is a32-hit ALU with 64.registers that can he configured to operate as four
8-bit ALUs. two 16-hit ALA:s, or a single 32-bit ALA.:.

The 8832 is controlled by the 39 hits that make up fields 17 through 27 of the
microinstruction (Table 17.7): these are supplied to the ALL: as control signals. In
addition, as indicated in Figure 17.17. the 8.832 has external connections to the 32-
hit DA bus and the 32-hit system Y bus. Inputs from the DA can be provided simul-
taneously as input data to the 64-word register file and to the ALI! logic module.
Input from the system Y bus is provided to the ALU logic module. Results of the
ALU and shill operations are output to the DA bus or the system Y bus. Results
can also be fed back to the internal register file.

Three 6-bit address ports allow a two-operand fetch and an operand write to
he performed within the register file simultaneously. An NiQs.hifter and MO regis-
ter can also be configured to function independently to implement double-precision
8-bit, 16-bit, and 32-bit shift operations.

Fields 1 .7 through 26 of each microinstruction control the way in which data
flow within the 8832 and between the 8832 and the external environment. The fields
are as follows:

17. Write Enable. These two hits specify write 32 hits, or 16 most significant bits.
or l6 least significant bits. or do not write into register file. The destination
register is defined by field 24.

18. Select Register File Data Source. If a write is to occur to the register file, these
two bits specify the source: DA bus, DR bus. ALIJ output, or system Y bus.

Group 1 Fundion

AND R AND S t140A

OR R OR S HIT013

Hlis71 RtSt

1-1Al2 (NOT R) 4•.S + Cn

R (NO`I. 5) t

S .CD

ADD

SUBR

SUBS

INS('

H;403

H#C.14

INCNS

1NCR

INC NR

',KC*

(NOT 5) t Ca

(NOT RI + Ca

R XOR S

14a:tit)

1-3#07

HAlg.

NAND Hit0C- R NAND S

NOR HOD R NOK

ANDNR 1140E.. (NOT R) AND S

634 CHAPTER 17 / NRCROPROGR AMMED CONTROL

I % Raft Instruction Modifier. Svceifies options concerning supplying end fill
and reading bits [hat are shifted during shift instructions-

20. Carry In. This bit indicates whether a bit is carried into thy ALL: for this oKt•
a lion,

21, ALU Configuration Mode. The 8832 can he configured to oriel -ale as a single
32-bi ALU. two 16-bit A LUs, or four 8-bit Al.,Us.

22. S Input. The. ALU logic module inputs are provided by tWo internal multi-
plexers referred to xS the S and R multiplexers. 'This tkeld selects the input to
be provided

by,
 the S muliiplexer; register file, DB bus, or MQ register. Thy

s ource register is &lined by field 25.
23. It Input. Selects input to be provided by the R multiplexer: register file ox

DA bus.
24. DestiuRtion Register, Address of register in register file to be used fOr the des-

tinntion. operand.
25. Source Register. Address of register in register file 10 be used for the source

operand, provided by the S multiplexer.
26- Source Register. Address of register in register file to be used l'or the source

operwnd, provided by ihe R multiplexer.

Finally, field 27 is an 8-bit opeodc that specifies the atithmelic or logical func-
tion to be perforated by lhe ALU. Table 17.9 lists the different operations that can
be performed,

Table 17.9 TI 8832 1.Zigi4(4tred ALL' Instruclion Field (Field 27)

1 7.4 / Tl Milo 635

Table 17-9 fmlismeeij

Group 1 l'u ntliou

SRA. H± .00 Ari l 11 n tetic right sin .Fle pr.....cision hhill

SR, D lill. 1.0 Ariihrneiic right double precision shir,

SRL H2OM Logical righi .i rtgl.w prucision shift

S14.1...1j H#'30 Lojlica I r i:Ost double. pi ecision shift

SLA Hg40 Arithmetic left 5rrig3c precision Nhift

SLAF] 1-1g515 Ariihrnelie kfit double prceision ..; hjri

,•:II.0
... .

H;461.) Circular left single precision shift

SLCD 11471) Circular len. double preeision shift

'SRC 1.I4S11 Circular right sin& premion shift

SRCD 1-1 9l.l. Ciretilaf tight double precision shin

V1(1.1.44 A H#AQ Arithmetic right shift MO register

iMQSRL H4130 Logical riLiht shift MO register

MOSLI.. FITFCr) Logieril Ii... 0. w hiff ",,V..) r,.gisii...i.

MOSLC' HTFDO 6rcula r left shift MO r6giii(er

LOADMQ Huai Load MO register
_ .

PASS I - Ii*•{1 PDhs AI LIR) ''‘. (no shgt oporation)

Gr4 pup 3 1.'0111.1iiniti

.S17111'1 lii+08 Set it L

Set() 1'141 F Set bit (I

TB] 1-Mr.i. '1 e51 bit 1

'1 . 131) H;13'... Test bit 0

ABS I Ig4g Absoluie value

SMTC E-14g: g Sign inagniturIcitwos complonioni

AI)I)I Hite& Add imme.diace

SUBI 1'N7ii Subtract immediate

BA DD H4Sfi Byte add R Ia S

13SUB5 RIGS 1-lyw. suhtraes S from R

RSUBR HTFA8 Byte subtract R from S

BINCS HuI3S B:if te increment S

BIN CNS I .1.1±0. .Ryl ..-. increment negative S

fI XOR. 1-1 ,:k.M Byti:.%. XORR and S

II.AND HIFE8 Byto AND R and 'S

B OR 1-iltrzi Byte OR R ...ii i 1.3 S

636 CHAPTER 1.7 / CON'IROL

'rabic 17.9 (uoruinliCa!

Group 4 Function

CRC H101 Cyclic; redundancy character aiec um.

SEL HTF 10 Sec S or R

SNORM H2Oi:r Sin izle length MD- MN I I i5i2
—

DNORM 1-1.1*3 1:l Doutile length normalize

DIVRF Hst41.1 Divide remainder fix

SD iv QF H+ 1.50 Signed d i vidz. quotient l'i x

SMUL1 Hil4-10 Signed multiply iterate

SN11.ii,rf Hfi.7 1. 1
._

Signed inulcipli, terminate

SDIVIN 1-Ii+80 SiK;iitect divide in i tialiv.c.

SDIVIS 11490 Signed d ivu lc sidd

SDIVI F-1 . .ast) Signal divt& ieruLo

UDIV IS HN1:30 Unsigned. cli.i.ide start

UDIVI .1-3 C-Al Unstued divide itemLe

LI:v1U LI 1-INPO Unsigned inulttply iterate

SDT V l'i H .LrE() Signed divide Lernlinate

UDIVIT 1-14F0 (Jusipnc.d divide Iciniirtmc

Group Jr Function

LOA DPP Wi.)F.' Loact.divide;BCD flip-flopt:.

CI,R 1-E.fl F Cleat

DUMPFF 1-14i5F Output divided:10E) flip-[lops

BCDBIN f-1.1f7F BCD to hinars...

FA:11-IC lifF817 Excess 3 lyyLe cOi reetion

E.X.312 FIAL..117 Exces.s 3 word con-cell CITI

SD[VD I I itAT Signed divide overflow tem.

131N EX 3 HRDF binary to execissji

NOP3?.. Id ifFF No.operation

As an example of the coding used to l'y tichis 17 through 27, consider du.
acid the contents of register 1 to register 2 and plee the result in reg-

ister .3. The svrribolie instruel ion is

C 01.771 F _ 7 WEr=i1-1, ;3.7431.7.YFY:1X [2 4] 1 3 , R2, rt1, S —ADD

The assembler will translate this into the appropriate bit pattern. The individual
components of the instruction can he deKribed as follows:

17.3 APPLICATIONS OF micnoPRoGRAmmiNt: 637

• CO T[L is the basic NOP instruction.

• Field [1.7] is changed to WELI-1. (write enable, low and high), so i hat a 32-bit
register i Wri LIAM into

• Field [18] is changed to SELRI'NM.X to select the feedback from the A1,U Y
NILO< output.

• Field [24] is changed to designate register R3 for the destination register_

* Pield [25] is changed to designate register R2 for one of the source registers.
• Field [26] is changed lo designate register R1 for one of Zhu source registers.

* Field 12.7] is changed to specify an ALU operation of ADD. The ALL! shifter
instruction is PASS; [herefore, the ALL output is not shifted by the shifter.

Several points can be made about the s!,. ,rnbolic notation. It is not necessary to
specify the field number for consecutive fields, That is,

C.:D2q711. [17] , 1,1ELH, L18.1, SEL.RFYYR

can be written as

CONTI"! - 171 , ,

because SELRFYMX is in field 18.
Al.0 instructions from Group 1 of Table 17.9 must always be used in conjunc-

tion will' Group 2. ALU instructions from Groups 3-5 must not be used with Group 2.

17.5 APPLICATIONS OF MICROPROGRAMMIN Y'rarr,""r-A-
frfeir. :;r0:' err re;

Since the introduction of microprogramming, and especially since the hoe 1.900s,
the applications of microprogramming have become increasingiy varied and wide-
spread. As early as 1971, most if not all of the contemporary uses of micropro-
gramming were in evidence [FL N71], Subsequent surveys discuss essentially the
same set of appiicatioas (e.g., [R A US80]). The set of CUM:DI applications for micro-
programming includes

• Realization of computers
• LintilMlion
• Operaiing system support
• Realization of special-purpose devices
▪ I language support
• fylicrodiagnostics
• User tailoring

This chapter has been devoi 1o•a discussion of realization of compurery. The
microprogrammed approach offers a systematic technique for control unit imple-
mentation. A rclaled technique is ernulalion I MALL751. Emulation refers to the
use of a microprogram on uric machine to execute programs originally written for
another. The most common use of emulation is to aid users in migrating from one
eompuier to another. This is frequently done by a vendor to make it easier for exist-

638 CHAPTER 17 I MICROPROCIRAMMED CONTROL

MR customers to trade in older machines for newer ones, thus making a switch to
another vendor unattractive. Users are often surprised to find out how long this
transition tool stays around. One observer [MALL81 noted that it was still pos-
sible in 1983 to find an IBM Systern/37{1 emulating an lB.M 14W that was physically
replaced over a decade and a half earlier.

Another fruitful use of microprogramming is in the area of operating system
support. Microprograms can be used to implement primitives that replace important
portions of operating system software. This technique can simplify the task of oper-
ating systern implementation and improve operating system performance.

Microprogramming is useful as a vehicle for implementing .spe•ial-purpose
devices that may be incorporated into a host computer. A good example of this is
a data communications board. The board will eorn;iin its own microprocessor. Be-
cause it is being used for a special purpose, it makes sense to implement some of its
functions in firmware rather than software to enhance performance.

High-level language support is another fruitful area for the application of
microprogramming techniques. Various functions and data types can be imple-
mented directly in firmware. The result is that it is easier to compile the program
into an efficient machine language form. In effect, the machine language is tailored
to meet the needs of the high-level language (e.g.. FORTRAN, COBOL, Ada).

Microprogramming can he used to support the monitoring, detection, isola-
tion. and repair of system errors. These features are known as microdiagnmtio and
can significantly enhance the system maintenance facility. This approach allows the
system to reconfigure itself when failure is detected' for example. if a high-speed
multiplier is malfunctioning, a microprogrammed multiplier can take over.

A general category of application is reser tailoring. A number of machines
provide a writable control store, that is. a control memory implemented in RAM
rather than ROM, and allow the user to write microprograms. Generally, a very
vertical, easy-to-use microinstruction set is provided. This allows the user to tailor
the machine to the desired application.

17.6 RECOMMENDED READING

Tiler L: >ne a number of hooks devoted to microprogramming, . Perhapc. the most compre.
hensive is [LYNC93I . ISEGE9I J pres12 , nis I he fundamentals of microcoding and IIIL design
of microcoded systems by means orf iI sie - p - by -si.cp design of a simple 16-hil p uessur.
ICART961 also presents the basic concept. using a sample machine. [PAR109] [Tr90]
provide a derailed description of the TI 880J StAlWare Development Board.

CART% (:'artcr, J. Micropracessol- A 0am:here and Mkroprop (-moping. Upper Saddle,
River. NJ: Prentice Hall, 1996,

LNAC93 Lynch, M. Microprogrammed Stare Machine Design. Boca Raton. FL: CRC
Press, 1993,

PAR1K89 Parker. A., and liainhien„1. An introdaction tr, Mi4:roprivamonnpg with
Exorises. DesItmed ,for the !'cirri instruments SN7-1ACIN8490 Software anelopment
Boma Dallas. TX; Texas Instruments, 1989,

SEGE91 Segee, B. and Field, .1. Microprogtwormin,s,, and Compoter Arhiterotre. 'Nov
York: tkiIcy, 1991,

T1911 Texas Instruments inc. SA74.4C7880 ranadv Data Mannal. SCSSOCHA% P)99.

1 7 , 7 / KEY TERMS, REVIEW QUESTIONS. AND PROBLEMS 639

17.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key 'Te ri

control memory
control word
firmware
hard microprogramming
hori -f,ontal

microinstruction

microinstruction encoding
microinstruction execution
microinstruction

sequelicing
inicroinSiT act ions
microprogram

nnicroprograrnmed control
unit

microprogramming language
soft microprogramming
unpacked microinstruction
vertical rnicToinstrUction

Review Questions
17.1 What is the difference between a hardwired implementation and a microprogrammed

i mplementation of a control unit?

17.2 llow is a horizontal microinstruction interpreted?
17.3 What is the purpose of a control memory'?

17.4 What is a typical sequence in the execution of a horizontal microinstruction?
17.5 What is the difference between horizontal and vertical microinstructions'?
17.6 Wh at are the basic tasks performed by a microprogrammed control unit?
17.7 What is the difference betv..cen packed and unpacked microinstructions'?
17.S What is the difference between hard and soft microprogramming?
17.9 Whar k the difference between functional anti resource encoding?

17.10 List some common applications of microprogramming.

Problems

17.1 Describe the implementation of the multiply instruction in the hypothetical machine
designed by Wilkes. Use narrative and a flowchart.

17.2 Assume a microinstruction set that includes a microinstruction with the following
s ymbolic form;

? AC : , - j MEE' CAR E.L,C.E CAR + 1
AC,, is the sign bit of the accumulator and C„,, are the first seven hits of the micro-
instruction. Using this microinstruction. write a microprogram that implements a
Branch Register Minus (13RM) machine insi ruction, which branches if the AC is neg-
ative. Assume that bits C I through C of the microinstruction specify a parallel set of
micro-operations. Express the program symbolically,

17.3 A simple processor has four major phases to its insirlictiLm cycle: fetch. indirect, exe-
cute. and interrupt. Two I -bit flags designate the current phase in a hardwired
i mplementation,
a. Why arc these flags needed?
b. Why arc they not needed in a microprogrammed control unit:'

17,4 Consider the control unit of Figure 17.7. Assume that the control memory is 24 bits
wide. The control portion of the microinstruction format is divided into two fields. A
micro-operation field of 13 bits specifies the miero-operai ion ,; trF h.L. performed, An
address selection field specifics a condition, based on the flags. that will cause a
microinstruction branch. There are eight nags.

640 CHAPTER 17 / MICROPROGRAMMED CONTROL

g. How many bits are in the address selection field;'
h. How many Nis are in the address ficrd?'
tr. 'What is the size of the control memory?

17,$ Flow i.:an unconditional branching he done ti nder the circumstances of the previoul.
problem? !Tow can branching he avoided. That is. describe. a microinstruction that.-
does not specify any branch. conditional or unconditional.

L7.6 We wish to provide 8 conlrol words for each machine instructjr a riotitirw. Madtinc
instruction opmdes have 5 bits. and control memory has 11)24 words. Suggest a map-
ping from the instruction register to the control address register.

173 An encoded microinstruction format is to be used. Show how a micro-operation
field can be divided into suhfie!ds to specif..... 46 clifft.T4Jni actions.

17.8 A processor hiw3 16 rogimurs, an ALE with 1ti logic and In Hritlirlieti‹: functions, and
a shifter with Op5--Tations, all connected by an internal Irrtrrussor hos, Dcsigi a
microinstruction roring spet:ily the various micro -opi2c11itrr4 I,ii 111..1 pri,Fee-SSOr,

Parallel Organization

,6 er,rff4:r

The final part of the book looks at the increasingly important area of parallel
organization. In a parallel organization. multiple processing units cooperate
to execuk tipplierition5, Whereas a supercaLar processor exploits opportu-
nities ror parallel ex,v.cution at the instruction level, a paraLLel processing
organization Looks for a grosser level of paralteLism, one that it rin Nes work
to be done, in parallel, and conperatively, by multiple processors. A number

ksues are raked by such organizations. or example, if multiple proce.,-
sors, each with its own. cache, share access to the same mcmory, hardware or
software mechanisMs must be cmploycd to ensure ihat both professors share
a valid imap of main memory; this is known as the cache coherence prob-
kern. ['his design issue, and others, is exp]ured in Part Five,

Chapter 1S Parallel Processing

Chapter IBS provides ttn overview of parallel processing eomitLrMion7.;. Thcri
the chapter looks at three approaches to ornuizing mull ipto processors: s.y rn-
metric multiprocessors (SNIP), clusters. and nonuniform memory access
(NUM A) machines. SNI Ps and dust ers are the two most common ways of
organizing multiple processors to improve performance and avirilahilit!, ...
N t.IN1 A systems are a more recent concept that have 111.1.il yet achieved wide-
spread commerciat success but that show considerable promise. Finally, Chap-
ter 1.8 looks at the .speciali.bed oryonization known as a vector processor.

CHAPTER 18
PARALLEL PROCESSING

1.8.1 Multiple Processor organiutions
Types of Parallel Processor Systems
Parallel Organizations

18.2 Symmetric Multiprocessors
Organization
Multiproce:o•or Operating System Dosign Considorations
A Mainframe SNIP

183 Cache Coherence and the MESI Protocol
Solutions

Hardware .Solutions
The MESI Protocol

184 Clusters
Cluster Configurations
°punning System Design Issues
Clustcr Computer Architecture
Clusters versus SMl

183 Nonuniform Memory Access
Motivation

rpri t ion
NUMA Pr m and Cons

18.6 Vector Computation
Approaches to Vector Computation
IBM 3090 Vector Facility

18.7 Recommended Reading

18.8 Key Terms, Review Questions, and Prubleins.
Kcv Terms
Review Questions
Problems

644 CHAPTER 18 / PARALLEL PROCESSINC

KEY POINTS

♦ A traditional way to increase system performance is to use multiple, proces-
sors that can execute in parallel to support a given workload. The two most
common multiple-processor organizations are symmetric multiprocessors
(S MPs) a TI d clusters. More re02.11tly, nonuniform memory icccss {NU.rsil A) sys-
tems have been introduced commercially,

♦ An SNIP consists of multiple similar processors within the same computer.
interconnected by a bus or some sort of switching arrangement. The most crit-
ical problem to address in an SNIP is that of cache coherence. Each processor
has its own cache and so it is possible for a riven line of data to be present in
more than one cache. It such a line is altered in one cache, then both main
memory and the a -liber cache have an invalid version of that fine. Cache collet.
ence protocols are designed to cope with this problem.

♦ A cluster is a group of interconnected, whole computers working togethe, as
a unified computing resource that can create the illusion of being one.
machine. The term whole computer means a system that can run on its own,
apart from the duster.

• A NUMA system is a shared-memory multiprocessor in which the le.cess time
from a given processor to a word in memory varies with the. location of the
memory word.

• A special-purpose type of parallel organization is the vector facility, which is
tailored to the processing of vectors or arra!, . ,s of data.

T raditionally, the computer has been viewed as a sequential machine. Most
computer programming languages require the programmer to specify algo-
rithms as sequences of instructions. Processors execute programs by exe-

cuting machine instructions in a sequence and one at a time. Each instruction is
executed in a sequence of operations (fetch instruction, fetch operands, perform
operation, store results).

This view of the Computer has never been entirely true. At the micro-operation
level, multiple control signals are generated at the same time. instruction pipe-
lining, at least to the extent of overlapping fetch and execute operations, has been
around for a long time. Both of these are examples of performing functions in par-
allel. This approach is taken further with superscalar organization, which exploits
instruction-level parallelism. With a supersca]ar machine, there are multiple execu-
tion units.within a single processor, and these may execute multiple instructions
from the same program in parallel.

As computer technology has evolved, and as the cost of computer hardware
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to enhance performance and. in some cases, to increase availabil-
ity. After an overview, this chapter looks at three of the most prominent approaches
to parallel organization. First, we examine symmetric multiprocessors (SMPs), one

1R-3 MI.:FA- TIT PROCESSOR ORGANIZATIONS 645

of the earliest and 5i i [I the most common example of parallel organization, hi an
SMP organization, mufti* processors share a common memory. This organization
raises the issue of cache coherence, L4 t whien a separate section is devoted. Then we
describe clusters, which consist of multiple independent computers organized in a
cooperative fashion. Clusters have become increasingly common to support vk.ork-
loads that are beyond the capacity of a single SNIP. The third approach to the use
of multiple processors that we examine is that of nonuniform memory access
(VI, MA) machines. The NL:MA approach is relatively new and not !, . ,ct proven in
the marketplace, but is often considered as an alternative to the SMP or cluster
approach. Finally, this chapter It al hardware organizational approaches to vec-
tor computation. These approaches optimize the AM; for processing vectors or
arrays of floating-point numbers. They are common on the class of ,ystetris known
as 2awercoinpurer.v.

18.1 MULTIPLE PROCESSOR ORGANIZATIONS

5E1;
'.3.41;.:L".1•7

Types of Parallel Processor Systems

A 1axonorny first introduced by Flynn IFINN721 is. still the most common way of
caterriAing systems with parallel processing capability. Flynn proposed the follow-
ing categories of computer systems:

• Single instruction, single data (SISfl) stream. A single processor executes a
single instruction stream to operate on data stored in a single mcrr u
Uniprocessors fall into this cahegory.

• Single instruction, multiple data (SIMI)) stream A single machine instruction
controls the simultaneous execution of a number of processing elernenis on 4i
lockstep basis. l=och processing element has an associated data memory, so
that each instruction is executed on a different set of data by the different
processors. Vector and array processors fall into thins emegory.

* Multiple instruction. single data (MISD) stream: A sequence. of data is trans-
mitted to a set of processors, each of which executes a different instruction
s.equence. This structure is not commercially implemented.

I Multiple instruction, multiple data (M1MD) stream; A set of processors si mul-
taneously execute different instruction .sect LI WICVN on different data sets- SNIPS,
clusters, and NUMA systems fit into this category.

With the ts,1 I rvI D organization, the processors are general purpose: each is
able to process a]] of the instructions necessary to perform the appropriate data
transformation. MIMDs can be further subdivided by the mans in which the
processors communicate (Figure L8.1). If the processors share a common memory.
then each processor accesscs programs and data shored in the shared memory. and
processors communicate with each other via that memory. The most common form
of such system is known as a symmetric multiprocessor (SN413), which we examine
in Section 18.2. lit an SM P. in Lill iple processors share a single memory or pool of

646 CHAPTER 18 / PARALLEL PROCESSING

memory by means of a shared bus or other interconnection mechanism; a distin-
guishing feature is 111;11 the memory access time to any region of memory is approx.
imatOy the same for each processor. A more recent development is the nonuniform
tnemor access (NUMA) organisation, which is described in Section 1.8.5. As the
name suggests, the memory access time to different regions of memory may differ
for a NUMA processor.

A collection of independent uniprocessors or SMPs may he interconnected to
form a cluster, Communication among the computers is either via fixed paths or via
some network facility,

Parallel Organizations

Figure 18.2 illustrates the general organization of the taxonomy of Figure 18.1. Fig.
are 16.2a shows the structure, of an SISD. There is some sort of control unit (CU)
that provides an instruction stream (IS) to a processing unit (PU). The Processing
unit operates on a single data stream (DS) from a memory unit (MU), With an
SIAM). there is still a single control unit, now feeding a single instruction stream to
multiple RN. Each PU may have its own dedicated memory (illustrated in Figure
18.2b), or there may be a shared memory..Finally, with the MIMD, there arc mul-
tiple control units, each feeding a separate instruction stream to its own PU. Tha
MIMI.) may be a shared-memory multiprocessor (Figure or a distributed-
memory multicomputer (Figure I8.2d).

Processor organizations

Single instruction,
single data stream

Single instruction,
multiple data stream

Multiple instruction,
single data stream

rquitiple instruction,
multiple data stream

(SISI)) iS1341)) (MIST)) (PkilI MD)

IfnipmceSsos

Vect or Array
processor processor

Shared memory
(tightly coupled)

Distributed memory
(loosely coupled

Clusters

S 1111ilut tic Nonurnifont
multiprocessor memory

(SMP) access
(NUMA}

Figure 01, I A Taxonomy of Parallel Processor Architectures

IS

LIVIn

(h) S1ID (vcith distributed Bunnell

•
IS

.1 17„
DS

Id) MIME, iwith dislributed memory

. IS DS
1 3 1. lHz 1,11/442

18.2 SYMMETRIC MULTIPROCESSORS 647

138 ■

DS
a

I .h

•

■

(C) M iM (with SI§ kirt d. nicmi pry

= Comm! u nir SIM .) - NilLOC
IS = insuucuon scream M111 .5h2 ihita %WC' J In
PU = Pine Hit rip unit SIMI) = S

= Data .t.rearri mirk ipl a dal a :Arc.' in
VILI= Psit.mc.ry urns MINIM= Mullirde in it tt1 hui,

= Local memory mulciple JAN. .J wain

Figure 18.2 Alternative Computer Organizations

IS
CV

'11-11.: design issues rclatinglo SN.T-Ps, clusiers. 4i nd NUNlAs are complex, involv-
ing issues relating, to physical organization, interconnection structures, i nterproces-
sor communication. operating system design, and application software techniques.
Our concern hire; iN primarily with organization, MO -lough we touch bricrly on oper-
ating sys.lcnri

18.2 SYMMETRIC MULTIPROCESSORS
%toe

yr_.e-
yregfrarrererear.,41: 1.••••7;,••• • .10.,•-••-;•:0,71-;•,..,,r%

Until fairiy vir[iui]ly all single-user personal computers and most worksta-
tions contained a single general-purpose microprocessor. As demands for perfor-
mance increase and as the cost of microprocessors continues to drop, vendors have
introduced syslems with an SMP organization, The term SMP eomputcr
hardware architecture and also to the operating system behavior that reflects that
architecture. An SNIP can be defined as a standalone computer s!./stem with the fol-
lowing characteristi C5:

I. There are two or more similar processors of comparable capvibihtv.
/ These processors share the same main memory and I./0 facilities and are inter-

connected by a bus or other internal connection scheme. such that memory
acccss time is approximately the same for each processor.

648 cHAPIER. tts / PARALLEL PRO CESSIN)n

3. All processors share access to I/O devices, either through the same channels
or through different channels that provide paths to the same device,

4. All processors can perform the same functions (hence the term Nymmefric).

S. The system is controlled by an integrated operating system that provides inter-
action between processors and their programs 41t the job, task, rile, and dutil
element levels.

Points 1 to 4 should he self-expianatory. Point 5 illustrates one of the contrasts
with a loos.ely coupled multiprocessing system. such as a duster. In the latter, the
physical unit of interaction is usually a message or complete file. In an SNIP, indi-
vidual data elements eau constitute the icvel of interaction, and thole can be a high
degree of cooperation between vroces2,es,

The operating system of an SMP schedules processes or threads across all of
the processors, An SMP organization has a number of potential advantages over a
uniprocessor organization, inciuding the k I lowing;

■ Performance: If the work to be done by a computer can be organized so that
some portions of the work can be done in parallel, then a sril.Gm with multi•
plc processors will yield greater performance than one with a single processor
of the same type (Figure 183).

Time

Process 1

Process 2

Prnecss 3 ZZZ=ZZZ7.2-7.2,,,,:zi.

(a) interieindrip. ilau1llipr0gr9 Milling, One prUCCSSOI I

Process riralralliger.drallragi 121Fardir

Procef.9 2

Process 3 .;Z:e1.7.Z2ZZ

ib) hiterleaving and overlapping .1 m ulltiprot-esii mulli plc mull prat-errors)

Ricpc.kell I• Running

Figure 113.3 Multiprogramming and Multiproccssing

Procemoir

er" ..."...Err00r2e0

PnweNNar

• •,49; : ".:4•1••■

re

PIA • ■ •

•
•

.rff-PfP97," -fte5-1.4-fi-fererg.

Interconnection
network

.441;1:Z§Irrox.001;.:60,

18.2 / SYMMETRIC .MULTIPROCESSORS 649

■ Availability; In a symmetric multiprocessor, because all processors can per.-
form the same functions, the failure of a single processor does not halt the
machine. Instead, the syMem ciin continue to function at reduced performance.

• lnevernentstl growth: A user can ciih4nce the performance of a system by
adding an additional processor.

• Scaling: Vendors can offi2r range of products with different price and per-
formance characteristics based on the number of processors configured in
the system.

it is i mportant Lc) note that these are potentiat, ra diu than guaranteed, benefits. The
operating system must provide tools and functions to exploit the parallelism in an

P system.
An al kiii.CINV feature of an SNIP is that the existence of multiple proecAsor iS

transparent to ihr user. The operating system takcx care of scheduling of threads or
processes on individual processors and of synchronization among processors.

Organization
Figure [8.4 depicts in general terms the organization of a multiprocessor sysleni,
There are lwo or more processors. 1 --]eh processor is self-contained, including a 01,311.

Main !WV

Figure 18.4 Generic Block .Diagrarn cif a ri g htl y COUp1C d [1/4.1ultiprocuFAcir

650 CHAPTER 18 PARALLEL PROCESSING

trol unit ALU. registers, and, typically, one or more levels of cache. Each proces-
sor has access to a shared main memory and•the 1/0 devices through sonic form of
i merconnection mechanism. The processors can communicate with each other
through memory (messages and status information left in common data amts.). It
may also be. possible for processors to exchange signals directly. The memory h
often organized so that multiple simultaneous accesses to separate blocks of
memory arc possible. I I I wtrmr configurations, each processor may also have its own
private main memory aud I/O channels in addition to the shared resources.

OrErinizational approaches for an SMP can be classified as follows:

■ Time-shared or common bus

* Multiport memory

■ Central control unit

Time -Shared Ruh

• hc lime-shared bus is the simplest mechanism [or consiructing a multi•
processor system (Figure 'Ihe structure and im ethic:es are basically the .sa rne
as for a single-processor system that uses a bus interconnection. The bus consists
of control. address, and data lines. To facilitate DMA transfers from 110 processors,
the following fcaitli-c;,1 arc provided:

• Addressing; It must be possible to distinguish modules on the bus to dcicrinine
I he source and destination or data.

■ Arbitration: Any 1/0 module can temporarily function as "master." A mech-
anism is provided to arbiira l e compel log requesis for bus control_ using some
sort of priority scheme.

• Time sharing: When one module is controlling the bus, other modules arc loacd
out and must, if necesmiry, suspc.nd operation until bus access. is achieved.

These uniprocessor features are directly usable in an SMP organization, In this
latter case. there are now multiple processors as well as multi * I/O processors all
attempting to gain access to one or more memory modules via the bus.

The bus organization has several advantages compared with other approLiclu•:

* This is [..11 C si mplest approach to multiprocessor organiiution. The
physical interface and the addressing, arbitration, and time-sharing logic of
each processor remain the same as in a single-processor system.

■ FlexihiLit!..: [1 is generally (2. W.Sy' lo exp.und th4 systcm by attching more proces-
sors to the bus.

■ ReliAility: Thc bus is essentially a passive medium, and the failure of ape
attached device should not cause failure of the whole system.

The main drawback to the bus orga]li2ation is performance. All memory ref-
erences pass through the common bus. Thus. the bus cycle time limits the speed
of the systcm. To improve perrormance, it is desirable to equip each processor with
a cache memory. This should reduce the number of bus accesses dramatically. Typ-

1 8 . 2 / SN .10 tw, I KIC. i14I.'LIIi'ROCESS ORS 651

• • •

Shared bus

I/01
su hsytem

figure 18.5 S .s..r.ru metric Multiprocessor Orgarkinitinn

ically. workstation and PC 8/s4Ps have two levels of cache, with the I.1 caehe inter-
mil (same chip as the processor) Find the L2 cache either internal or external,

I he .ti c of caches introduces sonic new design considerations. Because each
local cache eoniains an image of a portion of memory. ir a word is altered in one
cache. it could conceivably inv4lidatiz, a word in another cache. 'I'D prevent phis, the
other processors must be alerted thal an update hiis taken place, This problem is
known as the ruche' coherence problem and is typie2Illy :.iLial -QT:ICf5 in hardware rather
than by the operating system. We address this issue in Section 18.1.

Multiport Memory

The mulliport memory Approach allows the direct, independent access of main
memory modules by each processor and I/O module (Figure 18,6), Logic associated
with memory is required for resolving conflicts, The method often used to resolve
conflicts is to assign permanently designated priorities to each memory porI. Typi-
eatly, the physical and electric:ill interlace at each port is identical to what would he
seen in a singly.-port memory module, Thus, little or no rnodifiekition is needed for
either processor or I10 modules to accommodate muEtiport memory.

652 CHAPTER is PARALLEL PROCESSING

NI2
-410-11.-41P-0111.•-•

• • • 17

•

•

Figure 18.6 Multiporl Memory

The rnultiport memory approach is more complex than the bus approach,
requiring a fair amount of logic to he added to the memory system. It should, how-
ever, provide better performance because each processor has a dedicated path to
each memory module. Another advantage of multiport is that it is possible to con-
figure portions of memory as -private" to one or more processors andlor I/O mod-
ules. This feature allows for increasing security against unauthorized access and for
the storage of recovery routines in areas of memory not susceptible to modification
by other processors.

One other point: A write-through policy should be used for cache control
because there is no other convenient means to alert other processors to a MQ111-
ory update,

Central Control Unit
The central control unit funnels separate data streams back and forth between

independent modules: processor, memory. I/O. The controller can buffer requests
and perform arbitration and timing functions. It can also pass status and control
messages between processors and perform cache update alerting.

Because all the logic for coordinating the multiprocessor configuration is con-
centrated in the central control unit, interlaces from 1/0, memory. and processor
remain essentially undisturbed. This provides the flexibility and simplicil y of inter-
facing of the bus approach. The key disadvantages of this approach are that the con-
trol unit is quite complex and that it is a potential performance bottleneck.

The central control unit structure).4..as once quite common for multiple proces-
sor mainframe systems, such as large-scale members of the IBM S/1170 family, It is
rarely seen today.

Multiprocessor Operating System Design Considerations
An SNIP operating system manages proce...sor and other computer resources so that
the user perceives a single operating system controlling system resources. In fact,

18.2 SYMMETRIC MUL'IIPIWCESSORS 653

such a configuration should appear as a single-processor multiprogramming system.
In both the SNIP and uniprocessor cases, multiple jobs or processes may he active
at one time, and it is the responsibility of the operating system to schedule their exe-
cution and to allocate resources. A user may construct applications that use multi-
ple processes or multiple threads within processes without regard to whether a
single processor or multiple processors will be available. Thus a multiprocessor
operating system most provide all the functionality of a multiprogramming system
plus additional features to accommodate multiple processors. Among the key design
issues are the following:

• Simultaneous concurrent processes: OS routines need to be reentrant to allow
several processors to execute the same IS code simultaneously. With multiple.
processors executing the sallle or different parts of the OS, OS tables and man-
agement structures must be managed properly to avoid deadlock or invalid
opera tions.

• Scheduling: Any processor may perform scheduling, so conflicts must he
avoided, The scheduler must assign ready processes to available processors,

• Synchronization: With multiple .active processes having potential access to
shared address spaces or shared 110 resources, care must be taken to provide
effective synchronization. Synchronization is a facility that enforces mutual
exclusion and event ordering.

• Memory management: Memory management on a multiprocessor must deal
with all of the issues found on uniprocessor machines, as is discussed in Chap-
ter 8. In addition. the operating system needs to exploit the availablo hardware
parallelism, such as muhiported memories, to achieve the best performance.
The paging mechanisms on different processors must be coordinated to en-
force consistency when several processors share a page or segment and to
decide on page replacement.

• Reliability and fault tolerance: Thy operating system should provide graceful
degradation in the face of processor failure. The scheduler and other portions
of the operating system must recognize the loss of a processor and restructure
management tables accordingly.

A Mainframe SMP

Most PC and workstation SMPs use a bus interconnection strategy as depicted in
Figure 18.5. It is instructive to look al an alternative approach, which is used for a
recent implementation of the IBM .5 390 mainframe family [MAK971. Figure 18.7
depicts the overall organization of the S1390 SMP_ This family of systems spans a
range from a uniprocessor with one main memory card to a high-end system with
ten processors and four memory cards. '['he configuration includes one or two addi-
tional processors that serve as I/O processors. The key components of the configu-
ration are as follows:

• Processor unit ITU): This is a CiSC microprocessor. in which the most Ire-
.quently used instructions are hardwired and the rest are executed by firmware.
Each PU includes a 64-KB Li cache that is unified (combined data and instruc-

Niemen.
tard 2

Memory
card i

Km I r
rd 0

654 CHAPTD.R. / PARALLEL PROCESSING

Figure 18.7 IBM S..3 440 Orpnization

lion). The 1,1 cache sir{ was chosen to fil on the PL: chip and to achieve a one-
cycle access.

▪ L2 cache: Faeh 1.2 cache eon twins 384 k B, The L2 caches Lire arranged in clus-
ters of two, with each cluster supporting thrcu Pl)s and providing to Lb42
entire main memory space.

▪ Bus -switching network adapter (BSN): I he IiSNs ini crcon 1 2 cache
the main memory. Each BSN also includes a level 3 (L3) cache whose

size is 2 MB.
▪ ritlemory card; Each card holds 8 GB of memory, for a total of 32 GB capacity.

There are a number of interesting features in the S/390 SMP configuration,
which we discuss in [urn;

• tithed intercct nrkceti cm
• Shared 1.2 caches
• 1 3 cache

Switched Interconnection
A ingle shared bus is a common arrangement on SMPs for PCs and work-

stations (Figure I N5). Wish This arrangement, the single bus becomes a bottleneck
affecting the scalability (ability to scale to largQr ;izcs .) ,}r the design. The S/390
copes with t his problem in two ways. First, main memory is split into row. separate

18.2 / SYMMETRIC ML:L'11PROCESSOR.S 655

cards, each with its own storage controller that can handle memory accesses at high
speeds. 'Ric average traffic load to main memory is cut by a factor of 4, because of
the four independent paths to four separate parts of memory. Second. the connec-
tion from processors (actually from L2 caches) to a single memory card is not in the
form of a shared bus but rather point•to-point links, where each link connects a
group of three processors via an L2 cache to a BSN.'1 . 11e. BSN. in turn, performs the
function of a switch that can route data among its five links (four 12 links. one mem-
ory card). With respect to the four 12 links, the BT .: connects the four physical links
to one logical data bus. Thus. an incoming signal on any of the four L2 links is
echoed back to the remaining three L2 links: this feature is required to support
cache coherence.

Note that although there arc our separate memory cards. each KJ and each
L2 cache has only has two physical ports in the direction of main memory. This is
because each L2 cache only caches data from half the main memory. A pair of
caches is required to service all of main memory, and each PU must connect to both
caches in a pair.

Shared L2 Caches

In a typical two-level cache scheme for an SNIP. each processor has a dedi-
cated LI cache and a dedicated L2 cache. In recent years, interest in the concept of
a shared L2 cache has been growing. In an earlier version of its Si390 SMP, known
as generation 3 (031. IBM made use of dedicated L2 caches. In its later versions (G4
and G5), a shared 12 cache is used. Two considerations dictated this change.:

L in moving from G3 to G4. IBM doubled the speed of the microprocessors. If
the (i3 organization was retained. a .significanl increase in bus traffic would
occur. At the same lime, it was desired to reuse as many 63 components as pos-
sible. Without a significant bus upgrade, the BSNs would become a bottleneck.

2. Analysis of typical SI:390 workloads revealed a large degree of sharing of
instructions and data among processors.

These considerations led the 51391) G4 design team to consider the use of one
or more L2 caches. each of which was shared by multiple processors (each proces-
sor having a dedicated on-chip LE cache). Al first glance, sharing an L2 cache might
seem a had idea. Access to memory from processors should he slower because the
processors must now contend for access to a single L2 cache_ I Iowever, if a suffi-
cient amount of data is in fact shared by multiple processors, then a shared cache
can increase throughput rather than retard ii. Dal a that are shared and found in the
shared cache are obtained more quickly than if they must be obtained over the bus.

One approach considered by the S/390 04 design time was a single large fully
shared cache. used by all processws. While this would have provided improved sys-
tem performance via higher cache efficiency, this design approach would have
required a complete redesign of the existing system bus organization. But perfor-
mance analysis indicated that introducing cache sharing on each of the existing USN
buses would generate a large percentage of the advantage of shared caches while
reducing bus traffic. Thc value of shared caching was confirmed by performance
measurements that showed that lite shared cache improved cache hit rates signifi-

656 CHAYTER PARALLEL PEWCESSING

Table ISA Typicnl Cache Hit Rate cm S;390 SNIP Con liauration

Vie En sr,
Subsystem

Access Pcualty
(PLI cycles) T Cache Size Hit Rate CYO

L [each.12 I 32 K ii ft9

L2 cache -7: 256 KB c

L.3 CEIEFIE l 4 2 \i1 3

Nivniory 32 K [11 :3

cantiy over the dedicated cache scheme used in the 03 organization rMAK97].
StudicN of the value of shared caches on smaller-scale microprocessor SMIN confirm
the value of this approach (Q.2., [NAYF96]).

L3 Cache

Another interesting feature or th, S/390 SNIP is the use of a third level of
cache (L3). 1 The L3 caches are located in the BSNs, and therefore each L3 cache
provide!) a buffer between L2 caches and one memory card. The L3 cache reduces
latency for the data not kern in the LI and 1.2 caches of Ihe requesting rroeL.s..sor. Il
provides the data much more quickly than a main memory access if the. requested
cache line is already shared by other processors but was not recently used by the
requesting processor,

Table 18.1 shows performance results l'or this Ihree..level cache system for a
typical S/390 cornmercial workload with heavy memory and bus load IDOET9712
the sittn-age access penally is 1he Latency between the data request lo the cache hir.r-
archy and the first returned 16-byte data Hoek. ' fhe 1.1 ciiefic produces a hit rare of
9%, so that the remaining 11% of memory references must be resolved at the L2,

1..3. or memory level. Of this 11 %, 5% are resolved at the L2 level, and so on Merith
three levels of cache, only 3% of references require a memory access. Without the
third [excl. the rate of main memory access (.10nbles.

18.3 CACHE COHERENCE AND THE MESI PROTOCOL

Iii CAM emporary multiprocessor systems. it is customary to have one or Iwo levels
of cache associated with each processor. 'phis organisation ix cnli it to .tichiev;2
reasonable performance. It does, however, create a problem known as the cache
cr.therence problem. The essence of the problem is this: Multiple copies of the same
dala can exisl in different caches simultaneously, and if processors are allowed to

I B Wh.liwrauirc vErers to this caLhc iss a n I,2.5 cvcli . 12E12 St!crn4 nu p,lrLiLutar advitn tHge of this term,
ns2 in tact this cache constitute3 a third level of .crichirtg.

7 rite data are for a 03 system, which use.; &cheated L2 caches, E-I.Dwevor, the reaffis are sticsesti%e of
t he pci- l'orm.Hrtce. lo he expected with shared L2 cache. as round on (34 and (35 Si390s.

18,3 / CACHE COHERENCE AND TIIE MESI PROTOCOL 657

update their own copies freely, an inconsistent view of memory can result. in Chap-
ter 4 we defined two common write policies:

• Write back: Write operations are usually made only to the cache. Main mem-
ory is only updated when the corresponding cache line is flushed from the cache.

• Write through: All write operations are made to main memory as well as to the
cache, ensuring that main memory is always valid.

It is clear Ihat a write-hack policy can result in inconsistency. If two caches con-
tain the same line, and the line is updated in one cache. the other cache will unknow-
ingly have an invalid value. Subsequent reads to that invalid line produce invalid
results. Even with the write-through policy. inconsistency can occur unless other
caches monitor the memory traffic or receive some direct notification of the update.

In this section, we will briefly survey various approaches to the cache coher-
ence problem and then focus on the approach that is most widely used: the MESI
(modifiedlexclusivcisharedlinvalid) protocol. A version of this protocol is used On
both the Pentium 4 and PowurPC implementations.

For any cache coherence protocol, the objective is to let recently used local
variables get into the appropriate cache and stay there through numerous reads and
write, while using the protocol to maintain consistency of shared variables that
Might be in multiple caches at the same lime_ Cache coherence approaches have
generally been divided into software and hardware approaches. Some implementa-
tions adopt a strategy that involves both software and hardware elements. Never-
theless, the classification into soil ware and hardware approaches is still invructive
and is commonly used in surveying cache coherence strategies.

Software Solutions
Software cache coherence schemes attempt to avoid the need for additional hard-
ware circuitry and logic by relying on the compiler and operating system to deal with
the problem. Software appr4 1.21 C.1Cti 4ite attractive because the overhead of detecting
potential problems is. transferred From run time to compile time. and the design
complexity is transferred from hardware to software. On the other hand, compile-
time software approaches generally must make conservative decisions. leading to
inefficient cache utilization.

Compiler-based coherence mechanisms perform an analysis on the code to
determine which data items may become unsafe for caching, and they mark those
items accordingly. The operating system or hardware then prevents noncacheable
items from being cached.

The simplest approach is to prevent any shared data variables from being
cached. This is too conservative, because a shared data structure may be exclusively
used during some periods and may he effectively read-only during other periods. It
is only during periods when at least one process may update the variable and at least
one other process ma access the variable that cache coherence is an issue.

More efficient approaches analyze the code to determine safe. periods for
shared variables. The compiler then inserts instructions into the generated code to
enforce cache coherence during the critical periods. A number of techniques have

658 CHAPTER 18 PARALLEL PROCESSING

been developed for performing t he analysis 4111d 1 .01 - enforcing the results; see
1L111931 and ISTEN901 for surveys.

Hardware Solutions

Hardware-lt solutions are generally referred to as cache coherence protocols..
These solutions provide dynamic recognition at run time of potential ineonsisiency
conditions. Because the problem is only dealt with when it actually arises, there is
more effective use of caches, Fending to improved performance over a software
approach. In addition, these. approaches Li re transparent to Lhc programmer and the
compiler, reducing the software development burden,

Hardware sehemes differ in a number of paniculars, including where the state
information about data lines is held, how that na formalion is organized, where coher-
ence is enforced, and the enforcement mechanisms. In general, hardware schemes
can he divided into Iwo categories: directory protocols and-snoopy protocols.

Directory Ptotocok
Directory protocols collect and maintain information about where copies of

li nes reside, Typically, there is a centralized controller that is pan of the main mem-
ory controller, and a directory chat k sitYri2d in main memory. The directory contains
global state information about the contents of the various local caches. When art
individual cache controller makes a request. the centralized controller checks and
issues necessary commands for data transfer between memory and caches or
between caches themselves. It is also responsible for keeping t he S.1 ate information
up to date; therefore, every local action that can affect the global state or a line must
be reported to the cern ral controller,

Typically, the controller maintains in ro1111;ki ion aboul which processors have B
copy of which lines. Before a processor can write to a local copy oaf a li ne, it roust
tcqust exclusive access to the line from the controller. Before granting this exclu-
sive access, the controller sends a message to all processors with a cached copy of
this [inc. forcing each processor to invalidate its copy- After receiving aeknowledg-
men is back from each such processor, the controller grants exclusive access to
requesting processor. When another processor tries to read a line that is exclusively
granted to another processor. i1 will send a miss notification to the controller. The
controller then issues a command to the processor holding that line that requires Llic
processor to do a write back to main memory. The line may now be shared for read-
ing by the original processor and the requesting processor.

Directory schemes suffer from the drawbacks or a central bol del-leek and the
overhead of communication between the various cache controllers and the conital
controller. However, they are effective in large-scale systems that involve multiple
buses or some other complex interconnection scheme.

S noopy PrOti Fen N

Snoopy protocols distribtiEe the responsibility for maintaining cache coherence
among all of the cache controllers in ai ITliihiprticessor, A cache must recognize when
as lime that it holds is shared with other caches. When an update action is performed

183 CACHE CODT_RF.NCE AND THE MRS! PROTOCOL 659

on a shared cache line, it must be announced to all other caches by a broadcast
mechanism. Each cache controller is able to "snoop" cm the network to observe
these broadcasted notifications, and react accordingly.

Snoopy protocols arc ideally suited to a bus-based multiprocessor, because the
shared bus provides a simple means for broadcasting and snooping. However,
because one of the objectives of the use of local caches is to avoid bus accesses, care
must be taken that the increased bus traffic required For broadcasting and snooping
does not cancel out the gains from the use of local caches,

I wo basic approaches to the snoopy protocol have been explored: write inval-
idate and write update (or write broadcast). With a write-invalidate protocol. there
can be multiple readers but only one writer at a time. Initially, a line may he shared
among several caches for reading purposes. When one of the caches wants to per-
form a write to the line, it first issues a notice that invalidates that line in the other
caches, making the line exclusive to the writing cache. Once the line is exclusive, the
owning processor can make cheap local writes until some other processor requires
the same line.

With a write-update protocol, there can he multiple writers as well as multiple
readers. When a processor wishes to update a shared line, the word to be updated
is distributed to all others, and caches containing that line can update it.

Neither of these two approaches is superior to the other under all circum-
stances. Performance depends on the number of local caches and the pattern of
memory reads and writes. Sonic systems implement adaptive protocols that employ
both write-invalidate and write-update mechanisms.

The write-invalidate approach is the most widely used in commercial] multi-
processor systems, such as the Peril ium 4 and Po•erPC. It marks the state of every
cache line (using two extra bits in the cache tag) as modified, exclusive, shared, or
invalid. For this reason, the write-invalidate protocol is called MESI. In the remain-
der of this section, we will look at its use among local caches across a multiproces-
sor, For simplicity in the presentation, we do not examine the mechanisms involved
in coordinating among both level 1. and level 2 locally as well as at the sarne time
coordinating across the distributed multiprocessor, This would not add any new
principles but would greatly eomplicate the discussion,

The MESI Protocol
To provide cache consistency on an SMP, the data cache often supports a protocol
known as NIES!. For MESI, the data cache includes two status bits per tag. so that
each line can be in one of four states:

6 Modifieth'Ite line in the cache.has been modified (different from main mem-
ory) and is available only in this cache.

■ Exclusive: The line in the cache is the same as that in main memory,' and is not
present in any other cache.

• Shared; The line in the cache is the same as that in main memory and may be
present in another cache.

• Invalid: The line in the cache does not contain valid data.

660 cHAPTP:P... PARAUP1

Table 182 MES1 Cachi: Line States

M
Modified

E
Exclusive

S
Shored

I
Invalid

This cnch Brie .1...alid? Yep YOS)(CS No

The memory copy it ...

Copies cxim. ill othur
—

caches?

out or dme
—

No

Valid Valid —

l'Co 1434'l:..c Maybe

A twill; tci. this line D{5122, not go to hum Docs not .c, La bin
Gi.)12s

upd.dLcs cdow
t}liui.: and

COL. A directly to bus

Table 18.2 summarizes the meaning of the four statc. Figure 18.X displys a
state diagram for the Mfr protocol. Keep in mind that each line of the cache has
its own state bits and therefore its own realization of the state diagram. Figure 1X.8a
shows the transitions that occur due to actions inil kited by Ilie proces ,.or attached
to ;his cache. Figure 1 SME-i shows the triirmitions that occur due to events that are
snooped on the common bus. This presentation of separate state diagrams for
processor-initiated and bus-initiated actions helps to clarify the. logic of the ME.S1
prolocol. At any time a cache line is in a single slate, If the .next event is from the
mulched procesor, then the iranshion is dictated by Figure 8.8a and if the next
event is from the bus, the transition is dictated by Figure .I Bath, Let us look at these
transitions in more detail.

ead Miss

When a read miss occurs in the local cache, the processor initiates a memory
read to read the]ine of main memory containing the missing address. The proces-
sor inserts a signal on the bus that a]erts all other process)] -!cacheunils snoiip the.
irinactipn, There are a number of possible oulcomes:

• If one other cache has a clean (unniodirics3 since read from rnernoi).9 copy of
the line in the exclusive state, it returns a signal indicating that it shares this
]ine. The. responding processor then transitions the state of its copy from eNclu-
sive lo shared, and the initialling processor reads the line from main memory
and transitions the Line in its cache from. invalid to shared.

• If one or more caches have a clean copy of the line in the shared state, each of
them signals Lhal ii shares Lhc Eine. The initiating processor reads the line and
transitions the line in its cache from invalid to shared.

• If one other cache has a modified copy of the line, then that cache blocks the
memory read and provides the line to the requesting cache over the shared
bus. The resp4 in& ciche Ilion changes its line from modified to shared.'

In scinac. i mplcinentationF., Lhc cache with the modilied line signals the niici•iiting pi ocessor to retry.
Merinwhilv, the prcwesNor with Oho modiricg.io3py . F.7.:izes the bus, he inocliricd line buck La main
niLrnorx.. and I mnsiiions Ole line in its cuctic horn iniadifi.eii to shared. Subseclueraly, die requestiag
prossor tries I atr7 and liacisdhas one or more processors have a ckon cf5py or the line in ihu sharn1
s[nLc, as described. in I he prcceding point.

(a} Line in cache at initia Li ng processor tb) Line in snoaping.cache

RH Read hit
RMS Read miss. shared
RMF Read miss. exclusive
WH Write hit
W NI Write miss
SIIR Snoop hit on read
SIIW Snoop hit on write or

read with intent to modify

(3) Dirty line copyback

ln)3ti sJate transaction

Read with intent to modify

Cache line fill

Figure I/1.8 ME M . 5;nte Transition Diagam

662 CHAPTER 18 / PARALLEL PROC.F.SSWC.

• I f no other cache has a copy of the line (clean or modified). then no signals an
returned. The initiating processor reads the]ine and transitions the line in its

t . cache from invalid to exclusive-

feud Hit
When a read hit occurs on a line currently in the local cache, the processor sim-

ply reads ihe required item. There is no stale change; The stale remains modified,
shared, or exclusive.

Write Miss

When a write. miss occurs in the local cache, the processor initiates a memory
read to read the tine of main memory containing the missing address, For this pup
pose, the processor issues a•signal on the bus that means reall- with -inteni - fo -inufgy
(RWITM). When the line is loaded, it is immediately marked modified. With respect
to other caches, two possible scenarios precede the loading of the line of dala.

First, some other cache may have a modified copy of this line (state rrindify).
In this case. the alerted processor signals the initiating processor that another
processor has a modified copy of the]ine. The initiating processor surrenders the
bus and waits. The other processor gains access to the bus. wait ers I he modified cach e
li ne back 10 main memory, and transitions the slate of the cache Zinc iti invalid
(because the initiating proce ssor is going CO modify this tine). Subsequently. the ini-
tiating processor will again issue a signal to the bus of RWITM and then read the
line from main memory, modify the line in the cache. and mark the line in the mod.
ilk...LI state.

The second scenario is that no other cache has a modified copy of the
requested line. In this case, no signal is returned, and the initiating processor pre-
coeds to read in the tine and modify it. Meanwhile., if one or more caches have a
clean copy of the line in the shared state, each cache invalidates its copy of the line,
and if one cache has a clean copy of the]ine in the exclusive state, it invalidates its
copy of the line.

Write Hit

When a write hit occurs on a line currently in the local cache, the effect
depends on the current state of that line in the local cache:

▪ Shared: Before performing the update, the processor must gain exclusive own-
ership of the line. The processor signals its intent on the bus. Each processor
that has a shared copy of the line in its cache transitions the sector from shared
to invalid. The. initiating processor then performs Lhc update and transitions
its copy of the line from shared to modified,

• Exclusive: The processor already has exclusive control of this line, and so it
si mply performs the update and transitions its copy of the li ne from exclusive
to modified.

• Modified: The processor already has exclusive control of this line and has the
line marked as modified, and so it simply performs the update.

18.4 r WJSTERS 663

LI- l,2 Cache Consistency

We have so far described cache coherency protocols in tenros of the woperate
activity among caches connected to the same bus or other SNIP interconnection

fypically,ihese caches are L2 caches, and each processor also has an Li
cache that does not connect directly , 10 the bus and that therefore cannot engage in
a snoopy protocol. Thus, some scheme is needed to maintain data integrity. across
both levels of cache and across all caches in the SNIP configuration.

The strategy i to extend the MF.SI protocol (or any cache coherence protocol)
to the LI caches. Thus, each line. in the l ..i cache includes hits to indicate the state.
In essence, the objective is the following: For any line that is present in both an L2
cache and its corresponding LI cache, the LI line state should track the state of the
L2 line. A simple means of doing this is to adopt the write-through policy in the LI
cache in this case the write through is to the 1.2 cache and not to the memory. The

write-through policy forces any modification to an LI line out to the L2 cache
and therefore makes it visible lo Other L2 caches, The use of the L1 write-through
policy requires that the Ll content must he a subset of the 1 2 content, 'Ellis in turn
suggests that the associativity of the L2 cache should be equal to or greater than that
of the Li associa tivity. The LE write-through policy is used in the IBM SI390 SMP.

If the Ll cache has a write-baek the relationship between the two
caches is more complex. There are several approaches to maintzlining coherence. For
example, the approach used on the Pentium It is described in detail in ISHAN:W I.

18.4 CLUSTERS •••-•:cr:
-SreCr aVrrgt:'r:fe,:r7 -

efrP,-af,—

One of the hottest new areas in computer systein design is elt.r.tering, C u!,toring is an
alternalive. lo symmetric multiprocessing as an approach to providing high perfc».-
Illartce and high availability and is particularly attractive for server applications. We.
can define a cluster as a group of interconnected, whole computers working together
as a unified computing resource that can create the illusion of Facing one machine.
'(he term whole computer means a system that can run on its own, apart from the
cluster; in the li lcraturc, each computer in a cluster is typically referred to as a node.

[BREW97] lists four be.nefits that can be achieved with clustering, 'T'hese can
a1s0 he thought of as objectives or design requirements:

• Absolute sealsithilityi It is possible to create large clusters that far surpass the
power of even the largest standalone machines. A cluster can have dozens of
machines, each of which is a multiproccssor.

• Incremental scalability: A cluster is configured in such a way that it is possible
10 add new systems to the cluster in small increments. Thus. a user can start
out with a modest system and expand it as needs grow. wi I hoot having to go
through a major upgrade, in which an existing small system is replaced with a
larger :iysLarri,

■ High availability: Because each node in a cluster i ri s1;inda Ione comptiler, !he
failure of one node does not mean loss of service, In many products, fault 101-
el-arl1N. is handled automatically in software.

51l 1 110 0

High-speed message link

110

110

RAW

High-spud ine.mage

(13 .1 Shared Disk

664 CHAPTER 1Ti / PAR Al 1.1-A Moc:E;ssiNG

• Superior price/performancet By using oommodily building blocks, it is pos-
sible to put together a cluster with equal or greater computing power than
singic large, machine. Ed much lower cost.

Cluster Configurations

In the literature, dusters are claAlied in a number of different ways. Perhaps the
simplest classification is based on whether the computers in a duster share access to
the s.ame disks. Figure 18,9a shows a two-node chimer in which the only inteteuri•
nection is by means of a high-speed link that can he used for mesmige exchange to
coordinate cluster activity. 'Hie link can be a LAN that .is shared with other non-
cluster computers or it can he a dedical et! interconnection facility. In the Latter case,
one or more of the computers in the cluster will have x link to a / .A N or WAN so
that there is .a connection between the. server cluster and remote elicni Nntc.
that in the figure, each computer is depicted as being a multiprocessor, This is not
nccessary but does enhance both performance and nv2iilallilifv.

Figure 18.9 Cluster Configuration;

18.4 / CLUSTERS 665

In the simple classification depicted in Figure L8.9. the other alternative is a
shared-disk cluster. In this case, there generally is still a message link between
nodes. In addition, there is a disk subsystem that is directly linked to multiple com-
puters within the cluster. In this figure, the common disk subsystem is a RAID sys-
tem, The use of RAID or some similar redundant disk technology is common in
clusters so that the high availability achieved by the presence of multiple computers
is not compromised by a shared disk that is a single point of failure.

A clearer picture of the range of cluster options can be gained by looking at
functional alternatives. Table 18.3 provide,,, a useful classification along functional
lines, which we now discuss.

A .001111/1011_ older method, known as passive standby. is simply to have one
computer handle all of the processing load while the other computer remains in-
active, s Lind i n g by to take over in the event uf a failure: or the primary. To coordi-
nate the machines, the active, or primary. system periodically sends a "heartbeat"
message to the standby machine, Should these messages stop arriving, the standby
assumes that the primary server has failed and puts itself into operation. This
approach increases availabilit!,. , but does not improve performance, Further, if the
only information that is exchanged between the two systems is a heartbeat message,
and if the two systems do not share common disks. then the standby provides a func-
tional backup Frut has no access to the databases managed by the primary

futile 18.3 Clustering Mk:thuds: Benefits and Limitation.;

Clustering Method I Description 13kluelit , Limitations

Pamsive Standby I igh cost becansc the
secondary Server is
unavailable. for other
processing tasks.

A NeConduy wrwr
takes over in case of
primary server railurc.....

busy to implement.

Active Secondary The secondary server
is ago used for
Fyn rrehsing tasks.

Reduced ecW. bct:Cd uSc
secolidaty servers can he
used fin processing.

Increased complcxity.

Separate Servers High nelv...ork and server
li) 1..! I Tying

operation-,

High availability. Seporate servers have
their own disks, Data
are corninuouslv copied
from primary to
seoiridary server.

Servers Connected
to Disks

.Servers are cabled 10
I he same disks, but
each server owns its
disks. if one server
fails, its disks arc taken
over by the ocher
serve r.

Reduced network and
server overhead due Li,

elimination of copying
operations,

Usually. requires disk
mirrorin or RAID
toehnologs... to compen•
salt for risk of disk
FAUN:.

Servers Share Disks Muliiplc servers
simultaneously share
access to disks.

Low network and server Requires 1.ork ruanagor
overhead. Reduced risk software. Usually used
of downtime caused by with disk mirroring ul

disk failure. RAID technology.

666 cnAPTER PARALLEL PROCESSING

The. passive standby is generally not referred to as a cluster, The term ciuvrer
reserved for multiple interconnected computers that are all actively doing proces-
ing while maintaining the image of a single system to the outside world. The term
active secondary is often used in referring to this configuration. Thrce classifications
of clustering can be identified: separate servers, shared nothing, and shared memory,

In one approach to clustering, each computer is a separate server with its
own disks ,rind there are no disks shared between systems (Figure 18,9a). This ar..
ranement provides high performance as well as high 4.0V4ii4i lil y. In this C41SL'. Sorno

type of management or scheduling software k needed to assign incoming client
requcsis tei servers so that the load is balanced and high utilization is achieved. It
is desirable to have a failover capability, which means that if a computer fails while
executing an application, anothcr computer in the elusler can pick up and com-
plete the application. For this to happen, data must constantly be copied among
systems so lint each system has access to the current data of the other systems.
The overhead of this data exchange ensures high availability at the cost of a perfor-
mance penalty.

To reduce the communications overhead, most clusters now consist of servers
connected to common disks (Figure 18.9by In variation on this approach, called
shared nothing. the common disks arc parlitioned into volumes, and each volume in
owned by a single computer. If that computer fails, the cluster must be reconfigured
so that some other computer has ownership of the volumes of the failed computer.

It is also possible to have multiple computers share the same disks at the same
ti me (called the shared disk approAch), so that each computer has access to all of
1hc volumes on all of the disks. This approach requires the use of some type of lock-
ing facility to ensure that data can only be accessed by one computer at a tune.

Operating System Design Issues

1- ul I exploitation of a cluster hardware configuration requires some enhancements
to a singlc-systern operating system.

Failure Management
How failures are managed by a cluster depends on the clustering method used

(I able 16,3). In general. two approaches can be taken to dealing with failures: highly
available clusters and fault-tolerant clusters. A highly available cluster offers a high
probability that all resources will he in service. If a failure does occur, such as a sys-
tem goes down or a disk volume is lost then the queries in progress are lost Any
lost query, if retried, will be serviced by a different computer in the cluster. How-
ever, the cluster operaiing system makes no guarantee aboul the state of partially
executed transactions. This would need to be handled al the application level.

A fault-tolerant cluster ensures that all resources are always available. This is
achieved by the use of redundant shared disks and mechanisms for backing out
uncommitted transactions and cOrnuniting conitp[c.Eed

The function of switching applications and data resources over front a failed
system 10 an alternative system in the cluster is referred to as !allover. A related
function is the restoration of applications and daia resources i n the original systeni

t g.4 / CLUSTERS 667

one it has been fixed; this is referred to iv; fallback. Failback can be automated, but
this is desirable only if the problem is truly fixed unlikely to recur. If not, auto-
matic failback can cause subsequently failed resources to bounce back and forth
between computers. resulting in performance and recovery problems.

Load Balancing

A cluster requires an effective capability for balancing the load among avail-
able computers. This includes the requirement that the cluster be incrementally
scalable. When a new computer is added to the cluster, the load-balancing facility
should aulomalically include this computer in scheduling applieations. Middleware
mechanisms need lo recognize that services can appear on different mcmilcrs of the
cluster and may migrate from one member to another.

Paralleliziag Computation

In some cases. effective LLSie of a cluster requires executing 'software from a sin-
gle application in parallel. [KAPPOO] lists three general approaches to the problem:

* compiler; A parallelizing compiler dCitn-Mirke:i, al compile lime,
which parts or an application can be executed in parallel. These are that split
off to be assigned to different computers in the chaster. Performance depends
on the nature of the problem and how well the compiler is designed.

■ Parallelized upplication: In this approach, the programmer writes the applica-
tion from the. outset to run On a clits.1{;.;r, and uses message passing to move.clata.
as required. between duster nodes. This places Li high burden on the program-
mer but may be t he best. approach for exploiting clusters for some applications.

• Parametric computing: This approach eLi n be used if essence of the appli-
Ca Li on is En algorithm or program that must be executed a large number or
firnes.., inch lime with a different set of starting conditions or parameters. A
good example is a siniula Lion model, which will run a large. number of differ-
ent scenarios and then develop statistical summaries of the results. For this
approach to he effective, parametric processing tools arc needed to organi4e,
run, and manage the jobs in an orderly manner,

Cluster Computer Architecture

Figure 18.10 shows a typical cluster architecture. The individual computers are con-
nected by some high-speed LAN or Switch hardware. Each computer is capable of
operating independently. In addition, a rniddleware. layer of software is installed
in each computer to enable cluster operation. The cluster middieware provides a
unified Nvstern i mage to the user, known as a single•.system image. The midclleware
is also responsible for providing high availability, by means of load balancing and
responding to failures in individual components. I I-1 WA N991 lixl the. following as
desirable cluster raiddlcware Services and functions:

■ Single entry point; A user logs onto the cluster rather than to an individual
cotnputer.

Cluster rnitirlIewa re
Single system image and availability infrastructurc i

—*Lk %^%. %MN. 5,5 .V2.2 ASSIMMOZ. N.,X\M"

PC'workstation

• Comm SW

interface HW .

Pell+orkAalion

Nei interfaca HW

PCiworkstatim

Net interface 11 W

ts{'cwirk`statipn

inEerfact MC'

PCIworlsstatio•

Net. interface H

Parallel programming environment

Parallel applications

Sequential applications

High Speed \ eiv4orldSm itch

Figure 1S.10 Clusicr Computer Architect [Li t. I

1S:4 r CLUSTERS 669'

• Single rile hierarchy: The user sees a single hierarchy of file directories under
die same root directory.

I Single control point: There is a default workstation used for cluster]nanage-
ment and control.

• Single virtual networking: Any node can access any other point in the cluster,
even though the actual cluster configuration may consist of multiple intercon-
nected networks. I here is a single virtual network operation.

• Single memory space; Distributed shared memory enables programs to share
variables.

• Single job-management systemt Under a cluster job scheduler. a user can sub-
mit a job wilhout specifying the host computer to execute the job.

* Single user interllice: A common graphic interface supports al/ users, rci.lard-
less of the workstation from which Ihey enter the cluster.

• Single 11/0 space: Any nodc can remotely 2ccESS. any 110 peripheral or disk
device without know/edge of its physical location.

■ Single process Npaee: A uniform process-identification scheme is used. A
process on aliy node can create or communicate with any other process on a
remote node.

• Checkpointing: This function periodically saves the process state and inter-
mediate computing results. to allow rte] [hack recovery of a failure,

• Process, migration: This function enahle's load ha[ancini.

The East four items on the preceding list enhance the availability of the dus-
ter, The remaining items are concerned with providing a single system image.

urning to Figure Hi 0, a cluster will also include software tools for en-
abEi ng the efficient execution of programs that arc capable of parallel execution.

Clusters versus SMP

Both clusters and symmetric multiprocessors provide a configuration with multiple
processors to support high-demand applications, Both soEutions are commercially
available, although SMP schemes have been around far longer,

The main streno.h or the SMP approach is that an SMP is easier to manage
and configure than a cluster, The SNP is much closer lo the original single.-processor
model for which nearly ad applications are wrii cn. '1 .he principal change required
in going from a uniprocessor to an SMP is ro the scheduler function. Another ben-
efit of the SMP is thin it usually takes up less physical space and draws Icy.; power
than a comparable cluster, A fi nal important benefit is that the SMP products are
well established and stabEe.

Over the long run. however, the advantages of the cluster approach likely
to result in clusters dominating lhe high-performance server market. Clusters are far
superior to SMPs in terms of incremental 4ind ;i hsoluie swihbility. Clusters are also
superior in terms of availability, because. all components of the system can readily
he made highly redundant,

. ..precefrr*, ...7"Ler

670 CHAPTER iS / PARALLEL PROCESSING

in ierms of commercial products, the two common approaches to providing a mul-
tiple-processor system to support applications are SMPs and clusters, For some
years. another approach. known as nonttniCorm memory access (NUMA), has been
the sahjeci research and commercial NEJMA products are now available.

Before prr ceedina. we should define some terms often found in I he NUMA
literature.

• Uniform memory access (UMA): Ali processors have access to all pares of
main memor!,. , using loads and stores. The memory access time of a processor
to all regions of memory is the same- 'I'hc access times experienced by differ-
ent prE)eessors are the same. The SNIP organization discussed in Sections lE..2
and 1.S3 is UMA.

■ Nonuniform memory access (NUMA); All processors have access to all parts
of main rnerro using loads and stores. The memory access time of a proces-
sor differs depending on which region of main memory is accessed. The last
statement is true for all processors; however, for differeni proces!,ors. which
memory regions are slower and which are faster differ,

• Cache -coherent N LAI (CC -NU MA): A NUMA system in which cache co-
herence is maintained among the caches of the various processors.

A NI:MA s:...sicrn wilitiouL cache coherence is more . or less equivalent to a
cluster. The commerciai products that have received much attention reeenlly arc
CC - NUMA systems. which are quite distinct from bolh SVP:s and clusters.
hue unfortunately not always, such systems are in fact referred to in the commercial
literature as M A systems. This section is concerned onl!, . , with CC-NUMA
systems.

Motivation

With an MP system, there is practical hrnil Lo the number of processors that can
be used. An effective cache scheme. reduces the bus traffic between any one proces-
sor and main memory, As the number of processors increases, this bus traffic also
increases, Also, the bus is used to exchange ciiche coherence signals, further adding
to the burden. At some point, the bus becomes it performance bottleneck. Perfor-
mance degradation seems to limit the number of processors in an SNIP configura-
tion to somewhere between l6 and 64 processors, For example, Silicon G raphics
Power Challenge S Pis li mited to 64 R10000 processors in a single system; beyond
this number performance degrades substantially.

The processor limit in an SMP is one of the driving motivations behind die
development of cluster sy:.4tEins. However, with a cluster, each node has its own
private main momory: :11 P pliCiLl iortg do not see a large global memory. In effect,
coherency is maintained in software rather than hardware, This memory granularity
a [feels performance and, lo achieve maximum performance, software must be tai-
lored 10 I 11is environmene. One approach to achieving large-scale multiprocessing

NONUNIFORM MEMORY ACCESS 671

while retaining the flavor of SM P is NUMA. For example. the Silicon Graphics
Origin NUMA system is designed to support up to 1024 MIPS RI0000 processors
I WH IT971 and the Sequent NUMA-O system is designed to support up to 252 Pen-
tium II processors. [LOVE96].

The objective with NUMA is to maintain a transparent systemwide memory
while permitting multiple multiprocessor nodes_ each with its own bus or other inter-
nal interconnect system.

Organization
Figure 18.11 depicts a typical CC'-NUMA organization. There are multiple inde-
pendent nodes, each of which is, in effect, an SMP organization, Thus, each node
contains multiple processors, each with its own Ll and L2 caches, plus main mem-
ory, The node is the basic building block of the overall CC-NUMA organization.
For example. each Silicon Graphics Origin node includes two MIPS R111000 proces-
sors; each Sequent NUMA-0 node includes four Pentium II processors. The nodes
are interconnected by means of some communications facility, which could be a
switching mechanism, a ring, or some other networking facility.

Each node in the CC-N LAM system includes some main memory. From the
point. of view of the processors, however, there is. only a single addressable memory,
with each location having a unique systemwide address, When a processor initiates
a memory access, if the requested memory location is not in lhat processor's cache.
then the L.2 cache initiates a fetch operation. 11' the desired line is in the local por-
tion of the main memory, the line is fetched across the local bus. if the desired line
is in a remote portion of the main memory, then an automatic request is sent oil lo
fetch that line across the interconnection network, deliver it to the local bus, and
then deliver it to the requesting cache on that bus, All of this activity is automatic
and transparent to the processor and its cache.

In this configuration, cache coherence is a central concern. Although imple-
mentations differ as to details, in general terms we can say that each node must
maintain some sort of directory that gives it an indication of the location of various
portions of memory and also cache status information. To see how this scheme
works, we give an example taken from (1 3 11S)8]_ Suppose that processor 3 on node
2 (P2-3) requests a memory location 798, which is in the memory of node 1, The fol-
lowing sequence occurs:

P2-3 issues a read request on the snoopy bus of node 2 for location 798,
2. The directory on node 2 sees the request and recognizes that the location is in

nude I.
3, Node 2's directory sends a request to node 1. which is picked up by node l's

directory.
4, Node I 's directory, acting as a surrogate of P2-3, requests the contents of 798,

as if it were a processor.
5. Node 1's main memory responds by putting the requested data on the bus,
h. Node l's directory picks up the data from the bus.
7. The value is transferred back to node 2's directory,

WAN.M.S. ...44MINMMON14.1n

n lIcessor
2

Proce.ssor
-m

1.1 voclic LI cache LI cache

...ix6N.N.N1.+AMANWS ...20:Cs.S.M."6105.*OF

1.2 CEIL:111.'

Main
111C111017 1

Main
memory 2

Interconnect
network

Prace s ir
N-1

Li cadat

ANS206:000=0,4

L2 .cache

Main
memory N

Pl'OCQ ssor

I

Rte(!

Processor
#-/

LI cackl

Figure 18.11 CC-N MA Organization

18.5 NONUNIFORM MEMORY ACCESS 673

8. Node 2's directory places the data back on node 2's bus, acting as a surrogate
for the memory that originally held it.

9. The value. is picked up and placed in P2-3's cache and delivered to 1 32-3.

The preceding sequence explains how data are read from a remote memory
using hardware mechanisms that make the transaction transparent to the processor.
On top of these mechanisms, some form of cache coherence protocol is needed.
Various systems differ on exactly how this is done. Vire make only a few general
remarks here. First, as part of the preceding sequence, node l's directory keeps a
record that some remote cache has a copy of the line containing location 79S. Then,
there needs to he a cooperative protocol to take care of modifications. For exam-
ple. if a modification is done in a cache, this fact can he broadcast to other nodes.
Each node's directory that receives such a broadcast can then determine it 4i ny local
cache has that line and. if so, cause it to be purged. If the actual memory location is
at the node receiving the broadcast notification, then that node's directory needs to
maintain an entry indicating that that line of memory is invalid and remains so until
a write back occurs. If another processor (local or remote) requests the invalid line.
then the local directory must force a write hack to update memory before provid-
ing the data.

NUMA Pros and Cons
The main advantage of a CC-NU MA system is that it can deliver effective perfor-
mance at higher levels of parallelism than SMP, without requiring major sofmare
changes. With multiple NUMA nodes, the bus traffic on any individual node is lim-
ited to a demand that the bus can handle. However, if many of the memory accesses
arc to remote nodes. performance begins to break down. There is reason to believe
that this performance breakdown can be avoided. First, the use of Ll and L2 caches
is designed to minimize all memory accesses, including remote ones. if much of the
software has good temporal locality, then remote memory accesses should not be
excessive. Second. if the software has good spatial locality, and if Orillal memory is
in use, then the data needed for an application will reside. on a limited number of
frequently used pages that can be initially loaded into the memory local to I he run-
ning application. The Sequent designers report that such spatial locality does appear
in representative applications [LOVE96]. PinaIly, the virtual memory scheme can
be enhanced by including in the operating system a page migration mechanism that
will move a virtual memory page to a node that is frequently using it; the Silicon
Graphics designers report success with this approach [WHIT97].

There are disadvantages to the CC-N MA approach as well. Two in particu-
lar are discussed in detail in [PHS981. First, a CC-NUMA does not transparently
look like an SNIP: software changes will be required to move an operating system
and applications from an SIV1P to a CC-NUMA system. These include page alloca-
tion, already mentioned, process allocation, and load balancing by the operating sys-
lem, A second concern is that of availability. This is a rather complex issue and
depends on the exact implementation of the CC-NUMA system: the interested
reader is referred to IPF1S98].

674 J A PTFR I 8 / PARALLEL PR OCESS1

18.6 VECTOR COMPUTATION ?4,

Although the performance of mainframe general-purpose computers continues to
improve relentlessly, there continue to be applications that are beyond the reach of
the contemporary mainframe. There is a need for computers to solve mathematical
problems of physical processes. such as occur in disciplines including aerodynamics,
seismology, meteorology, and atomic, nuclear. and plasma physics.

Typically, these problems are charaelerized by the need for high precision
and a program that repetitively performs floating-point arithmetic operations on
large arrays of numbers. Most of these problems fall into the category known as
contimfous-field r/n u In essence, a physical situation can he described by a
surface or region in three dimensions (e,g., the flow of air adjacent to the surface of
a rocket). This surface is approximated by a grid of points. A set of differential equa-
tions defines the physical behavior of the surface at each point.. The equations are
represented as an array of values and coefficients and the solution involves re-
peated arithmetic operations on the arrays of data.

Supercomputers were developed to handle these types of problems. These
machines arc typicaliv capable of hundreds of millions of floating-point operations
per second and cost in the 10 to 15 million dollar range. In contrast to mainframes,
which are designed for multiprogramming and intensive the supercomputer is
optimized for the type of numerical calculation just described.

The supercomputer has limited use and, because of its price tag, a limited mar-
ket, Comparatively few Of these machines arc operational. mostly at research cen-
ters and some government agencies with scientific. or engineering functions. As with
other areas of computer technology, there is a constant demand to increase the per-
formance of the supercomputer. Thus. the technology and performance of the
supercomputer continues to evolve,

't here is another type of system that has been designed to address the need for
vector computation, referred to as the array processor. Although a supercomputer
is optimized for vector computation, it is a general-purpose computer, capable of
handling scalar processing and general data processing tasks. Array processors do
nut include scalar processing; they are configured as peripheral devices by both
mainframe and minicomputer users to run the vectorized portions of programs.

Approaches to Vector Computation

The key to the design of a supercomputer or array processor is to recognize that the
main task is to perform aril hmetic'operations on arrays or vectors of floating-point
numbers. In a general-purpose computer, this will require iteration through each
element of the array, For example, consider two vectors (one-dimensional arrays)
of numbers. A and If. We would like to add these and place the result in C. In the
example of Figure 18,12, this requires six separate additions. Mow could we speed
up this computation? The answer is to introduce some form of parallelism.

Several approaches have been taken to achieving parallelism in vector computa-
tion. We illustrate this with an example. Consider the vector multiplication C = A x B.
where A, 13, and C are N X N matrices. The formula for each element of C is

1 / VECTOR COMPUTATION 675

[1.5 3.5
7.1 39.7 46, -8

6.9 1.000.003 1{106.903

100.5 11 111.5

0 21.1 21.1

59.7 19- 7 79.4

A + 8 C

Figure 18.12 Example of Vector Addition

where .4, ./.?, and C have elements and C i i , respe.ctively. Figure 18.13a shows
a FORTRAN program for 1.his eompiii ;ition Ihai can he run on an ordinary scour
processor.

One approach to improving performance can be referred to as vector process -
Lux, assumes Thal i1 is posM.ble to operate on a one-dimeasionak vector of data.
Figure 18.1311 is Li FOR . 1•1-Z. AN program with a ricw Corm cif inkdruction Lh1l aliow; ,::,

DO 100 — I, N
DO 100J = 1,N
CO, = 01.0
DO 100 K = I, N
C.7 0,.1) — Atl, K}

100 CONTINUE

fa) Scalar procLising

1)0 MO I = 1, N
Ca„.1)= 0.00 = 1,N)
DO Et10 = 1,
CU. 31 = 3) + Ad, K) + 13(K, 3) 13 = I, 1'0

IOU CON'T [NUE

(b) Yottor piocessing

DO 50,1 — 1, N —

FORK 100
5t) CONTINUE

N
I of/ DO 200 I = I N

.11). = 0.0
DO NO K = I, N

.1) = .C(1 : 1) I AO : IQ • BA, .1)
2010 CONTINUE

(c)Parki1.14,71

Figure l8,13 Matrix N1uI plicatioir (C = A [3)

676 CHAPTER 18 / PARALLEL PROCESSING

vector computation to 17FC pcc ifi c 1 . The notation = 1, M indicale.s ihal. opera.
tions on a]] indices .1 in the given interval are to he carried out as a single operation.
How this can be achieved is addressed shortly.

]'he program in Figure J.& f 3h indicates that a]] the elements of the 11). row are
to he computed in parallel. Mach clement in the row is a summation, and the sum-
mations (across K) are done serialiy rather than in parallel. Even so, only A2 vec-
1or mullipiications are .required for this algorithm as compared with • 3 scalar
multiplications for the scalar shgurirhtn.

Another approach, pundit.' processirex, is illustrated in Figure 18.13c. This
approach assumes that we have N independent processors that can function in par-
allel. '1 .0 utilin processors effcel ivety, we must somehow parcel ;Jul. the computa-
tion to the wirions processors. '1'wo prinliti e arc LiScd. 'che primitive FORK n
causes an independent process to be started at location .}2. In the meantime, the oriv-
inal process continues execution al the instruction immediately following the
FORK. Every exi2eution of a FORK ipawns 4t new process - 'I he JOIN instruction is
essentially the, inverse of the. FORK. The statement JOIN N causes N independeni
procesK:s to he merged into one that continues execution at the instruction ['allow-
ing the JOIN. 'I'he operating system must coordinate this merger, and so the execu-
tion does not continue until ati N processes have reached the JOIN instruction.

The program in Figure 18.13c is written to mimic the behavior of the vector
processing program. In the parallel processing program. each column of C com•
puted by a separate process. Thus, the elements in a given row of C are computed
in parallel.

The preceding discussion describes approaches to vector compul alion is logi•
Cal or irehiteetur'aI tcrms. Let us [urn now lo a consideration Of types of processor
organization that can be used to implement these approaches. A wide variety of
organizalions have been and are being pursued. Three main categories stand caul:

• Pire[inCd ALU

• Parallel ALUs
• Parallel processors

Figure 1 8.14 rat es the first two or inese approaches. We have already dis-
cussed pipelining in Chapter 12. Here the concept is extended to the operation of
the ALA'. Because floating-point operations are rather complex, there is oppotw-
nity for decomposing a limning-point opera! n sUiges % so [hat diIYercnL slaps
can operate on differcin sets of data concurrently. 'Ellis is illustrated in Figure
1 & [5a. Fioating-point addition is broken up into four stages (see Figure 9.22): corn-

s hi ft, add, and normalize, A vector of numbers is presented sequentialiy to the
first stage. .2.k!, lIie processing proceeds, four different sets of numbers will he oper-
ated on concur' entl!,.y in the pipeiinc.

It should be clear that this organization is suitable. for vector processing. To
see this. consider the insirnoion pipelining described in Chapter 31 The processor
goes throualt a repetitive cycle of fetching and processing instructions. In the.
absence of branches, the processor is continuous)}' fetching instructions from
sequential locations. Consec.pcniiy. Itie. pipeline is kepi full and a savings in time i.

18.6 1 VECTOR, COMPUTATION 677

1E111E111

re ister.ki.

Pipclined ALU

•111=1■1-1-1.4.-1-m- .■

Plpelltnd ALI;

Input
rt•Ohters

Output
register

EC ED
Dilemorlk.

(b) Parallel Allis

Figure 18.141 Approa4:14Cs io Vcctor Computation

achieved. Similarly, a pipelined ALLJ will save time only if it is fed a stream of data
from sequential locations. A single, isolated floating-point operation is not weeded
up by tit pipeline, The speedup k achieved when a vector of operands is prewn W(1
to the A1,I.J. The control unit cycles the dni a through the ALU until the entire vec-
tor is processed.

The pipeline operation nin he further enhanced if the vector elerncn Es arc
available in regisiQrs rather than from main memm'y.'fhiS is in fact suggested by Fig-
ure 18.14a. The elcrnents of each vector operand arc londcd as a block info ci vector

ISOM
BONES
MEM

'In

678 CI LAPTFR iSZ1«RALLE1

C

PROCESSING

A N

Compare Shift Add Normalize
y exponent signifitand Fignificands

•

(a) Pipelined ALU

X) , Y1

XI, K.'
6w

C A N ■•••

Z,

23

C S A N
■M. C A N

gr."'""." C S I A
y, C S A N 2 ;

X& Yri C S A N Z h

C S A N 2 7

C S A N 2,

1+!.. C 5 A N
IL& 3ttn C S A N

5 , Y11 C A N
52 , YI: C S A N

(h) Four parallul ALILls

Figiirc 18.15 Piplined Processing

register, which is simply a larE.e bank 4D identical registers. The result is also placed
in a vector register. Thus, rnost operations involve only the use of registers. and on1
load and store operations arid the beginning and cnd of a vectoroperation require
ateCess Ito ramory.

The mechanism illustrated in Figure [8,15 and be referred to as pipuking
within an opertaion, That is, we have a single arithmetic operation (e.g,. C — A+ B)
I hat is to be applied to vector operands, and vipelining flows mulliple VeeiOr Cle-
ments to be processed in paratlel. This mechanism can be au. mented with 22e-

ing rossoprcaions. In this latter ease. 1herc is a sequenceof arithmetic vector

1$il VECTOR COMPUTATION 679

operations, and instruction pipelining is used to speed up processing. One approach
to this, referred to as chaining. is found on the Cray supercomputers. The basic rule
for chaining is this: A vector operation may start as soon as the first clement of the
operand vector(s) is available and the functional unit (e.g., add, subtract, multiply,
divide) is free. Essentially, chaining C41 ust: results - issuine from one functional unit
to he fed immediately into another functional unit and so on, If vector registers are
used, intermediate results do not have to be stored into memory and can be used
even before the vector operation that created them runs to completion.

For example, when computing C x A) - B. where A. B, and Care vec-
tors and s is a scalar, the Cray may execute three instructions at once. Elements
fetched for a load immediately enter a pipelined multiplier, the products are .sent
a pipelined adder, and the sums are placed in a vector register as soon as the adder
completes them:

1. Vector load A Vector Register (VR1)
2. Vector load B VR2
3. Vector multiply s VR1 VR3
4. Vector add VR3 + VR2 V1 4.
5. Vector store VR4 ---> C

Instructions 2 and 3 can be chained (pipelined) because they involve dilf 2.ereriL mem-
ory locations and registers. Instruction 4 needs the results of instructions 2 and 3,
but it can he chained with them as well. As soon as the first elements of vector reg-
isters 2 and 3 are available. the operation in instruction 4 can begin.

Another way to achieve vector processing is by the use of multiple ALIA in a
single processor, under the control of a single control unit_ In this case. the control
unit routes data io ALLIs so that they can function in parallel. It is also possible to
use pipelining on each of the parallel ALUs. This is illustrated in Figure 18. I:rib. The
example shows a case in which four ALUs operate in parallel.

As with pipelined organization, a parallel ALU organization is suitable for
vector processing, The control unit routes vector elements to A I.Us in a round-robin
fashion until all elements are processed. This type of organization is more complex
than a single-ALU CP1.

Finally, vector processing can be achieved by using multiple parallel proces-
sors. In this case, it is necessary to break the task up into multiple processes to be
executed in parallel. This organization is effective only if the software and hardware
for effective coordination of parallel processors is available.

We can expand our taxonomy of Section 18.1 to reflect these new structures,
as shown in Figure l8.16. Computer organizations can be distinguished by the pres-
ence of one or more control units. Multiple control units imply multiple processors.
Following our previous discussion. if the multiple processors can function coopera-
tively on a given task, they are termed parallel procemrs.

The reader should he aware of some unfortunate terminology likely to be
encountered in the literature. The term veciur proces.vor is often equated with a
pipelined ALL organization. although a parallel ALL; organization is also designed

680 C1-1,VIER. PARALLEL PROCESSING

Single control unit Multiple control unit

Uniprooessor Pip2lined ALU Parallet ALU Multiprocessor Parallpl proces306

Figure 18.16 A TaKonorni.... of Computer Organizations

for vector processing, and, as we have diseusscd,.a parallel proCessor organization
rmiv ailso be designed for vector processing. Array proceNsing ins sometimes ascii
to refer to a parallel although, a4ain, any of the three organizations is optim-
ized for the processing of i.rrays. To make matters worse, array processor usually
refers tO an auxiliary processor attached to a gencral-purpose processor and and
to perform veclor computation, An array processor may use. either the pipelined or
parallel ALU approach,

At present, the pipelined ALU organisation dominate* the marketplace.
Pipt:lined systems are less complex than the other two approaches. Their control
unit and operating system design are well developed to achieve efficient resource
allocation and Itigh performance, 'l'he remainder of this section is devoted to a more
detailed examination of this approach, using a specific example,

IBM 3090 Vector Facility

A good example of a pipolined ALU organization for vector processing is the Kc-
tor faeility developed for the IBM 370 architecture and implemented on the Net-
end 3090 series [PADE88, .I .UCK87].`Ubis facility is an optional add-on to the basic
system but is highly integrated with i1. II resembles vector facilities found on super-
computers. such as the Cray famil!,. , .

The IBM facility makes use of a number of vector registers. Each tegicter is
actually a hank of : ,:.aar registers, To compute the vector sum C — A — B, the vec-
tors A and B are loaded into two vector regisLers- The data from these registers are
passed through the ALU as fast as possible, and the results are Mired in a third vec-
tor register, 'Mc compulation overlap. and the loading of the input data into the reg-
islers in a block, results in a significant speeding up over an ordinary ALU operation.

Organization
The IBM vector architecture, and si milar pipelined vector ALUs, provides

increased performance over loops of scalar arithmetic instruct ions in three ways:

• The fixed and predelermined structure of vector data permits housekeeping
instructions inside the loop to he rcpInced by faster internal (hardware or
microcoded) machine operations.

■ Data-access and arithmetic oper;t0ons on several successive vector elements
can proceed concurrently by overlapping such operation,., in pipelined dcsiUn
or by performing multiple-element operations in parallel,

Scalar
procogor

----- - - - -

Vector
processor

Scalar values Nt'eetor
proorssor

Scalar
pAPcesgor

3090)1,1 its i 1 81

CPU

Vector elements

Vert+sr instructions

[Main memory

._,

..::.„.,

Itstruction
decoder

t8.6 1 vEcTOR 12olviPuTATE0N 681

Figure 18.17 IBM 3090 with Vector Facility

■ The use of vector registers for intermediate results avoids additional storage
reference,

Figure 18.17 shows the general organization of the vector facility. Although the
vector facility is seen to be a physically separate add-on to the processor, its Eirchi-
t lt urc!, is an extension of the System/370 architecture and is compatible will, it, '1 -ic
vector facility is integrated into the Systern131{1. archilccturc in the following ways!

a Existing SystemI370 instructions are used for all scalar operations.
• Arithmetic operations on individuai vector elements produce exactly the same

result ;is do corresponding System/370 scalar instructions, For example., one
design decision ccaneerricd the dufiniiit101 of the rcsull in a floating-point
DIVIDE operation. Should the result be exact, as it is for scalar floating-point
division, or should an approximation be allowed that would permit higher-
speed implementation but could sometimes introduce an error in oar or more
low-order bit positions? The decision W i S made to uphold complete compati-
bility with the System/37C) rchitecturL. 2Lt the expense of a miner performance
degradation.

• Vector instructions are interruptible. and their execution can be resumed from
the point of int erruption after appropriate action has been iaken, in a manner
compatible with the System/370 program-interruption scheme.

• Arithmelic cxceptions are the mme as, or cxtcnsions cif, exceptions. for the
scalar ri t h m et ic instructions of the System/370, and si milar fix-up routines can

682 CHAPTFR I / PARALLEL PROCESSING

be used. To accommodate this, a vector iEtterruption index is employed that
indicates the location in a vector register that is affected by an exception (e.g.,
ovcrliow, Thus. when execution of the vector instruction resumes, the proper
place in a vector rcgkter is wxcsbcd•

• Vector data reside in virlua] storage, with page faults being hanclicd in a stan-
dard manner.

.1 . his level of - integration provides a number of beuctitii. Existing operating sys-
tems can .support the •eettpr faeitity with minter extcrNions. Hxisting application pro-
grams, language compilers, and other software can he run unchanged. Software that
could lake advantage of the vector facility can be modified as desired.

ItegiNters

A key issue in the design of a vector facility is whether operands are located
in registers or memory. 'He I BM Organizalion is referred lo ax re, isler -o -register,
because the vector operands, both input and output, can be staged in vector regis-
ters. This approach is also used on the Cray supercomputer. An alternative
approach, used on Control Data machines, is to obtain operands directly from mem-
ory. The main disadvantage of the use of vector register. ,, b. dial the programmer or
compiler must take them into account for good performance. For example, suppose
that the length of the vector registers is K and the length of the vectors to be
processed is N K, In this case, a vector loop must be performed, in which the oper-
ation is performed on 1.< elements al a time and the loop is repealed timm The
main advantage of the vector register approach is that the operation is decoupled
from slower main memory and instead takes place primaril!.. , with registers.

The speedup that can be achieved using regislcrs is clemtnistralci in Figure
MD.; IPADE881, The FORTRAN routine multiplies 1 VC.C. Or A by vector B to pro-
duce vector C, where each vector has a real part .(AR, BR. CR) and an imaginary
part (AI, 131, CI). The 3(190 can perform one main-storage access per processor, or
clock, cycle (either read or write), has register that can sus1ain two acceNses fot
reading and one for writing per cycle, and produeus one re ell per cycle in its arith-
metic unit. Let us assume the use of instructions that can specify two source
operands and a result: Part a of the figure shows that, with memory-to-memory
instructions, each iteration of the compirlotion requires a total of 18 cycles. With a
pure register-to-register architecture (part b). this time is reduced to 12 cycles. Of
course, with togisler-lo-register operation, the vector quantities must he loaded into
the vector registers prior to comp Llt ation]nd stored in memory rtcrviird. rt,r large
vectors, this fixed penalty is relativel!, . , small. Figure 18,18c shows that the ability to
specify both storage and register operands in one instruction further reduces the
ti me to 10 cycles per iteration. This latter type of instruction is included in the vec-
tor architecture?

'For die 370390 arLII L OMA-C., the only three-opernnd inSLTLI.13LiOrLS rcizisler and stcir i tor taucocmr. , R5)
specify iwo 45prrands in registers :Ind one in memory. pan a of the txrimpte, we aNsuine ihe cx:51etice
of three-144:1am] inaructions in which kilt operands are in main memory. This it done for puiposes of
compari:46n rind, in fact. such an itutruccii. :511 format could have been clioseu for the vector archticcturc.
K r2orrspoulicl iimtructions, discussed subsucluen ly, airford u furtEsex reductiDri.

Operation Cycles

AR (J) VI(J)
VI0) f3R0,1 V2(3,1
A10) -4 V3(1)
V3(J)
V20) - V40) —> V5(f
V5(T) CR111
V I (1) BRJ) Y60)
V4(J)* BR.(f) -4 V70) 1
V6(.11) V7(J) VR(J)
V&.0 C1(J)

TOTAL

Operation

.AR(J) BR(1) -4 TI(J)
MO) * 5Iaj T2(J)
1. 1.{a) - 'r2(1) CRW
AR(J) 1' B1(3) 'no)
AI O) . RRIJ) —)1.1-1.1)
T3(J) -F T4(J) -4 no)

Cycle.;

3
3
3

3
3

TOTAL I

Operation CycleA

ARO) - V 11.1)
BR(T) > V2,0)
V I I.JJ V2(.1) V3(1)

Id) V40)
1110i
1/40 # V5{J).
V311) V6(.1) -4 V7))
V7(J) —> OW)
V1(J) V5(.1) VW,J:i
V ,JJ,I)* V2(J) V9(.1)
l• 11{J1 + VW) -2) YO(J)
Vrith • C41)

TOTAL 12

Ib) Register to register

Operation Cycles.

AR(1) -4 VI(Ji
[(.1) * BR(.1) V2firF

Al(j) V3())
V2(J) V411* M(J) —) V2(J)
V2(3) CRUI

43)* i3R,f) —5, 1/4(J J
V.:111) - V30)* RR(J) V50I)
V st,I} -4 Cit,r)

TOTAL

{c) SIorrtgc 10 register

Vi = Vector regisW9
AR, TiR, AI, BI = Operands in memory
Ti = Temporary Ic.i42ations in memory

Stor;J :124: In storage

1:13) Compound instnietinn

18,6 / VECTOR COlv1PUTATION 683

FORTRAN ROI.JTINEz

Do [00 J 1,50
CR(.1) = ARCO A1(.1 j 4 B.1(.1)

100 C:10i = ARO)* BRIJ i Afib*BRtJ I

Figure MIS Alternative Programs for Vector

Figure 18. t9 iiiustrates the registers that are part of the IBM .;()90 vector facil-
ity. There arc sixteen 32-bit vector registers. The vector registers can ako he cou-
pled to form eighi 64-bit reets -Jr registers. Any register clement can hold an inivor

or Ilu1iting-point value. Thus, the vector registers may be used for 32-bit and 64-bit
integer values, and 32-bit and (54-bit floating -point values.

The architecture specifies ihat each register contains from S to 512 scalar cie-

MetIA- The choice of actual length involves a design trade-off. The time to do a vec-
tor operation consists essentially of the overhead for pipeline startup and register
filling plus one cycle per vector ulernual, Thus, the use of a large number of register
elements reduces the relative start tii time Cor a computation. However, this efficiency
must he balanced aaainst the added time required for saving and restoring vector reg-

Figure MN 1:to0.7.wrh of the IBM 3090 1,A2cior

inters on a proeuss swiwti and the practical cost space limits. Thcse considerations
led to the use of J.28 elements per register in the curl -cp.!, 3090 implementation.

Three additional registers arc needed by the vector faeility. The. vector-mask
register contains mask bits that may he used to select which eletricrits in the vector
registers are to he processed for a particular operation. The Arrector-status register
conlains control fields, sueh as the vector count, that determine how many elements
in the vector registers are to be processed, The vector-activity counl keeps track of
the time spent executing vector instructions,

Compound lnstructi m

As was discussed previously, instruction execul ion can be overlapped usiq

chaining to improve performance. The designers of the vector facility chose

684 CHAPTER 14 / PARALLEL PROCESSING

Vector-activity cowl!

(0).

8 (0)

10 (0)

15 (0)

Vector
(registers

6 (0).

(41) I 5 (0)

2 (0) 3 W)

0 (0)

0 (1)

0 (2)

0 (127)

32 bits .

4 64 bits

IU
..
le

tn
en

ts

7 (0)

1

Vector-stahtsrcg3ster

Vector•
mask
register

128 bits

I-

' 'I

18.6 / vEcToR COMPU 1 ,vrIoN 685

not to include this capubny for several reasons. The Systeni1370 architecture would
have to be extended to handle complex interruptions (including their effect on vir-
tual memory management). and corresponding changes would he needed in
software. A more basic ismie was the cost of including the additional controls and
register access paths in the ,L•ector facility for generalized chaining.

Inslead, three operations are provided that combine inter one instruction (one
opcode) the most common sequences in vector computation, namely multiplica-
tion followed by addition, subtraction, or summation. The storage-to-register
MULTIPLY-AND-ADD instruction. for example., fetches a vector from stor-
age. muttiplies it by a vector from a'register. and adds the produci Lo a third vector
in a register. By use of the compound instructions MULTIPLY-AND-ADD and
MULTIPLY-AND-SUBTRACT in the example of Figure 18.18, the total time for
the iteration is reduced from 10 to 8 cycles.

Unlike chaining, compound instruelions do not require. the use of additional
registers for temporary storage of . intermediate results, and they require one less
register access. For example, consider the following chain:

A. —5. '„FR.

\TRi - VR2

In this case, two stores to the vector register VR1 are required, In the. IBM archi-
tecture there is a slorage-to-register ADD instruct ion. With this instruetion. only the
sum is placed iri VR1. 'The compound instruction ;i1 ,..0 Ihu 'iced LO reflect in
the machine-state description the concurrent execution of a number of instnictions,
which simplifies status saving and restoring by the operating system and i ihe han-
dling of interrupts.

The Instruction Set

Table EK.Lt summarii.es the aril hmetic and logical operations that are defined
for the vector architecture. In addition, there are memory-to-register load and
register-to-memory store instructions. Note that many of the instructions use a
three-operand formal. Also, many instructions have a number of variants, depend-
ing on the location of Lhc operands. A source operand may be a vector register (V).
storage (S). or a scalar register (Q). The target is always a vector register, except for
comparison, ihe result of which goes MI° the ,...ector-mask register_ With all Lhesc
variants, the total number of ()Nodes (distinct instructions) is 171. This rather large
number. however. is not as expensive to implement as might be imagined. Once the
machine provides the arithmetic units and the data paths to feed operands from
storage_ scalar rvgisl UN, and wool- regis ters tU the vector pipelines, the major hard-
ware cost has been incurred. The architecture eau. with little difference in cost. pro-
vide a rich set of variants on the use of those registers and pipelines.

Most of the instructions in Table l&4 are self-explanatory. The two summa-
tion instructions warrant further exphiMilion. The Liecuniulate operation adds
together the elements of a single vector (ACCUMULATE) or the elements of the
product of two vectors (MULTIPLY-AND-ACCUMULATE). These instructions
present an interesting design problem. We would like to perform this operation as
rapidly as possible. taking full advantage of the ALU pipeline. The difficulty is that

Table 1..4 HE R Nil 3090 'Vector Arithmetic and I A:sgical

Data Types

Instruct i onS

Floating Pcsiu1.

Binary or Operation Long Short Logical Operand Lociino

A (Id FL FS B1 V + V —5 v V + R —2 V Q , V V Q - S •V
S LibtTHC I H. FS 1711 V - V v V • S —s V 0 V • V 0 - S ,V
Isetatipiy Ft FS Fil V ...< V eV v x v . V 0 x v >V 0 x 5 —s V
Divide FL FS V ; V .V 0 1 V —5 V 01 S —5. V
(...oinpave FL FS DT V • V > V V • S. —.5. V 0 • V —5. V 0 • S —). V
Muliiply arid Add FL FR V+VxS —2V V ! OxV-2.V V I QxS-0/
Mulnply and Sub[ruct FL FS V - VxS —> V V QxV-2'V V QxS•-sV
hvfuliirly and AccimilihiLe Pl. FS — P 4- • V —> V F . • S • V
Coi El pEC muni FT. FS Y-11 .V —2 V
Positive Abscrlutc FL FS RI i V 5 V
Nr.gatve likbsolu(e FL FS 131 -IVI > V
Maximum FL ES 0 - V 0
Maximum Absoluie FL FR Q - V —2 0
Minimum 14. FS - 0 - V ->0
Swami RIAcal C O - V —> V
Shift RiOL 1. ..ogical 1.0 - V —2 V
And LO V & V —2 V V & 5') V 0 et V -.> V 0 & S V

tA..Z. DO v 1 v -... V v I S --5 V 0 i V—> V OIS —> V

1-. 1; C.Itr51Ve-OR LO v ED V >V V (X; 5 —2 V 0 '‘y‘ils,l —2 v Q .3-
.) S —, V

ExpEraufwn: Petit Types
FL Lnrip, ,q puio I
1•S km , k puio I

Ri 112. 171 MAT

LO 1.(.9.1C;b1

Optracid1.1.1ilirions
✓ V:L:11u rt.pster

▪ SL , lar OCCICT21 Or fib i I r ,,Lut registor)
P w111:,<_ in _ .•

,L a

/ RECOMMENDED READING 687

[11C Sum ;if two numl-re.:TN pul indo Ih4 pipeline is obi wail ahlc until se sera[cycles
12iler. Thus. the third element in the vector cannot he added to the sum of the first
t wo elements until those two elements have gone through the entire pipeline. To
overcome this problem, the elements of the vector are added in such a way as to
produce four partial sums. In partictilm. elenicribt 0. 4, 8, 12.... , 124 are added in
that order to produce partial sum () elements 5, 9, 13 L25 to partial sum 1:
elements 2. 6, 111, 14 126 to partial sum 2; and eterner& 3, 7, 1 I, 13 127 to
pm- LiA I sum 4. Fach cal' partial sums can proceed through the pipeline at top
speed. because the delay in the pipeline is roughl ,.t.

, four cycles. A separate vector
register is used to hold the partial sums. When all elements of the original vector
have 1-34.:T: n proeu:ssed, the lour partial sums arc added togelher to produce the final
result. The performance of . this second pHs': is not critical. because only four vec-
tor elements are involved.

18.7 RECOMMENDED READING erekrere- e..r_Feett.
..r.".„

ICATAN-I sury.:.ys the orinicipls of mulliproeessors and examines SPARC• based S7' . ,r1Ps in
detail. Shi,IPs Are. MS() covered some detail 01 [STON911 and I HWAN93].

[M1LELIttl is an overview of cache coherence algorithms and techniques for multi-
processors, with an emphasis on performance. issues. Another survey of the issues relating to
cube coherence in multiprocessors is 11-11,193 .1. [TOMA931 contains rcprints of many of the
key papers on the subject.

[PFIS98] ki.ksential reading for anyone interested in chimer": 1114 .: 1) 0k 00 the hard-
ware and soliwairc desip] issues and conirasts clusiors 4ti I Ia SM ;old Elie boot also
eohtains a solid technical description of SNIP and N I !VI A 1,1 W-,1R11 1 ,N11...! , .. A ihorough treat-
ment of cliasers can' he fouitd in 1131.2(Y99A/ Ices technical

or entsiers. with gated commentary cmniicatN ficJilltnefehl prOcilletS.
GOOLI discussions of vector computation can he found in I STONC31

BUTY99it IlLtyva. nigh PerPralancT (Mater ArchitecLarvs and Sysiems.
Upper Sadc,11.L. 1 3rentie2: Hall 1999.

ittriY99h Buyyti, R. High Pc.t.pm.n.ancci. C uvret Gokiipuriri.s.... Programming and Appliev-
r io ns. Upper Saddle River, NJ: Prentice 999.

CATA94 Cala nw..aro, Mu friprocessor System A rchitnenws. unutin View, CA: Sun-
soft Press, 1994,

11WA.N193 1.1wting, K. Advanced Computer Art . 17/76.c.refre ., Ne..Av York: MeGiraw-Hill, 1993.
J. M193 i,ilja, I). "Cache (..tihere.nce. in LariN -Seale. Shat red - Memory Multipreeessors:

Issues and Comparisons," 4e.41 (.'on paireg ,ti, rmy.s, September t 99'3.
M11-1-E00 Mileukovie r A, - Aellieving High PO'ocmanee in Bus-Based Shared-Mernory

Multiprocessors.' irEr .J uly--September 2000.,
PFIS914 Pfister, G. In Seafeli of Ousters. Upper Saddle River, NJ: Prentice Hall, 1.998.
STON93 Stone : H. If igh- Per fonnance Completer Arc hifecaere. Reading, MA: Addison-

Wesley.
T1)NIA9 .3 Tonutsevie, M... and Miluiinovic, V. The Cache Coherence Problem irE ShOrd'i

MetIWY
,
112.4111PrOCZTSOn: Hardware. Solutions. Leas Alairsit‘N. WEE Computer

St kits}' Pe ess, E 993.
Weptant. P. Cleturts for High Apedlar,fay. Upper Saddle River, Prentice

Hall : 2001..

and [HWAN .:}31.

active standby
enure 1:0.110 -enee:
cluster
directory protociii
tailback
fail aver

ME51 prompt)]
multiprocessor
rumitui if Pi'm 1110.Mo ry

t1ccess (NUMA)
passive standby
snoopy protocol

symmetric multiprocessor
(SWI P)

Uniform memory access
(LIMA .)

niproceSSOr
vector r;i Ci I [t]...

688 CHAIT1I.R. 114 I PARALLEL PROCESSING

18,8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Q uestions
18.1 Lis(rlrltl briefly define three types of computer system organization.
18.2 What are the chief characteristics of an SMP?
11L3 What are game of the potential advantages of an SMP compared with a uniprocesser7
18.4 What are some of the k ey OS design iisties for an sm
18.5 lvVhwt i4 the difference between software and hardwire cache 4 . 0111.:R!Ill Nc-

P1l • lik057

18.6 What the Meaning (31 each of ale four states in the M !Will trt:i I?
18.7 What are some of the benefits of clustering!
181 Whal. is the difference between lailover and failbackl
18. {1 What are the differences among U.MA. NUMA. and CC-NUMA?

Problems
181 Let a he the percentage of program code that can be executed simultaneously by G

processors in a computer system. Assume that the remaining code must he executed
sequentially by processor. Each processor has an execution rate of MIPS.
a. Derive an expression for the effective MIPS rate when using the system for exclu-

sive execution of Ibis 11441)41;1in, in terms of o. re, and x.
b. If x — l(t and x — 4 i11 value of a that will yield a system per-

formance of 40 MIPS.
18,2 A mulliprocessor with eight processors has 20 attached tape drives. Them are A Earge

number of jobs submitted to the system that each require a inasim um of lour tape
drives to complete execution. Assume that each job stasis running with only three
tape drives for a Long period before requiring the fourth tape drive for a short period
toward the end of it (Pwation. Also assume an endless supply of such jobs.
a. Assume the scheduler in the OS will not start a job unless there are four tape

drives available. When as jo1w is started, four drives are assigned immediately and
are not released until die job ftnishes. What is the maximum number of john that
can he in progress at once? 'What arc the waximuin and minimum number - of tape
drives that may be left idle as a result of 111k policy . ?

b. Suggest an alternative policy to improve Ea lie drive milintion and at the same time
avoid system deadlock. What is the ma kunum number of jobs that can be in
progress at once? What are the bounds 4)11 the number of tape drives.?

18-3 Can you toresee any problem with the write-once cache approach on bus-based mul-
tiprocessors'i III so. 'LLiggc.gt a soimion,

18.4 Consider a situation in which two processor5 in an SMP configuration. over time,
require access to the same line of data from main inerrioq. Both processors have a
cache and use the 'IES] . protocol. Initially, both cachoti have an invalid copy oldie line.

18.8 / KEY TERMS, P...EV1EW QUESTIONS, AND PIWBI.P.M.S 6.89

Main
memory

Figure 18.20 MEM 'Example: Processor E Rads Line x

figure 18.20 depicts the consequence of a real of line x by Processor Pl. If this is the
start or a sentience of aecessei. draw the. qubsequeni figures for the following sequence;

1. P2 reads x.

2. PI writes to x (for clarity, label the line in F1's cache x').

3. PI writes to x (label the line in Pl cache

4. P2 reads x.
18.5 Figure 18.2 I shows the state diagrams of two possible cache cohercnce protocols.

Deduce and explain each prolocol, and compare each to MESA.

18.6 Consider an SNIP with both Li and L2 caches using the MESI protocol. A4 42A.P .1;:iiiit.hl

i n Section 183, one of flour states is associated with each line in the L2 cache- Are all
four stales also needed for each line in Ihc. LI cache? ff sea, why? If explain which
state or states can he elitninalcd.

18.7 table 18.1 show c. ih1 ire lotruanee of a three-level cache arrangement for the IBM
The purpose of his problem is to determine whether the inclusion of the third

level of cache seems woriliwhile. Determine the access penalty (average number of
PLT cycles) for a system with only an LI cache, and normalize that value to 1,0. 'then
deiermi I1Q the normalised access penally when both an LI and L2 cache are used. and
the access penalty when all three caches are used. Note the amount of improvement
in each case and state your opinion on the value of the L3 cache.

18.8 The following code segment needs to he executed 64 tiIne.s for ilic.1.1.....valtimion Of the
vector arithmetic expression; D(I) = A(I) -F B(I) x 1.:(1) for 0 I 63.

RI : Brn .(= + I)/
:..ad R2,

-p.ry;.L.jr„.1.,.
Crn
P1 P2 . 1 X

43. 4- I)/

Inad , /23 Eeraory I :I

IRS. iR3 (R3I F :9.11/
1,-..ad DI, R3 /mencry (0 (R3)/

R(i)

W(i) 7_.? 0 Zij)

Rti 1 W t i)
Ry)

W(rj= Write to line by processor o"
R(i) = Read line by processor i
Zia = Displace line by cache i
14I1,0= Write Lo line by processor] (j1‘
R(/) = Read line by processor j
Zij) = Displace line by cache j Co

Note: State diagrams are fur a
given line in cache i

Figure 18.21 Two Cache Coherence Protocols

18.8 / KEY TERMS. R_EVLEIN QUESTIO:NS, AND PHO.BLEMS 691

where R. R2, and R3 arc processor registers, .;ind a, u, -y, (.1 arc the starting main
memory addresses of arrays B(I), C.J). A(I), and D(I), respectively. Assume four
clock cycles for each Load or Store. two cycles for the Add. and eight cycles for the
Multiplier on either a uniprocessor or a single processor in an SIMD machine.
▪ Calculaid lcilayl n umber or processort:yeles needed to execute this code se ment

repel-0.21.1[y r:14 li mes (5 11 SISD uaiprocessor computer sequentially, ignoring
other time delays.

b. Consider the use of an SIMD computer with 64 processing elements to execute the
vector OperaLions in six synchronized vector instructions over 64.cornponent
tor data and both driven by the same-speed dock. Calculate the total execution
time on the SIMD machine. ignoring instruction broadcast and other delays.

▪ Wliat 11ic speedup gain of the Sl corn:puler over the SISD eoropuler?
18.9 Produce a vectorized version of the follawing program:

20 _ 1
1 , 1: 3

D3 10 J - 1, A
At:t = MI; +

7: 3 C.3:9'17/.17.:E
= FAT.: + Al.T)

2 3 ;-...3:..7.11.17.:E.

18.10 AJ1 application program is executed an a nine-computer cluster. A benchmark pro.
grant took time T on this cluster. Further, it was found that 25% of T was time in
which the application was running simultaneously cm all nine computers. The remain-
ing time. the application had to run an a single computer.
▪ Calculate the efleutiv4.: speedup under the aforementioned condition as compared

with exec:ming the program on a single computer. Also calculate u. the percentage
of code i bat liiiI A1.1..tlizod (programmed or copripiled so .a410 use ilk clus-
ter mode) in the precedi rig program.

b. Suppose that we are able to effectively use 18 computers rather than computers
on the parallelizcd portion of the code. Calculate the effective speedup that is
achieved.

18.11 The following FC1 E TR AN program is to he executed on a cimputer, ark] a parallel
versIou is to he ONL•Ci.11124.1 011 cluster.

: DO LC I = I, 132C
: I =

L3 no 2C. .2 1,
L4 20 SUM ;1} - 1: : .1 _
L : 10 commun

Suppose lines 2 and 4- each take two machine cycle times, including all processor and
rneroury-aecess activities. Ignore the overhead caused by the software loop control
statements (lines I, 3 : 5) and all other system overhead and resource conflicts,
a. What is the total execution ti me (in .111aelli n cycle times) of the program on a sin-

gle computer?
b. Divide the 1-loop iterations among the 32 computers as follows: Computer I exe-

cutes the first 32 iterations (I I to 32), processor 2 executes the next 32 iterations.
and so on. What are the execution time and speedup factor compared with part
(all (Note that the computational workload, dictated by the J-loop, is unbalanced
aiming the computers.)

c. Explain how to modify the parallelizing to facilitate a balanced parallel execution
of all the computational workload Mier 32 computers. By a balanced load is meant
an equal number of additions assigned Lo each computer with respect to both loops.

EL What is the minimum execution time resuicinig from the parallel execution an 32
computers? What is the resulting speedup over a single computer?

.7) x :..r)

Q - ;;........4o \\......4, ON44...,..d.O. am..4.\ v..mm................:,,,,,, ;:y.: p
.4- ..,... Z. .93 .1— N!.' N., %..\,. .4‘....VO4..... A:MS:v. b ••

: ON Vs. .,S,:'.%..y... ■ : A...e.. \ . 7 ''''!: '''''
- a .7. ...,..:-

3 _
Tor. —1 C

....h.x..0.. tM

nv .%

: h161\ \ON:tift 5 1 .g,., N .

.1...

r,f2
5 a..

, ex%

1:421

694 APPENDIX A / DIGITAL LOGIC

T he operation of the digital computer is based on the stora ge and processing
of binary data. Throughout this book, we have assumed the existence of
storage elements that can exist in one of two stable states and of circuits that

can operate on binary data under the control of control signals to implement the
various computer functions. In this appendix, we suggest how these storage ele-
ments and circuits can be implemented in digital logic, specifically with combina-
tional and sequential circuits. The appendix begins with a brief review of Boolean
algebra, which is the mathematical foundation of digital logic. Net the concept of
a gate is introduced. Finally, combinational and sequential circuits, which are con-
structed frinn gales, are described_

A.1 BOOLEAN ALGEBRA

The digital circuitry in digital computers and other digital systems is designed. and
its behavior is analyzed, with the use of a mathematical discipline known as Boolean
algebra. The name is in honor of an English mathematician George Book, who pro-
posed the basic principles of this algebra in 1854 in his treatise. An Investigation of
the Laws of Thought rvci Which to Found the Mathematical Theories of Logic and
Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical Engi-
neering Department at Mi suggested that Boolean algebra could he used to
solve problems in relav-switching circuit design [SHAN38]. Shannon's techniques
were subsequently used in the analySis and design of electronic digital circuits.
Boolean algebra turns out to he a convenient tool in two areas:

• Analysis: It is an economical way of describing the function of digital circuitry.
• Design; Given a desired function, Boolean algebra can be applied to develop

a simplified implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations.
In this case, the variables and operations are logical variables and operations. Thus,
a variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical oper-
ations are AND. OR, and WYE which are symbolically represented by dot, plus
sign, and overbar:

A AND B — A • B
AORB=At li

NOT A = A

The operation AND yields true (binary value 1) if and only if both of its operands
are true, The operation OR yields true if either or both of its operands are true.
The. unary operation NOT inverts the value of its operand_ For example, consider the
equation

— A -I- (ri • C)

D is equal to 1 it' A is 1 or if both B = 1) and C — 1. Otherwise D is equal to 0_
Several points concerning the notation are needed. In the absence of paren-

theses, the AND operation takes precedence over the OR operation. Also, when no

A.1 BOOLFAN ALGEBRA 695

Table A.1 BooIvan Opt raters

P Q NOT P p AND o i oft Q P XOR Q P NAM) 41 P NOR Q

Li 0 1 0 0 0 1 L
Li 1 1 0 1 I 1 0

I 0 0 0 1 1 1 0

1 1 0 1 1 0 0 0

ambiguily will occur, i he AND operation is represented by simple concatenation
instead of . the dot operator. Thus,

A -F R • C = A -F (B — A I- BC

all mean 'Take the AND of l and C: then take the OR of the result and
fable A.1 defines the basic logical operations in a form known as a !mat ?able.

which simply Lists the value of an operation for every possible combination of vat-
ties of operands. The table also lisls three othcr useful operators: XOR, NAND, and
NOR, 'The exclusive-or (X0R) of two logical operands is 1 if and only if cmictEv one
of the operands has the value 1. The NAND function is tilt:. complement (NOT) of
the AND function, and the NOR is the complement of OR:

A NAND B = NOT(A AND B) = AB

A NOR B — NOT(A OR B) = A+ B

/V; we wh ill see, these three new operations can be useful in impiementing certain
digital circuits.

Table A ..2 summarizes key identifies Dr Boolean algebra. The equations have
been arranged in two columns to show the complementary. or dual, nature of the
AND and OR operitions. Thieve are two classes of idenlities: basic rules (or pi mu-
kiwi.), which are stated without proof, and other identifies that can be derived from

Table A.,2 Basjc Identititlsof Boolean Aber bra

Bahie Postulates

A .13 = 13 • A A • B B I A (.:41011nutatilio tag s

A . (B + C) = B) + (A A — (B•r.) = (A I 13) • (A + Distributi',0 laws
l•A=A + A = A Ide.n(itle eterneuts
A • A- 0 A— A= 1 Invursu elements

Other Identities

0 • A = 0
A • A = A
A • (B • C) — (A • B) • C
A•B — A 1 B

- A —
A — = A
A — (B C) (A I B) C Associative taws
A — B = A• Fi DeivimTan's theorem

696 APPENDIX A / DIGITAL LOGIC

the basic postulates. The postulates define the way in which Boolean expressions
are interpreted, One of the two distributive laws is worth noting because it differs
from what we would find in ordinary algebra:

A - (B • C.) (A + B) • (A + C)

't he two bottommost expressions are referred to as DcMorgan's theorem. We can
restate them as follows:

A NOR B = A AND B

A NAND B = A OR B

The reader is invited to verify the expressions in Table A.2 by substituting actual
values (Is and Os) for the variables A. B, and C.

A.2 GATES

'lite fundamental building block of all digital logic circuits is the gate. Logical runt:
lions are implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a simple
Boolean operation on its input signals. The basic gates used in digital logic are
AND, OR, NOT, NAND, and NOR. Figure A.I depicts these five gates, Each gate
is defined in three ways: graphic symbol, algebraic notation, and truth table. The
symbology used here and throughout the appendix is the IEEE standard, IEEE Std
91. Note that the inversion (NOT) operation is indicated by a circle.

Each gate has one or two inputs and one output. When the values at the input
are changed, the correct output signal appears almost instantaneously, delayed only
by the propagation time of signals through the gate (known as the gate ticiay)..l .he
significance of this is discussed in Section A.3.

In addition to the gates depicted in Figure A.1, gates with three, four, or more
inputs can be used. Thus, X + + Z can be implemented with a single OR Eate
with three inputs.

Typically, not all gate types are used in implementation. Design and fabrica-
tion are simpler if only one or two types of gates are used. 'thus, it is important to
identify func:imwtiv complete sets of gates. ' Ms means that any Boolean function
can be implemented using only the gates in the set. The following are functionally
complete sets:

• AND, OR, NOT
• AND, NOT
• OR. NOT
• NAND
• NOR

It should be clear that AND, OR, and NOT gates constitute a functionally
complete set, because they represent the three operations of Boolean algebra. For
the AND and NOT gates to form a functionally complete set, there must be a wri!,,

A.2 / GATES 697

Name Graphic Syrnbr.)

AlgebraLc
Function Truth Table

AND

()1Z

F = A *1.1.
or

AB F

------\\

I:5

0 0 0
D L 0
1 0 0
1 1 1

F= A + R

A

-
 -

C
. C

D

---\\
I :1—F'

3 --/

NOT A

F =7
lir

F A .

N..... Ni;. I ' A ki ■

A B F -..

...\\

Al
0— F

— _--)

0 0
0 1
:I 0
] 1

1
1
1
0

N-OR

\- — _,...
A—k,

I

I

F – tA .F 13)

A 8
.:1 11
il I
1 0
11

F
1
I)
0
0 B

Figure A.1 Basic 1..o& Ciati2s

to synthesize the OR operation from [he AND and NOT p gan&1 6 can be
done by applying DoMorgan's theorem:

A — A

A OR B = Nur(NOT A) AND . (NOT B))

Sintil;D-Iv,11-te. OR and NOT operations lei nctionally complete because they can
be used to syntheMze. thc A N I) operation.

Figure A.2 shows how the AND, OR. and NOT functions on he implemented
solely m NAND gates, and Figure A.3 shows the same thin2 for NOR gates. For
this reiMon, ciretrils can be. and frequently are. implemented solely with
NAND gates or soleiy with NOR gates,

With gates. we have reached the most primitive level of computer science and
engineering. An examination of ti-ic transisior combinaliorts med Lo construct gates
departs from that realm and enters there6molelectrical engineering. For our
purpows, however. we are content to describe how gates can be used as building
N ocks [0 implement the essential logicalcircuits ot a digitai computer.

A B

A-

2

3

Figure A.3 The Ilse of NOR Gates

A • 13

69 APPENDIX A / Al LOGIC

A,

A • B
P.-

 A a B

Figure A.2 The 1.4.c. of NAND Goau.s

A.3 / COMBINATION cak„CurrS 699

COMBINATIgNAL„c1BWIS, 05,e,4"0- ferr'r

A combinational circuit is an interconnected set of gates whose output at any time
is a fund:ion only of the input at that time. As with a single gate, the appearance of
the input is followed almost immediately by the appearance of the output, with only
gate delays.

In general terms, a combinational circuit consists of n binary inputs and
binary outputs. As with a gate. a combinational circuit can be defined in 1M -cc ways:

■ Truth table: For each of the 2' possible eon il)i nations of input signals, the
binary value of.each of the. m oinpul signaEs is listed.

• Graphical symbols:The interconnected layoui of gates is depicted,

• Bonleuri equaltinns: ouipui signal is expressed as a Boolean function of
its input signals.

Implementation of Boolean Function;

Any Boolean function can be implemented in e]eetronie form as a network of
gates. For any given function. there are a number of alternative realizations.
Consider the Boolean funel ion represenied by the truth table in Table A.3. We
can cxptcss this function by simply itemising the combinations of values of A, B.
and C that cause F to be 1:

ABC+ ABC — ABC (A-I)

There are three combinations of inpul values That cause F to be 1, and if any
one of these combinations occurs, the result is 1. This form of expression, for sell-
evidQni reasons, is known as the S1OR2 of preVillen (SOP) form. Figure. A.4 shows a
straightforward implementation with AND. OR. and NOT gaits-

Another form can also be derived from the 1ri.all The SOP form
expresses that the output is 1 if any of ihe input combinations that produce] is true.,

'rabic A.3 Boolean Function or Three Variables

A.

o 0 0 o
U o 1 0
o 1 o 1
o 1 1 1
t 0 1) 0
1 0 I [I
I 1 0 1
1 1 1 {)

7110 APPENDIX A 1 DIGITAL LbCITC

C

Figure A.4 Sain-nr-PrOLLUCLS limpleincinatiun of rabic A.3

We can also say that the output is l if none of the input combinations that produce
0 is true. Thus

F = (ABC) • (A1-3C) • (ABC) • (ABC) • (ABC)

This can be rewritten using a generalization of DeMorpn's theorem:

(X •T• Z) = X -F y I z

F = (A - B + C) • (A + + C) - (A r B + C) • (A - B + C) • (A + B - C)
(A,2)

= (A B C) • (A + B + C) • (A + + C) - (A - B C) • (A + B

This is in th.c. product of sums (POS) form, which is iliustratEA in Figure A.5, For
clarity, NOT gates are not shown. Rather. it is assumed that each input signal and
its complement are available. si mplifies the logic diagram and makes the inputs
to the gates more readily apparent.

Thus, a Boolean function Cart be realized in either SOP or POS . form, At this
point, it would seem that the choice would depend on %teaselr the truth nlble con-
[Bins. more Is or Os for the output function: The SOP ha ,; one term for each I, and
the POS has uric [erne for each 0. However, there are other cOnNidcn) [ions:

* It is generally possible to derive a simpler Boolean expression front the truth
table than either SOP or POS.

A.3 COM.B.1NATION Clik.C.L.:11'S 701

s It ma!•, , be preferable to implemen1 the Function with singie mate type (NAND
or NOR).

The significance of the first point is that, with a simpier .1 -3(..iolean expression,
fewer gates will be needed to implement the funei ion. Three methods that can be
used to Liehievc-.simpli fic2ii ioa are as follows:

• Algebraic; simplificalion
• Kan-Laugh maps
• Quine—tvfcKluskey tables

AlgebraicSimplification

Algebriic .sirnplirimlin involves the application of the identities of Table A.2
to reduce the Boolean expression to one with fewer elements.. For example : eon-
skier again Equation (Al)., Some thought shouid convince the reader that an equiv-
alcut cxpressdon

= AB. -h HC (A.3)

Or, even simpler,

F — B(A

A

A
B -1

A
B

Figure A.5 Pmduci-M-Surns Impleinentation of Milk. A.3

702 APPENDIX A / DIGITAL LOGIC

rigurc A.6 Siitsplirie.!ij linplernentatinn of Table A.3

This expression can be implemented as shown in Figure A,6, Thu simplifi-
cation of Equation (A.1) was done essentially by ob.servation. For more complex
expression, some more syslemalic approach is needed,

Karnaugh

For purposes of simplification, the karnaugh map is a eonvenimt way of rep-
reseni ing a Boolean rum:lion of ;I small number (Lip to four to six) of variables. The

of 2 .9 stin.nres : representing the possible combinations of values oaf n
binary variables. Figure A,7a shows the map of four squares for a fund ion of ['o/c)
variables. It is convenient for later purposes to List the combinw ions in the order
00,01,11,10. Because the squares. corresponding to the combinations are to be used

BC

00 01 I I 10

1

F + TNI3C ABC'

CD C
(10 01 I I 10

00

AB

11

10

1

F=TIJTICD+Afit.D +ABZ".15
D

:,i) Simplitied labeling of map

Figure A.7 The Usc. cal Karnaugh Maps to Represent liooleart Functions

A.3 / COMBiNATiON CIRCUITS 703

for recording miormation, the combinations are customarily written abuvc the
squares. In the case of three variables, the representation is an arr ffigemcul of edit
sq rC (figure A,7h), with th e values rot arse of the variables to the left and fur the
other two variab]es aloe the squares. For tour variables, 16 squares are needed,
with the arrangement indicated in Figure A.7c,

rue map clan he used tt) repi- senl any HooIean tunctioa iai the following way.
Each square eos'respcaiqds to a unique product in the suns-oil-products Foria. with L 1
value corresponding to the variable and at) vt1lue correspunc]ing lu the; NO`I of that
varutplc-'['hus, l hc: p, cuiuct A13 co rresponds Lo the fourth square in figure A.7a. For
each such product in the i'unction. I is placed in the corresponding square, Thus, for
the two-variable example, the. map corresponds to AB 4 AB. Given the truth [able
of a Boolean function, it is an Easy 1natter to Construct the map' h r each co rn h irl a
tiun f v:il ue:s of rarabies that produce rwoilt trl' 1 its the truth Lah]c. Id] in the eOr-
responding square of the map with 1, Figure. A.7b shows the result for the truth
table of Tah[e Al To convert from a Boolean expression lO a map, it is first nCC-
C:axbo t 1puL the xprc n in whaL is rckrred It a uaWwmcaI tort; Each tcrns
in t]ie expression rrtusL contain each variable. So, for example, if we]lave nehiuLtion
(A3), we must first expand it into the lull [01111 of Equation A. I } and Ihen eonvi:rl

this to a map,
[}rc l:ffbeuag used in Figure: A-7d cmphxsi/es the relationship between vari-

ables and the rows and colurntis of the. map. Here the two rows embraced by the
symbol A are those in which the v{triable A has the value [; the rows not mhraecd
by the symbol A are those in which A is l); si milarly I'or H, C. and D-

Once the map of function is crested, we Girl often write a Simple alghraic
expression for it by noting the arrangement of the is on the map-'l he principle is as
follows, Any Lwcr syu;lres than L are adjncea I. dil'fgr in or]]} time of the variables, It two
2d pace rut squares both have an cniry of one. then the corresponding product terms
differ in only one variable. In such a case, the two terms can he nlerged by C Iirni-
nating t]iat variable. For_exa_mp]e, in Figure A,f+a, the two iid .jxcnt so^u.ires cc^r'rL-
sprnd Lu the two terms ABCL) and Af3C'ii'I hus, the functdrrr expressed is

AF3CI)—.Al3Cf)—.A BD

This process can be extended in several ways. First, the concept of adj acency
can be extended to include wrapping around the edge of the map- Thin, the top
SgLU'IFC LI I a 00]umrr is :idj aecnt to the bottom square, and the leftmost square of
a row is adjacent to the rightorost square. These conditions are illustrated in Figures
A,tlh and c. Second, we can group not just 2 squares but " adjacent sgmares 1,1 h 1t is,
4, . etc,}. The next three examples in Figure A. show groupings of 4 sq ures- Note
thaL in this ca se, [WO of the variahkcs can he ell ninated, The last three examples
show groupings of t3 squares, which allow three variables to be eliminated.

We c in summarize the rules for simp]iIicaliorr as follows=

1. Among the marked sgLrares (squares with a 111, find those that belong lu a
unique largest block of either I. 2, 4, or S and circle those hlcacks-

2. Se]ect additional blocks of marked squares that are as 3arge as possible and as
few in nLimber as possible, but include every marked square at icasl once. I he

CD

00

{11
Akt

1. 1

117.

01
AB

it

10

110 01 11 10

1

(a) ikBD

CD
00 01 n 10

[d) AB

CD
LX) 01 11 10

CD
00 41 11 10

CO
00 01 11 10

(e)1:1.(7.

Cr..)
00 01 11 10

CD
00 D1 11 00

CV
00 D1 11 iu

{f) SD

CD
00 01 11 10

DO

01
r Ii AB

lz 11

1.6 10

00

AB
01

11

ill

00

AH
01

AB
11

10

,7

1 1 1
. .

i : 1

11 1)

704 APPENDIX A DIGITAL LOGIC

Tc:!iu.11,s may not bc. unique in some. f.r.ase. roe C.X2ruple, if a rn.irked :iquarc com-
bines with exactly two other squares, and there is no fourth [narked square to
complete a larger group, then there is a choice to he made as two which of the
two groupings to choose. When you are circling groups, you arc. 4iLlowed u.sc
the same I valui: more [han once.

3. Continue to draw loops around single marked squares, or pairs of atipiccut
markci mium .es, or group or lour, eigh I, H ind so on, in such a way that even.
marked square belong!, to at least one loop: then use as few of these blocks as
possible to include all marked squares.

Fiaure A.9a. based on Table. A.3, i I I us.111iii2.S Lhe process. If any isolated Is
remain after. the groupings, then each of these is circled as a group of ls. Finally,
before going from the map to a simplified Boolean expression. any group of Is that

{OA {h)

ngure A.8 Tha (Jse of Karnaugh Maps

(i) C

A.3 1 COMM NATION CARCILATS 705

ac

00 01 11 10

tEi) = .7%IR -F NT"

CD

00 DI 11 10

.10

(b) BE:b -ACD

Fiore 4,9 OWfiappillt Groups

is completely overlapped by other groups can be eliminated. This is shown in Fig-
ure A.9b. In this case.. the horizontal group is redundant and may be ignored in cre-
ating the Boolean expression.

One additional feature of K.rnaugh arnaps needs to he mentioned. in some
cases, certain combinations of values of variables never occur. and therefore the cor-
responding output never occurs. These are referred to as "don't care" conditions.
)''arr each such condition, the letter "d" is cnlere(' into corresponding synire of
the map. In doing t he grouping and simplifieaiitin, C;JT1 lac ireuted as a 1 or
0, whichever leads to the. simplest expression.

An example, presented in [HAYE94 illustrates the pi.sints we have been dis-
cussing. We would like to develop the Boolean expre:isions for a circuit that adds 1
to a packed decimal digit. Recall from Section 9.2 that with packed decimal, each
decimal digit is represented by a 4-hit code, in the obvious way. Thus. 0 = 0000,

-- 0(101. . , 8 = 1000, and 9 = 1001e The remaining 4-fait vaiIues, from 1010 to
1111, are not used. This code is also referred to as Binary Coded Decimal (BCD).

Table A.4 shows the truth table for producing a 4-bit result that is one more
than a 4-bit BCD input, The addition is modulo W. Thus, 9 J = 0. Also, note 1.114i1
si>z of the input codes prod = ' 4don .'1 care" results, because those ,1 -e not valid BCD
inputs. Figure A.10 shows the resulting Karnaugh maps for each of the output vari-
ables. The d squares are used to achieve the best possible groupings,

The Onine—rtickluskev Method

For more than four variables. the Karnaugh map method becomes increasingly
cumbersome. With five wiriables, two 16 1fi mar!, are needed, with one map con-

lopui Outpui

Numhey A I) Number W X

706 APPENDIX A 1 DIC.ITAE, I,C')CIC

Table 4.4 Troll Table ror the One-Digit l'i-ickdd 1)(3einwil InentunAli.2r

0 (1 0 0 1) 1 0 . 1) 0 1
I. (1 0 0 1 .-1 0 1.1 1 0

2 1) 0 1 0 3 (1 0 1 1

.3 0 0 1 1 , 1 0 1 0 0

4 0 1 0 0 5 (1 1 0 1

5 0 1 0 1 6 (1 1 1 U
e.p 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 L 0 0 . G.

8 1 0 0 0 9 L O O. 1

9 1 0 0 1 0 0. 0 0 0

1 0 1 0 d d d d

Dint 1 1 0 1 1 d d d d

Cate 1 1 0 0 LI cl LI il
4

CLM-

ditiorl
1 1 0 1 LI 41 L.I L I
1 1 I 0 kl d LI L1

1 I. I 1 41 d LI LI

sidereci to be on top of the oihcr in Ihrce diniciisions if) 4LCIlieVi;: Udi4JCCriCy. Si%
variables requires the use of four 16 16 tables in four dimensions! An alternative
approach is a tabular technique, referred to as the Quine—McKluskey method. The
method is suitable for programming on a computer to give an automatic tool for
'producing minimized Booiean QxprcsRions.

The method is best explained by means of an example. Consider the follow-
ing expression:

ABCD ABCD + ABCD + ABCD -F ABCD + ABCD + ABCD — ABCD

Let us assume. ihn1 this c.xprt:N;71ion was derived from a truth table. We would like, to
produce a minimal cxpi .csNion xuiia,hlu for implcincrna Lion with ga1cs.

The first step into construct a table in which ach row eorrespornis to one of
the product terms of the expression. The terms arc grouped according to the num-
ber occorriplemenlc'd variables. That is, we start with the term with no complemenIA.
if it exists, then all terms with one complemem, and so on. Table A.5 shows the list
f(1, 1" our example expression, with horizontal lines used to indicate the grouping. For
clarity, each term is rcprcs.cnied by a for.each uncomplcinenied variab.14.2 and a
for each complemented variable. Thus, we group terms according to the number of
Is they contain. The index column is simply the decimal equivalent and is useful in
%vhat follows,

A.3 1 COMBINATION CIRCUITS 707

CD

00 01 11 10

SJii

AB
0i

EE

10

CD CD
00 01 II I() 00 01 11 10
P 00

AB
I]

Ill

%..1) 1

d d d d (I

I °

d d 1) d

.31.cD

Figure A.10 kArnaiigli Maps lor hicrimorokIr

The next stcy is to find VIII p.Nir.s, of terms That differ in 1,nly one variable. that
hi, an pairs of terms that are the same except that one ,... 21riable is 0 in one of the
terms and 1 in the other. Because of the way in which we have grouped the terms,
we can do this by starling with the first group and comparing each term of the first
group with every turn or the soeond goup..111V1 compare each perm it Lh,,ecoriti

group with all of the terms of the third group, and so on. Whenever a match is found,

Table A.5 First Stage of Quine••McKluskey Method
(for AR fir) I ARO) - All(:13 AI3CD AHCI) Alici) I A BCH)

Product Tern] Index A

A BCD I (1 0 1] I ✓

A BC D 5 0 1 n I V
iii3C15 6 (1 I I (1 V

ABC'I) 12] 1. 0 II V

A BcD 7 0 I] I ✓

A13CD II 1 0 1 1 V

ABCD 13 1 1 0 i V
ABCD 15 I 1 i I V

708 APPENDIX A / DIGITAL LOGIC:

Table A.(Last Stage of Quinn.—MeKluske7i Method
for F = 4 ARC]) 4 Al-WD 4..Aij.CD i..I=3CD i. idscr3 - A.Bn) - Afif'D)

. ABCD I ABCD ABCD AECD Ai.BCD. ALBC17.) . TkEPTD AE CD

AD . X X X X

ACD X ---.... ex .%--,

ABC E. 0

AFJ(Fill r.D.

Acr) z.

place a check next to each term, combine, the pair by eliminating Ihe variable that
differs in the two turns, and add thal to a new list. 'I'huas, ror example, the terms
ABCD and ABCD are combined to produce ABC. This process continues until the
entire original table has been examined. The result is a new table with the follow-
ing entries:

ACD ABC AB D
HCI) ACD
ABC' BCD
AB D

The new table is Organized into groups, as indicated, in the same fit.s.hion as th e
fiat lahlc. The second table is then processed in the same manner as the first. That is,
terms that differ in only one variable are checked and a new term produced for a third
table. In this example. the third table that is produced contains only one term BD.

In general, the process would proceed through successive tallies until a table
with no matches was produced. In this case. this ha;,linvolved ihree tables.

Once the process just described is completed, we have eliminated many of the
possible terms of the expression. Those terms that have not been eliminated are used
lo mrist LI et a ma trix, as illustralcd in Fable A.& Each row of 1 he matrix corresponds
10 one of the terms that has not been eliminated (has no check) in any of the tables
used so far. Each column corresponds to one of the terms in the original expression.
An X is placed at each intersection of a row and a column such that the row element
is "compatible - with the column c.lcrocnt. vxri411,Ics present in the row
clement have the same value as the variables present in the column element. Next,.
circle each X that is alone in a column. Then place a square around each X in any
row in which there is a circled X. If every column now has either a squared or a cir-
cled X, then we are done, and those row elements whose Xs have been marked con-
stitute the minimal expression. Thus. in our example, the final expression is

ABC -F ACD + ABC + ACD

In cases in which some columns have neither a circle nor a square. Eiddilional
processing is required. Essentially, we keep adding row elements unlit all columns
are covered,

A.3 / COMBINATION CIRCUIT 709

Let us summarize the Cluine—McKluskey method to try lo justify intuitively
why it works, 'fhe first phase of the operation is reasonably sir4lightforward.
proCc c[imimile unneeded vitrivAb[es in product lcrnis. Thus., the expression ABC
+ ABC:is equivalent to AB. because

ABC: + ABC — -F = AB

Alter l he elimination of variablcs, we arcieft with an 1,2 Xiii .csMon that is clearly
equivalent to the original OxriteSSiOn. I JOV02.VCr, there may he redundant terms in
this expression, lust as we found redundant groupins in Karnaugh maps. The
matrix layout assures that each term in the original expression iw covcre41 and does
s..0 in wily 1hal mininliZe . ;71 1[1Q number of terms in the final QX1)1"C!..S1011.

NAND and NOR Implementations

AnoE her considEni Lion in I hu implemenialion Boolean func[ions, concerns
the types of gates used It is on en desirable to implement a Boolean function sole]y
with NAND gates or solely with NOR gates. Although this may not be the mini-
rnum-ga Le implementation, it has the advantage of regularily, which can impIify the
manufacturing process. Consider again 1 2.quotion (A.3):

F = B(A — C)

Because the complement of the complement of a value is just the original value,

F = B(A C) = (AB) + (BC)

Applying DeMorgan's iheorern,

(AB) - (BC).

which has three NAND forms, as illustrated in Figure A.11,

Multiplexers.

The multiplexer connects multiple inputs to a single outpw. Al any time, one of the
inputs is selected to be passed lo the output_ A general Mork diagram rqreSCrita-

Tk
b

13 L ---
0_1,

1 I
-. 1 (13. 1

--/

Figure A.11 NAND linplcinentation of Tablc. A.3

710 AFTENDLX A / DIGITAL LOGIC

N1LIX

D3

52 el

Figure A.12 vtultiploxer Representation

lion is shown in Figure A.12. This represents a 4-b0-1 mulEiplexer. '[here are four
input lines, labeled DO, D1, D2, and DI One of these Lines is selected to provide
the output signal F. To select one of the four possible inputs, a 2-bit selection code
is needed, and this is implemented as two select lines labeled Si and S2.

An example 4-Lo-] multiplexer is defined by the truth table in 'Palle A.7. This
is a simplified form of a truth table. lristekid of showing all possible combinations
of input variables. it shows the output as data from line DO, D1, D2, or D3. Figure
A.13 shows an implementation using AND, OR, and NOT gates. Sa and S2 are con-
nected to [ht. ANT) g;w2..s in .,;ueh a way th4it, for any cornhinalion Si and 82, three
of the AND gates will output 0. The fourth AND gate will output the value of the
selected line. which is either 0 or t. Thus, three of the inputs to the OR gate are
iakvays 0. and the output of the OR gate will equal [he value of the selected input

gate. Using this regular organiz;ition, it iS easy “) construct inuiliplexe.r.s of size
16-to-1, and so on.

Multiplexers are used in digital circuits to control signal and data routing. An
example is the loading of the program counter (PC). The value to be loaded into the
program counter may CI}TT1{,2: Irodri one of several different sources;

• A binary counter, I he PC is lo he incremented for the nexl. imLruction

• The instruction register, if a branch instruction using a direct address has just
hecn e xecuted

• The. output of the ALL!, if the branch instruction specifics the address using a
displacement mode

Taile A.7 4-1.0-1. Multiple.xt2r Truth Table.

52 SI

0 0 DO'
0 I DI
1.
1 I D3

DO

Dl

1)2

A.3 COMBINATION CIRCUITS 711

S2 Si

I x1

1)1

N

Figure A.13 MultipEcxer Intplurnontation

. 1'hes.e various; inputs couEd be connected to the input lines of nItiEtiplexer, with the
PC." connected to the output line. The select lines. &tern-Line which value is loaded
into the PC. Because the PC conwins rnohiple hits, multiple multiplexers. Tc used,
one per bit Figure A.14 illusimics this for 16-bit addresses.

Decoders

A clue.odur is 8 co mbinational circuit with a number of output lines, only one of
which is asserted at any time. dependent on i Fi e pattern of input lines. In general,
decoder has n inputs and 2 outputs.. figure Al. 5 shows a decoder with three inputs
and eight outputs.

C, JR, ALL'', C 15 1R 35 ALL:„

I i

sz 4„0_1 s2 —1 4-to-1
di I'

51 1 •- • Mt' X .5] ■! Mie:X

PC,5

Figure A-14 Multiple= Input c Frowner Counter

712 APPENDIX A / DIGITAL LOGIC

C

D.,

s11 1 •■••

Figure A.15 Deonder with 3 Inputs and 2 3 — 8 Outputs

Decoders find many uses in digital computers. One example is address decod-
ing. Suppose we wish to construct a I K-hyte memory using four 256 x 8—bit RAM
chips, We want a single unified address space, which can be broken down as follows:

.4dt/re4ih. Chip

0000-0017
011_10 01FF
020(.1-02FF 2
(1300 03FF

Each chip requires 8 address lines, and these arc supplied by the lower-order
8 bits of the address. The higher-order 2 bits of the 10-bit address arc used to select
one cif the four RAM chips. For this purpose, a 2-to-4 decoder is used whose out-
put enables one of the four chips, as shown in Figure A.16.

With an additional input line, a decoder can be used as a demultiplexcr. The
&multiplexer performs the inverse function of a multiplexer, it connects a single
input to one of several outputs. This is shown in Figure A.1•7. As before. n inputs are
decoded to produce a single one of r outputs. All of the 2' output lines are ANDed
with a data input line. Thus. the n inputs act as an address to select a particular out-
put line, and the value on the data input line (0 or 11 is routed to that output line.

COMBINATION CIRCUITS 713

AO

A?

256 x 9
RAM

256 .54 8
RANI

256 x 8
RAM

256x 8
RAM

2-to-4
Decoder

Enable 'Triable Enable Finable

Figiorc. N.16 ALIcIross Decoding

The configuration in Figure A.17 can be. viewed in another way. Change the
label on the new line from Dora Input to Enabfe. This allows for the conlrol of
the ti ming of the decider. I'he decoded outpul appears only when the eneoc.kd
input is present (Ind the enahle I i ne has a value of 1.

Programmable Logic Array
Thus far, we have treated individual gates as building blocks, from which arbitrary
functions can be realized. The designer could pursue a strategy of minimizing the
number of gates k be used by manipulating the corresponding Ka olcan expressions.

As the level of integration provided by integrated circuits increases, other con-
siderations apply. Early integrated circuits, using small-scale integration (SSI), pro-
vided from one to ten gates on a chip. Each gate is treated independently, in the
hui [ding-block approach described 50 far. Figure A,]K is art LANI -nrIc .onie ssi
chips. To construct a Logic function, a numher of these chips are Laid out on a printed
circuit board and the appropriate pin interconnections are made.

nereasing levels of integration made it pc ible to put more gaLeN on N chip
and to make gate interconnections on the chip as u ell. 'Ails yields the advantages of

N-bit
destinatinn
address

Data input

Figure A.17 Implementation 1.4 a Demultiplexer Using a DtTeckr

•
2." outputs

decoder •
•
•

7432
4B 4A 4Y :4[1 V... .'3A 3Y

740D
n. 413 4A 4Y 313 3A 3Y

1 D IY CND

113- 1- El-ELMO

IA

121-13"Ell
113 NC 1C

IA ILI IY 2A 2B 2Y GND

714 APPENDIX A DIGITAL LOGIC

IA 113 LY 2A 213 2Y GND

Figure A.IS Some SST Chips. Pin layouts from The TT1. Dam . Bonk for Design Etigiourers,
copyright 0 1975 Tcrias In:strum:v. Incorporated.

covin I N AVON CIRCUITS 715

decreased cost. decreased size, and increased speed (because on-chip delays arc. (.4
shorter duration than off-chip delays). A design problem arises. however. For each
particular logic function or set of functions, the layout of gates and interconnections
on 1 he chip mu st he designed. 'rho east and Liffic involved in such custom chip design
is high. Thus, it becomes attractive to develop a genera]-purpose chip Ihail can be
readily adapted to specific purposes. This is I hc intent of the pri3Krammethic logic
array (13 1,A).

The PLA is based on the fact that any Boolean function (truth table) can be
expressed in a sum-of-products (SOP) form, as we have seen. ' l'he PLA consists of
a regular arrangement (.4 NOT, AND, and OR gate. tin a chip. Each chip input is
pasNed through a NOT gate so that each input and its complement are available to
each AND gate. The output of each AND gate is available to each OR gate. and
the output of each OR gate is a chip output- By making the appropriate connections,
irilitrary SOP expressions can he implemented.

Figure A.1')a shows a PLA with three inputs, eight gates. and two outputs.
Most larger PLAs contain several hundred gates.. I S to 25 inputs, and 5 to 1.fi out-
puts, 'i'he c(mneetions from the inputs to the AND gates, and from the AND gates
to the OR gates, are not specified.

PLAs are manufactured in two different ways to allow easy programming
(making of connections). In the first. every possible connection is made through
a ruse at every intersection point. The undesired connections can then be later re-
moved by blowing the fuses. This type of PLA is referred to as a fieid -pmgranunable
logic array. Alternatively, the proper connections can he made during chip fabri-
cation by using an appropriate mask supplied for a particular interconnection pat-
tern. in either case, the PLA provides a flexible, inexpensive way of implementing
digital logic functions.

Figure A. 19b shows a design that realizes two Boolean expressions.

Read-Only Memory

Combinational circuits are often referred to as 'memoryless".ei rcui1s, because their
output depends only on I heir current input and no history of prior inputs is retained.
I h owever, there is one sort of memory that is implemented with combinational cir-
cuits. namely read -only mearvrk• (ROM).

Recall that a ROM is a memory unit that performs only the read Operation.
This implies that the hinary information stored in a ROM is permanent and was cre•
ated during the fabrication process. Thus, a given input to the ROM (address li nes)
always produces the same output data lines). Because the outputs are a function
only of the present inputs. the HON1 is in fact a combinational circuit.

A ROM can he implemented with a decoder and a set of OR gates. As an
example, consider Table. A,8. This can be viewed as a truth table with four inputs
and four outputs. For each of the 16 possible input values, the corresponding set of
values of the outputs is shown. lt can also be viewed as defining the contents of a
64-bit ROM consisting of let words of 4 bits each. The four inputs sped ry an address,
and the four outputs specify the- contents of the location 2,pCeified by the address.
Figure A.2[1 shows how this memory could be implemented using a 4-to- L6 decoder
and four OR gates. As with the PLA, a regular organization is used, and the inter-
connections are made to reflect the desired result.

A

1 3

C

•	

(a) Layout for three-input
twu•output 'FLA

C

•	

L

Output 7 Output 2

ABC

A

(b) COM1C,611011 (112Sig71 for three-input
twu-output rLA

Figure .A.1.9 Example ofd Progrurnalable Logic Array

716 APPTNTAX A TiTCTTA1,

MAle 4.8 'I lable for ri ROM

COMBINATION CIRCUITS 717

Input Output

0 0 0 0 0
0 0 0 1 0 (1 CF I.
(F 0 1 0 0 0 1 1
II 0 1 1 0 I) I CI

0 1 0 (1 0 1 1 0
0 1 0 0 1 1 1

1 1 0 0] (1 1
0 1 1 I

(I 0

1 (1 0 0 1 I 0 0
1 11 0 1 L 0 1
1 1 1 1 1
I 0 I L 1 0

0 1 0 t 0
1 1 0 1 1 I
1 3 1 0

1 11 0

Adders

So far, We have seen how interconnected gates erm Inc used to i mplement such lune-
tions as the routing of signals, decoding, and ROM. One ussentW are4A not yet
addressed is that of aril hmetic. In this brief overview, we will content ourselves with
looking at the addition function.

Binary addition differs from Boolean algebra iri lhat the result includes a carry
term. ThIls.

0
. L

(1

1.11
+1

1 L

1
+Q

I
J

1
-1

I 1 10

However, addition can sii I I be dealt with in Boolean terms. In Table A,9a, we show
the logic for adding two input hill t.o produce a 1-hit sum and a carry hit. This truth
table could easily be implemented in digiial logic. However, we are not interested
in performing 4iddiiion on just a single pair of hits, Radii:F ., we wish to add two tr-bit
numbers. This can be tituie by putting together _a set of adders so that the carry front
one ;Elder is provided as input to the next- A 4-bit adder is depicted in Figure A.21.

For a muhiple-hi adder to work, each of the single-bit adders muss linve ihrce
inputs, including the carry f min the next-lower-order adder. The revised truth table
appear in 'Fable A.9b, The. two outpuis can he expressed=

Sum = ABC ABC + ABC + ABC'
Cirry = AB - AC + BC

01)00
OW)
0010
0011
0100
0101

Pour-ipplux 0110

•;ixteen- 0111
100(:.

output 1--
decoder 1001

1010
1(111
1100
1101
1110

718 APPHNDix A DIGITAL LOGIC

Figure A.20 A 64-Bit ROM

Pigui -e. A.22 ix ;i n i mplcmcithilion wing AN1), OR 4iTLCI Ncyr gates.
Thins we have the neces pi logic to impiement a multiple-bit adder such s

shown in Figure A.23. Note [hat because the output from each adder dc:perids
the carry from the. previous adder, there is an increasing delay from thc leasi signir-
ieant 10 the mod significant Each lriyle hit. .1cicii,;,. experiences a certain amount

THbit Biiairy Addititin 'Fruit) l'aiblc

.in) Singly-13it Addition Mt Addition with Carry Input

A 10. Sinn Carry C 1 B Sum C,„„

0 0 0 0 0 0 0 0 0
(1 1 1 0 0 0 1 I 0
l 0 1 0 0 1 0 1 0

1 1 0 1 0 1 1 0 1

1 0 0 l 0

1 0 1 0 1

1 1 0 0 1

1 1 1 I 1

COMBINATION CIRCUITS 719

Overflow

A, B-.

c,

A, B,

C, Cm c o {-1

5
:I

Figure A.21 4-11it Athlor

of gate delay, and ihil.; gate delay accumulates. For larger adders, the accumulated
delay can become unacceptably high.

lf the carry values could be tletermincd without having to ripple through all
the previous suige: ,1, !hen each single-bit adder could function indupencluntry, and
do lay would not Li Ccuin atcQ, ThiN can be achieved with an approaal known as cam.
lothicalreeodr Let us look again at the 4-bit adder lo explain this approach.

We would like to come up with an cvi.c.sion thal P;pecifies the carry input to
an!,. , stage of the adder without reference to previous carry %lilies, We have

x—

C —

Sun

rry

Figure A.22 I mplQinentatiois.of an Adder

720 APPENDIX A / DIGITAL LOGIC,

... A, B, A„ B„...A„ B„ A.. B„ ,-. A, 13, A, U.. -.- 13 :.

II IL . I1 IL I _LL

kidder 7 LIdd ET ; eider

9-bit
ri der I

8-bit I C, • S-bit

Figure 4.23 Construction of a 32-Bit Adder Using 8-Bit Adders

AH.E3 D (A.4)

C A 1 8 1 + + (AS)

Folttwing procedure, we gut

C. = A,13„ I A i.A.B, .1- .A,,A,A,,B ;) -L A :3 A„B,, + B,A,B, -I- B,A,A, • B„ - A„B„

This process can be repeated for arhiirarily long adder! ,.. Each carry term can he
expressed in SOP form as a function on]} of the original inputs. with no depen-
dence on the carries, Thus, only two levels of gate delay occur regardless of the
iength of thc ad&r.

For long numbers. this approach becomes excessively complicated .. Evaluating
the expression for the most significant bit of an to-hit adder requires an OR gate with

— 1 inputs and it ANI7 gatcs with from 2 lo n - 1 inputs. Accordingly, full carry
lookahead is typically done only 4 to bits at a time. Figure. A.2 .3 shows how a 32-bit
adder can be constructed out of four s-bit adders. In this case, the carry must rip-
ple ihrough the four K-bil ;Rider& bui this will be substantially quick er than a ripple
through thirty-two 1-bit adders,

A.4 SEQUENTIAL CIRCUITS
--••••••

4rAs'e ••••

circuits implement the Lnisential functions of a digital computer.
However. except for the special case of ROM, they provide no montory or stake
inforrruition. elements also essential to the operation of a digital compul cr. For t h e
latter purposes. a more oDmplex form of digital 'ugly. C.TCLE i used: the seilueninil
circuit. The current output of a sequential circuit depends not only on the current
input, but also on the past history of inputs. Another and generally more useful way
to vicw it k that the current output of a sequential circuit depends on 11w currcn I
input and the current 4I- t{ or That circuit-

1n this section, we exainine some simple but useful examples of sequential en . -
euiV., As will be .wen, the sequential circuit makes use of combinalional circuits.

Flip-Hops
The s.impiest form ,,r tic l U llli44l eircail is the ' Dm:. are a variety of flip-
flops, all of which share two properties:

1
S3: SU. S, S„ 5, S 7 S„

A.4 / SEQUENTIAL CIRCUITS 721

'T The flip-flop is a !listable deviee- IL exists in one of two states and, in the
absence of input, renmins in that state. Thus. the flip-flop can function as a
I-hit memory.
The nip-rit)r) has two outputs, which are always the complements Of each
other. These are generally labeled 0 and 0,

The S—R Latch
Figure A.24 shows a common coil figuration known as the S—R flip-flop or S—R

latch, The circuit has two inputs, S (Sel) and R (Reset). and Iwo outputs. C> and 0,
and consists of two NOR gales hooked together in ;1 feedback arrar4?,ement,

First, let us show that the circuit is bistable, Assume that both S and R are
and l hat Q is tr The inputs to the lower NOR gate are Q — 0 and S — 0. Thus, the
outpui Q — I mean , tha1 the inputs Io the upper NOR gate are = 1 and R = 0,
which has the output Q = 0. Thus : the state of the circuit is internally consistent and
remains stable. as long as S — R — O. A similar line of reasoning shows that . the state
0 = 1, C = is also h)r R = S = 0,

Thus, this circuit can function as ;1 I -bit memory. We can view I he output
0

 as
the 'value" of the bit. The. inputs S and R serve to write the v .alues 1 and 0, respec-
lively, into memory. To see this, consider the state O — O. 0— 1. S — — 0. Sup-
pose that S changes lc the value I. Now the inputs to the lower NOIt gale are
S = O. After some time delay at, the output (}1' the lower NOR gate will
he Q = 0 {see Figure A.25). So, at this point in time, the inputs to the upper NOR
gate become R = 0, = O. After another gate delay of At. the output. becomes I,
This is again a stable state, The inputs. to the lower gate arc now , S — 1, Q = 1,1Nhich
maintain the output Q — O. As long as S = 1 and R = 0, the outputs will remain O = 1,
Q . = 0, kiriherrnorc, S returns to O. the outputs will remain unchanged,

The R output performs the opposite function. When I goes 1.0 1, it rorces = 0,
1 regardless of the previous state of Q and Q .. Again, a time delav of 2As occurs

before stability is re-established (Figure A.25).
The S. R latch can be defined with a table similar to a truth table, called a char-

acteristic iethie, which shows thc next state or states of Li SCLILLCIliial circuit as .LL rune.-
tion of current states and inputs. In the case of the S—R latch, the state can be
defined by the value of 0. Table A.lOa shows the restrlling ch41raeteristic iable.
Observe that the inputs S 1. R — 1 are not allowed, 11.C.C.NLLSe the.e %VOL] Id produce
an inconsistent output (both 0 and p equal 0), The table C@11 be expressed more

S

Figure A.24 Thu. S R Latch linplemenn....(.1. with NOR Gates

722 APPENDIX A / LoGiC

0

1

0

1
2

0

4—

t)

0
Fignre A.25 NOR S-R Latch tinting Diiigain

compactly_ as in . 1 able .A.1.011. An illuz‘lriiiion 01 the behiivior or the S....R latch is
shown in Table A.1 Oc.

Clocked S-R
The output of the S-R latch changes, Lifter a brief time delay. in response to a

change in the input. This is referred to as asynchronous operation. :Vlore typically,
events in the digilal computer are synchronized to zM clock pulse, so chat changes
occur only when a clock pulse occurs. Figure A.2624rows this arrangement. This
device is referred to as a clocked S-R flip -flop. Note that the R and S inputs are
passuil 10 [hi NOR gulcs only during the clock pulse.

D
Onu problem with S-R flip-flop is that the condition R - S = I must be

avoided. One way to do this is to allow jub,t u 7., i ngic input. The. D flip-flop accom-
plishes this. Figure A,27 shows a gate implinnentation and the characteristic table
of 1ht D [lip-Flop. By using an inverter. the nonclock inputs to the two AND gates
MC' guaranteed [o oppo,silc of each, other.

The D flip-flop is sometimes referred to as the data flip-flop because it is, in
cliect, storage for one bit of data. The output of the D flip-flop is always equal to
the most recent value to 1111,i input, Hence. it Tiftnemberii and produces the

last input. It is also referred to as the delay flip-flop. •ccausc it delays a 0 or I
applied to its input for a single clock pulse.

Table A.10 The S—R Latch

A.4 / SEQUENTIAL CIRCUITS 723

f a) Characteristic Table (10 Simplified Uhanicteristie Table

Current
Inputs

Current
State

Next
State S K On - I

SR (),, Om - 1 0 0 Q.:
00 0 0 0 1 0

00 1 1 1 0 1

01 0 0 1 1

01 1 0
10 0]
10 I 1
1 1 0
11 I

(c) Response to Series of Inputs

1 ii 1 2 3 4 S 6 7 g - 9

S I 0 0 0 0 0 0 0 l 0
R 0 0 0 1 0 0 1 0 0 0

Q,. ,] I 1 0 0 0 0 0 1 ' 1

.11 —K Ilip-Flnp

Another useful flip-flop is the J—K flip-flop. Like the S—R it has two
inputs. However, in this case all possible combinations of input values are valid.
Figure A-2X shows a gate implementation of the I .K flip-flop, and Figure A.29
shows its characteristic table (along with those for the S—R and D flip-flops). Note
that the first three combinations are the same as for the S—R flip-flop. With no input,
the output is stable, The J input alone performs a set function, causing the output

Clock

S

Figure A.24 Clocked S—R Flip-Hop

724 APPENDIX A l DIGITAL LOGIC,

Figure A-27 D

to tw. E; the K input alone performs a reset function. causing the output to be 0.
When both .1 and K 1. lbc function performed is reicri -cd to as the log& func-
tion: the output is reversed. Thus, if Q i 1 and 1 is applied to .1 rind K. then Q
becomes O. The reader should verify that the impiementation of Figure A.28 pro-
duces Ibis. characteristic function,

Registers

As 21n exarnpie of the usc of nip- Nops, let us first examine' orR,I. or the csscnthrI elc-
ments of the CPU! the register. As we kmrw. regiKlcr ix,i circuit used within

N

I

w-9 Pure A,2.8 3-.K I lip-Flop

Name Characturistic.
Table

Graphic Symbol

D Q,

K Q„„

Q..

0

1

Ck

R

I Q

Ck 1 K

C k

A.4 I SEQUENTIAL. CIRCUITS 725

Figure A.29 Basic Rip-Flops

the (71-1 1,i lo siorc one or mere hie tiaW. Two bask types of registers are.corn-
monly used parallel registers and shift registers.

Parallel Registers
A parullel eonsists of a set of I -hit memories that can be read or writ-

ten simultaneously, It is used to store data. The registers that we have discusscd
throughout this hook are parallel registers.

.1 'he 8• register of Figure A30 illustrates the operalion of a parallel register.
S—R latches are used. A control signal, labeled input dale strobe. contr(6 writing
into the register from signal lines. D1 1 through D1.8. 'Ihwse lines might be the out-
put of multiplexers, so [hat data from a variety of sources can be loaded into the reg-
ister. Output is controlled in a similar fashion. As an extra feature, a ree1 line is

D18 1)17 D15 D14 1),13

Input
data
strobu

1303

Data lines

•

_J

0
Reset
lines

0
Output
Ja to

st-rilbe
I_ L

O
DOS 007 1)06 1105

Output lines

Figure .4.30 &Bit Para I fel Register

A.4./ SEQUENTIAL CIRCUITS 727

I) U U

>
Q Serial ilk --- 0

Clk

Serial Ma

Clock

Figure A,31 Shill Register

available that allows the register to be easily set to 0. Note Thal ibis could not be
accomplished as easily with a register constructed from D flip [lops-

Shift Register

A shift register accepts and/or transfers information serially. Consider, for
example, Figure A,31, which shows a 5-hit shift register constructed from clocked
ID flip-flops. Data are input only io the leftmost flip-flop. With each clock pulse, data
arts shifted I the right one position, and the rightmost hil is Lrunsierred out.

Shift registers can be used to interface to serial I/O devices; In addition, they can
be used within the ALU to perform logical shift and rotate functions. In this latter
capacity, they need to be equipped with parallel read/write circuitry as well :is

Counters

Another useful category of sequential circuit is the counter. A counter is a register
whose value is easily incremented by 1 modulo the.capaeity of the register. Thus, a
register made up of n flip-flops can count up to .2'4 When the counter is incre-
mented beyond its maximum value, LL IS set to 0. An example of a counter in the
CPU is the program counter.

Counters can be designated as asynchronous or synchronous, depending on
the way in which they operate. Asynehrc.mous counters are relatively slow because
the output of one flip-flop triggers a change in the status of the next flip-flop. In a
synchronous counter, a]] of the flip-flops change state at the same time Because the
latter type is much faster, it is the kind used in However. it is useful to begin
the discussion with a description of an asynchronous counter.

Ripple Counter

An asynchronous counter is also recon'ed to as a ripple counter. because the
change that occurs to increment the counter starts at one end and '`ripples" through
to the other end. Figure. A.32 shows an implementation of a 4-bit counter using .1-1‹..
flip-flops. together with ai timing diagram that illustrates its behavior. '11-w timing
diagram is idealii.ed in that it does not show the propagation delay I hat occurs as the
signals tnovc down the series of flip-flops, The output of the leftmost flip-flop (1.4)
is the least significant hit. The design could clearly be extended to an arbitrary num-
ber of bits by cascading more flip-flops.

Clock >ck

K

High

Q1

.(a) Sequentia) circuit

Q, Q,

L

L

k

K Q

Q

>Ck

K

Q

Clack

01

728 APPENDIX A / DIGITAL LOGIC

In the illustrated implementation, the counter is incremented with each dock
pulse. Thc J and K inputs to each flip-flop are held at a constant L. This means that,
when there is a clock FNE., the ciutpul al Q will be inverted {] 10 0; 0 lo L. Note
that the change in state is shown as occurring with the edgc of the clod pulse.:
this is known as an edge-triggered flip-tlop. Using flip-flops that respond to the tran-
sition in a clock put c nil her than the pulse itsetf provides better timing control in
complex circuits. If one looks at patterns of cyuipiii for this counter, it can he seen
that it cyctes through 0000, 0001 111.0, 111 L. 0000, and so on.

Synchronous Counters

The ripple counter has the disadvantage of the delay involved in changing
value, which is. proportional to the length of the counter. To overcome this disad-
vantage., CPUs make use of synchronous couniers, in which all of the flip-flops of
the counter change at the same time. In this subsection, we present a design for a
3-bit synchronous coun ter, In doing so, we. illustrate some basic concepts in the
design of a synchronous circuit.

For a 3-bit counter, three flip-flops will Inc needed. 1,c1 us use J-K.
Label the uncomplemented output of the three flip-flops A, B, C, respectively,
with C representing the least significant hit. The first step is to construct a truth tabte

(b) inning diagram

Figure A.32 Ripple Gaunter

n1 ID

1

LiJ 01

(1 d
lc A

1 L 1 d

Ka = BC A

d
Kb = C• A

d

BC
11 10

d
Kc = I A

d
.01111ir

BC
DO 01 1]

1i d

BC
DO Ill 11 10

(b) Karriaugh maps
(10

0 .
= BC A

d
I

cl l
d d

BC
DC Di. ti]0

A.4 SEQUENTIAL CIRCUITS 729

A B C 3a .Ka Kb lc 1(..c

0 O. 0 0 d 0 LI I

0 I) 1 0 d 1 d d I

41 1 0 Il dd 0 1 Li

1,1 1 1 1 ddIdt
(a) Truth table

d 0 0 d d I 0 0

I 0 1 d D I d dl .

1 1 0 d D d 0 1 Li

1 1 1 d1d1d1!

(c) Logic diagram

High *

– Ck

- K

A

—;-4> Ck

LK

C. kx k

Figure A..33 Design or a Synchronous Cnunter

that relates the J—K inputs and outputs, to allow us to design the overall circuit. Such a
I r ah table i shown. in Figure A.33H. 'file first three columns show the possible
combinations of outputs A. B, and C. They are listed in the order that they will ap-
pear as the counter is incremented. Each row lims ihe current value of A : B, C and the
inputs lo the three nip-Lops thm will be required to reach the next value of A, B.C.

730 APPENDIX A D1GETAL LOGIC

To understand the way in which the truth table of Figure A.33a is constructed,
it may be helpful to recast the characterisric table for the i-K flip-flop. Recall that
this table was presented as follows:

J Q.:, I

0...

_ 1
0.,

In this form, the table. shows the effect that the J and K inputs have on the output.
Now consider the following organization of the sante information:

0
1

In this form, the table provides the value of ihe next output when the inputs and the
present output arc known. This is exactl!,. , the information needed to design the
counter or, indeed, any sequential circuit. In this form, the table is referred to as an
excitation table.

Lei us return to Figure A. 3m- Consider the First row. We wani the value of A
to remain Il. I he value of B to remain 0, and the value of C to go from IF to 1 wi h thy:
next application of a (Jock pulse, excitation table shows th at to maintain an out-
put of 0, we must have inputs of 0 and don'I care for K, To effect a transition
from IJ to 1, lie inputs must be J = I and K = d. These values are shown in the first
row of the table. By similar reasoning, the remainder of the table can he filled in.

Having constructed I he truth table of Figure A.33a, we see that the table
shows the required values of all of the J and K inputs as functions of the current val-
ues of A, B, and C. With the aid of Karnaugh imps, We con Eirvulop Roolc:in expres-
sions for thef,..e si74 functions, This is shown in part h of the figure. For example, the
Karnaugh map for the variable Ja ,Ohc. J input to the flip-flop that produces the A
ouipui .) yields the expression -la - 13C. When all six expressions are derived. it is a
straightforward limiter to design the actual circuit, as shown in part c of the figure.

A.5 PROBLEMS

--e ,r,reMErerrifrr6 ''

A, I (.4,1e1 aI.ruth table for th.c. following Boolean expressions:
a. ABC: .1 I.SC.: _ c. A(B' -Ff3C)
b. ABC -F - Aisc. d. (A .1- 11)(A -F (.) ,(1-71. —

A.2 Simplify the fk-i11(iwing exprenioris according ihc commutative. law:
41. A-B— B•A I C•D.E • C•D•1 + h. - D
h. A-I3 +A•C— B•A
v.. 4 L • NI - N), (A• B)(C • D • F.)(Nei • N • L)
d, F - (K. R) S • V - VI/ •)7c I v s x • %v. — (R K...) • F

£5 / PROBLEMS 731

A. Apply Dehelorgan's theorem to the following equations;
a. F V - A — L
h. F = + 13 + +

AA Simplify the following expressions:
a. A - S•T— V•W+R•S•T
h.A=T•t:•V.. X.Y I Y
c. A — F • fE 1- F + G)
d.A =(P•Q — k —S•T)T•S

e. A=D•D•E

ti A — Y • (W + X -F +) • Z

g. A = (B • E — C + E') • C
4,5 Construct the operation XOR from the basic Boolean operad ions AND, OR, and

NOT.
A.6 Given a NOR gate alai NOT gales, draw a logic diagram (hal will perform the three-

input AND function-
4.7 Write the Boolean expression kit a four-input NAND gate,
4.8 A combinational circuit is Iti Sed ci. 10(rol sei.rtm-segrrient display of decimal

as shown in Figure A,34. The li:ix lour inputs, which provide the four-bit nude
used in packed decimal repres4Ailatioti I„ - 0004) 9, 1 = 1001). The seven out-
puts define which segment' , will be. naivalc!Li to display a L,ven decimal digit- Note
that some corribinaliOnS of inputs and outputs are not needed.

Develop a truth table for this circuit.
h. Express the truth table in SOP form.
c. Express the truth table in PCS foun-
d. Provide a simplified xpressii-Fn.

4,9 Design an 8-to-1 multiplexer.
4.10 Add an additional line to Figure A.15 so Clot it functions as a demultiplexcr.

K. C)
digit

x,
Combinational
circuit

x i

{a)

Z.
-Z,
7,
7,

Z „
7,

1 1 I 1 1 1 L 1_ 1 1 11 1
1 1 1 1 1 1 1 1 1

(b)

Figure 4.34 Seven Segment LED Display Example.

Z.

732 APPENDLX A / DIGITAL LOG'IC

A.11 '1 he Gray Lxide is binayy 4:11d e. for inItz,gcni, it differs from tho ordinary binary YE:p-
T esc. ritati ori in that [li me jug a single it change between tloc re present all ions. c'
any two numbers_ 'Itis is LIS42.1u1 for applkations s uch as counters or ana14-to-digital
converters where a sequetiLv„ nt numbers is gunerated. Because only one bit changes
at a time., th,2r‘.. is never any arithiguir• ditir to 41 ight tiinirtg differt.ncs..11be. rink eight
elements of the code are as follows..

Binary Code Gray Code

000
001

I lit
II t
IOI

01X)
001
01.;1
011
100
101.
110
111

Design a circuit that converts from binary to Cray code,
A...12 Design a 5 32 decoder using four 3 X 8 decoders (with ,2natile inputs) and one 2 4

decoder.
A,13 lulpInient the fun adder of Figure A,22 with just five gates, (Hint:Somc (rf the gatcs are

01:t gates.)
A.14 Consider Figure A.22. Assume. tha each produues a delay' tri li) ns- Thus, the

sum output k valid afier 30 ns and the carry output alter I) W1Du. is the rill al add
ti me for a 1..2-11it adder:
a. Implemented without carry lookohead, as in Figure A.21?
b. I mplemented with carry lookahcad and using 8.bit adders. as in Figure A.23?

Converting Between Binary and Decimal

Inttgers
F ractions

The Decimal System

734 APPENDIX B / NUMBER SYSTEMS

B.1 THE DECIMAL SYSTEM

+feleerarSee.1:51.;:.-

0

I n everyday life we use a sNy.stcm based on decin -m I 4.1igils (0. 1. 2, 3. 4..5.. 6,7, H.q.)
to repri,: ,kmt numbers and refer to the system as the decimal slistera. Consider
whkit the number 83 means. It means eight tens plus three.

83 = (8 X 10) - 3.

The number 4728 rneans lour ltkluNmids. seven hundred", [WO tens , plus eight '

4728 = (4 x 1000) + (7 x 100) + (2 X 10) -F

The decimal system is said to have a base, or radix. of 10. This means that each di-
git in the number is muhiplied by 10 raised to a power corresponding to that digit's
position:

83=(8 X 10') -F (3 10")

4728 — (4 X 10 1) — (7 X 101 + (2 x it)') — (8 X 10")

The same principle holds for decimal fractions but ne2ative powers of 10 are
used. Thus, the decimal fraction 0.2515 stands for 2 tenths plus 5 hundredths plus 6
thousandths:

0.256 — (2 X 10 ') -F (5 x 10") -F (6 X 101

A number with both an integer and fractional part has digits raised to both
positive and riegativ4 powers {Fl 1i}:

472.256 = (4 x 102) + (7 X WI) — (2 x 101 — (2 X l0 (5 X 10 + (fi X 1Cr')

In general, for the decimal representation of X . . the
value of X is

X — x 10'

B. CE BINARY SYSTEM

in the decimal system, 11) different digits ;ill. used Iii represent numbers with a base
of 10. In the binary system, we have only two digits. 1 and (1, Thus. numbers in the
binary system are rcpresen Led iolhe base 2,

To avoid confusion, we will sometimes put suhscript nurnhcr to indicate
11;11W, For example, 83,, and 4728,,, are numbers represented in decimal notation

or. more hricrly, decimal numbers, The digits and 0 in binary notation have the
same meaning as in decimal noiaLion:

11.3 1 CONVERTING BETWEEN BINARY AND DEC=IMAL 735

0, =
I , RI

To !represent urger ri Uiribc , as with dconnal notation, each digit in a binary num-
ber has a value depending on its position:

I [1, =(l x2') + (11 2'') = 2

II, = (I x 2') +{1 x = 3.,,

100 2 (1 x 2 2) + (fi x 2 1) —(@X 2 n) = 4 th

and so on. Again, fractional values are represented with negative powers of the radix:

1001.101 = 2 - 2 =

In general, for the binairy rcresuniriLicin — ,

value of Y is

Y= ‘K 2'

4:3 601iVERTING :AM5 ijECTMAL

I I 1.5 !,,i mple matter t0,.onv4:1 -1 a number ['EOM binary 11014 .1.1,i on Lc) decinml notation.
In fact, we showed sevciai examplef, in the previous subsection. All that is required
is to multiply each binary digit by the. appropriate power of 2 and add the results.

To convert from decimal to binary, the integer and fractional parts are han-
dled scparalely.

Integers

For the integer part, recall that in binary notation, an integer represented by

= or 1

has the value

2''' (b 2''' 2) F . . . X 2 1) 1 -

Suppose it is required to convert a decimal integer N into binary form. If we
divide N by 2, in the decimal system, and obtain a quotient N, and a remainder R„..
we may write

N- 2 x N I I R,, 001.

Next, dividt.? 1he cluotient N ; by Assume lhat the new quolitnt is .Nr, and the.
neW Then

736 APPENINX B 1 NUMI3Elk. SYST.E„Evn

so that

N = 242N,. + R.) + R5 = x + (R, x 2') + R„

If next

rV,= 2N, — R2

wc have

= (N 4 X) - (R, X 2 •
.1 I (R, X 2 -) I R,,

BecnLISC N > N, > N, ... continuing this sequence will eventually produce a quo-
tient N, , — 1 (except the decimal integers 0 and 1, whose binary equivalents
are 0 and 1. respectivel!,..) and a remainder which is 0 or 1, Then

— (I 2,'"' ') ' X 2''' -.) 4 „ 4. (R, x 2• — (R i x 2') 1 R r ,

which is the binar!, , form of N. I fence, we convcri from I -34i e 10 Lc) base 2 by repeated
divisions by 2. The remainders and the final quotient, I, give us. i rt order of increas-
ing significance, t he binary digits of N'. Figure B. I shows two examples.

Fractions

For Lhc (rad ional part, recall Elia' in binary notation, a number with a value between
0 and 1 is teprescnted hy

0.b h ,b b ; () or 1.

and ha7,1 the value

(b. i x 2 I) -F (17 x 2 2) t (b x 2 ')

This can he rewritLcri 4:".;

2 x (h. , + ' (.0) ,- 2 I X (b.., -h

This exprcmion s.uggcsts a kxhnique for conversion. Suppose we want to con-
vert the number F (0 <: F < I) from decimal to binary notation. W know lhai F
con be expressed in the form

F x (h -h 2 (/) + 2 I x (h +

11 we multiply Jr: hy 2, we obtain:

2xf=h • x(11,-F2

B.3 / CONVERTING BETWEEN 111NARY AND DECIMAL 737

Quotient Remainder

1
2

5 2
2

2 1 0
2

2
1 0 1 1 1 = 11

(a) 1.1„

21
2

5
2

2
2

fS

2
= 1

1 010 1. 2 = 21,,

(b) 21 1 , !

10
2

Figure B.1 Examples cif Convvrtinp, from Decimal
Notation to Binary Notation For Integral Nurnhcrs

From this crd•uzition, we see that the integer part of (2 X F), which must be
either 0 or 1 because C) •.:: F < 1, is sireplv h. ,. So arc con so} (2 F) = + F1 .
where 0 <1 and where

F, — 2 (b i• 2 X (b — 2 .1 x (. 1) . 4 +

To find b 2 , we re1- ,2411. the procesq. Therefore : the conversion idgorithm involves
repeated multiplication by 2. At each step, the frictional part of the number from
the previous step is multiplied by 2. the digit to the left of the decimal point in the
product will hy 0 or I and contributes to the binary representation, starting with the
nicawl ,,i gnificant digit. The fractional part of the product 6 tied tio , the multiplicand
in the next step. Figure B.2 shows two c.mirrIples,

This process is not rtc•ccy.:.xrily exact; that is, a decimal fraction with a finite
number or digiLs may requirc binary fraction with an iofinito number of digits. In

738 APPENDIX B NUMBER SYSTEKS•

Product 'Integral FilII .1 I ',I

0.EI1 x 2 =1.62
0.62 54 2 = 124
0.24 x 2 = (1.48
048 x 2 =

x 2 = 1.92
1).92 2 m. 1.84

(3) 81,,,.= 0,110411. (approximate)

015 x 2 = 45
03 x 2 = 1.0

4.25„= (1,01 2 (exact)

ilgtire 13.2 E.r....uniples of Converting from Decinui1
Nototioo to Bits ily NOUitiun for Fraciiional Numbers

such cash;, conversion Eilgorithin is usually hafted after21prespcei net] number tit
steps, depending on the desired accuracy.

13.4 HEXADECIMAL NOTATION

Because of the inherent binary nature. of digital 424)mputor components, 21 11 Corm ,,. of
data hin computers are represented by various binary codes. I I ivtvevur, no niat-
ter how convenient the binary system is for computers, it is exceedingly cumbersome
for human beings. Consequently, most computer professionals who must spend time
working with the actual raw data in the Computer prefer a more compel ntitMiori.

What nolation to use? One possibility is the decimal Rotation. This is certainly
more compact t h an binary notation, huh it is awkward because of the tediousness of
converting between base 2 ar[ti

i m1e[E1.4[notation known as hexadecimal has been adoptcd. Binary digits.are
grouped into sets of four. Hach possible combination of four binary digits is given a
symbol, Eis follows;

00110 =11 11100 =
0001 = 1 11101 - 9
(11110 -= 2 .1 411.) A
00 = 1011 - ti

0100 = 4 1 100 - C

0101 - 5 .1 101 --- D
0110 - 11111-=
0111 - 7 111[==F

;

1
1

fieQuum: I fi symbols are used, the notation is called hexadecimal, ;ind the I 6 sym-
bols W- L!: the hexadecimal digits.

PROBLEMS 739

A sequence of hexaticeim I digits can be thought of as representing ra n intcgrr
in bm 16. Thus.

.2C.„ — (2,„ x• 16') — (C, — 1(i")

= 1(2.D x 16 1) — (12 10 x 16 1) = 44

Hexadecimal rotation is used not for representing integers. It is also
used as a concise notation for representing any sequence of llimiry digits, whether
they represent text, numbers, or some other type of data. The reasons for using hexa-
decimal notation are as follows!

1. IL is more compact than binary notation.

2. In most computers, binary data OCE.: LI py some mu l ti ple of 4 bits, and hence some
multiple of a 'single hexadecimal digit.

3. It is extremely easy to convert between binary and hexadecimal.

As an CA arripic or the list point, consider the binary string L10.111.10100l. This is
eq ivaient to

1101 1110 01101 — DE1 i „

D E.

This process is performed so naturally that an experienced programmer can
mentally convert visual representations of binary ‘bta to their nexadecimA equiva-
lent without written effort,

13.5 PROnitMg
arr;

Oyer
..oroyrt airy +P. yra:-...‘":01C -,Yer:f1W.P.' yerre, rert:YrIk- arrrayar". er.rrnr-yre:r.W5P.re.

ard'er".

B.1 C:cinvert the following binary numbers to [heir decimal equivalents:
▪ 001100 b. .000011 c. 011100 d. 111100 e. 101010

13.2 Convert the following binary iiiinihers to their decimal equivalents:

▪ 111.0(.A)1 I b. 11001.1.10011 c. 1010101010J
B.3 Convert the followinEt decimal numbers to their lrin .my

a. 64 b. 100 c. 111 d. 14-5 e. 255
11.4 Converl the following decimal numbers. to their binry . equivalents;

u. 34..75 I. 25,25 c, 27.1875
111. Express the following)ct I. numbers in hexadecimal notation:

11. 12 h. 5655 v. 2550276 d, 76545 .-336. e. 3726755

B.6 Convert the following hexadecimal numbers to their decimal equivalents;
h. 9F c. D50 d. 67E c. ABCD

B.7 C'onvert the following hexadecimal numbers to their decimal equivalents:
a- FA b. D3.E e. 1111,1 d.811,8_8 e. EBA,C

[1.8 Con.vc,...rt the following decimal numbers to their hexadecimal emuivalorits:
11- 16 h, 80 e. 2560 d. 3000 e. 62,500

R.9 Convert the following decimal numbers (c.Pthvir decini ii equivalents:

a- 204.125 b. 255,875 tr.. 631.25 d.] 00(10.00390625

740 APPENDIX B / NUMBER SYSTEMS

11,1111 ConvE:rt the ibllowing hi:xndecinial numbers to their binary equivalents;
a, E b, IC v. A(-14 • d. 1F.0 e.239.1

11.11 Convert the tollowina binary ritinihels iii lheir iltieirmil ircitlivalonts:
a. 1001.1111 b. 110101.011001 v. 10100111.1111)11

ti-n Prove that every real number with a terminating binary representation (finite num-
ber of digits 10 the right Of the binary point) also has H terminating decimal repre-
sentation (Finite number of digits to the right of tho cicuirnal point).

742 APPENDIX C / PROJECTS FOR TEACHING COMPUTER ORGANIZATION

M any instructors believe that research or implementation projects are cru-
cial to the clear understanding of the concepts of computer organisation
and architecture. Without projects, it may be difficult for students to grasp

some of the basic concepts and interactions among components. Projects reinforce
the concepts introduced in the book, give students a greater appreciation of the
inner workings of a processor. and can motivate students and give them confidence
that they have mastered the material,

In 1his text. I have tried to present the concepts as clearly as possible and have
provided numerous homework problems to reinforce those concepts. "...Ian>. instruc-
tors will wish to .supplement this material with projects. This appendix provides
some guidance in that regard and describes support material available in the instruc-
tor's manual. The support material covers three types of 'projects:

• Research projects
• Simulation projects
• Readingireport assignments

RESEARCH PROJECTS

An effective way Of reinforcing basic concepts from the course and for teaching stu-
dents research skills is to assign a research project, Such a project could involve a
literature search as well as a Web search of vendor products, research lab activities,
and standardization efforts. Projects could be assigned to teams or, for smaller pro-
jects, to individuals. In any case, it is best to require some sort of project proposal
early in the term, giving the instructor time to evaluate the proposal for appropri-
ate topic and appropriate level of effort. Student handouts for research projects
should include the following:

• A format for the proposal
• A formal for the final report
• A schedule with intermediate and final deadlines
• A list of possible project topics

The students can select one of the listed topics or devise their own compara-
ble project. The instructor's manual includes a suggested format for the proposal
and final report as well as a list of possible research topics.

C.2 SIMULATION PROJECTS

An excellent way to obtain a grasp of the internal operation of a processor and to
study and appreciate some of the design trade-offs and performance implications is
by simulating key elements of the processor. Two useful tools that are useful for this
purpose arc SimpleScalar and SMPCache.

RHADING/REPORT ASSIGNMENTS 743

Compared with actual hardware implementation, simulation provides two
advantages for both research and educational use:

• With si mulation, it is easy to modify various elements of an organizalion. to
vary the performance characteristics of various components, and then to ana-
lyze the effects of such modifications,

• simulation provides for detailed performance statistics collection, which can
be used to understand performance trade-offs,

SimpleScalar

SimpleScalar [BURCi97, MANJO.la, NIANJO1b] is. Li set of tools that can be used to
simulate real programs on a range of modern processors and systems. The tool set
includes compiler : assembler, linker, and simulation and visuaiization tools. Simple-
Scalar provides processor simulators that range from an extremely fast functional
simulator to a detailed out-of-order issue, superscaiar processor simulator that sup-
ports noriblocking caches and speculative execution. The instruction set architecture
and organizational parameters may be modified to create a Variety t P experiments.

The instructor's manual for this hook includes ii concise introduction to
SimpleScalar for students, with instructions on how to load and get started with
SimpleScalar, The manual also includes some suggested project assignments.

SimpleScalar is a portable software package the mans on most UNIX plat-
forms. The SimpleScalar software he clown loadci from the SimpleScalar Web
site. It is iyai[able at no cost for noncqpininercial use.

SMPeache

StvtPC4ic:ht: i a trace-driven simulator for the analysis and teaching of cache mem-
racy systems on symmetric multiprocessors [RODROn. 'The simul;ilion is based on
a model built according to the architectural basic principles of these systems. The
siniulalor has a full graphic and friendly interface_ Some of the parameters that they
can be studied with the sim ulator are program locaiity; influence of the number
of processors, cache coherence protocols, schemes for bus arbitration, mapping.
replacement policies, cache size (blocks in cache). numilur of cache sets (for set
associalive caches), number of words by Hock (memory block size)

The instructor's manual for this book includes a concise introduction
to SimpleScalar for students, with instruciions on how to load and get started
with SimpleScalar, The manual salsa includes some suggested project assignments.

SimpleScalar is a portable software package the tuns on PC systems with
Windows. The SimpleScalar software can be downloaded from the SimpleScalar
Web site. It is available at no cast for noncommercial use

C.3 READING/REPQRT ASSWNIVWINTS

Another excel lc ni way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to he read and analyzed.

744 APPFNDPX C PROJECTS FOR TEACHING COMPUTER ORGANIZATION

The instructor's nuinual includes a2.,u.ggQ4tQd list or popers_ {rc or two per chapWt,
Lc) be assigned. All of the papers are readiby available either via the Internet or in
miy good college iechnical library. The manual also includes a suggested assign-
ment wording,

GLOSSARY

s one of the terms in this glossary are front the Aincriam Neiiirmal Dic-
tio)rary for Informarion Systems (1990. These are indicated in the glos-
miry by an asicrisk,

Ahsolute Address* An address in a computer language that identifies
a storage Location or a device without the use of any intermediate ref-
erence.

Accumulator The name of the CPU register in a single-address instruction
format. The accumulator. or AC, is implicitly one of the twd operands
for the instruction.

Address Bus That portion of a system bus used for the transfer of an ad-
dress. Typically, the dcidre:ss hic.ntifics a main munory location or 4111.

I /O device.

Address Space The range or addresses (memory, I10) that.can be rEerenced.

Arithmetic and Logic Unit (A LU)* A part of a computer that performs
arithmetic operations, logic operations. and related operations.

ASCII American Standard Code for Information Interchange.. ASCII is a
7-bit code used to represent numeric, alphabetic, and special printable
characters, II also includes codes for corilroi characters, which are nol
printed or diTlaycd bin sperify 7.:.orrie control funciion.

Assembly Language A Coniputer-orienlcd language whose instructions tire. .
usually in one-to-one correspondence with computer instructions and
that may provide facilities such as the use of macroinstructions. Synon-
ymous with compare r-ilepentlem. fanguage.

Asgoriative Memory* A memory whose storage locations WI - G identified by
their conlimts, or by a part or 1hcir cons cars, rat her ihan by their names
or positions.

Asynchronous Timing A technique in which the occurrence of one event
on a bus follows and depends on the occurrence of a previous event.

Autoindexing A form of indexed addressing in which the index register is
automatically incremenicd or Lluercni ell led with L{,2 h memory reference.

Base In the numeration system commonly used in scientific papers, the
number Olaf is raised to the power denoted by the exponent and then

746 GLOSSARY

multiplied by the maniissa Lo determine the real number represented (c.g., the
number 10 in the expression 23 x 10' —.270).

Rase Address* A numeric value that is used as a reference in the calculation of
addresses in the execution of a computer program.

Binary Operator* An operator that represents an operation on two and only two
operands.

Bit* In the pure binary numeration 'System, either of the digits 0 and 1,

Block Multiplexor Channel A multiplexer channel that interleaves blocks of data.
Sec also byte rnultiplextir channel, Contrast with selector channel.

Branch Prediction A mechanism used by the processor to predict the outcome of
a program branch prior to its execution.

Buffer* Storage used to compensate for a di 1'1 .0nrice in rate of flow of data, or time
omurrenee of events. when transferring data from one device to another.

Bus A shared communications path consisting of oar or a collection of lines. In
some computer systcrns, CPU, memory, and I/O components are connected
by a Common bus. Since the lines are shared by all components, only one corn-
ponent at a time can successfully transmit.

Bus Arbitration The process of•detcrrnining which competing bus master will he
permitted access to the bus.

Ilk's Master A device attached to a bus that is capable of initiating and controlling
communication on the bus.

Byte Right }rill- Also referred to as an octet.

Byte Multiplexor Channel* A multiplexer channel that interleaves bytes of data,
See also Meek MI leipleX r r to arenrff- Contrast with selector ehonne/

Cache Coherence Protocol A mechanism to maintain, data validity among multiple
caches so 'hal every data access will always acquire the most recenl version of
the contents of a main memory word.

Cache Line A block of dui associated with a cache tag and the unit of Iransfer
between cache and memory.

Cache Memory* A special buffer storage, smaller and faster than main slorage,
that is used to hold a copy of instructions and data in main storage that are
likely to be needed next by the processor and thal have been obtained auto-
malically from main storage.

CD-ROM Compact Disk Read-Only Memory. A nonerasable disk used for storing
computer data. Thc standard system LLSCN 12-em disks and can hold more lawn
5M Mbytes.

Central Processing Unit (CPU) That portion of a computer that fetches and exe-
cutes instructions. It consists of an arithmetic and logic unil (ALLY), a control
unit, and registers. Often simply referred lo as a procc.v.vor.

GLOSSARY 747

Cluster A group of inLereonnQctc.d, whole computers workinR together as a unified
computing resource that can create the ill usion of being one machine. The term
whole computer means a system that can run on own, Bran from are elusier.

Combinational Circuit* A Logic device whose output values. at any given ingtani,
depend only on the input alucs at that time. A combinational circuit is a
special case of a 5equeatiat circuit that does not have a storage capability.
Synonymous with cornhInatoria

Compact 'Disk (CD) A nonerasable disk that stores digitized audio information.

Computer Instructive An instruction that can he recognized by the processing
unit of the computcl l'or which it is designed. Synonymous with machine
inszruclifJn.

Computer Instruction See A complete set of the operators of the instructions of
a computer together with a description of the types of meanings that can be
attributed to their operands, Synonymous with mac-Nue inslruction set.

Conditional Jump* A jump that Lakes place only when the instruction that speci-
fies it is executed and specified conditions are satisfied - Con tra i with uncon-
difional

Condition Code A code that reflects the result of a previous operation (e.g., arith-
metic). A CPU may include one or more condilion codes, which may be stored
separately within the CPU or as Nil of a larger controf rcgister. Also known

Control thal portion of a system bus used for the transfer of control signals.

Control Registers CPU registers employed to control CPU operation. Most of
these registers are not user visible.

Control Storage A portion of storage that contains microcode.

Control [.;nit That part of the CPU that controls CPt ; operations, including A IA.!
olpera00a ,,, the movement of data within the CPU, and the exchange of data
and control signals across WI-mil interfaces (c -g., the system bus).

Daisy Chain* A method of device inLei -conneciion for determining interrupt pri-
ority hy connecting the interrupt sources serially.

Data litoi Th4i I portion of a system bus used for the transfer of data.

Data Communication Data transfer between devices. The term generally excludes
1/0.

Decoder* A device that has a number of input lines of which any number may
carry signals and a number of output lines of which not more than one may
carry a signal. therc being a one-to-one correspondence between the outputs
and the combinations of input signak.

Demand Pagine The transfer of a page from auxiliary storage to real storage al
the moment of need.

748 GLOSSARY

Direct Access* The capability to oblain data from a storage device or to enter data
into a storage device in a sequence independent of their relativc position, by
means of addresses that indicate the physical location of the data.

Direct Address* An address that designates the storage lunation of an item of data
to be treated as operand. Synonymous with acre-level address.

Direct Memory Access (WO A) A forth of I/0 in which a special module, called a
.ou.iiiturc, controls the exchange of data between main mentorY and an

110 module.. The CPU sends request for the transfer of a block of data to the
DMA module and is interrupted only 4i1Ler the entire block has been iranw.
ft:fled.

Disahled Interrupt. A condition, usually created by the CPU, during which the
CPU will ignore interrupt request signals of fl specified class.

Diskette* A flexible magnetic disk enclosed in a protective container. Synonymous
with fie.v.th/c disk.

INA Yuck* An assembly of magnetic disks that can be removed YS a whole from
a disk drive, together with a container from which the assembly must he sep-
arated when operating,

Disk Stripping A 1ypc of click array mapping in which logically contiguous hlocks
of data, or strips, are mapped round-robin to consecutive array members. A
set of togicall!,. , consecutive strips that maps exactly one strip to each array
member is referred to as a stripe.

Dynamic RAM A RA Nil whose cells are implemented using capacitor ,— A dynamic
RAM will gradually lose its data unless it is periodically refreshed.

Emulation* The imitation of all or part of one system by another, primarily by
hardware, so that the imitating sys.tum accepts the satne data. executes the
same programs. and achieves the same results as the imitated system.

Enabled Interrupt A condition, usually created by the CPI:, during which the
CPU will respond to interrupt request signals of a specified class.

Erasable Optical Disk A disk that uses optical technology but that can be easily
erased and rewritten. Both 3.25-inch and 5.25-inch disks ;ire in use. .A t!,.pical
capacity is 65Ct Mbytes.

Error-Correcting Code* A code in which each character or signal conforms to spe-
cific rules of construction so that deviations from these rules indicate the pres-
ence of an error and in which some or all of the detected errors can be
corrected MI i0111 aticaEly.

Error-Detecting Code* A code in which each character or signal conforms to spe-
cific rules of construction so that deviations from these rules indicate the pres-
ence of an error.

Execute Cycle That portion of the instruction cycle during which the CPU per-
forms the operation specified by the instruction opcode.

GLOSSARY 749

Fetch Cycle That portion of the instruction cycle during which the CPU fetches
from memory the instruction to he executed.

Firmware' Micr000de stored in read-only memory-

Fixed-Point Representation System* A radix numeration sy5tern in which the
radix point is implicilly fixed in Ilse :series. of digit places by some convention
upon which agreement has been reached.

Flip-Flor A circuit or device connlining active elements, capable of assuming either
one of two stable states at a given time. Synonymous with bistabk circuit. toggle.

Floating-Point Representation System* A numeration sy .stem in which a real num-
ber is represented by a pair of distinct numerals, the real number being the
product of the fixed -point part, one of the numeral*, and a VALIQ obtained by
raising the implicit floating-point base to -a powur denoted by the exponent in
the floating-point representation. indicated by the second numeral.

G Prefix ineanin2

Gate Art electronic circuit that produces an output signa] that is a simple Boolean
operation on its input signals.

General.•Purpose Register* A register, usually explicitly addressable, within a set
of registers, that can be used for different purposes, for example. as an accu-
mulator, as all index register, or as a special handier of data,

Global Variable A variable (lathed in one porlion or a vienputer RT0141-071 and
used in at least one other portion of that computer program.

High-Performance Computing (I-IPC) A research area dealing with super-
computers and the software that runs on supercomputers. The emphasis is on
scientific applications, which may involve heavy use of vector and matrix cum-
pination, and parallel algorithms.

I mmediate Address* The contents of an address part that con1ains the value of an
operand rather than an address- Synonymous with :cm - level eznetrr.saa.

Indexed Address* An address that is modified by the content of an index register
prior to or during the execution of a computer instruction.

Indexing A technique of address modification by means of index registers.

Index Register* A register whose contents can be used to modify an operand
address during the execution of computer instructions; it can also be used as a
counter. An index register may be used to control the execution of a loop. to
control the use Of all array, as a switch, Cur !able 104 kup, or as a pointer.

Indirect Addrese An address or a storage locnlion thaI corilam.:. an address.

Indirect Cycle That portion of thc instruction cycle during which the CPU performs
a memory access to convert an indirect.address into a direct address.

Input-Output (I/O) Pertaining to either input or output, or both. Refers to the
movement of data between a computer and a directly attached peripheral.

750 GLOSSARY

Instructilm Address's Register* A special-purpose register used to hold the address
of the next instruction to be executed,

lustructiou Cycle The processing Ferrol -mei
by,

 a CPU to execute a single instruc-
tion.

Instruction Format The ia..■,. ,out of a computer instruction as a sequence of bits. The
format divides the instniction into fields, corresponding to the constituent ele-
ments of the instruction (e,g., opcode, operands).

lus-trudion Registe0 A register t hat is used to hold an instruction for inlerpretation.

integrated Circuit (IC) A tiny piece of solid material, such as upon which
is etched or imprinted a collection of electronic components and their inter-
connections.

Interrupt* A :sus ension of a process : such as the execution of a computer pro-
gram, caused by an event external to that process, and performed in such a
way that the process can be resumed. Synonymous with itnerrupth»?.

Interrupt Cycle That portion of the instruction cycle during which the CPU checks
for interrupts, If an enabled interrupt is pending, the CPU saves the current
program state and resumes processing at an interrupt-handler routine.

Interrupt-Driven 1/0 A form of 1/0. The CPU issues an 110 command, continues
to execute subsequent instructions, and is interrupted by the I/O module when
the latter has complcicd its work.

110 Channel A relatively complex I/O module that relieves the CPL I of the details
of 1.0 operations. An 1/0 channel will execute a sequence of I/0 cornmanc.N
from main memory without 111e need for CPU involvement.

1/0 Controller A reiatively moduie that requires detailed control from
the nit.) or an 1/0 channel Synonymous with device confrolle r.

1/0 Module One of the major component types of a computer_ It is responsible for
the control of one or more external devices (peripherais) and for the exchange
or data between th e devices and main memory and/or CPU registers.

I/O Processor An I/O module with its own processor. capable of executing its own
specialized 1.0 instructions or, in scorns eaScf, general-purpose machine
instructions.

Isolated I/O A method of addressing I/O modules and externai devices, 'The 1/0
address space is treated separately from main memory address space. Specific
110 machine instructions must be used. Compare 077(-: nu) ry - rna pp e d

K Prefix meaning = Thus., 2 kb = 2048 bits,

Local Variable A variable that is defined and used °rib , in one specified portion
of a computer program.

Locality of Reference The tendency a processor to access the same set of mem-
ory locations repetitively over a short period of time.

Gt.osSARY 751

M Prefix meaning 2'" = 1,048,576. Thus. 2 Mb — 2097,152 bits_

Magnetic Disk* A flat circular plate with a magnetizable surface layer, on one or
both sides of which data can be stored.

Magnetic Tape A tape with a magnetizable surface layer on which data can be
stored by magnetic recording.

Mainframe A term originally referring to the cabinet containing the central pro-
cessor unit or "main framc" of a large batch machine. After the emergence of
smaller minicomputer designs in the early 19705, the traditional larger machines
were described as mainframe computers, mainframes. Typical characteristics
of a mainframe are that it supports a large database, has elaborate 1/0 hard-
ware, and is used in a central data processing facility.

Main Memory* Program-addressable storage from which instructions and other data
can be loaded directly into registers for subsequent execution or processing.

Memory Address Register (MAR)' A register, in a processing unit, that contains
the address of the storage location being accessed,

Prlemory Buffer Register (MRR) A register that contains data read from memory
or data to he written to memory.

Memory Cycle Time The inverse of the rate at which memory can he accessed. 11
is the minimum time between the response to one access request (read or
write) and the response to the next access request.

Memory-Mapped 1/0 A method of addressing I/O modules and external devices. A
single, address space is used for both main memory and 110 addresses, and the
same machine instructions arc used both for memory readlwrite and for W.

Microcomputer* A computer system whose processing unit is a microprocessor.
A basic microcomputer includes a microprocessor, storage, and an input./
output facility, which may Or may not be on one chip.

Prlicroinstructiote An instruction that controls data flow and sequencing in a
processor at a more fundamental level than machine instructions. Individual
machine instructions and perhaps other functions may be implemented by
microprograms.

Micro-Operation An elementary CPU operation, performed during one clock
pulse.

Microprocessor* A processor Ve. 11 ONG elements have been miniaturized into one or
a few integrated circuits.

Microprogram ,' A sequence of microinstructions that are in special storage where
they can he dynamically accessed to perform various functions.

Microprogrammed CPU A CPU whose control unit is implemented using micro-
programming.

Microprogramming Language An instruction set used to specify microprogram.

752 GLOSSARY

Multiplexer A combinational circuit that connects multiple inputs to ti single output.
AE any time, only one of the inputs is selected to he passed to the output.

Multiplexor Channel A channel designed to operate with a number of 1/0 devices
simultaneously. Several [10 devices can transfer records at the !-.di me ti me by
interleavino, items of data. See also lyre tmlltiplexor channel, block multiplexor
cheatttel,

Multipromisorw A computer that has two or more processors that havexammon
access Loa main storage.

Multiprogramming* A mode of operation that provides; for the interleaved execu-
tion of two or more computer programs by a single processor.

31oltitaskine A mode of operation that provides for the concurrent periotmanec
or interleaved execution of two or more computer lase. The same as multi-
programming, using different terminology,

N41111111W1111111 Memory Access (NUMA) Multiprocessor A shared-memory multi-
processor in which the access time from a given processor to a word in memory
varies with the. location of the memory word.

Nonvolatile Memory Nlelnory whow will Lilts Lire stable and do not require a con-
stand power source-

Nucleus That portion of an operating system that conlain ,; its basic and most fre-
quently used functions. Often, the nucleus remains resident in main memory.

Ones Complement Representation Used to represent binary integers. A positive
integer is represented as in sign magnitude. A negative integer is represented
by reversing each bit in the representation of a pOS ir ive integer of the same
magnitude.

Opeode Abbreviated form. for operation code.

Operand* An entity on which an operation is performed.

Operating System* Software that controls the execution of programs and that pro-
ides services such as resource allocation. scheduling, input/output control,

and data management.

Operation Coder. A code used to represent the opera inn; of a computer. Usually
abbreviated to opcode.

Orthogonality A principle by which Iwo variables or dimensions are independent
or one LinoLlicr. In the CE3ElLeX1 of an instruction set, the term is gencLully used
to indicate that other elements of an instruction (address mode, number of
operands. length of operand) are independent of (not determined by opcode.

Page In a virtual storage system, a fixed-length block that has a virtual address
and that is transferred as a unit between real storage and auxiliary storage.

Page Fault Occurs when the page containing a referenced word is not in main
memory, ' rhis causes an interrupt and requires the operating system to bring
in the needed page.

GLOSSARY 753

Page Frame* An area of main storage used to hold a page.

Parity Bit* A binary digit appended to a group of binary digits to make, the sum
of all the digits either always odd (odd parity) or always even (even parity},

Peripheral Equipment (IBM) In a computer system, with respect to a particular
processing unit. any equipment that provides the .processing unit with outside
communication. Synonymous with periphcrof devitv.

Pipeline A processor organization in which the processor consiss oi a number of
slages, allowing multiple instructions to he executed concurrently,

Predicated Lxecution A. mechanism that supports the conditional execution of
individual instructionli. This makes it possible to execute speculatively both
branches of a branch instruction and retain the results or the branch [hat ix uui-
m`utely token.

Process A program in execution. A process is controlled and scheduled by the
operating system.

Process Control Block The manifestation of a process in an operating sysiern. ft
is a date xlrucl ure containing information about the characteristics and state
of the process.

Processor* In a computer, a functional unit that interprets and ewcalLe!.3 inslruc-
tims. A processor consists of at least an instruction control unit and an arith-
metic unit.

Processor Cycle Time The ti me required for the shortest well-defined (' micro-
operation. II is the basic unit of time for measuring all CPU actions. Synony-
mous with ynachine cycle rime,

Program Counier Instruction address register,

Programmable. Logic Array (PIA)* An array of gates whose intereomneei itms c4in
he programmed to perform a specific logical function.

Programmable Read-Only rit9emory (PROM) Semiconductor memory whose.con-
tents may be set only once. The writing process is performed eleel rically and
may be performed by the user at a time later than original chip fabrication. 4

Programmed 1/0 A form of I/O in which the CPU issues an I/O command to an
I/O module and Inwi then wait fur the opera lion to he compfeie before pro-
ceeding.

Program Status Ward (PSW) An area in storage used to indicate the order in
which instruetiOns are eNecutecl. and to hol d and indicate the status of the com-
puter system. Synonymous with proce.v.vor Alatu.s: word.

Random-Access Memory (RAM) Memory in which each addressable location has
a unique addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior aeces ,;.

Read-Only Memory (ROM) Semiconductor memory whose contents cannot be
altered, except by destroying the storage unit. Nonerasable memory.

754 GLOSSARY

Redundant Array of Independent Disks (RATD) A disk array in which part of the
phvsical storage capacity is used to store redundant informalion allow arts
data stored on the remainder of the storage capacity. The redundant informa
tion enables regeneration of user data in the event that one of the array's
member disks or the access path itF it fails.

Registers High-speed memory internal to the CPU. Some registers are user visi-
ble: that available to the programmer via the machine instruction set. Other
registers are used only by the C1-1.), for control purposes,

Scalar* A quantity characterized by a single value.

Secondary Memory Memory located outside the computer system itself, including
disk and tape.

Selector Channel Art 110 channel designed to (Terme uiih only one I/O devick•
a time, Once the 1/0 device is selected, a complete record is transferred one
byte at a Lime , Contras!. with MK* mithiple.vor channel, prouldpleror channel.

Semiconductor A solid crystallinc substance, such as silicon or germanium. whose
electrical conductivity is intermediate between insulators and good conduc-
tors, Used to fabricate transistors and solid-state components.

Sequential Circuit A digital logic circuit whose output depends on the current
input plus the state of the circuit: Sequential circuits lhtm possess the attribuic
of memory.

Sign - Magnitude Representation Used to represent binary integers. In an N-hit
word, the leftmost bit is the7.,ign (0 = positive, J = ncgalive) and the remain-
ing N I bits comprise the magnitude of the number,

Solid -State Component* A component . whose operation depends on the control
of electric or magne1ic phenomena in solids (e.g., transistor crystal diode., fer-
rite core).

Speculative Execution The execution of instructions along one patio of a branch.
If it Cater 1w -ris out that ib is branch was not taken, then the results of the spec-
uLitive execution are discarded.

Stack* A list that is constructed and ma.n.a.ncd so that the next item to be
retrieved is I he most recently stored item in the list last-in-first-out (LIFO).

Stalk RAM A RAM whose cells are implemented using flip-flops. A static RAM
will hold its data as long as power is supplied to it; no periodic refresh is
required.

Superpipelined Processor A processor design in which the instruction pipeline
consists of many very small stages. so that more than one pipeline stage can he
executed during one clock cycle and so that a largc number of instructions nu!).
he in the pipeline al the same time..

Superscalar Processor A processor design I hat includes multiple-instruction
pipelines, so that more than one instruction can he executing in the same
pipeline stage simultaneous/v.

GLOSSARY 755

Symmetric Multiprocessing (SMP) A form of multiprocessing that allows the
operating system h execute on any available' processor or on several available
processors simultaneously.

Synchronous Timing A technique in which the oceunrence of events on a bus is
del ermined by a dock. The clock defines equai-width time stots, .und events
begin only at the beginning of a time skit.

Spaeth Bus A bus used to interconnect major computer components (CPU, Tr) -
ory, I10),

Truth Table* A table [hal cla scri bes a logic function by listing all possible combi-
nations of input values And indicating, for each combination, the output value.

Twos Complement Representation geed to represent binary integers. A positive
integer is represented as in sign magnitude. A negative number is represented by
taking the Boolean complement of each bit of the corresponding positive, num-
ber, then adding 1 to the resulting bit pattern viewed as an unsigned integer.

Unary Operator* An operatc.lr that represents an operation on one and only one
operand.

Unconditional Jump* A jump thit lakes place whenever the instruction that spec-
ified it is executed.

Uniprocessing Sequential execution of iristrucLions by a processing unit. or inde-
pendent use of a processing unit in a multiprocessing system.

User-Visible Registers CPU registers that may be referenced by the progrAininer,
The instruction-set forrmil a,Ilows one or more registers to be specified as
operands or addresses of ope 11 TiLk.

Vector* A quantity usually Oun -nicrized by an ordered set of scalars.

Very Long Instruction Word Refers to the USC of instructions that contain multi-
ple operations. In effect, mulliple insunicrium are contained in a single word,
'I'ypica Fly, a VLIW is constructed by the compiler, which ptaces operations that
may be executed in parallel in the same word.

Virtual Storage* 'Flit,: storage space that may be regarded as addressable main
storage by the user of a computer sy ,:d ern in which virtual addresses are
mapped into real•addresses. The size of vi itruil Ntoragc. limiled by the ad-
dressing scheme t.-pi the computer system and by the amount of auxiliary tor-
age available, and not by the actual number of main storage locations.

Volatile Memory A memory in which a constant e]ectrica[power source is
required to maintain the contents of memory. if the power is switched off, the
shored information is lost

REFERENCES

Abbreviations

ACM Association for Computing Machinery

I EEE Institute 01' EleetricA I one. ktecironics Engineers

ABB000 Abbot, D. PC/ BUN DernwoVied. Eagle Rock, VA: LLFI Tech-
nology Publishing, 2000.

ACOS86 Acosta, R.; KjeEstrup, J.: and Torng, II. "An Instruction Issuing
Approach to Enhancing Performance in Multip1e. Functional Unit
Proecmors." IEEE 7'ran.Y0c6om on Computers. Scpternher I 9K(i.

ADAM9I Adarnek. J. l 'oundations qt. C",..,ding. Now York; Wiley. 1991.

AGAR89 A.garwal. A. Analysis of Cache Peo -formance),oe rah. ag. Sys-
teiTIN ihqd M4Juftiprcrgramrning. Hosion: Kluwer Aeadernie Pubtkhers,
1989.

ACER87 Agerwata, T., and Cocke, J. High Performance Rethiccd Insrruk . -
tion Set Pri)cesvors. Technical Report RC12434 (#55845). Yorktown,
NY; IBM Thomas J. Watson Research Center. January 1967.

ALEX93 Alexandridis. N. Design of Microprocessor-Based Systems.
Englewood Cliffs, NJ: Prentice Hall, 1993,

A NDF:671.1 Anderson, Or; Sparacio, F.: and Tornando, F. "The 11-1N1 Sys-
tem/360 Model 91! Machine Philosophy and In traction. Handling."'
IBM Journal of ReA.a.rch and Development. January 1967.

ANDE670 Anderson, S., et al. - The IBM System/360 Model 91: Floatina-
Point Execution Unit." /BM Journal 0,f Research and Development,
January 1967. Reprinted in [SWAR90, Volume 1].

ANDF.98 Anderson, D, Fire Wire System Architecture. Reading, MA:
Addison-Wesley. 199S.

ATIO94 Atkins, " pc . so ftwa re Performance Tuning," IEEE Coinpurer.
August 19%.

AZIM92 Azimi, Prasad, B.; and Bhat, K. "Two Level Cache Architec-
tures." Proceedings COMPCON '92. February 1992.

758 R.F.FERF.NC FS

BAEN97 Baentsch, M., et al. "Enhancing the Web's Infrastructure: From Caching
to Replication." Internet Computing, M arc h pi-il 1497.

BAIL93 Bailey, D. "RISC Microprocessors and Scientific Computing." Proceed-
ings, Supercompuring '93, 1993.

IIASH$I Bashe, C.; Bucholtz. W.; Hawkins, G,; Ingram. 1: and Rochester, N. "The
Architecture. of IBM's Early Computers." IBM Journal of Research and
Development. September 1981.

BASH91 Bashicen. A.; Lui. I,; and Multan. J. "A Superpipeline Approach to the
MIPS Architecture." Proceedings, COMPCON Spring '91, February 1991.

BELLIO Bell, C.; Cady, R McFarland, H. Delagi, O'Loughlin. J.; and
Noonan. R. "A New Architecture for Minicomputers—The DEC PDP-11."
Proceedings. Spring Joint Computer Conference, 1970.

BELL7 la Bell, C.. and Newell. A. Computer Structures: Readings and Examples.
New' York: McGraw-Hill, 1971.

BELL78a Bell, C.; Mudge, J.; and McNamara, J. Computer Engineering: A DEC
View of Hardware Svstons Design. Bedford, MA: Digital Press. 1978.

BELL78b Bell, C.; Newell. A.: and Sicwiorek, D. "Structural Levels of the PDP-8."
In IBELL78a I.

BELL78c Be]], C.; Kotok, A.; Hastings, T.: and Hill. R. "The Evolution of the
DEC System-10. - Communications of the AC M, January 1978.

BENH92 Benham. J. "A Geometric Approach to Presenting Computer Repre-
sentations of Integers." SIGCSE Bulletin, December 1992.

BETK97 Betker. M.; Fernando, and Whalen, S_ -The I1istcry of the Micro-
processor." Bell Labs Technical Journal, Autumn 1997.

RH A ROO Bharandwaj, J.. et al. "The Intel IA-64 Compiler Code Generator."
I EL L kr() , ScptemberiOctober 2000.

RL A A97 lilaauw, (.1, and Brooks. F. Computer Architecture: Concepts and Evolu-
tion. Reading, MA: Addison-Wesley, 1997.

BLAH83 Blahut, R. Theory and Practice of Error Control Codes. Reading, MA:
Addison-Wesley, 1983.

BOHR98 Bohr, M. "Silicon Trends and Limits for Advanced Microprocessors."
Communications. of the ACM, March 1998.

BRAD91a Bradlee, D.; Eggers, S.; and lienry, R. 'Ile Effect on RISC Performance
of Register Set Size and Structure Versus Code Generation Strategy." Proceed-
ings, 18th Annual International Symposium on Computer Architecture, May I99I,

BRAD91b Bradlee, D.; Eggers, S.: and Henry, R. "Integrating Register Alloca-
tion and Instruction Scheduling for RISCs." Proceedings, Fourth International
Conference on Architectural Support for Programming Languages and Oper-
ating Systemy, April 1991.

http://R.F.FERF.NC

REFERENCES 759

BREW97 Brewer. E. "Clustering: Multiply and Conquer." Data Communications,
July 1997.

BREVOO Brey. B. The Intel Microprocessors: 8086/8066. 80186/80188, 80286.
80386,80486, Pentium, Pentium Pro and Pentium II Processors, Upper Saddle
River, NJ: Prentice Hall, 2000.

BURG97 Burger, D.. and Austin, T. "The SimpleScalar Tool Set, Version 2.0." .
Computer Architecture News. June 1997.

BU R 1‘46 Burks. A.: Goldsiinc., H.; and von Neumann, J. Preliminary Discussion
of the Logical Design of an Electronic - Computer hostrument. Report prepared
for U.S. Army Ordnance Dept.. 1946, reprinted in [BELL7I

BUY 99a Buyya, R. High Performance Cluster Computing: Architectures and
Systems. Upper Saddle River, NJ: Prentice Hall, 1999.

litl.l Y Y99b Buyya. R. High Performance Cluster Computing: Progranuning and
Applications. Upper Saddle River, N.1: Prentice I Ia]], 1999.

CART96 Carter, 1, Mieroprocesser Architecture and Microprogramming, Upper
Saddle River. NJ: Prentice Hall. 1996.

CATA94 Catanzaro, B_ Multiprocessor System Architectures. Mountain View. CA:
Sunsoft Press,.1994.

CliA182 Chaitin. G. 'Register Allocation and Spilling via Graph Coloring." Pm-
ceedings, SIGPLAN Sympt.Psiton on Compiler Construction. June j.982.

CARMOO Carmean, D. "Inside the High-Performance Intel Pentium 4 Processor
Microarehitecture. - Intel Developer Forum, Fall 2001)_ ftrildownloadintel.comi
design id 1al120001presentationsipda/pda_s01cd,pdf.

CHASOO Chasin, A. "Predication, Speculation. and Modern CPUs." Dr, Dobb's
Journal. May 2000.

CIIEN94 Cheri. P.; Lee, E.: Gibson, Cl.; Katz, and Patterson. D. - RAID: High-
Performance, Reliable Secondary Storage." ACM Computing Surveys, June
1994.

CHOW86 Chow, F.; Himmelstein, M.: Killian, E.: and Weber, L. "Engineering a
RISC Compiler System." Proceedings, COMPCON Spring '86, March 1986.

C110W/47 Chow, F.: Correll. S.; 11 immelstein, M.: Killian, ti.: and Weber, L. "How
Many Addressing Modes Are Enough?" Proceedings. Second Ititernationai
Conference on Architectural Support fOr Programming Languages and Oper-
ating Systems. October 1987.

CHOW90 Chow, F., and Hennessy, J. "The Priority - Bascd Coloring Approach
to Register Allocation." ACM Transactions on Programming Languages- ,
October 1990.

CLARK5 Clark, D., and Emer, J. "Performance of the VAX-1117811 Transiation
Huffer. Simulation and Measurement." ACM Transactions on. Computer Sys-
tems, February 1985.

760 REFERENCES

CLEMOO Clements. A. "The Undergraduate Curriculum in Computer Architec-
ture, - IEEE Micro, May/June 21110. •

COHER Cohen. D. "On Holy Wars and a Plea For Pe4wc." Computer, October
1981.

COLW85a Colwell, R.; Hitchcock, C.: Jensen, 1 1:.; Brinkley-Swum, IL: and Kollar,
C. "Computers, Complexity, and Controversy." Computer, September L985.

COLW85h Colwell, R.; I litcheoek, C.; Jensen, E.; and Sprunt,. I I. "More Contro-
versy About 'Computers, Complexity. and Controversy.' " Computer. Decem-
ber [985.

COME95 Comerford. R. An Overview of High Performance." IEEE Spectrum.
April 1995.

COMM) Comerford. R. "Magnetic Storage: Thu Medium that Wouldn't Die."
IEEE Spectrum. December 21N14}.

C00K$2 Cook, R., and Dandu, N. "An Experiment to Improve Operand
Addressing." Proceedings, S ► mpoNifin2 on Architecture Support for Program-
ming Lctrrgauges and Operating Systems, March 1982.

COON81 Coonen, J. "1. fiderflow and Dcnormalized Numbers." IEEE Computer,
March 1981.

COUT86 Coutant, D.; Hammond, C'.: and Kelley, J. "Compilers for the New Gen-
eration of Hewlett-Packard Computers." Proceedings. COM PCON Spring '8i5,
March 198fi,

CRAG79 Cragon, H. "An Evaluation of Code Space Requirements and Perfor-
mance of Various Architectures." Completer Architecture News, February 1979.

CRAG92 Cragon, H. Branch Strategy Taxonomy and Performance Models. Los
Alamitos, CA; IEEE Computer . Society Press. 1992.

CRAW90 Crawford, J. "The 486 CPU: Executing Instructions in One Clock
Cycle." IEEE Micro, February 1990.

CRIS97 Crisp, R. "Direct RAMBUS Technology: The New Main Memory Stan•
dard." IEEE Micro, NovemberiDecember 1997.

DA,TT93 Dattaireya, G. ''A Systematic Approach to 'reaching Binary Arithmetic
in a First Course." EE Transactions on Vducarion, February 1q93.

1]A.V187 Davidson, and Vaughan, R. "The Effect of instruction Set Complex-
ity on Program Size and Memory Performance." Proceedings, Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, October 1987.

inCNN68 Denning, P. "The Working SO Model for Program Behavior." Com-
munications of the ACM, Mxt 1968.

DEWA90 Dewar. R., and Smosna, Ikk.1 :._.cropro (..epion: A Programmer's View.
New York: McGraw-Hill, 1990.

http://Proceedings.COM

P.111-Ati N OE S 761

DIJK63 Dijkstra. E. "Making an ALGOL-Translator ['or the XL' in Annaed
Review (yf/triwmatic Programminx, Volume 4. Pergamon, 1963,

DOET97 Doetting, Ci„, et a]. ''S/390 Parallel Enterprise Server Generation 3! A
Balanced System and Cache Striae:lure,'" 113.4.1 Journal of Resvareh (Ma DePel-
opmenl, y ISQpiCInbei 1997,

DOWD98 Dowd, K., and Severance. C. High Performance Uomproing. Sebastopol,
CA: O'Reilly. 1998.

DUHE91 Dubuy. F., and Flynn, M, - Branch Strategies: Modeling and Optimiza-
tion." IEEE Transucaon,5 (Pn Contputers, October 1991.

DUL098 Dulong, C. "The IA-64 Architecture ;it Work." Computer, July 1998.

ECKE9(1 Pekert, k. "C ...timmunieation Between Computers and Peripheral Devices—
An Analogy." ACM SIGCSE Bulletin, September 1990.

ELAY85 yai, K., and Agorwal, R. "Thu Intel 80356—Architecture and
I mplemen4ition.." /EFT Micro, December 1985,

EVENOPO Even, G., and Paid. W. On the Design of WEE Compliant Floating-
Point Units." IEEE Transocrions on Computers. May 2000.

RVER9$ 2vers, M., et al. - An Analysis of Correlation and Predictability WhaI
Makes Two-Level Branch Predictors Work." Proceedings, 25th Annual Inter-
national Symposium rin Microarchrecture, July 119S.

EVF,11011 lavers, M., and Yell, T. "1 hiderstanding Branches and Designing Branch
Predictors for High-Performance. Microprocessors," Pracceclings of the IEEE,
November 2001.

FA 0192 E;irrnIA,&d, ;I nd Mooring, D. -A Fast Path to One Memory." IEEE
Spectrum, October 1992.

FITZ81 Fitzpatrick, D.. et ad, "A RI SCy Approach VISL." VLSI Design., 4th
qtiarter, 1!-.}51. Reprinted in Computer A rchitecture News., March 1982.

FLYN71 Flynn, M., and Rosin, R. "Microprogramming; An Introduction and a
Viewpoint," IEEE Transacrion.y on ComputerN, July 1971.

FLYN72 Flynn, M. - Some Computer Organizations and Their Etkcliwncss."
IEEE Trumactions on Compurers, September 1972.

FLYN85 Flynn. M.; Johnson. J.; and Wakefield, S. 'On Instruction Sets and Their
I iormats." IEEE lrumac:tiOnN oft COMpliten, Mareli 1985.

FLYN87 Flynn. M.: Mitchell, C. and Mulder, J- "And Now a Case for More Com-
plex Instruelion Sets.' Ccnnpurer, Sepi ember 1987.

FLYNO1 Flynn, M.. and Oberman, S. Advanced Computer Arithmetic Desio.
New York; Wiley'. 2001,

FRA183 Fraile!,•, D. '`Word Length of a Computer Architecture; Definitions and
AI pkarions," Cmnpuier Archirecture News, June 1983,

762 REFERENCES

FRI L96 I-'riedrnan, M. - RA 11) Kccps Going and Going rind...'' l EEE ST.PeCIFIAM •

April 1996.

FUR.1-1R7 Eurht, H. , and rvlitutinovic, V, "A Survey of Microprocessor Architec-
tures for Memory Management." Cirinputer, March 1987.

FUTRO1 hulr 1. W, InfintHand Architecture: Development and Deployment.
born, OR: Intel Press, 2001.

GIFF87 Gifford, D„ and Spector, A. 'Case Study: IBM's Systcm/360-370 Archi-
tecture,' Commaniciaiony of the ACM, April 1987.

GOLD91 Goldberg, D, "What Every Computer Scientist Should Know About
10.4.1lin g-Point A riihmutief . A CM Computing Survrys. March 1991, A ailab lc

at http:Pwww.validgh.com/

RAND98 liandy.1. The Cache Memory Hook, San Diego: Academic Press, 1993.

HALF97 Halfhill, T. "Beyond Pentium II." Byte, December [997.

HAYE98 Hayes, J. Computer Architecture and Or New York:
McGraw-Hill, 1998.

11EAT84 I Ica al, J. ''Re-evaluation of RISC I.' Computer Architecture News,
March 1984.

11ENN82 f lennessy. I.. et al. tHrdwArciSoCtviinrc Tllideoffs for Increased Per-
formance." Proceedings, Spy:pa...turn tm Architectural Support for' Program-
min Languages and Operating Systems, March 1982.

HENN84 Hennessy, J. "VLSI Processor Architecture." IEEE Transactions on
Computers, December 1984.

HENN91 Hennessy, .1., and Joui)pi, N. "Computer Technology and Architecture:
An Evolving Interaction." Computer, September 1991.

HENN96 Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative
Approach. San Mateo, CA: Morgan Kaufmann, 19%.

111D.A.90 I I ida ka, 111.; Matsuda, Y.! Asakura, M.; end Kai.uyasu, F. "The Cache
DRA:v1 Architecture: A DRAM with an On-Chip Cache Memory." IEEE
Micro„).prik 1990.

1-11 6B90 Higbie, L. "Quick and Easy Cache Performance Analysis." Computer
Architecture NEWS, June 1990.

H1LL64 Hill, R. "Stored Logic Programming and Applications." Datarnation.
February 19154,

IiILL89 Hill. M. "Evaluating Associativity in CPU Caches." IEEE To -ansaerions
on Computers, December 1989.

HI T01 Hinton. G„ et a]. "The Microarchitecture of the Pentium 4 Processor. -
Intel Technology Journal. 01 2001. http:hdeveloper•intel,cornIicchnologylitj

lit/C1‘.83 Huck, T. CoMparative Analysis of Computer Arcisite.ctures, Stanford
University Technical Report No. 83-243, May 1983.

R_EFERENCES 763

H1.]CKOO Huck. J., el. al. "Introducing the 1A-64 Al:ehiicuturi2." .4 (c m. Sep-
temberlOcti,ber 2(]00 .

HUGLE91 Huguel. M.. and Lang, T. "Architectural Support for Reduced Regis-
1.cr SaYingiRestoring in Single-Window it egisler hics." A CM Pramacrions on
Computer SyNteins r February 1991.

1-11UTC96 Hutcheson, G. and Hutcheson. J. "Technology and Economics in the
Semiconductor industry." Scientific American, January 1996;

II WA Ng3 Hwang, K. Advanced Computer Archireoure, New York: MeGraw-I I ill,
1993,

HWAN99 Hwang. K. et al. - Designing &SI Clusters with Hierarchical Check-
pointing and Single I/O Space." IEEE Concurrency. Jammu-March I999.

ITINU98 I i wu, W. "Introduction to Predicated Execution." Computer, January
[998.

tiwu, W.; August, D.: and Sias, J. "Provram Decision Logic Optirni ./a-
lion Using Predication and ControL Speculation. - Proceedings. o.f the IEEE,
November 2001,

IBM94 international Business Machines, Inc, The PowerPC. A rchilecture: A Spec-
ification fclr a New Family of RISC' Processors. San Frauckeo, CA: Morgan
Kaufmann, 994.

HIM .01 international Business Machines, inc. 64 Mb Synchronous DRA.M. IBM
Data Sheet 364164. January 2001.

1EEE85 inmiluiL of I.:lecirie;11 r,lecironies Engineers. IEEE Standard for
Binary fleerting-Point A riurunctic. ANS1IIEEE Std 754-1985, 1985.

INTE9S Intel Corp. Penthun Pro emef Pentium II Processors and Related Prodycts,
Aurora, CO, 199K

INTEood Intel Corp. Intel IA -64 A rchitecture Software Developer'.s Manual (4 yrd-
unw.c). Document 245317 through 245320. Aurora, CO, 2000.

I NTI-Mb Intel Corp. Itanium Processor Microarchitccture Ikference Jro Software
Optimization. Aurora, CO, Doeurneul 245473. August 2000.

INTE0 la Intel C.orp. IA -32 Intel A rchileciare SOThvezre Deyelopco-'.v Manual (2 vol-
umes). Document 245470 and 245471. Aurora. CO. 2001.

INTEOM Intel Corp. Intel Pentium 4 Processor Optimization Hefrrcncc Manual.
Document 24896.6414. Aurora, CO, 2001_ http!Pdeveloper.intei.contidesign1
pentium4Imanuals/248966.htm.

JAME90 James, D, "Multiplexed Buses: The Endian Wars Continue.' - IEEE
Micro, September 1983.

JA RPO1 Jarp, S. "Optimizing IA-64 Performance. - Dr. Dobb's drowned, July 2.1.001.

JOHN91 Johnson, M. Superscalar Microprocessor Design. Englewood MI's, NJ:
Prcntici:: H41[1, 199 [

764 REFERENCES

JOUP88 Jouppi, N. "Superscalar versus Superpipelined Machines." Computer
Architecture News, June 1988.

JOU P89a Juuppi, N., and Wall. D. 'Available Instruction-Level Parallelism for
Superscalar and Superpipclined Machin.es," Proceedings, Third International
C.'onfere.nce on Architectural Support for Programming Languages and Oper-
ating Systems, April 1989.

JOUP8911 Jouppi, N. "The Nonuniform Distribution of Instruction-Level and
Machine Parallelism and Its Effect on Performance." IEEE Transactions on
Computers, December 1989,

JTFO1 Joint Task Force on Computing Curricula. Computing Curricula 2001 Com-
puter Science. IEEE Computer Society and ACM, August 2001.

KAEL91 Kacti. D., and Emma. P. 'Branch History Table Prediction of Moving
Target Branches Due to Subroutine. Returns." Proceedings, 18th Annual Inter-
national Symposium on Computer Architecture, May 1991.

KAGA01 Kagan, M. "InfiniBand: Thinking Outside the Box Design.' Communi-
cations System Design, September 2001.. (www.csdmag.com)

KANE92 Kane, G.. and Heinrich, J. MIPS RISC Architecture. Englewood Cliffs,
NJ: Prentice Hall, 1992.

K A PPM Kapp, C. "Managing Cluster Computers," Dr. Dobb".c Journal, July 2000,

KATE83 Katevenis, M. Reduced Instruction Set Compeeter Archifectures for VLSI.
Ph.1). dissertation, Computer Science Department, University of California at
Berkeley, October 1983. Reprinted by MIT Press, Cambridge, MA, 1985.

KATHOI Kathail. B.; Schlansker, M.: and Rau. B. "Compiling for EPIC Archi-
tectures." Proceedings o,f the November 24K}1.

KATZ89 Katz, R.: Gibson, and Patterson, D, "Disk System Architecture for
High Performance Computing." Proceedings of the If Dccembcr 1959.

KEET01 Keeth, B., and Baker, R. DRAM Circuit Design: A Tutorial, Piscataway.
NJ: IEEE Press, 2001.

KHUR01 Khurshudov, A. The Essential Guide to Computer Data Storage. Upper
Saddle River, NJ: Prentice Hall, 2001.

KNUT71 Knuth. D. "An Empirical Study of FORTRAN Programs." Software
Practice and Experience, vol. 1,1971.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Scm/numeri-
cal Algorithms, Reading, MA: Addison-Wesley. 1998.

KUCK72 Kuck, D.; Muraoka, Y.: and Chen, S. "On the Number of Operations
Simultaneously Executable in Fortran-like Programs and Their Resulting
Speedup." IEEE Transacoions on Computers, December 1972.

KUGA91 Kuga. M.; Murakami, K.; and Tomita, S. "DNS (Dytm ruici ly-hazard
resolved. Statically-code-scheduled, Nonuniform Superscalar): Yet Another
Superscalar Processor Architecture." Computer Architecture News, June 1991.

REFER.ENCY_S 765

LEE91 Lee, R.: Kwok, A.: and Briggs, F. "The Floating Point Performance of a
Superscalar SPARC Proc.cssor." Proceedings, Fourth International Collference
on Architectural Support for Progrunaning uIF and Operating Systeind,
April 1991.

LIL188 Lilja, D. "Reducing the Branch Penalty in Pipelined Processors.' Com-
puter. July 1988.

1,11,193 Lilja, D. "Cache Coherence in Large-Scale. Shared-Memory Multiproces-
sors: Issues and Comparisons." ACM Computing Surveys. September 1993.

LOVE% Lovett, T.. and Clapp, R. "Implementation and Performance of a C7C:-
N LIMA System." Proceedings, 23rd Annual International Svmposium rut Com-
puter Architecture, May 1 996.

LUND77 Lunde, A_ "Empirical Evaluation of Some Features of Instruction Set
Processor Architectures." Cemnnunicasions of ate ACM. March 1977.

LYNC93 Lynch, M. Microprogrammed State Machine DeSign, Boca Raton, FL:
CRC' Press, 1993,

MACG&4 MacGregor, D.; .M othersole_ D.; and N.l.t)yer,13. Motorola Nit oiso-20.-
IEEE Micro, August 1984.

MAIIL94 Muhlke, S., et al. "Characterizing the Impact of Predicated Execution
on Branch Prediction." Proceedings, 27th International SVMpOSiHni on Micro-
architecture, December 1994.

MAHL95 Mahlke, S., et al. "A Comparison of Full and Partial Predicated Execu-
tion Support for 1LP Processors." Proceedings, 22nd International Symposium
on Computer Architecture, .I urge 1995_

MAK97 Mak, P., et al. "Shared-Cache Clusters in a System with a Fully Shared
Memory," IHM Journal of Revearch and Development. July/September 1997.

NIALL75 Mallach. E. "Emulation Architecture." Completer. August 1975.

MALL83 Mallach. E., and Sondak. N. Adrarwes in Microprogramming. Dedham,
MA: Artech House, 1983.

MANJO1a Manjikian, N. "More PnhHncomenis of the SimpleScalar Tool scc .
Computer Architecture IVews. September 2001.

M A WI h Manjikian, N. "Multiprocessor Enhancements of the SimpleScalar
Tool Set." (1.'omputer Architecture News, March 2001.

MAN001 Matto, M. Logic and Computer Design Fundanulials. Upper Saddle
River, NJ: Prentice Hall, 2001.

MARC90 Marchant, A. Optical Recording. Reading, MA: Addison-Wesley, 1990.

MARKO° Markstein, P. IA-64 and Oernentary limo ions. Upper Saddle River.
NJ: Prentice Hall PTR, 2000.

Ael A SH 95 Mashey, J. "CISC vs. RISC (or what is RISC really)." USENET
comp.arch ne► sgroup, article 46782, February 1995.

766 REFERENCES

MASS97 Nlas.siglia, P. The RAID Book: A Storage System Technology Handbook,
St. Peter, MN: The Raid Advisory Board, 1997.

MAYB84 Mayberry, W., and Bland, 0, 'Carhe Boosts Muitiprocessor Perfor-
mnice. - Converter Or.vign, November 1984.

MCEL85 McEliece, R. The Reliability of Computer Mumorie.s." .9cicntific Amer-
ican, January 1985.

NIEF,961.1 C-, and plink]. E.. eds.:Wagner& Rece,.rding Technology. Now York:
McGraw-Iliil, 1996

MEE96b Mee, C., and Daniel. E. eds. Magnetic seo rage Handbook. New York:
McGraw-Hill. 1.996.

MILE60 Milcrikovic. A. "Achieving Elia Performance in Bus-Based Shared-
Memory Multiprocessors," IEEE Coneurrency. My-September 2000,

MIHA92 Mira puri, S., WOOdLicrQ, M.; and V asseghi, N. "The MI PS 84000 Proces-
sor.' I /TEE Micro, April 1992.

MOORM Moore, Cr. "Cramming More Components Onto Inicgrmed Circuits,"
Electronics Magazine, April 19, 1965.

MOKS18 Morse., Pohlman. W.; and Ravenel, B. "The Intel 8086 Mieroproce-
son A 16-bit Evolution of the 8080," Computer. June 197K.

MOSHO1 Moshovos. A., and Sohi.. G. " Mic.roarc.hi [Qcitiral Innovations: Boosting
Microprocessor Performance Beyond Semiconductor Technology Scaling."
Procefuliov of the IEEE, November 2001.

MOTOR Motorola. Inc. PolverPC MPC7-110 f?1.51:: Microprocessor Hardware
Spreitieation.v. I.)enver, CO: 2001. viiww.mororola•com

MYE.R7N Myers, " I he T. ,i2iluatiort of Expressions in a Storage-to-SLorage
Architecture." C.:'ompeaer Architecture News, .1 oii c 1978.

NAYF96 Nayfch, B.; Olukotun. N.7 11-id Singh. .1. -Thc impact or Shared Cache
Ciustcring in Srnall-ScLilc SH1 . 0.1-1VIL2moi.7,. , Multiprocessors." Proceedings of
the Second International Symposirtrn on hri.gh Perfrormancc Complacr Archi-
tecture, 1996.

NO V193 Novitsky, Azimi, M.: and Ghaznavi, R. "Optimizing Systems Perfor-
mance Based on Pentium Processors." Proceedings COMPCON '9.2, February
1993.

OBER97a Oberman. S., and Flynn, M. -- I)esign Issues in Division and Other
Floating-Point Operations." IEEE Tranyaction.s . on Computers, February 1'

 Oberman, S., and Flynn, M. "Division Algorithms and Implementa-
tions," IEEE Trao?sactions on Computers., August 1997.

°VERO! Overton, NA. Numerical Computing with IEEE Floating Point Arith-
metic. Philadelphia, PA: Society for Industrial and Applied MaLheinatics, 2001.

PADER Padegs, A. "Systerni360 and Beyond." I M Journal of Research and
Development, September 1981.

REFERENCES 767

PADE88 Padegs, A.: Moore, Smith, R,: and Buchholz, W. "Thc 113M Sy--
kill1370 Vet:.lor Archiicc.turc: Design (..onsiderations.' IEEE Transactions on
Communicaeioir.s, Mav 1)88.

PART-100 Parhanii, B. Cum/Reff Algorithms . and He Design,
Oxford: Oxford University Press, 2000.

PARK 89 Parker, A., and Hamblen, J. An Introduction to Microprogramming Ti,lrh
E..terci.se!..; Designed fur the Texas Instruments .5N74AC:T8M0 Software puvrri-
omen,' Board. Dallas. TX; Texas Iw.truments, 1989.

PATT82H. Patterson. D„ Eind Sequin, C. "A VLSI RISC. - Completer, September

PATT82b Patterson, D.. Fi nd Piopho, R, "Asses;sing RISC.:s. in I ligh-Levei Lan-
guage Support. - IEEE Micro, November 1982.

PATT84 P4i.Lterson. D. "RISC V1/4142h. - Computer Architecture News, March 1984.

PAT 1'85a Patterson, D. 'Reduced Instruction Set Computers. - (ommemicarions
of Ile AC . _J anuary 1955.

PATES5b and Hennessy, J. "Response to `Computers, Complexity,
and Controversy." Computer, November 1985.

PATI'88 Pailerson, I).; (libHon,•G.; md K41.1., R. "A Case for Redundant Arrays
of lnexpensi...e. Disks (RAID). - Proceedings, ACM SIGMOD Cemference of
Management of Data, June 19.SK,

PATT98 Patterson, D.. and Hennessy, J. Computer Organization tend De'tign. - Thu
Hardware/Software Interface. S;in rvial.o..1, CA: Morgan Kaufmann, 1998.

PATTO1 Pact, Y. "Requirements, Bottlenecks. Lind Good Fortune: AgenEs for
Microprocessor Evolution. - Proceedings of the 'EEL November 2001.

PE1R99 Peir, Hsu, W.: and Smith, A. 'Functional JmplementaLion Techniques
for CPU Cache Memories. - 1 EE Tran.vacrions on Compriters. February 1999.

PELE97 Peicg. A.; 'Wilkie, S.; and Weiser, U. "Intel NAM X for Multimedia PCs."
Communicinion.v 0. 1 the ACM, January . 1.997.

pils98 In Search of Clumer.v. Lipper Saddle River. NJ: Prentice Hall,
1998.

POPL91 Popcseu, V., ot al. —The Metallow Architecture." IEEE Micro, June 1991.

POT f'94 Potter, 'F., et al, "Resolution or Difia and Control-How Dependencies in
Lhe PciwerPC 601. - IEEE Micro, October 1994.

PRLSOI Pressd, D. - Fundamental Limitations on the Use of Prefetching and
Stream Buffers for Scientific Applications. - Proceedings, ACM Symposium on
Applied C'ompetting. March 2001.

PRIN9I Prince, B. Semiconductor Memories. New York: Wiley, 1991.

PRIN99 Prince. B. MO) Performance Memories: New Architecture .DRAMs and
SRAA,is, Evolution and Feencliewr. New York: Wiley, 1999,

768 REFERENCES

PIC/X88 Przybylski- Horowil2- M.; and Hennussy, J. 'Performance Trade-offs
in Cachc Design. - Proceedings., Fifteenth Animal Imernational SyMp05411 on
Computer Architecture, June 1988.

PRZY9O Przybylski. S. "The Performance Impact of Block Siz.c.axid Fetch Smite-
Proceeciings, 17th Annual International S'yptwo.sht.r71 t311 CiMapetrer Archi-

tecture, Mai). 19 140.

HA D183 Raclin, U. "The 8111 Minicornpuier. - Ili,1 Joerrourt of Research and Devel-
opmenr, Ma), 1983.

RAGA83 Ragan-Kelley, R., and Clark, R. "Applyina RISC Theory to a Large
Cotnputer." Compwer Design, November 1983.

RAIJS80 Rauscher, T.. and Adams, P. "Microprogramming; A Tutorial 4i nd Sur-
vey of Recent Developments," IEEE Transactions on Computers, January
19 W.

Hal-198 Neches, S.. and Wcks, S. "Impleinentation and Analysis of Path History
in Dynamic Branoh Prediction Schemes." IEEE Transactions on Computers,
Au2,ust 1998.

RODROI Rodriguez, M.; Perez, J.. and Pulido. J. An Educational 'fool ror 'II:st-
ing Caches on Symmetric Multiproce ssors." AlicroprocesAors anal Microsys-
tems, June 2001.

H(}5 999
 Roscll,W , Winn I,. gosch Hardware Bible. Indianapolis,IN1Sams, 1999,

SATY81 SaIyanarayanau. M., and Bhandarkar, D. "Design Trade-Offs in VAX-
1 I 'Translation Buffer Organization." Cornpwer, December 1981,

SCI-IA91 Sehaiier, R. "Moore's Law; Past. Present and Future." IEEE Spectrum.
.1 Line 1997

SCI11,00a SchEansker. M.; and Rau, B. "EPIC: Explicitly Parallel instrucl ion Com-
puting." Comparer. February 2000,

SCHLDOh Schlansker. M.; and Rau, B. EPIC' An Architecture for frr,srruction-
Level Parallel Procevsors, `IecILnii;r, I Report HPL-1999-1.11, Hewlett-
Packard 1_2thoratories (www.lipi.hp.com), February 2000.

SC1-1W99 Schwarz, E., and Krygowski, C. "The SI390 G3 Floating-Point Unit, -
IBM Journal of Reszarch and Development, SeptembeeNovember 1999.

SELIE76 Sebcrn. M. "A Minicomputer-compatible Microcomputer System: The
DEC LSI-1. I." Proceedings of the IEEE,. June 1976,

8E6E91 Segee, B.. and Field. J. Microprogramming anti Computer Architecture.
New York: Wiley. 199]..

SERL86 Serlin, 0, "NIPS, DhryMonts. and Other 'fates." Daminarkm, June 1.
1986.

SHAN38 Shannon, C.. "Symbolic Analysis of Relay and Switching Circuits."
AP:LE Tram:actions., vol. 57, 1938.

REF ERENcES 769

SHAN9SH 4hanlcv, T-. and Anderson, D. PCI Sy.vrems Architecture. Richardson,
I X7 Mindskire 1995 .

SHA:sP95b SI -Lankly, '1'. PenverPC System Architecture, Reading, MA: Addison-
Wesley, 1995.

HA,NOS Shanlev, 1. Pentium Pro rand Perthuon II System Architecture. Reading,
MA! Addison -Wesley, 1998.

SIIAR97 Shama, A. Semiconductor Memories: Technology, Testing, and Relia-
bility New York:. IEEE Press, 1997.

S./ IA R00 Sharangpani,1.1., and Aron a, K. "Itan ium Proc cs Microarchitr.Leturc."
IEEE Micro, September/October 2000,

SIIER84 Sherburne, R. Processor Design Tradeoffs in VLSI. PhD tin,:sis, Report
UCBICSD 841173, University of CAirornia iL BC] LAcy. April 19,S4.

SIEW82 Siewiorek, Bell, and Newell, A. Cornpufrr Structures: Principle.
and 1-;',vamples - New York; McGraw-Hill, 19g2.

SIMA97 Sima, D. "Superscalar 1rr.truction Iswe." WEE Micro, September/Octo-
ber 1997.

SIM069 Simon. H. The Sciences Qt . the A rtificia Cambridge, MA: MIT Press.1969.

SMIT82 Smith, A. "Cache Memories_" ACM Coonputing . Surveys, September 1992.

SMIT87 Smith, A. "Line (Mock) Size Choice ror CE'lll C:adie Memoricr IEEE
Transactions on Cornnnenieation.s, September 1987.

SMIT89 Smith, M.; Johnson, M.; and 1 M. "Limits on Multiple instruc-
Lion lssut=_' Prweedingy, 't hird International Conference on A rchitectural Sup-
port for Programming Languages anti Operating Systems, April 1989,

SMIT95 Smith, J.. and Sohi, G. -The Microarchitecture of Superscalar Proces-
sors," Proceedings of the IEEE, December 1995,

SOD [96 Soderquist, P., and Le.eser, M. Area and Performance Tradeoffs in
Floating-Point Divide and Square-Roos Implemcniation..s." ACM Computing
Surveys . , September 1996.

5011190 Soht. 0. "Instruction Issue],ogic for 1.1igh-Performanee interruptable.
Multiple Functional Computers." IEEE Transactions on Corn-
peuers, March 1990.

$TAlmo stonin gs, 0,0t, and Computer COMPIlliniCatiOn!i, 5th edition. Upper
Saddle River, NJ: Prentice Hall, 1997.

SFAL01 Stallings, Operating Systems, Internals and Design Principles, 4th edi-
tion. Upper Saddle River, NJ: Prentice 2001.

STEW Stenstrom i P. "A Survey of Cache Coherence Schemes or Multipmces-
sors." Computer. June [990.

STEV64 Stevens. W. "The Structure of Systeml360, Pali II: System Implementa-
tion." IBM Systems Journal, VoL 3, No. 2, 1%4. Reprinted in 1S1EW821.

770 iw-ERENCEs

STON93 Stone., H. High- Perforentince Computer Architecture, }Reading, MA:
Addison-Wesley. 1993.

STR E.78 Strecker, W. "VAX-111780: A Virtual Address Extension to the DEC
PDP - 11 Family." Proceedings, NeTtional Computer Conference, 1'J7X.

STRE83 Strixier, W. "TransIL:ni Bch:464.)r of Cache Memories." ACM Transac-
awe,. on Computer SyNteins, November 1983.

• TR179 Stritter, E.. and Gunter, T. "A Microprocm.;sor Architecture ibr a Chang-
ing Wor1d: TN. Motorola 68i.1 ■ 0.' Computer, February 1979.

SWAR90 Swartzlander, E.. editor. Computer Arithmetic. Volumes . f and IL Los
Alamitos. CA: IEEE Computer Society Press. I 49(I.

TAISA9I Tabak. 1). ,4 dviinced Microproce.....cor.s . . New York: McGraw-Hill, 1991.

TAMI83 Tamir, Y., and Sequin, C'. "Strategies for Managing the Register File in
MSc: . Trans: actions on Computers, November 19.S3.

TANE7S Tanenbaum, A. 'Implications of Structured Programming for m;iehine
Architecture." Communeimions of the ACM, March 1978.

TAN U.99 Tanenbaum, A. Sorticuored COmpeuer Organization. Englewood Cliffs,
NJ: Prentice Hall, 1999,

TH03194 'fliornps.on, T.. and Ryon, B. “PowerPC: 6211 Soars. - Byte, November
1994.

THOM00 Thompson. D. 'IEEE 1394: C:hanging the Way We Do Multimedia
Communication.s." 1 FIT,k; 2.10).

T190 Texas Instruments Inc, 5104A CT880 Family Data ...1,1nruial. SCSS006C. 1990.

TJAD70 Tjadcn, (3., and Flynn. M. "Detection xnd Para I lei Execution of Inde-
pendent I ns.1 ru et lulls. - IEEE Triin.s.iu:tionN on CO.F7Jpener.v. October [970.

TOMA93 Tomasevic, M„ and Milutinovic. Tiu? Crichc Coherence Problem in
Shored...lrlemorl. Mulfiprocess .o . Hardware Sofeaion..... Los Alamitos, CA:
IEEE Computer Society Press, 1991

TOON81 Toone, H., and Gupta, A. "An Nrchi tcci nro I Comparison of Contem-
porary i6-Big Mieroproue.morb, - !t4icio, May 1981.

TRIEIH Triehel, W. haniarn Architecture fir Software Developers. Intel Press. 2001..

TI.JCK67 Tucker, S. "Microprogram Control for System/36(1" IBM Sys .terns Jour-
mei. No. 4, i967.

TUCK87 Tucker, S. "The IBM 3090 System Design with Empfnisis on the Vector
[-. 4ici Li Ey. - Proceedings, COMPCON Spring :87r February 1987.

VOEL88 Voelker, J. 'The PDP-8." IEEE Spectrum. November 19KK.

VOGL94 VogEey. B. "R00 Megabyte Per Second SysLems Via Use of Synchronous
DRAM." Proceer-linp, COM PCON '94, March 1994.

REFERENCES 771

V ONN45 Von Neumann, J. First Draft r Jf a Report on ?Ire EDVA C. Moore School,
t hiiversiiv 0C Pennqlvania, 194 . Reprinted in A nitth OR the Ifi.ytory of
Coinpeain,ET, No. 4, 1991

VRAN80 Vranesic i Z., and Thurber, K. -Teaching Computer Structures." Com-
puter. June 1980.

WALL85 liNallich, P. "Toward Simpler, Faster Computers," IEEE Spectrum,
August 1985,

WA1,L91 Wall, 11 "Limits of basi ruction-Level Parallelism." Proceedings. Fourth
inlerataional Eonferencr f.P02 Architectural Stipport fbr Programming Lan-
giu-iges. and Operating Systems . , April 1 .Q91.

WANG99 Wang, G. and Tafti, D. - Performance Enhancement on Microproces-
sors with Hierarchical Memory Systems for Solving Large. Sparse Linear Sy-
teinz-.. - Imernational Animate!' Superrompufing Applications, vol. 13, 19.99.

WARD% Wm-d, S., mid Halste,ad, R. Compurarion Structures. Ctumbridge, MA:
Press, 19911

WEIN75 Weinberg, G. An Intro(hiction to General Systems Nu-0; York!
Wile,'. 1975,

WEISM Weiss, S., and Smith. J. "in,,,truetion Issue Logic in Pipelined Supercom-
puters." IEEE Tramacrlons on Computers, November 1984.

WEIIS94 Weiss, S„ and Smith, J. POWER and PowerPC. San Francisto: Morgan
Kaufmann, 1994.

WEVG(.11 Weygant, I. C.-lusters for ffixto• viodabiiity, Upper Saddle River, NJ:
Prentice I tall, 2001,

W1-111T97 Whitney, S., cl al. "The 501 Origin Software Envircmincnt mid Appli-
cation Performance." Proceeding,,i, CO, PCON Spring '97, Februar,. , 1997.

WICK97 Wickeluen, L -The Facts About FireVilite." IEEE Spmruin, April 1997.

WILKS1 Wilkes, M. "The Best 1V:13.. to Design an Automatic CalculaLin@, Machine."
Proceedings. Manchester University Computer Inaugurol Cott,ference j July
1951

WILK53 Wilkes, M.. and Stringer, .1. -Microprogramming and the Design of the
Louirol CircuilLs in an Electronic Digi tal Compuler- - Proceedings. of the Cam-
bridge l'hitinophical Socif,ly, April 1951 keprinied in [SIEW82.1.

W11.190 Williams, F., and Sirven, G. ...Address 2IT]d Li t Register Separation on
rho. M68000 Family," Computer Architecture Ne.ws, June 1990,

YEH91 Yeh. T.. and Patt, Y. "Two-Level Adaptive Training Branch Prediction."
Prorecdinp., 24.th Annual International Symposium i.t? .41croarchirecirtre, 1991.

/HANOI Zhang, Z.; Zhu. Z. and Zhang, X, "Cached DRAM for ILP Processor
MernOrV ALV.:M+ Latency Reduction." /EEE Micro, July-August 21301.

INDEX

A
Absoluic

arithmetic oliera i ions, 34.1
AbliOlUte Scala bIlity

clustem 663
AcceSs. See also i mpILN-niiry .:Lceess

(DMA); Dynamic !and ons-aixe.ss
memory (DRAM): Nonuniform mem-
ory access (NUN At R ndiun
ilumory (RAM); f01111 LlielTIOry

aix.ess (1..1M A)
proees§or

rwn le.vell memories. 129
Sequential

memory, 98
system

OS. 240
A eu.Mit (.14,!vjvc...

direct, 190
qeci wntial. .190

Access efficiency
two level memories, 1.34

Acce:ss melhod, 97. 98
units of at (Ri

AcceSS
disk performance, 171
mem ory, 4M-103

Acetiss lo files
controlled

OS, 240
Access to I/0 de.yi.cc

OS. 24'
Accotinling

OS, 240
Accounting infor malion

prficess control block, 252

ACCLIMULA . 1 9E, 685
AuctimulAor (AC), 21. 55.

number, 334
Acknowledgment

link layer. 227
Acknow led :gine t gas)

li nk laycr. 227
A :M

web site. 14
Active seco

cluster method de,icriplion.
AD bus

rww data crans(cr,
Al)!)

instruction, 484
opeodes, 332

Adders
71.9

32-hi t
c4.ins trucc ion. 720

c ,mnal eirtaiiis,
717 72.0

imptern enia Lion, 719
Addition

block diagram of hardware, 2%
aoHting-point a rilhinetic, :;15,
Limos . COMplerneitt, 292-294

Addrcss. See alsof......olumn address sellect
i CA5): Control addre5;, rej4istcr
(CAR): Ivlemory addres.4 regkiu
(MAR); Row address select (RAS)

ha se. 26]
base-rogimer. 387
and data pinii

.1 3 1C1 idgnal Eines.
ii nd data signals

kleCeSS

774 I N1)E7

Address (rom.)
Intel /. 1:1 85. 5.91

dec(Riirig, 7[1
effective. 275-277, 384
go-14.1- .11Rn]. 612 614

En; L it iiriStTUCI. i IL, 613
granularity, 397

ruciion
util 'Chit M. 335

'ze ro- 135
lih ein-

Pentiu111 memory ITta nagemc ht. 271• .273
higical, 261, 262, 269
machine. instruclion. 337
no:A sequential

[.S]- I 1, 614
number

machine instruction. 334-336
physical. 261. 262
register. 385-386, 415

i ndirect, 3546
110, 52. 53

269
Add rcss;1111c memory

811hclivide.d. 266
Addrusqal* units. 97
Address LI pp3 ,13.4 01., ti I 0-1'7111

A di.lrcRs citicula don
instruction eyck wtaws

instruction, 57
operand. 57

Address cycle
dual

PCI command, 85 87
Address cNicissi(5n

physical
Pentium cc Mt rot rcgisier....-146

Address field
single

branch corsirill logic. 612
microinstruct i On, 611

riyo
branch co ril]] I OgiC ()I E
microinstruction, 610-6)1

Addressing. See ai.vo Relative addrcssiiig
absolute, 391-395
branch, 393-195
direct, 384-.385, 399
displacement, 386-387
litS ITiodiril4, 384
indirect. 385, 393-395
indirect indexed, 392
PowerPC. 193-3 915
SM 65 1.)

.stack.
141chiniqiius,

Addressine, mode, 3S2118
algorithm, 384
illust 4tCd, 383
MIPS

n I hcsiAng 01h4'r addressing modes. 4911
number, 396
operand, 394
Pentium, 189-392,

ealculaiiciii, 390
Pentium 11, 391
PowerPC,. 392-395
RISC!, 477
SPARC

synt hesizing other actldre:'ishlg modes. 498
A41,11.mo latch

I I L C.I WTI [

Intel 8085, 589-594
A titin.n..;l . .atch Enabled (ALE), 594
Address lines, 7(1

chip log]c. 144
A dd.req:6; inodi fy

lAS computer, 22
Address 451 111C la

starting 11ILItML Fry

cache line, 1111
Address rvirige, 397
Address recoptit loll

VO, 202
Address A•cicciion signals

microinstruction. 611
A il4Ircss 6]A::

!dtt1tiiEi. 404
Address !.,pace

Pentium II, 2.110
Address translation

P42n1 i um memory. 274
1.3ovr.erPC: 32-bit, 276

Address valid control line, 74
Advanccd Load Address Table (ALAI)

1 A-64. 558
Air gap

size, 170
ALAI'

I A-64, 558
ALL, 594
Algebraic simplifications

Booleim c:c1.51-05Si0rl, 701-702 .
Algorithms. 24,4,4

kic.1dre$sing mode. .384
isooth - s : 300-304

cicample, 302
Dijkgra's 4 374

INDEX 775

Al I'd S register
Pentium 4 instruction-lcvel parallelism, 526

Aligornent cilu‘ck
EF LAGS register, 442

Alignmcnil mask
Pentium. Goiltroi register. 444

Allocate
P42111 i LL1TI 4 instrucLicm-lt-ocl 1r;irollLs[i: in,

525-526
Allocution or hits

ins' inn length. 396
Arithmetic awed logic unit (AL 41)

American •landard Code for informalion
Interchange ASCII)

machine instruction, 338
Analysis

lioolean algebra, 694
AND

A ntidependency, 515-516
Application registers

T A-64 inslrucii El n set, 56:5
Arbitration

PCI, 87-89
SAM, 650

Arbitration pins
PC1 signal lineir. 81.. 82.

AI hitration sequence
link layer. 227

Architecture.. Svef 11' 6'0 Thus. Hichite.d ➢ iu.4 1 A-64
architeciure; Scalable Processor A rclii•
Ricturc .(SPARC)

Feised tiLlpErpipvii ric
RISC, 489

channel 110.222
(18(. . 465-466
computer

cliistot, 667,668
definition, 4
studying. 11-13

Flewlen-Packard PA-1 ESC, 542
Si370.5,681-682

IBM S/390. 311, 682
Mlivt vector

organization. 680-082
infiniBand, 229-230
Intel 1/0 modules. 233
layered protocol

link, 231
network, 231
physical...231
transport, 231

loadistorc
PowerPC, 392

parallel prw.:esscir
I II N.1)11 0.111V, 646

processor
superscalar implem entat ioii. 506

rcduced instruction set, 474-1S1.
teaching computer projects,

741-744
vector

instruction set, 685-67
vim Neumann

concepts, 51
web sites

Computer Architecture Home Page, 14
Itannun processor arailleVillf c, 5 169
PoiwcrPC ;:titilitectuire, 44
related to computer organization and

architecture, I.4
Arithmetic

binary floating-point
IEEE standard. 322

cornpuiei . 2M-325
floating•point, 284,313-324

normaliZatioll, .317
si nifiGaild alignment. 317
subaction. 315
zero check. 317

E AS computer, 22
infinity, 322
hunger, 291-3(77

Power VC instruction and dcscription, 363
logical instructions

(BM 117 1.8) vector facility, 686
MMX instruction and description, 360
operation name arid description, 344
Pepliuni instruction and description, 356
twos complement reprscniallion

cellarargerislics. 287
web sites

compuler. 324
floating-pOirtt, 324

Arithmetic and logic unit (AL. 11_:). 9,17.
284-285

con figarat MO&
'LE 8832,634

control fields
IBM 3033,626

control tii Plah,
CPU, 41.3
i mmediate

MIPS, 487
inputs and outputs. 285

Arithmetic instructions, 334
MIPS

immediate, 487

776 iNDP:x

Ariihrn.ctic instructions (cum.
3-operand anti R-type,

487
PowerPC„ 395
SPARC: : 497

Arithmetic operations
C: fill.: aeli4ins, 343
decrement : 344
Iluating-point .11.11rnbors, 315
ineremc.ni. 34.1
LIS-11624
1112:gHt12., 344

Arithmetic shill 'KO
operation. 347

Array iirnecssor, 680
vector computinicm, 674

ASCU
machine ipsiruction, 338

Assembler. 36.6
Assembly code

1A-64, 556
IA-64 architecture : 552

A:;:sembly language; 364 366
format

LA-64 archiiecture, 548-5.517I
Association fur computing Maehioery (ACM)

Special litrereht Group on Compiler
Architecture.

web Rite, 14
Associative laws

lloolc.tan algebra,
Associative nuipping, 112

example. 114
Agsocialive mcnnory : 9.8
Asynch(011OLLS bus Tjpern tiO !is. 77
Aqnehronous link layer. 227
Asynchronous subaction, 228
Asynchronous timing

1)LIH clusign, 76
Autoinclexing, 38s
Autoindex registers. 39S
Autinnalic register renaming

1 A-04 pipclining, 561.
Auxiliary

CD-ROM,

SNIP, 649

B
Bitek Ward branch

transfer-Or-ContrOl instruction, 35tJ
Bandwidth requirements

peripheral iechnologies„ 40
BkIsc.

a.ddre5:s, 261

decimal system, 734
- with displacement mode

Pentium, 391
ii nd divlueement mode

Pentium. 3 112
mode

Pentium. 191
regisler addressing, 38 -7
Seal ELJ I 1113C wit 11 displacement mode

Pun ti UM, 392
hu perpipzlinc architecture

RISC : 4S9
Balch. 243-246

niultiprorarnming vs. time sharing; 150
OS. 241

13 CD
Pentium lypes„33(1

MI Laboratories. 149
Berk cley RISC' COETIputer§, 469
Biased reprseniaiion

ll oating•point number : .108
13i-t2rtclian fashion, 330,

376 380
Big-cridian fashion, 330, 376-380
Bin aTy ri ddilion., 717

truth. tables, 718
Bimirs..y and decimal

conyersion, 7.15-738
1 W) complement

venal. brut. 2g1.1
Binary coded ri,acimitl (13CD)

Pentium data types, 339
Thioary digiis, 738
Binary tliViSii311

unsigned
FloWchHri, 305

Binai-y floating-point arithmelic
'FEE !,.tandard, 322

Binary tlOaLing-p{51.TIL TVTITV:Ktilalion

fEEE standard, 312
Binary forum. 284
Binary inputs, 595
Binary integers

unsigned
example of dis..ision, 3C4

unsigned
flowchart. 29S
lu.ildwave i 311 plementation, 297

Binary number system : 285
[3i]1 operation

Stack riperano° dcsk:ription. 372
Binary outputs. 595
Binary point, 29[1
Binary system. 734-735

INDEX 777

number ..3..sturits. 734-735
4-Elit

adder, 71 1.)
in t cgurs.

alternative representations, 288
8-hit

par:kW. re.gister : 726
32-bit

adder
con ii ructioo, 720

lloating-point format. 30g
formats

expressible, 3 W
64-bit

icnsi cm pills.
PC:1 signal lines, E. g3

128•bit
bundle

1 A-64 architecture. 546
Bit field

Pentium data 339
Bit lengths

convcrting. 289-290
Bit orderin
Block. 98

cl t transfur
hos systems, 79

multiplexor. 222
sire

two level memories. 129
Block format

CD-ROM, 1.36
Hoard oprizol

'L . 1 8800, 629
Boriltl*irs El ! ph ra, 694-696, 717

associative laws, 695
v..s. 6415

Derviorgan:s theorem : 695
digital logic, 69.1-696

tecliiiique:t., 694
Boolean equations, 699
Boolean c xprciisi on

Igitiiraic simplificarions, 7U1 701
ICarnmigh maps, 701
Quinc-McKlai-key tvibles, 705-709

Boolean functions
canonical form. 703
i mplimien tali on, 699-709
three xrtiria bles, 699

Boolcan if16(clIclii3M, 334
Sil'A RC:, 497
oolcan operators, 695
C11)111 .5. algOri LtITEI 3{Kt-304
example, 302
twos complenicni ./(1 1

Branch. See vivo Conditioinal branch
haul:Wan.)

transfer-of-control instruclion. 3.50
d cab rig with, 431-438
c,l elayed, 437.-43g, 4t;4., 48
forand

transfer-L}r-clliiirui instrucdort, 350
history table, 436

strategy. 438
loop buffer, 433-434

615
normal. 484
opiirni4ed delayed. 484
pipeline

is trenins, 43t -433
qkip instructions

transfer-of-control tostroction, 350
Unconditional

T AS computer. 22
BUIFIch addressing

Potiiicr pc, 3 413-395
n•mi, Dontrol Icigic

single add.rei-.- (112
liultk..!!: I

✓ariable km -nat. (] 1 3
Branching fluids

11:3Nel 3033, 626
Branch instructions. 334

s1l ttt,rateel, 35.0
M1 E'S : 487
SPARC, 497. 499
Lran.if4,1r of ci tr{]] operation, 349

Branch u ,ricTtteL1
Pov..erPC' dc seri p tit ni, 363
Poi.wrPC ins.tr actions :

Branch prediction, 434-437
flowchar1.436
high-performance pipulined machine,

518-519
It an inni, .56F;
Powerl 3 C, 534
processors. 39
state diagram : 437

f3 El) ri ch prtAxssinp.
E- wt 601. 531 -532
uni[%

Branch. registers
1 A-Nliiii-tiudion sot- 563

Branch strategy. 435
delayed

R]SC machine. 51S
superscalar mat hine& 518

Branch targot
pre tetch. 433

Branch taro boffi„•r (113 -1 - TV}, 524

778 INDEX

B.SN
Yv11 3 , 654

!i24
Buffer egistkir

control, 603
B-unit

I• -64 a rehitl2cture, 54.5
Bus

conuno
SMP, 650

data. 70
cIai md.d, 69

.2. serial, 224
hierarchies, 72-.74
internal

CPU, -388
1 10, 72, 220
operation : 7]
Select DR

inirroskso.n.mwr, 632
ti me-shared

SNIP, 650.
I i niing diagrams.. 02

Bus arbiter
bus design. 75

BUS rbil rel Li on, 212
Bus architecture

high-performance, 73
plr!„%ica I realiza
traditional. 73

Bus
example, 73

Bus controller
Mari design, 75

Bus control lines
clock, 71

tcrEupi. ACK, 71
internipt request, 71
1:0, 70
memory read, 70
memory write, 10
reset, 71
tram:fed ACK, 70

Bus cycle, 75
Bus thin irkinxrel- u.y-pcs, 78
Bus design

aeyrichronom Limning, 7b
data transfer iype, 78
elements. 74-79
Inc thud c5(arbirralion. 75.
synchronous timing : 75
iming,

Bus detached DMA, 220
Bus grant

bus conlri.il lines. 71
13us id! st t us, 594
Bus integrates DM.A• 0, 220
BUS in1creonnQctinn,

scheme, 70
Bus &Tura Lions

synclirciriOnS
ti ming, 70

Bus request
cuntnil lines, 70

lius StITICIL1 re, 6 (). 72
PCI, 81
PDP-8, 33

Bus•swiiching network adapwr (BSN)
S'1 P. 654

Bus system, 69
block data transfer. 79
cal h rn*rn ry ciyntr011iA : 72
clock line,
control signals. 5./16
tpi 413
LANs. 72
read cycle, 77
St '51, 72
W.A.Ns, 72
wri cs..c/e., 77

li.us types
bus design, 74

Blls metchi ng
write through

cache design, 118
Bus width

bus design, 77.-78
Byte mulliphaor. 222.
Byte ordering, 376-380
Byte string

Buni aim dald iypes, 339
PowerPC. : 341

Cache
disk. 103. 120
cxicrliul, 120
FIFO : 117
ill mtrald. 472
internal, 123
ltanium. 568
v.v. large register file. 471-473
LF1J. 117
]heal

read miss. 000 1102
MI:. 115
mapping, 107

direct, 107, IN

rNDEx 779

mentors.,.. 96-135, 462
olluiroller :
i1lutrated, 103
principles. 103-106
structure, 104
systems analysis and teaching, 743

MIPS
data first, 494
data second, 494

nurnhur (5l
cache design., 119-120

on-chip. 120
PN1riurn 4

trace, 524 525
PcFwerPC, 125
siza, 107

processors, 108
SMP, 654-656, 656, 743
split vs. unified, 1211-121
USE bit, L L7
virtual marnory, 266

C-ache coherence, 656-659
CC-NUMA, 671-673
VI ES] fro icical

parallel processing : 656.6.63
SMP, 651
software soludoos, 657

Cache-coherent NL'MA (CC-NUMA)
loci, 67(1-671

organization
illustration, i72

pr of : mid cons, .673

Cache consisierkty
Ll-L2. 663

Cache .0csign
Oxus watching

wrilc through, 118
eIerrioins, 146-121
hardware transparency, 118-119

119

multilevol caches. 119-120
noncachcaMe memory, 119
N21ilacI2rn42n.l.i 4mrillirns, 115

*rile policy. 118-119
Cache disable

Pentium control register, 444
{.'ache T.TRAM (CDRAN4). 1.54, 1.59
Cache hit rate

S13 4.10
SM.!' configuration, 656

Cache line
TriHin memory 1.3145e19. rissigned, 110
starting memory address (E Hock.. 110

MkIL42s
1%..1 ESI, 660

Cache management
instruelion and description

Pentium. 357
POW4.7 PC, :1.63

kriptation
modes

Penlitim 4, 123
26ii

Cache organimtion
ebratilaristies, 471
Fully a3sociative, 113
illustrated, 106
1L-way 2tisociative,.116
Pentium 4, 121 123

execute tIniLk. 12.1

morriury subsi,..m.e.(11, 121
out , of-order e.xecut ion logie, 121

Cache read operation, 105
Cache. support pins

EiCI signal lines, 81, 83
Calculate imerandS

pipain.int, 425
CALL

instructions. 351

service
I rocess. 253

WR11 E. 59, 03
Called

ealI insiructiii.ns, 351
Call instructions

invked, 351
nesting of procedures, 351
Pentium interrupl proecssor, 448
win:cc/11re, 35]--+54. 466
registers, 351
star[tit called proeadura,
top of iitaelt., 35E

.Call procedure
al location X

insttuelii.m.s.
Call return

behilvior example, 1 31

Pantium instructions. 35'5.
Canonical form

13rFolean function, 703
Capacily, 97

cAlcrmil metro.-Fry, 97, 164- 191
11.1 . 11 data iransier

RAID 0, HO
marriory, 41 4)— [

CAR, 603, 611. 614

780 [Ni)Ex

CcIrEy

C01113110IL fields or Flags, 417
lookahead. 719

{';lily iii
8832, 634

CAS, 144. 147. 156
CASE rtia.hinu ihstruclitni, 464
Causo•and-effect dependencies

bluing diagram, 93
{'AY, 166, 167, 185
C.'.:13.E lines

PCI huh data transfer, 85
CC-NUMA : 670-673
CD. See Compact disk (CD)
CD-R, 187
C.'1?1 A.3,1, 154, 159
CD-RON1.. See Compact disk read only mcin•

(try (CD-ROM)
1:144, 1.S7

d L'scn.pI]otl, 184
CE : 146 : 156
Central control unit

SNIP, 652
['antral pnicesi‘iiig unit (CPI„:), 9, 11. 25

Into Center
web 14

Intel 8085. 591
ini‘truction set. 330
interconnection : 9
with internal bus, 588
ioralBaal ructuro, 414
register, 373

rritiLline instruction, 331-332
scructure and function, 4.12-457
syslem bus, 413
transigiir counl

growth, 30
Cr‘1, See Current frame marker (CFM)
{:FrAiisiitg, 679
Channel architecture

inpullouiput (I,'O), 222
Characters

I RA
LC WI I MI, ZOO
encoded. 1{19.

machine instruction, 333
inosri q instruction., 479
unpack. 340

ctor-slring tioning
big-endian processor : 37S

Charles Babbage Institute
web sites, 45

Cheek hit calculation : 153

Check bits
1.51

Checking instruction
I A-04, 554

Ch&.k pointing
dusters. 069

Chip
description, 29

Chip enable (CE)
pin

chip oackag.,ing, 146
signals

RDRAM, t56
Chip logic

serniamduct.or memory, 143-144
Chip piickiving : 144-148
Circular buffer

organizalion
overlapped windows, 470

Pentium 4 instruction•level parallelism, 526
Circular

SPARC. 4W
CISC. See Complex instruction set compuler

.(C1SC)
Clock

bus control lines, 71
c tell, 75
li ne

sytern bits. 93
processor control. 585
signal

Inning tlitiguarn,q3
Clocked S-R

sequential circuit, 722
Ctuster, 663-669

memory : 1192
parallel processing, 663-669
v.s. S M
superior pric•iperformanee, 664

Chisic CT .3TC: hiic:ci LITE, 667, 668
Chu:Ler Coniigur L [OILS. 664-666
Cluster methods

active seeondary, 665-666
heik.rits ariLl limitations, 665
passive standby, 665-666
512pafaiit WA'S, 665-666
servers connected to disks, 665-666

shirt: diisks... 665-666
shared disk, 060
shared rit5thing. 666

C1N
RD, 185

Code example
conditional branch

INDEX 781

llowe r 533
Code segment pointo -

PCnliuln inli:Trupt proi:essor. 448
Code si reliniye

RISC I,475
Color Plane Reprt.serilabern

image compositing. 362
Ciilumn address selcct (CAS). 1%

pins, [47
signals, 144

jowl 1,:irc 'Ails % 699-700
Command decoding,

110.202
Connie(Ciai CS I nip art;es, 22-24
Committing

itNiruction,
Common bus

SMP. 610
Communication, 197

pathway, 69
ti ming diagrams % 92

C:OMMUtatiVe I 2.W$
B ocilioan algebra, 695

C:c Full)

I A-04 architecture : 5411
Compact disk (CD), 184

dt.scription, 184
operation. 185

ComplE1 disk read-only memory (CD-ROM),
1g4-1S6

advantages : 185
block formai, 186
description. 1g4
disadvantages. [86
storage illosimitpd, 188

Compact disk reeardable [CD-k), 187
Compiiction.
Comp.arch

USENET'. 14

USENE:F. 14
Comp.arch.storage

1,.:SENFT, 14
Comparison

MMX inslruction and description. 360
Compatible cl.anputers

family characteristics. 3] 32
Compiler-based coherence mechanisms.

657
CLimpiler-based register optimization,

473474
Completeness

pi)p- 3c111.
Completion queue entry (a)Iii). 231

Complex instruction sct computer (C1SC).
474-476

architectures. 465-466
characteristics, 463
instructions

motivation. 543-544
rilicr4Ipel =NS. iT, 653

✓S. RISC characteristics, 479 46]
Compound instruction

[WM yectoi facility., 684-685
vector computation. 683

Corrip.para]lel
USENET, [4

C'fimputer
iiLquire and appivcidlion, 11
evolution and performance, [5. 45
fri rnidy characteristics, 31-32
history. 16-36

Computer architecture
definition, 4
studying : U-13

Computer arithmetic, 284-325
web sites, 324

Computer components, 50.53
i.op-level view.. 53

C:ornputer elements : 28
Computer function, 53-67

gmymii4)319, 24
Computer instructions. St. Machine instruc-

tions
.C.:C1111plik2(r11e111ilry N'Y'S LCIF1

oyurvicw, 9(1.• 103
Comptur modules. 68
t:oinputer opera t
Computer organization. 647

definition : 4

taxonomy. 68t)
CcUTIp43Lcr Sci(!ticc Student RUtiCRIEGC Site

web site, [3
Computer system

lave' ..i and views.. 239
Computer technology, 4-5
Como] E.! na tcd asynchronous subaction.s. 228
C.ondit ional branch

code e.:tamplc
I'Llwei.1 1C. 533

l AS computer, 22
(161TUCL

transfer of control operation. 349
instniet jou pipeline operation, 427
inicroseql.tencer. 632

Conditional jump
Pentium conditions, 359

782 I NDF:x

Condition codes
Pentium. 357
registers, 416

(.‘ondit i on register
PowerPC

interpretation (Fr bits, 454
processor, 450

Consistent order
big-endian processor, 378

Constant angular velocity (CAV), 160
illustrated, 167
RD. 185

Constant linear velocity (C11V)
RD. 185

Context data
process control block. 252

Continuous-field simulation
vector computation, 674

C1ONTROI.
keyboard-handling, 216

Control, 6-7
buffer register, 603
functions. 7
instruction type. 333
1:0, 205
I R, 54
microelectriirtics,
Pentium processor, 441
of pr(icessor, 583-.594
status registers. 412, 414, 416-419

Control address register ((AR). 603
ITINf 3033, 61.1
microinstruction, ti l

Concri rl characters
E RA, 2(s)
machine instruction, 338

(.1ontrollcd access to files
OS, 24(1

Controller
1/0 channels. 221

Control lines, 70
Control logic

1.'0, 198
Control memory, 602, 603

organization, 602
Control registers, 412, 414, 416-419, 603

Pentium, 444
C:•ntrol signals, 587

active control signals. 587
data paths, 5 8n
example, 586
PO, 198
micro-operations. 587
processor. 576. 585

processor control, 584-586
ft-4.ml control hus, 585
co control bus, 58.5

read, 594
system bus, 586

Control spe culation
T A -64, 553-554
1 A -64 instruction. 542

Control transfer
Pentium instruct ii in and description, 356

Control unit, 9, 12
CPU, 413
decoded inputs, 596
i mplementing technique. 576
inputs, 594
logic. 595
microarchilecture. 603
'nodal, .58.5.
operation, 575- 597

hardwired implementation, 591-597
micfo-operations, 577--583
of processor, 583. 594

organization, 616
proecssot , 576

Conversion
binary and du.cirnal, 735-738
CPU actions. 343

instruction and description, 360
operation name and description, 347-348

Coprocessor instructions
V1IPS, 487

Cores, 138
Cost

En ern ory, 99-1(13
si milar or identical

family members, 32
vs. size

two level memories. 133, 134

PowerPC processor. 450
transistor

E1P11.: growth, 30
Counters. See also Program counter (PC}

disables read born time stamp instruction.
444

microprogram
TI 8800, 630

register
Ti 8800. 630

ripple
sequential circuits, 727

sequential circuits, 727-730
synchronous, 728 730

CPU, See Central processing unit (CPU)

INDEX 783

CQE, 231
(.'ray supereouiputers,6.79
Cross-hatching, 473
CorRml frame. mark., r (cfm)

I A-64 architeourc, 568
rugiswr, 566,5H

E A-6,4 iiistruction set, 5C3
(..:11.u .rnt wind OW pointer (C'WP)

poinls, 469
SPARC!, 495

(WV., 469,495
Cyclu!•Lii221ing

DMA. 219
Cyclic shift operalions, 347
Cyhnders.370

I)
Daisy chain, 212
Daia

CD-ROM, 186
EA), 198,202
inovum4:n1slora.gc Incl processing : 240.242

Data bits
layout. 151

Fiala bits, 70
width : 7.I.)

Data each): first
MIPS : 494

Data cache second
MIPS, 494

Dar. ebannels,
Data communications, 7
Data Flow, .17'..?123

2 Ethly3i
processors, 38

fuich cycle, 422
indirect cycle, 423
inlc•rrttpi LyLl12. 423

Data formatting. 165• 167
Data lincs,
Dala marrying

P.A1[)le\'CI () array, 179
Data movement, t5-7

insiructitm Iypu., 333
tnicroeloctronies. 28
Penriorn And deSCripti011 : 356

na LA operation
instruction state ,

Datil urganjAilitlith, 165-167
Dam paths. 587

control sigmils,
Dalai pins

signal lines, F!.1.82
Data proccssing, .f1-7

itimruLtion type. ".%33
I R. 54
ruicroolc.ctrouies,

DATA REALlY]inc, 216
Data registers, 415
Data .'"ignals

1ntel 591
Data lq) : 1
D:11;

1 A-64, :-o•si •
I A-O4 insiruction. 542

Data storage. 0.7
mstruction 3713
microel I nn [CS : 28

Data Storage. Magazin'
siies, 191

Data stream. (45.-647
parallel processing, 646.

Data throughput rates. 231
nat4 transfor

CPE; actions, 343
l AS computer, 22
MN1X instruclion and de.seription, 2.60
operalion name. Jrld description, 343-344
PC'] bus : 85
type

bus design. 7t
D17R-81.)RAM, 156
Debugging exteiisions

Pentium control rcgisler, 446
DEC. See Digital Equipment Corporatidn

(DEC)
Decimal and binary

conYcl:SiOn.
Decirnal+AS(.11 dumps

big-Indian processor, 37g
Dccirnal sys[4:m : 734
De&.odi instruction

pipelining, 425
D........c.o(11,! N, 605

co inNnattonal circuit, 711-712
four inputs and sixieen out puts, 595
3 inputs 8 outputs : 712

IDeo-de stagL
Intel..9,4)48(1, 43'9

DeLoile .-itage 2
Intel 8W% 439

Deco& unit
Pentium 4 cache organizarion : 121.

Decremcni
.i rithinc:tic operations, 344

Decrementer address [tub
lutwl 8116:7 . 5:59-5194

1)1.7,1) Lode, 352

784 INDEX

D elav branch. 43738, 4M
striveR

MSC' rntichine.
superscalar 518

Delay ski t, 4 4
Demand paging, 263-264
1)eMorgiin'5 theorQM, 697

applying, 709
Rook an algebra, 695

implementation. 713
Denormalized numbers. 322

IEEE:. 754, 323
Density. 167
Depgrideneies

effect, 510

Boolean aigebro, 6(11
microinstruction : 611)

Dem
I A-64 archireeture, 549

Destination register
TI 8832, 634

Device controller, 204
E)E1\ SEL

PC'[bus data tran$fer, 85
D flip-flop

S424.[L1124111}11 circuit., 722
Digital Equipment Corptiridion (DEC), 2.5.

See also PDP-8.; PD1u-10., PDP-11
Digital 693-730

Eloolean algebra, 65./4-696
combination circuits. 699-72i)
gates, 496-698
sequential circuits, 720-734)

Digital ver5alile disk. See Digital video disk
(D VD)

Digilal video disk (I)VD), 187-188
description, 14.::4

Digital video disk recordable (DVI)-R)
dewrip t ion, 184

Digital video clik rewricable (DVD-RW)
description, 184

Digital video disk ROM (DVD- ROM)
storage illustrated, 1f 4,g

Dijk$1.ra's algorithms. 374
Direct-mxes,,i device, 190
Direct addressing : 3/4,-1-385

PDP- 10. 3co
Direct eneciding : 62()

microinstruction, 616, 619
Dircciiim nag

Ei•I_A(3S registei: : 442

Direct mapping
1:84114, 1. 07
cache organization,
4.! xumplo. 111
1.12ClirlitiLlt, 1 1 1 -112

Direct memory access (DMA). 67. 69.9 ,,
1 %, 204.216-220

block diagram, 219
configurations, 220
fienctiim. 217
input, 206

Directory prillocols. 658
Disabled i merrupt, 64
Disa hies. read from time stamp counter

RDTS(') inslructiOri, 444
Discrete component, 25
Disk. See inrso Compact disk (CD); Digital

video disk (DVD); Rahintlani Array
of Indeimrsden Disks (I))

cache. 103. 129
data layout. 166
doubie sided. 169

166
floppy. 171)
formatting

exarnple, 167, 168
'Winchester, 168

Iransfkl.r liming, 172
layout methods

comparison. 167
rmignciic, 164-17.1
movable-head, 16[
nonremovable, 169
optical, 96

products, 184
port a bilily

disk system, 169
removable, 169
shared

cluster method description, 666
'Singh; large cripensive, 175
single-sided. 169
types : 170
Wind:sc.:4 cr. 170

track format, 1448
writes, 103

Disk di itig. 201
components. 161,4
pa rtimel ers: 171

Disk perforiiiiinee
access time. 171
pirromieb.irs, 171-174
rotational delay, 171-.173
rotational latency. 171

INDEX 785

5121 li me. 171-17?
sequential organization, 173
timing comparison. 173
rrollsfer time, 173

Disk system
hcad. mcchanis.rns : 164)
head motion. 169
physical characteristic. 169
plsileoi, 1.69
sides, 169

Dispatch unit
Pinsier PC: 6(11..523-531

Displacemenr
ii.ii..1re55irtg, 336-387
Pentium, 406

mode. 391
Distribuiive laws

Boolean algebra, 695
DIV

opcndes, 332
Division

nmiing-po in .!, 317-320
integers. 304.313

DLTapc
web sites, 1911

1)1.:L'ape drives. 189
DMA.

Sf,i,
 Dircot memory acCi2 ,

ti I DMA)
Double data rate SDRAM WDR-SDRAM),

156
Double-ertor-deie.ding (171= D) code,

152.-153
Double sidcd disk, 169
Do LI 11 L' word

packed
MMX, 359

unsigned
PowerPC'. 341

Doughnui-shar2d lerromagneric loops. 138
DRAM, 33
DRA pn rlti

'1 9] MOO, 630
D1t11 ports

TI MOO, 630
Dual Address Cycle

PC] command. 8547
DVD, 184, 187-188
DVD-R, [34
DVD-ROM

storage illustrmed,
DVD•RW. 184
Dynnmic

defined, 139
Dynamic branch strategks,

435

Dynamic parlitioning.
effect. 260

Dynamic percittage
operands, 466

Dynamic RAM (DRAM). 38. 96. 138
cell, 141
chanteteriNticx, 139-142
controll er

PC:I, 79
Gyolluii(in. 39
organizations

advanced. 154-15'9
bends, 40

EBCDIC
machine.. inslruction. 338

EDP, 35.5
Eck ert-Mauchly Computer Corroralion, 22
1 ..- DVAC, L7
REPROM, 140, 143
Effective. address. 384

PowcrPC memory management. 275 277
FE-AC iS register., 442
8048(2.. also 1nte 80486

pipeline, 439
8-bit parallel register, 726
82C59A inixrrupi cii ntrolltm.. 213*, 214
8847]loafing-paint

1 . 1 .88CO. 629
8818 m ic ros4,!qutpno.::t. .Vve edisfy Texas

Instruments Kg 8
`11. 8&X1 629

Eigin Queens Problem : 556
3832 registered ALL:. See al5r) Texas lnslru-

mcnis 8832
T1 88W. 62 91

881)1) 5D.B. See aisr? -1 -1.n.w... f ri4trurrieo s 13800
eomponenk, 627

Electrically erasable PROM (EEPROM)
descriplion. 143
memory tyiv characteristics, 140

Etectronic Discrete Variable Compuler
(EDVAC), 17

Electronic Numerical integrator and Com-
puter (ENIAC). 16

Eike pHi,b
A-6,4 architecture. 550, 553

EV1M.5. 446
Frurny MM X State (EMMS)„
Ern LliiIL 51 1 (137

Pentium control resister, 444
Endinn Triaps

example- 378

786 INDEX

Endiuniress
concept, 377 .380
property, 377

EN1AC, 16
ENTER instruction, 355
EPIC

544
Epilog phase

1A-64 pipelining, 561
EPROM. . 140, 143, 146

logical functions, 345
Equal

C{,1111111. Hi 1 . 1321 Cl; 1)T Nag,. 417
I.'.clti.tl sip partitions. 2,59

progrtimmable rcac•only incinory
(EPROM)

description, 143
memory iype characteristics, 140
package 146

Error-oorrecting code, 149
function., 149
web site. 159

Error correction
increase word length, 151
techniques. 138. 148...153

Error detedion rc.sponsc.
OS, 240

Error rr:porling pins
1'C.1. signal lines, 31,X32

ESP. 355
Pc.mium infcrrupl. profxssor, 448

Events
5 ,,‘,,‘(11.1c.n.ces, 92

Except ion
Pentium, 447-.449.
register

oriicesrior, 450
Exclusive

NIES(proinc-„l,
write hit, 662

Exclusiw-OR (X03.1.)
logical funciions...145

Execute instruction. 54-55
Fu.ciition

CPU's insiluetion 420
cycle, 54

data llow. 422-423
description. 57
rnicr45-Clpera t ions, 581

uction
pipelining. 425

Intcl 8006. 439
inicroin si.ruct ion. 61)3
processor control, 584

suEuencing
RISC advociies, 464

units
Pafilom l Carlv:.. organization. 1.?...1

Ex pi-men t over 11 43
r•

amiting-poin t. 3 1 5
17.xporsnE undc3 . 11cpw

floating-point. 3]5
Exponent value

Roating-oonn. noiriber, 3178
Expression evaluation, '374
17 xtqm.3cd. Codtg.3 DI2cirrpo.1 nil:AN:ham:42

(:ode
machine instruction, 338
Sf1.2.1I1cd. Ni.2 Lk pH jill v21' S p)
Pentium interrupt processor, 448

Pentium' control register, 444
External cache, 120
EN1C1- 11;11] cicti iixs. 197-201

block diagram. 198
External interracc. 223-23.2
External mentor,. C.; I paCi V, 97, I 64-1 9 1
External memory ivsteins

;val. Sites, 1)1
External nonvolatile memory:, 102

Fa ilback
667

E i i r, 666

Failure management
clusiers, 666-667

Fairchild. 34
Fairness intervals, 266
Family e.oraxpi. 462

computer characteristics, 31 32
Roil] 'okra nce

SNIP, 653
]etch, 53

CP1.r9 imirtiction cycle.. 42f)
and execute in ri, 54-58

Fetch cycle, 21
dala Ilow, 422
micro-operations. 5?24 SEA
scgmncc or events. 57 ')

Fetch,
CPI. -- 413

Foch
ltanium. 568

Fetch instruction
CPU, 412
pipelining, 425

Fetch operand
425

INDEX 787

Fetal overlap. 424
rclai utl i l

4 cache organization. 121
Fic Id-programmable logic array, 715
FIFO

cache, 117
FireWire, 1.96. 224-228

configuration : 225
protocol stack. 266
wrial 1-Pus, 224
subactions, 22
web sites, 233

Firmw2Ire..601
First-in-first-out (FIFO)

cache. L1.7
Firsi time unit

fetch cycle, 579
Fivu-Itagc pipeline

80486, 439
Five.•state process model. 252
Fixtal-head disk, 168
Fixed partitioning

example:, 259
represcrodlion. 290

Fixed-size partitions : 257
Flag control

Penfiuni dexcripiion : 35?
Flags. 416

Pc nlittirk-proc.;:Nbi ir, 441
processor con LE a 5&5

Flash memory
duscripiiiin, 143.
memory type characteristics, 140

SM.P, 6.50
Flip•tiops

sequential circuits. 720-721. 725
clocked S-R, 722
0, 722
J-K, 723-724

Floating-point
addition and subtraction. 316
division. 319
execution units

Nrilium 4 inslroc(ion-]cvel
527

multiplication. 31 8
allle rati., 315
Protium data types, 339
PowerPC

description, 363
instructions. 3153. 531-532

regiswoi
IA-64 instruction set. 563
8847, 629

unit. 528
Pentium processor : 441

Ploating-point 313-324
binsry .

IEEE standard, 322
norrnalizolion. 317

i nilicaiisd aligniwilt, 317
subaction„ x 1 5
web Rites, 324
era eltb2k, 317

Floating-point numbers, 284
aril hrn l is 9per rs L I L1 rts, 315
biased representation. 308
density, 311
c.s.rionent v,Ilue, 308
IEEE 754, 314
mantissa. 308
signifleiincl, 308

Floating-point repreFR nta lion. 284.307-313
IEEE 754, 312

binary, 312
principles. 307-312

Flop t Tit .51H Ws Ant] .LOrit i't11. register
(FE/SCR)

PowerPC processor. 450.
Floppy disk. 170
Haw dependency,:509-511
FORK, 676
Format, 382-408. Set aho Instruction format

2P4
block

.C1-)-R1013,4 :
data, 165-167
disk cxamplu...167-168
expressible, 3l0
1A-64 architecture

assembly language, 5418-S50
instruction,
registc.r. 5:66

lEtNel base-16, 331
IEEE 754, 31.2. 313
IRA conirol, 200
memory-management

l AS computer. 19
Pentium', 271
PowerPC, 2.75-277

micn,inxl ruclirin
horizontal. 62]
1BNil 3033, 626
I.-SI-11 : 624-625
'texas 1 nstnanticnts 8800. 628-629

filint2ric dsta, 340
PowerPC register. 453

exprussihle. .110

• *

788 rr\IDEX

Fcrrn iat rcemi.:(

floating-point. .308
vriTinbic

brailch control logic, 613
VLSI. implementation

RISC. 177
Winchemei disk track, 168

Forward branch
transfer-nl-ciinirpl instruction, 350

4-hit adder. 719
4-bit int.'egcrs

al Ler n Ei Ve. ioprLsmtaI iin S,, 8

Four. way pipelined timiltig, 4#i 3
FPSCR

PowerPC proccLisor, 450
Fractions

convert from GIVOMal 03 binary.. 736-738
Fram, 261

PCI his data transfer. 85
pointer, 3.5.5

Free frames
allocation, 261

Fully associaLi've Lathe 511;i1111V.}1(I C in, I 13

Fully nested
interrupt-drive 1.'0, 213

Function. 5-10. SIT 01.1.0 E3[F]lean functions,
Logical functions

conipuier, 53-67
control, 7
CPL 1 , 412-457

DMA, 217
cncoding

microinst mai a-s, 620
error•correcting code.. 149
hash, 264-265
instruction sets, 329-380
1/0, 66-67
mapping, 107-115
rmcroprogrammed control coil. 61)4
(Fpcni ing 5ysturn. 238-241
iecruiternents

control unit : 583-584
Li wktppirtg, 251
timing diagram, 93

F-Li nit
1 A-64 architecture. 545

Gaps, 166
aeknowledgment, 227
air : 170
interrecord, 189

.164

saktoiion. 227
Gateq, 696-698

and chip, 29
comptiller,
digital logic, 696-698
logic ; 0?

NAM-31, 699
NOR, 698

Ocncral• purpose registe rs, 415
LlupicLicFn

t wos complement integers. 295
Global variables

regir.;1 1' Iilc , 471)
Gradual underelow, 324
Grant signal, 8749
Graph coloring approach.

illustrated, 474
Graph ec it c wr i ng problem : 473

C i.raithica1 symbol, 699
Ground Chiss)., 144
C;roup5. of lirscs

ti ming diagram. 93
Guard hits, 320

1-1
I [aliwort]

sigitec1
PewerPC, 341

un-; igrsccl
PowerrC. 34]

Halted
proeess slate. 252

Eiarriming, Richard, 149
Hamming Grid

cudO. 149-15 .0
Hamming SEC DEC cod°, 153
[lard disk diivu. poi .a.inclurri, 17'1
Hard failure. 14S
Hard/soil microprogramming

111 iCrOill S I 11.101011. 616, 619
Hardware approaches, 52
Hardware failure

iiiELTYLLOI

Hardware solutions
pruc.piNing,

Hardware. transparency:
cache: design. 11 1-119

Hardwired control mill_ 607
flardwircd implementation, 594-597
llard i program, 51
Hash. funcrion, 2:64.-265
Hash lables, 264-265
1-I CA

InfiniBand, 229

INDEX 789

Header
CD-ROM, 186

Head mechanisms. 116
disk syst....un, 16 4.)

motion
disk sysrem., 169

kletvleit-PackuRk PA-RISC architecture. 542
Hexadecimal digics. 738
HeXadecimal notation, 55. 738-73c)
1..ligh

clusters : fi43
High-level languagc..s (NIL), 464. 475

relative dyuitmic ercqucncy. 130
weighled rclativu ciynamic Ircquency, 465

suppori .638
i.'entiorn instruction imd dcscuiptinn,

356-.357
fligh-performance computing (RFC). 106
Hit ratio

I wo rnemories, 134. 135
H[-[-. See. High-levellanguaffs (FILL)
Horizontal microins1roction, 601-602, frkb.

f:C1 9
for

Horizontal microprogrammine, approach : 605
I Iosr channel adapier MCA)

infinif3and. 229
I IPC, 106
Human readable, 197

1 A-64
web sites. 569

I A-64 architecture, 541-569
application register. 5 . 64 % 565
instruelion 11.31111.K. 547
instruction set architecture % 56 -3-568
instruction type. 546
(Erganixafii]1,, 544-546
organi?..ation illustrated. 545
predication, epccolatior3, i'ind software

pi pet ,746-563
112.P.i Ste format. 566

I AS compulor
iddress modify, 22
arithmctic, 22
condiiiomil branch, 22
data transfer, 22
Expanthtd Strueture, 20
instriaction'set, 23
memory, 19
Mortuary Furm2Ls, 1.' 4)
operation flowchart, 21

structure, 15
lific.unditipnal branch.. 22

I BM 360;91, 433
I BM 700

web sires, 44
I BM 700.'70000

exam*. mciribers, 26
I ITIv1 3033, 614

CAR. 6i4.
cnnirol ...iddress register. 614
ckesit;n. 61/
microinslract i I) rL ciintrel fields, 626
ruicroin8trneriOn exccution % 625.
microinstruction fnrrnat% 626
saimmeiug and branching fields, 626

vector racilit y . 680-687, 681
uriihrnefic and logical mWuctionN, 686
registers, 684

I J3 A4 7094. 25
configurat loll, 27

111M se...16 format, 31.1
113M Si361.1, .;(1-32, 6N) : 614

characteristics, 31
JI M S..'370

archil•o tire, 5, 68I-682
data transfer instructions. 343
data transfer operittions exampl, 344.

.5....5•90
architecture % 311., 682
procc SS or

%%;15 te:s.. 324
SM1 1 configuration

hi1 rate, 656
web rites, 324

vector arehiteclurc
organization, 680-682

vector f acilii y
compound inrdruciion. 684-685

1BR. 20
Identification flag

EFLAGS mgiAk;,-
, 442

p control block, 252
ldL!Dtity s

IlooIL;in algebra, 695

nialized numbers
utt...cc. 32 .3

inLapretation, 314
101.111a1S.

pmrdnretexs, 313
standard. 284

790 INDEx

IEEE from.)
floating- point representation ; 312

web sites. 325
Technical Committee on Computer
Architecture

web site, 14
It'-thou-eke instruction

I A-64 architecture. 550, 55.3
I mmediate

addressing. 384
Pentium. 406

mode, 39
I MPACT

inch .-.it...,..,.. 570
I mplications

instruction execution, 467
Increment

richinetie operations, 344
Incremental gri lwi h

SNIP, 649
Incremental scalability

clusters, 663
Incrementer

address latch
Intel Sag5, i 1-594

1.......arnaugli maps, 707
Indexing, 387-388
Index 388, 415
Indirect addressing, 385

P45WC.IFiC, 393-39
indirect 420

data flow, 422. 423
micro-operations. 580

Indirect Encoding : 620
microinstruction. 610. 619

!oared iristeled 3(12
Inductive vr.ritethiagnetoresistive read head :

165
Enfinilland, 196 : 229.-232

architecture, 229.-230
communication prolo.col steer. 232
HC 22.1)
links. 22 11 : 231
operation. : 5.30-232
router. 2.30
submt. 230
switch : 22.Y.
switch fabric. 230
1 . (7A : 221}
web sites, 233

Irithmetic, 322
Infix notation. 374
Inrormat io a separator

I RA, 20 1]

[11-crrdei iss ii
with in•ordcr completion. 513
with 111.11-111-4)111c1T CIATTITIC1 . 14 511-515

data strrIbe
sccAut.ritiirl eitcuibi, 725

techniques, 20e.
(1.10), 7, 9, 17, 1 1Th 2 r4

Hde..11-eis TngiWE 52 : 53
buffer register, 53
bus. 220
channels, 204

architecture, 222
characterktic... : 221-222
and processors, 220-222

commands. 205-200
cornpotiertN, 51
controller, 204

syslem hJ3, 72
(.']'u iLLtlrlrl4. 343
device

machine ii ii rnrliam, 332
device data rates. 203
function, 6.6-67
imitruclion s : >6-207
interrupt class. 58
isolated. 207
iricaiel structure, 203 -204
modules:, 201 204

block diagram, 204
control :]1tJ finking, 201
data buffering, 2{12
device comrnuniwaliam, 211
error detection, 2513
generic model illusiratud, 19:7
inizrconni24:1ion : 6S•
I' D channels, 221
processor communication, 202

L ye r acions
LI.S-1 1, 624
niirne and cl.ocriptiiiii, 348

t rtr ur from n1E:mon:
iniercoancction structure tramik..im., 69

purls

similar or identical, 32
Frivilegc.•

EI-L (38 register, 442
processor. 204, 221

proces.s0r
interconnection structure transfers. 69

queue
procesg. 255

read
his ci

INDEX 791

Read and Write
PCI command, 84

scheduling. 2511 25.6
status information

prno4ss control block, 252
wehniques, 205
wrile

has co atm] lines, 71]
fns registers

SPARC, i95
niStialte 4)fr.jc. ctricoI ;.1 6(./ FEL!..ctroffic5 Etigi-

nurs. See I EEE
/T15.1. nictiOn

Cale LLiatitn1

instruction cycle states. 57
utiliyalion.. 335

Instruction buffer register (211
InN1.1114.1iOn L. 54,420.423,592

code
micro-operations, 5112

DMA and interrupt breakpoints. 219
Flowchart. 581
illustrated. 420
wilh inlc.rrupts,
micro-operations, 5112
slate. diagram. 57.65,331,421

Itvitruc[icin wwcwiryn

characteristics, 463.467
M]PS, .194

Instruction tc.tc1. 1

instruction cycle stares, 57
sccond half

MI PS, 494
Instruction fetch first half

MIPS, 494
Instruction format : 312 : 395-404

I A-64 architecture, 546-547
MIPS, 489
P DP-8.398
PDP-10,399
1 3 DE)-11,4M
Pentium. 404-406

illoslnitcd,105
1 oweri 3C, 406-408
RISC 477
SP:' 1-Zt 498-5011

Instruction issue policy
paralleliiirri, 512-514

Instruction length, 395
Inbtruclion-leycl parallelism 508.511-5'12
Instruction up.Tilti0F11,1C01.)dili g

instruction cycle states, 57
pipeline. 412.424-440

Intel 811486,440-449

M II 3S, 489-494
operation

131-dr1Cli, 427
timing diagrams. 426

PowerPC 601,531-532
RISC, 479
F wo-stage. 425

Instrneii on pipelining
speedup factors, 4:.12

Instruction pointer
T A-64 insiruclion 5c1,563
Penrium interrupt processor, 44.
Pentium processor. 441

flu...traction prcfc1c1. 1, 424

Instruction prefixes
Pentium. .1{].1

Instruction l ep,ister : 29 : 51,54
data flow, 422
i mIructioti exii.euiion, 416
machine instruction. 332
micro-operations. 578-579
process(FF CCMIZOI, 511,5

Instruction representation
machine instruction, 332-333

rnslructiol
characteristics and functions, 329-380
mapping

IA-64 architecture, 548
MIPS R series processors, 436-488
opuTatii1n5..., 342

identical
family members, 31-32.

SPARC, 49.6-498
vector architecture. 685.687

Inslruciion stream
parallel orocc.min .E.. ♦ 46

Instruction types, 333
in.511-41c(i on window, 515
Instruction word,]I
Integer

unwed Iron, decimal to binary, 735-736
Pentiumti data types : 319

Integer arithmetic. 291-307
Powel-PC. rucLiorS and dE.A. cripricui, 3.n3

11111.C•p.:1: processing chip
TE 8800,629

Integer representation, 285
Integer unit, 528

Natiurnproo2ssor, 44]
Integrated circuits, 25-33

iv.E1-triiilogy ,
Intel. See aisr, Itaniunr,l'entium

PCI. 79-80
RDRAM. 156

792 TNrim

[Mel 8085, 589-594
CE 3 I.1

block diagram, 590
external sign.pli,
O1,r1 insiruainn

liming diagram, 593
p.11 conriL..iiration : 592

Intel 80480
CIVC(Pd.:: slags 1, 439
decode ,itage. 2, 439
c%ccution, 43 1)
insiruLtii3n pip-Mine, 440-449
pipeliniitg, 439

. ...wile kick, 43 1)
! mei 82(155A

interrupt controller, 213, 214
pp3gTk117101:1hk peripheral interface, 213

illustratud : 215
Intel Developer's Page

web sites, .15
Duel VO modules 1,111.1 architecture, 233
Inc[r microprocessors

5IuLion,

Interactive system
OS, 241

lii[erconnec(ion. xlrUCt ureti, 67-69
1 m:et:face control pins

PCI signal]ines, 81, 82
Interfaces

pcs, 223-224
Interleaving

multiprogramming. 6,4S
lnt.::rmediate queue, 257
111(ernal butt

C1 3 11, 588
Inti•rnal. CPLI, 413
liiturnak memory, 97
Internet[processor organization, 588-589
1:ricer:nal sintct urc

of oorriputr..7
International Reference Alphabet tIKA),

199-200
collgO1 characters, 21.X
defined, 199
encoded Lliaracters, 199
machine instruction, 33b

111R:rpiei insiructinn
01'1,, 412

inwrreeord gaps, 189
ln[er No, :58-66

h:.tch OS. 245
01E1131.4es in rni.mnory and registers, 211
classes : 6g
CPU's instruction cycle, 420

and instruction ccle, 59
P1241610111 : 447
process, 253
program llow comrol

xvithout and with, 60
Interrupt Acknowledge.

bus Lorifrol
line, 213
PCI command, R4

Tn1Etrrapi Con Fro!
S2C59.A.... 21'3. 214
Inlet 8085, `18:(.P-59.1

IntesruEIL eyLlt : 59
data flow, 42 ..A
micro-operalion5L,

Interrupt-drive PO, FA 204. 208. 2.1(s
drawbacks. 216-220
input, 2(16

Interrupt (Lisa hieldia hie
common fields or flags. 417

froctrrtrin enable flag
EFLACiS register. 442

Interrupt flag
Pemiunn interrupt processor. 4414

Interrupt handler. 62
Pentium interrupi processor, 448
Poivera1, 456.-457
routine, 61

1 nierrupt
design issues, 212 214

Interrupt pins
PC] signal lines,

Interrupt pri essing, 209 •211. 447-449
I . 200

I 5.',' L• I •. 4:7!6
4:-14

lnlerrupi-relai.„..d sign als

1ll4 . 5 4 11

Interrupt requesl, 213.'216
bus contra! 1i[1cK, 71
signal, 59

]11.14'1711p1 return regisl cr
T] 880.0, 630

Interrupt testing
SE-1], 615

_I nterrupt vector table
Pentium interrupl prixxssair, 448

MESE protocol. 659
]natsrr elements

Boolean algebra, 695
I nvw1c(1 page table strut...Wm, 26.41-26.5
Iri ,voked

call instructions, 351

INDEX 793

10. See Input/output 01.'01 IC-way set1 5rioeialive mapping, 114-115
1/0 addiess mgisWr (170AR), 52
1/01AR. 52
UP[., 442 LANs
1;0 privilege flag (EOM .) system bus, 72

ETLAGS register, 442 ',age register file
E RA. See: Tulernalional Rckrence Alphabet PP. cache, 471-173

ORA} characteristics, 471
I RDY use, 467-17

1. 3CI bus ilaia tran$Ler, 85 Last-in-first-out (LIFO)
Isochrono LIS

link layer. 227
queue, 388
sEaek, 371

packets, 228 Latency. See also Access time
Nulaaciions, 228 mcmory, 98

fsalaied 207 LA ered protocol. AT'Llhit,:lc[uN
ltaniuni link. 231

1 A-64, 543-544 rielwork. 231
orga lion, 56S-5M physical. 23]
prefercti engine. 568 transport. 231
proc4issor, 156, 50 1.1 edche

564..1 consistency. 663
with sites. 5.10. 571) PowerPC', 125'

1,2 cache
1 A-64 aiichltu41 um, 545 consistency. 663

Pows,TPC, 125
SNIP'. 654-656

J CL, 244 L3 cache
J-K flip-flop SMP, 656

setillen ia 1 circuits, 723-724 Leading edge, 92
Joh. 250 Least frequently used (LF LE)

OS problems ; 243 cache, 1.17
Job control language (JCL}, 244 Least recently used (LREJ)
JOIN instruction, 676 cache, 115
.1 0IN N, 676 E.FLI
.1• 1A(.3!Iriluirdary bLan pins cache, 117

PC:! signal lines, &I. LIFO. 371.388
Jurttp Linea(

instructions, 484 Pentium memory management,
M1PS, 487 271-273
SPARC, 497 structure, 273
transfer or control operation. 349 Line 5i.a-

Penlium conditions. 359 cache. debign, 11.9
Link

InCini.Band, 229. 231
Karn a ugh nidpA I ayred protocol architecture, 231

Boolean. expression, 701 Link layar
use, 702, 704 ackiaw]Cd grnent, 227

Kernel, 24] acknowledgment gap, 227
phase ..11 -ii ration sNiicuec..227

f A-64 pipelining, 561 async:hronous, 227
Keyboardhlisplay interface FireWire. 225, 227- 228

g2C55A, 217 i suchrctr1crur, 227
Keyboard/nun-111(w, I % packet transmission, 227
K-way set associative cache UT:JUL/Al ion, I 1.6 .s ubacti on gap. 227

794 [NDEX

Link 1.!gi41 r
POVeu PC . processor, 450

Li tle-c ndian fashion. 330, 376380

a relliteet Lire
PowerPC, 392

cluster balancing, 667
instruction. 486
instructions, 364

MIPS, 487
PowerPC, 363
SPARC. 497

opeod es, 332
speculative

I A-64. 551. 554
Local area net rorks (LASS)

system bus, 72
1..oLalit4 (Fr fcrerwrce., 102

two level memories,
129-131

Web pages, 131
Locals

spARC.
Local scalar variables : 461
Location, 97

address, 261, 262, 269
data

machine instruction. 1.5g..-33
gates. 697
ins'. Hit!
MMX instruction and description, 360
operation name and description. 345-347
Nniiiirri instruction k. ind description, 356
shift, 345

PowerPC irmfruction. arid (30c.ription, 363
A)gicil r1104111011S
AND. 345
EQUA L. 345
t•NCLUSive-OR (X0R)..345
NOT operation, 345
OR,. 345

Logical operations. 345
CPLI actions, 343
LIS-11, 624

Loiv ,terrn queue
pi-(5r.n%S. 255

Long-term scheduling, 250,
251

p buffer
branch, 433-434
illustr{eled, 434

Loop 'Trace
soft warc pipelining e.r; ern ple. 562

Lower level mcmor:r : 131
LRU

cache. 115
LS1-11

ecFntral unil.
organization. 622-624

design. 618-619 .
interrupt testing, 615
Mill. 623 .
rnin-ain ti I ruction, 62.4

execution : 622 ,-625
formal, 624. 625
bgiwricing, 614

opcocio mapping. 614
subroutine fAcilit ..v. 614

1,1;I inSEILICt lit'', 500

141
Mxcll ilia check enable (MICE)

Pentium control re gimer, 446
Machin

L1C.Firiod, 476
instruction cycle, 592

M;i chi n^
L' haracteristics. .330-337
elcmenis. 331-332
s4.!L

Wilkes example, 607
Machine nrga El I L{11011:3

hpeedups, 518
Machine. parallelism. 511-512, 517-51S
fliti(Aine readable, [97
Machine state register iMSR). 379

Powc rPC. 454-456
PvikigndiC.-LOle memory, 34
Magnetic disks, L64-174

definition, 1.64
Magnetic read and write mechanisms.

164-165
189-190

features. 190
M agn c to-opt i cal storage : 164
Magneturesistive sensor, 163
Mainframe. 31

SMP, 6.53
Main memory : 4,, 52

machine instruction, 331-332
Nel.;11 tiss

floating ,point number. 318
Mapping. Sf olAr, Direct vloppIng

assoeiatiy, 112, 114
cache. 107, 109

RAID level 0 anal..., 179

I NDEX 795

(mullion, 107.-115
instructinri sal

I A-64 arch iteet u 548
k-w 5ei associative, 114-115
opcode

LS]-11, [}l4
iiLi urn MMX
registers. 447

sel associative, 112-113
scl associative, 117

MAR, Sc' Nleinoty iii3dress register (MAR)
MaNk able interrupts

I'c uliuln, 447
Matrix multiplication

vector tiornpulation, 675-676
M Li uchly, E7

See Memory buffer p4..is1crfMAR)
1-Mbyte memory organization.]4!
MC6801)0

i H nip14..!
illustraied, 414

MCE
Pentium control register, 446

Medium-1.21 . mi sk:licd tiling, 230.2,11
E mcgahit DRAM

ilius iralion. 145
Memory, 52

inlercfmnoution. GY
U0 irtiLifiLt24 symbol?

Intel 80,95 : 591
Memory address

Pentium 4 instruetion-level parallelism : 526
Memory address res.ki itT (M A R), 20,52.53

data flow, 422
instructii, n Esc cu l ion, 416
micro-operations, 578-579

fv:le nu n. huf ler register (MAR), 20,52,53.
data lIow, 422
itiliruetion execution, 416
micro-operati(M.S. 578-579

Memory capacity, (./9-103
MLAll !Ty curd

SNIP : 654
Memory cell

computer, 28
operation. 139

Me cycle time, 25.98-99
Memory Itirinais

LAS computer, 19
Melnoty hierarchy, 96,9g-101

illustrated, 100
Memory inslructions, 334
Mcinoryless circuits. 715
Memory manage me at, 248

OS. 256-.258
Pentium. 357
SNIP, 653
system

I wo level memories, 129
Memory-mapped

1;0, 20a- 207
207-208

Nlemory module, 52
Memory package: pills and signals. 146
Mcmory point c rS

process control block. 252.
CrTlory protection
hatch OS, 245

Memory read
bps conlrol Iii cs. '70

Memory read And wri rc
PC[command, 84

kier045ry sire.
SIMI] r or idern lea]

family members, 32
Mein (Try s u hsystern

Pentium 4 cache organizalion. 17:
1.11,1.c.rnory systems

characteristics, 96-99
Mern ory-to-me mory, 478
WITLOTY () processor .

interconneci structure lranstrs, 69
Memory-transfer length, 395
kleinc5ry 1.111i I

pc rallel processing, 646

Memory \suite
bus corn rot lines, 70
invalidate

PCI command,
MESE

cache tine states. 660
pputoccil, 65Q-663
slate transition diagram. h61

Mt i hod of acvessing
{Irsiti of dada., 98

Method of arbitration
has design, 75

622-62'3
icrod i agnostics. 638

rvi l a{ }E II:2 I TC mks, 27-2.8
hylicroinstruction. 398.600-60.3

address generation techniques, 6]3
encoding., 629-622
execution. 609,615-62.6
formai, 6(11 -6112, 621

88Ik. 628-629
IBM 3033,626
LSE-11,624-615

796 INDEX

Microinsiruct ion (cm,!.)
interpretation, 602
sequencing, 609-615
spectrum

characteristics. 616
ierrninology, 618

taxonomy, 616-619
Microinstruction bus (MIE), 672-623

T.,S1- I 1,623
Micro-operations. 577-583

active control signals, 587
Pentium 4 instruction•level parallelism, 526

queuing. 526
scheduling and dispatching, 526

Microprocessor, 34 36
design and la!,..oni, 4S0
register organizations

example, 41.8
illustrakxl, 419

speed, 37-38
Microprogram, 597.601

advantages and disadvantage;, 607 609
applications. 637-038
description. 600
languai;e. 601

M icrop roj- ram counter (MPC)
'1'1 881111, Oil

Mic r yrrnii arnmed control. 600-63B
basic concepts. 600-609
microinstruction execution, 615-426
microinstruction sequencing, 609-615
'1'1 13800, 627-637
unit, 462,603-605

description, 6(,,K.I
functioning. 604

roi mprognirilincd implementation, 9
Microsequencer. 628-633

control, 632
Texas Instruments 8818,629,63 l

microinstruction hits, 633
MI M D. 645-647
MIPS

addressing mode
synthesizing other addressing modes, 490

instruction formats, 489
R4000, 486-494
R-Series instruction SET. 467

MISD. 645-647
Mitittloisltii

CDRAM., 159
Mnemonic

]A-64 architecture, 549
Mode field, 384
Iviodi lied

MES1 protocol, 659
write hit, 662

Modified, exclusive, shared, .01-
059-.663

M odR'm
Pentium. 404

Module organization
Semiconductor main mcmorv. 147-148

Monitor, 243
monitor coproccssr ir (MP)

Pentium conrrol register. 444
Moore, Gordon. 29
Moore's law

consequences, 30
web sites. 44

Motivation
1 A-64,543.544
memory. 670-671
Pentium, 543.-544

Motorola 6800,465
Movahle-head disk, 168
Move Characters (NI VC) instruction. 479
Move data, 'Y
Move instruction, 343
MP

Pentium control register, 444
MPC

r l 8800.630
MPY

opcodes, 332
MSR, 379

PowerPC. 454-456
Multilevel caches

cache design. 119- I 2.1)
hicrarL111 ,

2:, , 72
N•tultiple execution units

1 A-.6‘1
huge numbers, 544

Multiple. instruction milllle data (MIMI))
parallel processing. 64ii
stream. 645 -647

Multiple instruction single data (MISD)
stream. 6477-647

Multiple interrupts. 64-66
lines. 212

Multiple processor. 462
organization, 645-017

Multiple SI ri,•arris

pipeline: branches, 431-433
Multiplexer

digital logic, 709.. 71]
implementation. 711
input

to program counter. 711

INDEX 797

representation
4-10-1, 710

truth table
4-in-1. 710

Multiplexor. 25
block. 722
byte, 222 .
channel 222

Multiple zone recording
cl seription, 167
illustrated, 167

Multiplication
fl ukiiin-pc.iiht. 31?-320
twos compleirwilt„ 294-304

Multiplier quotient, 21
MU1.T] P1 ,Y-A ND-ACC LI NIL: LA'l E, 685
MULTIPLY-AN 13-A 1 D instruction, 68,5
MULTIPLY-AND•SUBTRAU1 - instruction,

685
Multiply/divide instructions

MIPS, :187
configufations, 224

Multipart memory. 652
SMP, 6.51

Multiproot2ssor, 648
operating system design corisideratiiins, 6:52.
tightly coupled, 649

Multiprogrammed hatch systems, 246-248
Multiprogramming. fa4,s1

defined. 246
example, 247
OS, 242

elements, 255
resource utilization, 2411,

249
Multitasking

&fined, 246
M-unit

LA•64 architecture, 545
TL;K2-M U f1
micro sequencer, 632

MVC instruction, 479

N
NAND 698
NAND implementations, 7(19
NaT hit

1 A-64, .554
Near pointer

K odium data Il yiy2s, 339
Negation

arithmetic operations, 344
integer, 7(11
t wos coniplemot, 287

Negative overflow, 309
Negative unkkriflow :
Nested interrupt processing, 66

promdiircs, 352
Nested task flag

EFLAGS register, 442
Ncriting of proccdurcs

call instructions, 3:51
Network

huff-swiiching tidoipi4'T
SM.1 3 , 654

1o.ym.L1 protocol architecture, 231
Ica i] ;I nd area, 72
sineli: virtual clusters. 669

New
process state, 252

Next operand reference
11104:hi m: instruction, 331

No sequential address
LSI-II. b14

Nticonned pin, 147
Nonbranching l as[ructions

ulilizalion. 335
NoneitChablt.toeinory

cache! design, 1.19
Nonmask interrupts

Pentium, 447 •
NonrcntovithIc disk. 169
Non L1111 1 .01111 17112nm ry ac-ce M

ir70 4r73

lieseripEton. 646
pm; ;Jud Loris : 673
systern3. 644

NOOP, 484-485
NOR gales

use, 698
NOR irripkrmnlalions, 709
Normal branch, 4.0,4:
Normalization, 320

Floating-point 4rithanelir, 3;17
Normalized number, 3[19
NOR S-R latch liming diagram. 722
Not a 'Filing (NOT) hit

L A-64. 554
NOT orriLriiiion

logical functions. 345
Not write through

1e..11(iUrri control register., 444
Nucleus. 24]
NtlMA. See Nonuniform memory Hco.....s!,

(NtlMA)
Numbers. See also Floaiingpoint numbers

A(:, 334
address

798 INDEX

Numbers rcont.j.
machine instruction, 334 -336

addressing mode,. 3%
binary system, 285, 734-735
&normalized, 32.2

IEEE 754, 323
large Multiple eXeL aim units

1 A-64, 544
machine inslruerion, 337-336
iiiictrands : 396
Pentium Ii segmentation, 270

set 4,1197
Number systems, 734 .739

binary system. 2#S. 734-735
vOnv4.!rling bels.vcerl binary ,r rid decimal,

735..73
decimal system, 734

mai notation, 7311-739
Number word, 1.9
Numeric

Perlt i um processor, 441
NIUMeriC error

Pe.ni roister, 444

0
On-chip each e. 12.0
One-digit packed decimal incrementer

truth table, 706
126-hit bundle

1 A44 architecture,. 546
One instruction per eyel., 476-47 7
One Icvel memory, 12g.•129
1-11,4 byte. memory organization, ig

.cre OrwrallOn code
Operand. 331)

address calculation
inStruLtiOli cyCle. SL@Les, 57

retch
i nsi roc ti nil c--,s.. C14 stare, 58

instruction ,a.xecution. 466
number, 396
reference, 3g2
.1-k I :SC advocates, 464
sire

Pentium. 404
store

restriction 42y1;142 state,
types, 337- 339

Off rating
CP1.1 aetions, 343
environment, 6-1
instrueliin exoeutinii, 464-466
types, 7. 3A1-354

Operating system (OS). 238-276

defined...238
Design issoes,
objectives and functions, 238-241
sched til in 251)
tiirnilar or identical

fornily incmbers, 32
support, 638
c!,. pes, 241-250
.o..eti sites, 277

Orieraling System Resource Centel.
well sites, 278

Operation chug. 330
machine insli uct [on, 331. 332, 332
mapping

LS[-i1. 614
Pentium, 414

0 perations .performud
RISC advocioes, 464

Optical disk, 96
products. 184

rnernonr. 1 64
Optical storage

field
w4,!1-

3 6iics, 191
technology, 1(14

Optical Storage Teelinology Association
wt. h'ites, 191

Optimization task, 473
Optimized deliiyed branch, 484
OR

logical runctions, 345
Ordinal

Pent ium data types, 339
0 rganiza lion

CC-NUM A, 671.-673
design issue. 99
IBM vector AniliteLLL.Lfe. 661)-662

0 rill ngOil Lily

3'L P-1 399
pDP-11, 401)

os..S:e,? Operating system (OS)

Mil.: I"(FiL.qui2 neer, 632
C1 Wel)

1).:.',!1". sites, 2711
Out-of-order

execution logic
P ii turn 4.cache organization. 121

issue with out-of-order corn p I L.Lion .
515-516

Output- Sti• rfirgr) Input/output { KO
controls

ruicro.542qt.LNICtlf. 632
dependency. 513

-'' ■1111111111111

INDEX 799

enable pins. 144
select

rnicrriscquencer. 632
outs

SPARC..494 .500
Cuts 3tgi s LV IS

495

Overflow
common fields or Ilags, 417

)verlIcive Wile, 293
twos complement : 257

Overlapping
groups

combination circuit;, 705
multiprogramming, 648.
register windows, 469

Packed BCD
Pei-Ilium data types. 119

Packed d(publcwrird
NINIX, 359

Packodlitupacked
microillStruciiiim, 61.6. 619

Packed word
N.11v'E X. 359

Packet byte
l4.1 MX, 359

Packet 1rall}i1111!-.!, Oil

link layer. 227
PA DDII. insinmicsrs, 361

Pentium control register, 446
Page. 26]

directory eritly
Peniturn memory inanagement. 271-273

fault, 263
fra nies. 261

Page !11.11-5s14, :inable..(PCrE.)
Pentium corstrc pl. re.gis(tyr, 446

Pagc extensions (PSE), 273
] ' I2 El I il-1111 eonlrol rcgi.str, 446

2r1.11- %.. 2.71-277
memory inanagernent

Pentium, 262, 271-273
Power PC, 275-277

structure : 264-266
Paging, 2.6[

operaiing. 267
Pentium control register, 44-4
Pntium II segmentation., 270-273

Parallelism

ALL;
vector computation, 676-675

clusters
application. 667
compiler. 667
coin p a lion : 6.67

1A-64 : 560
and hi NI X instruction set, 361
organi/ation, 646
recording. 1S)
and st.,rial I.10, 223

Parallel processing, 643-657
architectures

1.:LX{}(14)1TLy, (}et)
c-ache coherence and FA p rotowl :

656-663
clusters, 663-669
definition. 679
mullipie processor organizations. 041-t47
t10111.111itbrrIl ITI MT11.1 ry awess, 670-673
symmetric niultiprocessors..C47 656
sysinins LyTic, 04.5-647
✓ector compuiation, 674-687

Parallel registers
80quential circuits, 725

Parametric computing

cluster5 : 667
PA-RISC architecture : 542
Puha] rcinainder. 304
Partitioning, 257-261
PaSSiVt. scand1-5y. 665

duster method descriplion. 665-666
Patterson prograins 61:100, -165
Patlerson study. 466
N7. Sep Prognmi uouriter (pc .
pch

Punlit311.1 control register, 446
PC I. See. Pe1'iphcr iI component inlerci 11CCI.

(PC1)
I'D 32-33, 397-399

bus structure., 33
evolution, 33
instriicifon formai, 398

['DE' -III. 1...14.)-14X
eOmpletviiess. 3 1,19
direct addressing, 399
instruction format. 399
orthogoinalily, 399

PDP-11, 465, 614
family, 622
instrucLitin, 400-402

example, 56..57
imitruciion format, 401
o rthopmality, 400

800 INDEX

Pcc
...irchitc4cLure,.., 568

R2.1111LI n1
ddru.ssia 1711(PdC, .. 389-392
calculation, 390

addruss sire:, 404
y progrm-ri. 556

base mode. 391
c.ii1Prourn instructions, 35t%
conditiou codes : 357 : 3:71l.
control registers, 444
displacement, 406
displacement Irk di 391

btise, 391
based sC2E.2d lade N : 397

base with index, 392
SCHIV-'d irklex, 392

evolu tit)] t, 41-43
exception, 447

table, 449
i mMediate, 406

mode, 389
instruction prefixes, 404
interrupts, 447. See Aro Pentium interrupt

processor,
maskable, 447
nonmaskable, 447
vector cable, 449

memory management, 357
ModRim, -104
opcode, 404
operand sin, 4U4
rcgigi.! Opi.!EAT1(1 IM rick, 389
register organization. 44(t.-141
rotative addressing. 392.
segment override, 404
SIB, 406
wch .5itcs, 44

Pent hill' itioris
cvnditional jump, 359
ST4.Tcc iitstructions, 359

Pentium oryntrol register
alignment mask, 444
CiICE1C disable., 444
debugging extensions, 4415

extcruion type. 444
MC L. 446
MP, 444
not write through :
numeric error, ...144
PA H, 446
paging. 444
PCE, 446

PE, 444
PGE, 446
physical address extension, 446
PSE. 446
PV.1, 444
task switched. 444
VMP., 444
WI) : 444

Pentium data lypes, 339-341
RC!) : 339
bit field. 339
byti.lswirs.e, .339
Floating point. 3 '5 14
I1 teger. 339
nLtkir iloirtio' : 339
ordinal. 339
purled BCD, 339
unpacked 1-SC!). 339

Pentium 4. 520-527
block diagram, 122, :521
13:1:13, 524
cache.

I race, 524-525
cache operating modes, 123
cache opera Licit)

modes, 123
cache organization, [21-123

do;ode Unil,]21
execution units, 121

utrit, 121
fetch unit, 121
MC1110.11' subsystem, 121

-(11-01Nkr 1.:NU'L ninon Logic,
121

unit execution, 121
drive, .525
front end. 521• 525
generation 4.51 micro-0[1s, 521-524
instruct inii-level parallelism

register, 520
alloed E e..525-526
chrcular buffer : 526
!loafing-point CM:CUL n ti 52.7
inlegcr rcgi4LC r ritu.s, 527
memory address- 526
micro-operallions, 526
irlicro -operations queuing, 52.6
register renaming. 326
ROB, 526
scheduling and dispatching, 52A
state. 526

:7}43-544
out-of-order execution logic, 525
trace. cache: fetch. 525

I NDEX 801

rracv cache next instruction pointer,
524-525

I'eti tiuttr II
addressing modes,
addrChN Space:, 269
control registels, 445
EFTA GS register, 443

management
hardware. 269-273
parameters, 272

motivation...54'3-544
:iegment t ion, 269-270

paging. 270-273
RI'L. 270
segment number, 270
tube indicator, 274)

Iranslation lookaside buffer. 273
Pentium instruction and duscriptic.th

arithmetic. 356
cache nianagernitt, 357
c warn] transfer, 35I
data movement, 356
nag E(PEICTOL 357

FILL suppCirl, 356-357
logical, 356.
] roti.tulion. 357
scgment I.02,i4Lur, 35?

siring OpQralionl, 356
1 31231Linin inNiruclion format, 404-406

illustrated, 405
Pentium interrupt procesiir

CALL_ r 448
code segment (CS) pointer. 448
ESP, 448
interrupt thg. 448
interrupt handling. 448
inrerrupt vcctor table, 448
1P. 4-48
procu.i.sor-det ected exceptiiHiN, 448
programmed eweptions. 448
trap flag, 448

P'211tiiim memory inanagorne•ni
address linear, 271-273
ti ddress translation, 274
addre:ih i nInN]ation mechanisms, 274
formats. 271
linenr address. 271 273
page directory entry. 271.273
page !able 0111try. 2.71-273

segmen1 descriptor, 271-273
segment suleciim 271-273

Peislium
instruetions„35.q
instruction set, 36(1

rtigiSters
Lordrcil, 446

ppin 447
tecliliologli.. 358

PentiuM rILLISIbE fOrirldtS

Pentium data iypes, 341)
Pentium op:..!ralioli 355• 36:1
Pentium pipeline operation, 522-523
Pnlitim Pro

MCA i Vr1 tiOn. 543-54.1
Pentium processor, 156

Lonirck1,441

flags : 441
floating-point unit. 441
instruction pointer, 441
integer unir, 44]
numeric. 441
registers, 441
segment, 441
status. 442
tag word : 442

Pcrforniance
balarii : 38-41
designing : 37
riterrign14.,
monitor data register

I A-1y4 instruction set : 563
RAID, 182

Performance Counter eila (PC'E).
Pemtit1111 Control register. 446

Peripheral, 7,11)7
device. 197

Peripheral component interconnect We]).

bus arbiter. 87
bei weem iwn masters, 88

bus dam transfei
MWSEL. 85
FRA riet1-7., 85
1 RDY. 85
lurnarnund cycle. 84-85

commands, 81-85
conliguratiMIS

emimpl.Q. 811
read commandit

intLrpre teLioll, 85
read ors2ralion. 16
signal hoes

....i ddress and data pins. 8/.82
arbitration pins : SI L 82
64-bil extension pins. 81,83
data bins , 131, g2
error reporting pins. 1 , 82
in(urCacx control pins, 81, 82

802 !Nor.%

Pori ph era! L4)11111311 ent interet311nect (conl..1

interrupt pins, 81. 83
JrAGIlti-}und[;Iry sc>In pills, 81,83
mandator)., 82
system pins, 31, 82

web site:, 89
Pfra

I A-64 archilccturti... 568
PFS'

architecture., 568
uppli.4,7H rcgistet, 566

PC1E.
Ventiurn control rogimur. 446

Physica1 address, 261, 262
Physical address extension (PA E)

pcndiurr, qintroll rctimer, 446
Physical characteristics

data storage, 99
rnagrietie disks, 168

Physical dedication. 75
tisicit I layer

\V ire, 225-227
Physical layered protocol architticturc.; 231
Ph ysiou I records, 189
f 3 h icai types

or rne mon!, 99
P u ele rise Ili, 359
Pin layouts, 714
Pipcline, 462, SKr,. egisn iris(ruci ion pipeline

A I.L.1
vector computation, 676-678

L11(.1.11T110.1iC register remain; iv, 561
branch

multiple streams. cI3 I -433
[12. c Fpenantis, 425

decode instruction, 425
d in, 42 4]
description, 424
effects, 483
cnli rici rig, 49 I
epilog phase, 561
execution instruction. 42.5
fetch instruction, 425
fetch operands, 425
1 A-64 ...Li-allied lire, 546-563

Fel 80486, 439
kernel phase, 561
rnachi hi;lnch pte.dietion. 518-5 [9

•13 perati on
acrii i..6 .M-679
.eoriditiona1 branch, 427
Pentium, 522-5n
wilt., in, fi71--679

[^ Li1tliz.atitto. 484-486

pc Homan Lc., 430
Pc Pir 60 I, 529 530
10000, 492
rogular iiistfiretiorts,
RISC:, 482.486

Ian 510
six-strict C . P1 I instruction. 428
stage, 492
strategy, 424.3[1
wrire o.perand, 425

Pixel, 359
PLA, 711-7]6
flatters

sysitml, I(19
P1.1 CO Ithlpiral. ions, 224
POP operation

371, 372
Ptirt, 68
PC}S

fi ar m, 700
intplententation, 701

PosiriVV4.iverIltiw, 309
Positive underilow. 309
Postritt notation, 374
p(55lisIdxing , 388
1'clkke a VC:, "12 -1 534

addres6irig modes, 3q2-395
cache organization. 123-125
data types, 341
cvohilia0,41 -43
Ian Lily. 43
floating-1311in1 sLit us and cuilDIO1 register,

452
inscruction formmts,

iltustra1tA, 407
internal caches, 123
interrupt table, 455
michiric. state register, 456
Ilse MOP!: management

parn Inc wrs, 277
me rtioky-in ariagemen

hardware. 273-27
memory operkiiiki iiddriassing niodes, 394
oper:ition type.s. 364

mple Dr upctralxsnS, 363
processor, 450-457
processor summary. 43
register formals, 4.53
1.1741„tr-V regisLers, 451
web sites, 44, 45

Power PC 60 I, 527-531
kilo& diagram, 528
pipeline. 530

51.rili:thrc, 529

8113

PowcrPC. 620, 532-534
Power. PC 32-WE

translalion, 276
Inc wiry - rnima gemuni formats. 275-277

PowerPC 04
hlock diagnirn. 124

Ppl
A. 6 1 architecture, 5.1.s.4

code,
C A•r-1.

Predic:.ied execution
[A-64

architecture, 550.•553
Mil ruction. 542

Predicate: regisrers
1.4 -64 instruction set, 563

Pi eilication
1A•o4, 546 .563

ratitcvture example, 552
pipelining, 561.

Prefolch branch target, 433
1'142142Feb engine

Itaniuln, Sir'
PMincicx.ing,1-45F5
Previous fundion suit41 (PFS)

I A-64 architecture, 56,4
kill! I i ca I ion register, 566

Priority
process control block. 252

Privileged iroiltticticiry,,
hatch OS, 245

Prncialitra I dependencies, 311
Pt ileedury ry 41111LMI., 467

Procedure call
instruction execution, 466
instructions. 351-354

Process control block. 252 253
Process data, 7,1%

CPU, 4L3
Processing unit (pu)

parallel proceqsing, 646
SMP, (153

Prou:s5 migration
clustets, 669

ProceSSOT
-ACCOSs

t wo level memories, 129
tirchitecture

superscalai iirtpluTrIentkition, 506
cache sizes, 101..4
categurize,..1, :330
characteristics, 41U

evolution, 39
detected exLivo ins

Pentium interrupt proi:EtiMa. 444;
functional requirements, 5Th
idon Li ficTs

[A-64 instruction set, 365
interconnection, 69

EaconisecLioir :it mauve transfers
to 110. 6 1)'
Co rig:TT-wry. 6')

1k
110. 54
itiOnor:....

organization. 412 414
Processor status register (PSP.)

SPARC, 495
Process states

}4}1{31- 11. -(1.1.1-71 'Wheal IL; r, 2.5t
Product of sum (POS)

form, 700
i mplemen IN Li Or) , 701

in
Program,

hardwire, 52
interrupt class,
in softwaN. 52
timing

host 110 wait, 62-63
with interrupts. 6263
lime, ITO wait, 63
without interrupts. 62 63

Progrtim LC }L1111 N 9) 7'0. 53. 9*,7
data Flow, 422
instruction cxceution. 410
micto-ormyalioN,
multipiexci . input, 711
multiplexers. 710
process control block, 252

Program creation
OS. 2-40

Program execution
attributes, 249
.C(FrE,Iil U.2 rSt elein unl.s, 577
example. 56
05, 240

Pr{tigrant inahle Ionic ;1r (Pl.A). 715
combinadon circuits, 713...715
cs.artip[e, 716

Programmable HOM (Pl-l.t)M)
ds, NCHI ition, 142-143
inerthir y 1y pt characietisLicS, '140

Programmed exceptions
Pentium interrupt processor, 448

Progyammed [10. 196, 204-2C8
drawbacks, 216-.220
input, 206

Prottrant status ward rPSW). 210. 412, 417

804 INDEX

Program voltage (Vpp)
chip packaging, 146

Prolog phase
1A-64 pipelining, 561

PROM, 140 : 142-(43
Protected. mode virtu Di interrupts (PV1)

Punlium (anti ri .11 1-44il.c:r, 444
Protection

Pcntium instruction and description. 357
PTIAE:12 L inn .1yin1.1112

Pentium control revile r, 444
PSF., 273

rentiu Lli CO alto] regiqter, 446
PSC. udoinsiniction, 365
PS] J 'W insiruction

MMX. 35 1,1
PSR

SPARC. 4415
PSW. 210. 412. 417
PU

parallel procei...Aiii1. 646
SMP. 65 .3

PEJSPE
stack operation, 371

description. 372
Pushdown list, 388

stack, 371
pv1

Pentium control register, 444
Pyramid computer. 464

Q
op

I A-64 architecture : 549
Queuing diagram representation

proonsor sch4d tiling, 256
Quiet and signaLing NaNs. 322
Qi.kt NaN

opera s, 323
Quine-McKluskey method

firs1 slags, 707
last stage, 7(118.

Quinc-McKluskey tables
Boolean expression. 705-70 1,1'

R3000
pipeline enhancing. 491
pipelim stages, 492,
superpipelines : 4 1..6

R41.11.10
insiruclions, 488
MIPS, 4F.k..41 4
5uperpipelines. 493

Radix
rn. 734

point, 285, 2%
RAID. See Rudundaril Array ill lmicpcndord.

Disl,:s (RA ED)
RAM. See Random access rrwrnnry (RAM)
RFirribils. DRAM (RDRAM), 154. 156-161

structure. 158
web sites. IN

Rrthdorn access memory RAM): 9t5
Characteristics : 139
rricmury lype chArricieristics, 140
semiconductor, 138

sites, 160
Range

Lwos complement.
RAS. 144, 147, 1%
RCA

'1'1 6?.0
RC B

'11 630
RC2-RC{)

rrlicros(24.[LmErcbr, 632
RDIZAM, 154. 161
RDTSC instruction. 444
Read

assignments
reinforce .vonccpts : 743-744

commands
PCI iiiturprciation. 85

control signal. 594.
cycle

bus systmi. 77
depe.adeney. 515 -51.6
110, 205

E MS. comr4)1 Iinus. 71)
e F11 0 Pr'
bits control linos, 71)
P(.'[ill 15d, 84

microinstruction.
Open! (CH1

PC1 . g6
signals

RDRA M. 156

SDRAM, 157
Read-after-write, 79
Read hit

paralld. processing, 662
Read miss

local cache, 660-662
R4.1.[I-modify-write. operation. 79
Read-only memory (ROM)

;ombinational circuils. 715

INDEX 805

rTh2rnory lypc characteristics.
{r4-bit. 71g
truth tablc. 71?
types., 142-1 ,11

Ready
prucess statc. 252

Re 81l7.i1 Li on of corripuiers, 6a7
Runl. memory, 2i3
RECEIVE operation. 211
Recording technoiogy

web sites, 191
Rcducod instruction set architecture, 474-481

character iinics, 476-479
Reduced instruction set computer (RISC), 5 :

461-501
approach

Uti Li on, 54.-544
based superpipeline architecture, 489
characteristics, 4f3

CISC, 500-501
machine, 473

delayed branch stra Leo. 51g
pipelining, 482-186
processors, 506
8 .ti pc:rscalar machines : 547

Redundant Array [3]ndcpendent Disks
(RAM). 16-4 : 174-183

ronfigura lion. [75
disk. technolog.. 16.1
level 1, [76, 180 181
Icv0 2. 176, IN I
level 3, 176, 181-182
level 4, 176, 182-1 N3
levl 5 : 176. 183
level 6 : 176, 183
level O. 175

high. stata !Nosier capacity, 1Kii
high. 1 0 request rate., 180

I n.els, 176
illustrated. 177- I

web site, 191
Recnlrunl procedures, 352
!Register, 9, 19. .Sec c21.5:0 Address register;

Control address register (CAR);
Inputhitttpul (1.0): lostructiou regis•
ter Memory 3ddle7,.S. r gislcr { MAR);
Ytemory buffer register (M..131Z): Pen-
tium control rogisier

addressing, 385..386
alias, 526
application. 565
k I In 1.0i aii.!x.
branch

1 A•64 instruction set, 563

call ini-tructions. 351.
GEM

I A-41 it rchri Wet ure. 566, 568
Condition

codes, 41.6
Pc riverP(:, 450, 454

controls, 412.. 414, 416-419, 603
inicrosequeneer, 632

&Ft:nit:Tx, 6:3(1
'1'1 8800, 630

CPU, 331-332, 373, 413
data, 415
destination

'11 8832, 6341
Fi...PLACis, 442
8- hit parallel. 726
exception

Powerl)C processor. 450
floating-point

1A-64 instruction Kt, 563
Power Pt, 450.

formal
I A-6-4 a rchi tecturc., 566

gencral-purpose, 415
I A-64

iimtruction set, 56.3
lar numbers, 544

indem., 3138, 415
indirect addressing, 386
instruction buffer. 20
1 10 address, .52
link

PovicrPC proccssor..450
machine: state, 379
mapping

Protium A iMC, 447
r.v. memory, 397
operand mode

PUTI 1.101,

organization, 414-419
Pentium. q ,10-441
PipherPC pr{ 5.D2,ViC!.1", 4:7! R. I S2

outs
SPARC, 495

parallel
sequential circuits, 725

pre.dicate
I A -n4 instructi on set. S6.3

processor x44 1115

SPA RC, 495
rcicrcn cc, 398
to regi s cr, 477, 474, 682

vector computation, 683
rcnaming. 516-517

805 r NIE,X

Rcgis inr (rural.)
has;a valuer . 5hh
L--64 pipclinirsg, 51. 1
['eI1Lium 4. 5 2 6

sequential circoit5, 7?1=727
shi[L

sequential circuits, ']27
source

TI S32, 634
stack

1A-64 iastnlclirfn . L f^7-56i
ti-v1Lh]C.4]2
FLC(OF I'icilit}', &[2

Rc'gixlcrc'd Al
]'[[st332, 620, 63,

I{€istcr tilt
gh,Ei i1]•i E, IC;. 47]E
E A-64 arehitec[L1re, 545
1[1 [eger

I': riliu4?1 4, 527
1.11E}5, 494
wir 1 4.1 b^LSCCI

i1]ui.trated, 472
ke istcr wiltdows.468--464

era'er[apYJ1rLg.4i]
SP•R(:, 4{l{^

Relatiti' LLddreMing.3[7
PenG1.ilr: {17
PQwoiPC. Y^3 - 39

Re]ativt' dv[amic frcc{u {'.rfct'

high 1^ve] Es, L' iiage peratiorus, 1 30
Ro[al['e Sii!c

lw i lcvwl mcmc^rics, [33-135
H L'I iahi]IC\'

ti 3e. ;50, 653
Rernnvah[e disk. ifs{}

Regi ova hlo Lnfidia, 96
Rc. irdcr hui6 r (R0 .]

Pentium 4 instructing-[eve I }nrohclism, 526
Replacement algorithms

e[ementS o f cache ciLSigrr. 1] 5
RL]o-uri fLS3li on 1 Li

reigt'orce concept:, 743-7+1
Rtic[ucs1, S7-89
I equcsted priitegc k eI (RPL)

Eentiurn 11 egmL:oto[ion27U
Rerearch prujecis. 742
l^eset

hur c{^nlral] liries, 7]
Re.sideJl mulutar.24.E

memory lu Vii u1, 2+1
H4sule;II Cu iii]1i1, #,14

1fcseauroo conl1[cl, 511
R l7UF04 Ct1c-L1diug

inicrcinstrucuan- 620
1]Cc Inaltiag€'r

OS. 240
Re:;u€t i^frerand r^Ferencc

machine inslr]cticfri, 33 t
R^5UrL' tlag

h LACiSregisle.r,442
12cttring

inIruCL , . 5]ck
Rover Polish, 374
1 I gpitt

'IF S s 12, 634
Rippic counter

`:i'4] I li. n l i iii ciftu itS, 727
RIB{:..Szr Rt'duced instruction tt computer

{ RCSC
ROE

E'cr'itium 4 instnictitin -level l at:aIk1i m, 52G
ROh'1- &e Rca1- L1n1} rnernnry (ROM)
Rnl,llt:

intcrropt•dri\'c 1.0. 2I3
aperiticrs, 346, 347

R[oiitirto] delay
disk pertormanco, [71, 172-]73

Rot Lit lonal]^stcTLCy
L3isl 1^^]fnr]itance, 171

Rc^ugdirig„ 3211-322
10 Iii ilrCSt, 321
to plus ind minus infinit y. 32 I

1o'. and . ro 322
RI L LLE L. r

I nlin11 and, 230
Row address ieILt1 {RASI. 150

chip 1L^gic packag]ng, 144
p]rlS- 147

RP L
PeotiuLrr 1] scgmcnh€iiin, 270

Running
pre' u4; iii ate, 252

5
Sr360. , er [Ii 1 Sr'360
S?370. Sec IBM 5;370
S?390. See IBM S. - 90
Sage and Restore registers (SRR)

FaworPC 601, 7^?
5e-a]i 1i]C Prfi1Giss0r ArchitecttJID tS.PAItC),

469,494-500

;sddresislg rnudOl

syff]ttLwrizing other ucarwsx]F ax0c]e5. 498
ig[ruction t&Sr[[npl['i, 494
irvlrLJcfiOra'let, 497
caixtcr set. 4945()')

R '. gii,I4 r \^4`lf{]L,fir Lavou^, 495

INDFx 807

Scalar
pipeline : 510
processing

k•
4.N;11 Or computation. % 675-676

referencing. 472
8/v1P, 649

Sc;Ateil inden with displacement mode
Pentium. 392

Scale index hit tS113)
Pe:Ilium : .106

Scheduling. : 254/-256
example. 254
OS probieins % 24.2:
SNIP. 653.
icehniciLls!;-;, 253
types. 250

&CS!
72

SD13. SeT S1ilh4alL abVdOprnerl.1131.:111rd

{ S11.}E4)

8.800 SD11, Se'r LS; 19 Texas losiruments
components, 627

..SDR ANI. 154-157
SEE: code, 152-1.1
.Sc condaiy or auxiliary memory,..102
Se..Ltind generation

of compLiteN, 24
Second time unit

fetich cycles. 579
Sectors. 166
Seek time

disk peirottnanee. 171% 172
Segment, 266-26S

descriptor
Pentium n142171411-2; rMiring4..!Mc.:111, 271-273

DICUIDOry view

Patgv.1 memory, 269
unpaeed memory, 2.69

number % 2711
trio 1'r kit

Pentium, 404
Pentium II. 269--270
Perstinin prucxrisor, 441
pointers, 415
register

Pentium iits[ructim and desuipflon, 357
st.lcotor

NiitiLLM irtorriury management. 271-273
table entry

Row4jrPc memory management. 277
Sided. DR bus

microsequencer, 632
Selectt 51 Chi! nnul. c:(3 riA, 221

regiistei . Lilo data, source

832. 633
Semantic gap. 464
Setnipunductor memory. 34, 102 : 138-148

organization, 138. 139
RAM. 138
technologies

web sites, 159
lypes, 140

SEND operation, 231
Separate servers

cluster TMI IVO tiC5.LTI pi, ion., 665-666
Sequence.

arbitration
link laver, 227

events, 92
4'r ee1Jl.in , .1 83

RISC' adviicaLes, 464
11334 3(133..1 . ,2(1
interrupt proc..es!..,ing. 66
rnicroinsii .uction, 609-615

Lechnique. 610-612

click performance. 173
prrIc'iNCIT conlrol% 584

Sryucirtial LiLeess
devioe. 190 .
memory. 98

Sequential circuits, 720-730
clocked S-k flip flop, 722
colioicrs.
D flip-flop, 722
digital logic, 720-730

720-722. 725
input data strobe, 725
parallel regislers, 725
ripple COURtel : 727
shift register s 727
S-R latch, 721

Serial U0 ooncro1
Inlel 8(85, 589-594

Scrial vt2curdits. 1€:9
Serpentine recording, 189
Servers connceled to disks

cluster meth det...cription, 665-666
Servers share dish

[1 11.1TI, 665-6.66
Service call

proces. 253
Set associative rnappiii.. 1]2-113
SE'rec instructions

Penti um cum Li icons, 359
SElli] instruction, 500
Setup Lime

problern, 243

80$ INDEX

Shading, 473
Shannon's techniques

Boolean BIgcbra, 694
Shared

disk
cluster method description, 666

12 caches
SNIP. 655.-65

NIESI prc5locol. 659
nothing

cluster method description, 666
write 10..662

Shift
keyboard-hnndling, 21.6
M MX instruction and description, 360
operation examples, 347
(ilaura ion& 346
register

sequential circuits, 727
Shift instrucii45u

MI FS, 4..17
modificr

FE 8K32, 634
SIJARC, 497

Short-t kitteric
proces.!... 255

Short...term scheduling. 250. 251• 25- 5
SEJ3

Pentium, 41J6
Sides

clinic 5:.e!•51.1=371., 169
Sign, 308

common rilZidS . 01 flags, 417
extension, 364
extension rule, 290
magnitude reprcsentalion, 286

Signals. See ids.r) Control signals; Peripheral
component interconnect (3'C1). signal

address selection
microinstruction, 611

Al 586
CAS. 144
clock

tinting diagram, 93
data, 591
i2N1t2rilk. 11., 591
function or time

ti m ing diagram, 93
grant, 87-89
Intel 8085, 591
interrupt relaft'.(1. 591
interrupt request. 59
RDRAM

CE., 156
read, 156
write, 156

Cutting diagram : 92
Signed haifword

PowerPC, 341
Signed . word

Power PC. 341
Sigoificand

tioating•point, 308
•alignment. 31 7
overflow. 315
undcrfltry, 31.5

SI KID : 35.5, 645-647
Simple:Scalar

analysis KO ietwhing, 743
Simplicity

SNIP. 650
Simulalion proiects, 742-743
Simultaneous concurrent pnx•esses

&MP, 653
Single adtlress field

brimeli control logic. 612
microinstruction, 611

Single-bus detached DMA., 220
Single-bus integrates DMA-1;0, 220
Single control poinl

clusters, 669
Single data stream

parallel processing. #A5-647
Single entry point

clusters. 667
Single-error-eorrecliog tS.EC.) rodb, 152-151
Single file hierarchy

clusters. 669
Single ixIruction, 5incly data {SISD}

stream. 643 •647
Single inslru::iican rnul(iplu. &Pia (5]1 D)

rohion, .158
stream. 645 647

Single 110 grace
Ousters. 669

Suenlc joh-manngerncnt system
chiSicTS. 669

Single large expensive disk (SLED). 175
Single memory space

clusters. 669
Single-processor system

PC], 79
Single process space

cluswrs, 669
Sirsgle-proi ant, 248
Single sided disk. 169
Single .-systcm i mage

ENDEX 809

clusters. 667
Single um interface

clusters, 6fi9
Single virtual networking

669
S input

TI 8832. 634
SIM)

stream, 645-647
Six-siage CPU instruction pipeline : 42S
16 magabil DRAM

illustration, 145

pins
Pet signal lines, Al. 83

ROM, 718
Skip inscructions

branch
lranAcr-of-ceinlrol instruction. 350

SLED: 175
Small computer system. interface (S -.S 1)

system has. 72.
inregration (SSI)

chips. 714
description, 29-30

SMP, See Symmetric multi] rocesSUT SMP)
SMPCaehe

analysis and teachin, 743
Snoopy protocols, 658 659
Soft

error, I4.
I A-64 architecture, 36I
tilicrirprogramming microinstruction. 616.

619
Software, 51

approaches. 52
pipelining

example, 560
1 A-644. 559-563
LA-N4 instruction, 542

poll, 212
solutions

cache coherence, 657
Software Development Board (51)3), 627.

See also Texas Instruments &IOC!
Sal

I A•64 architeciure, 568
Solid-stale device, 24
SOP, 699, 700
SOT

T A-64 archilecture. 508
Source operand reference

machine instruction, 331
Source register

TI 8232. 634
SP. RC.Se.F.. Scalable Processor Archiz cetera

(SPA RC)
Spatial locality,

two level memories, 130
Special Cycle

PC.1 command, 84
Special loop termin L I ng instructions

pipelmin 561
Special rrikl'Sk

interrupt-drive Ii(), 213
Special-purpose devices, 638
SpecelaLitin arid predication

I A-64. 557
SpeculHtiVC execution

processors : 31S
Speculative. load

LA-44. 551. 554
Specula t b..ely execute insiruci ions

PowerPC, 533
Speed

microprocessor. :;7.-38

Si Millar or identi cal
(nernbers,

Speedup factors
instruction pipelining. 432
machine orgk. inizations, 5 1 ii 1

Split cache
u.y. 11 n ificd cache, 12C1-121

SRAM. Sur Static RAM
Srcs

A -64 ;-1 rCil I ittLi u 549.
S-R latch

cliiiracturistie table, 723
i rripl ern criLeti, 72 t
sequential circuits. 721

SWRs
PowerP(' 601, 532

S2-S0
in IXOCI UCI1 LCT, 632

551 : :19. 7] 4
Slack , I -376

irdc,1(C}iS.131g :
base. 373
0111 rok;

microsequencer,.63'2
description, 371
frame. 354
implementation ; 372
limb!. 373
operation. 372
organization example. 373
poi rilOr, 37ti, 373, 4177

T1 8,./100. 639

81 0 TTY DF.X

Sari of e tl[ed pro-cedure
call i[u truct]ons, 3M

SlrEtc, 2 i i
iI[s[ruction cyeie. - c92

man ag rncnl
MFt< lr[struction and description, 360

['entiunr 4 instruction-1cvcl parailu[i.En. 526
process control block, 25?.

S1xlie RAM (SRAM), [38, [40 142, [54,]5i
ce[1. 1 41

LRAM, 142
Status

Pentium I;roc c1Y, 442
Stalu4 ra:i,i,lirs

eontro[, 412, 414, 416-419
St8t[[S rcportln!

[? , 202
Sratus signals

iO, [98
)tack trd1rLC growt]t, 334
Stock to imp[e[n&n[ncStciJ MuhrcFUlinL , 353

Si(Ft1
] A-64 instruction format, 547

510
Ifp^(F4]eh, 332

Siorae.e [QcLILions

CPU, 413
St,arrrgc ELI rcgiter

vector computation, 6#33
•Storagc to tiloragc

vector computation, 683
Stare

c1aLN, 7
instruriions, 364

MI PS. 487
S FA R{;. 497

I'owerl'C, 363
arehilcelurc, 392

pr«gra[n cLocept, L7
•5trin8 operations

PunliLFm ifStruLtit.1n arir] descriprion, 3561
Strii- e

RAID [e c[, [76
.Sl nJCEUr}II CL1IT]] [tnC1i[S,]{i
Structure, 5-ill

C PL', 4J2-457
c]efir3itioii. 5

dcSC.IEptLon, 7 -LO
51 . 1 3

opoudes, 332
Suhactiun

ascmchrorious, 228
concatenated. as'nchrorbou , 228

FicC ' ire, 22.!i
17oating-pditit ari[hmelic, 315

g^P
link layer, 227

i sac h rono u& 228
Su11nc1

]11iiniliand,2311
Subroutine [t[ciliIv

LSI -]1.614
Suhtractiolti

block diagram ihardware, 26
tu'^as ulo1^[}lement, 21 2-244

ruli , 2R7
un,ign4sl into t(x, 305

Suiti of products SOP)
Morro, h$J
illlpiCFF L III,I tiOil. 7{H1

Ours [A]1C architcclurc- Sre Scrr[ab1L
['rL.ecs5or ArcliiitecturC (M'AkC)

Superu)]11 11 utrYS

1_ra\:- 1]79

}'c&tor cnrnpul.aLihrti, f74
ksCh sites, 45

Su^reriar pricclper[r^rmane
cl[FSterF', 664

S uJLSFne,h [l r
approach

lin'IirtIrioIln, .5(18 51 1
detinitLon, 511
cx culicrn, Si')
x

[A-M Irchitecturc, 543

im pie Ininlation
inbtrue[iom - lcvcl p Lra]lekr,m, 520--527

m. hiries
delaycd branch.'trali gy, 51!1

VrganixH O(1. 541?
processtng

conccplu:al clLTFict11FO, 5]u
pYti^usxtli, 5{^

ch&acteristics, i63
s, sup&r NhFIe, 507-50ts

Sup rvinc^ r
corn[n m fickls ter hags. 41 7

Swapping, 57
258

Swappinji [Lineiiim, 251
SwiLcliCd ir5terennneCtion

S tyli'. 654-655
Svllohlca

[A-64 drehitecturc, 546
Svmboli;; priigrnrn, 365, 366

Syrnholit rL^preSent3ti0r[

lnac[tiinc instruc.ti0n, 332

INDEX 8 11

Symmetric multiprocessor (R W1. 644.
647-657

addressing, 650
ion. 650

availabilit5. : 649
1351, 654
cache

analysis and reaching. 743
cohercricc. 651

character isrim 647-648
clusters. 6(1L)

descripticiri, 645
fault tolerance, 653
inemmental growth. 649
1,2 cache, 654
12, cache. 656
Inc inory Card, 654
memory management, 653
muiliport me mory. 631
nr t i on, 44 9i-ti52
performance. 646
M.: 653
reliability, 650, 653
scaling. 649
scheduling, 653
S•390 cm figural ion

c•Ache hil rale, 656
shared 1.2 caches, 655-656
switched interconnection, 654 655

650
Sync

CD-ROM. 186
Sy rich PO

SNP, 65.1.
Synchri.)ni.m, bus.Operalions

ti ming. 76
Synchronous counters. 72.I1...730

design, 72(1
Synchronous DRAM (SDRAM),

154-1.57
illusuatcd, 155
read timing, 157

Synchronoti9 timing
bus design :

Syndrome word. 150-151
•Sysrern

interconnection. 9
05, 242
pins

PC1. signal lines, 81, 82
EcFfLiwaiv., 25

System access
()S. 240

System bus, 69
control sign als. 586
read cycle, 77
write cycle. 77

SIoLcir3136{1.1;iiiiily. Svc. I]i!v1 8fl60
Sys tcm137(1. family. See llitM S'3 70

I em1390

Bahl indicator
Pentium II segmentation : 270

'lag. 101
Tag died

MIPS. ,N4
'Lig won]

Pentium processor, 442
TkInuitmum'24 Andy, 466
Tape. L16

magnetic, 189 -190
Turgr..i1 Inc1 acldr r aCA)

diniband, 229
'Frisk swiichcd

Pentium control regisrer, 444
'1‘C A

Tn Fin 224
Teaching computer organization architecture

prolecls. 741-744
Teinplaie field encoding

] A.64 architecture. 548
Temptmil

two level imimories, 1.30-131
lest

inslructiiins.
11, 0, 205

Texas trislrurrien14 627-637
Nock diagrain. 627
DR: ports, 630
DRF3 purls.. 630
8847 lloating-point, 6.29
inic ger procesing chip, 62%1

h30
microinstruction format. 626. 629
mieroprogrJimmcd control. 62 7-637
MP(', n30
itCA, 630
RCM, 630
register counters : 630
8632 re..isle red ALUL 623)

c.x.) mpoitents, 627
stacks, 630
WCS data fi4141,62()

1)0JiLrol ;tare data field : 629
output multiplcur. 630

81 2 INDEX

Texas Instruments 8818
IlliCR)91..A11112DC.U1, 631

microinstruction biLs. 033
Texas Enstruments 8-U2

A LILT
eontigtuat ion mod°, 634

carry in, 634
des.tininion. i.gister, 634
registered ALL 629. b33
registered AI _ 11; fiLd.d, 634-636
R
Wle4:1 Tegiq ,.• r c,L11,}1 s.ouree, 633
shift ins], 'Action modifier, 634
S inpui, 634
antra! register, 634
wE iEe enable, 633

Then path
J A -f4 rirNihileaure., 550, 553

4enerattoiI
computers, 2-5-33

Third Eirrie unit
fetch cycle, 579

32-11i1 adder
construction : 720

32-hit flouting-poinl forrmit, 308
.32 - hil formal.;

expressible,
Thrashing, 112, 263
36i} archi[.ecture. See 113.2y1 SI360
370 architecture. See I BM 81370
390 ki [12c1 Lirc. S Ere NW S139.0
] hree-operand instructions. 682
Three-way pipe lined timing, 483
Time.

bus design, 75
disk 1 5,2:31:01111,1r50.2. 171-175

comparison, [73
memory 98-103
Mearitli y etch.•, 25
multiplexing,
OS problems, 243 .
r1.1 1.L O

two level memorixs, 129
sequence, 577

multi* interrupts example. b7
sharing

US. 1 .5....uch multiprogramming, 250
systems, 248

6:91)
Tinter

batch OS. 245
interrupt Glass;, 511

Time stamp disable {'IS11)).„ 444
Timing diagrams, 92-93

instruction pipeline operation, 426
. Timing signals

ince! 80FIS : 5'111
1 9 1,11, 266.-268. 273
Top-down rlppruach, 5-h
'VE T-level structure.,
'l .op of stack

inStrin.:1ions. 35]
Trace-driyen. simulator

analysis and. leaching, 743
Tracks, 1165 :]70
frailing eago, 92
TraDSUClii311 1:1y4.;1 .

fire ire. 225
•1..ransduccr

1.98
. Transfer ACK

bus control linezi, 70
Tri-inq ter cif conrrol

CPI; actions, 343
with mulliple inremrupts, 66
upe.ration name and dcscriplion, ?..4S-35 ,4
wiu interrupt., , 61

Trap41-12.r rata
Inc niory, 1g9

Transfer time. 172.
Lusk pc!, Eui ance 5 173

.Fra nisist or, 24-25
Trinsiiqur coUla

(']'L I

growih, 30
Trarssisle instrued.cm. 347
Translation looka6ide buffer (TL 26E1-268

Pentium IL : 273
fransinission control

I RA, 20a
Tpinspart

layered protocol architecture. : 231
'trap flag

F.:FLAGS re.i.kisE yr. 442
lientitinfintCrrup1 prix..2Sgir, 448

True (1;11 r1 Elepenikney, 51:1 ,9 51
Truth table. 695. 699
. 1'81), 444
'Faring, Alan, 17
Turnaround cycle

Eriensicr,
5-kIL113 l'ILSS approach

iniCTOMStrinetion, 6 I 0-6
Two .3(cl rc2S.N fields

1.11 Lurch control. logic. 611
Two In.c1 memory

.el-ikirac[ur 1 2t1.]2.9
cost vs. size, 133, 134

INDEX M3

hii 'ratio vs. sizu. 135
locality Car refereoct .2. 1 N-131
operation, 131 132
pert o rrn H EICLI.. 1 0 1. 132-135

Twos complement arithmetic.
ChorLCl YisLies.217

1 wos co inplembili hiPPrry
value box, 289

Twos eintiple.rnent decimal
value box, 289

Twos C.:45 mplern rtL division
citaniples, 306

Twos complement mu1tiplicati011, 298-304
BootIC}i algiirilbm. 301

Twos complement operation.. 291
complermint representation, 286-288

characteristieN, 287
Two-siage instruction pipeline : 425
'I'w(t-way

,
 pip•ined liming, 4,sit3

. 1'wc• ay set associ 6 ve mapping e x mp1e,

117

LIVIA
definnion, 670

Unary operation
siack operai ion description, 372

Unamditional branch
S corn puler, 22

Unequal-size pariitions, 259
Uni am cache

N'. spill eaehe. 120-121
Uniform memory access (UT IA)

clefini lion. 670
E.lliiraograinrriing

TCSOCIITO utiliz-ation, 249
sysi erns, 248

OS, 242
Unit of transfer, 97, 98
'UNIVAC 1 : 22
Univci.sal Automatic Comp iner (1..:h1TVA(

I). 22
Unpack :icier!, 346
Unpacked Et 1)

Pentium data lypes, 339
Unseginented paged memory

,

memory view, 269
F. iis ciL!inenred unpaged memory

memory view, 269
Unsigned and Lwo complement integers

comparison of mulliplication, 2i) 14
Unsigned binary division

flowchart,.
Unsigned hinary infegerS

exarnple of division, 304
Unsigned binary multiplication

flowchart, 298
hardware implente.nta Lion, 297

Unsigned byte
PE pc, .341

Unsigned doubleword
PnwerPC. 341

Unsigned ILxlfwctrd
Power'('.

1.;nsigned integers
multiplication : 294

igricd word
Power PC, 341.

Lipper level memory, 131
hii

eache, 117
LItiT. ltl Ne.wsgroups, 14

inask
I A 64 i ostrucri on set, 563

Usyr I,i it ,ring, 638
Use' -visible registers, 412, 414, 415-416
Utilities.
1 in Iristograrnis

resource utilization : 241..l

V
Vacuum tubes, 16.-24
VariablE. Ii srrnaL

branch control 113 .11C, 613
rnieroinstruction.f;11

Vari bl e-fel gi 11 400-404
VLirii..ible-size partitions, 258
VAX, 402-404, 464...K9

a prtEoa ell, 343
instruietio its example, 403

11/AX 1...780, 434
Vcc, 144
VCRs, 187
VDTs, 197
Vector addition

exsmple, 675
Vector aichi [benne

instruction set, 685-687
Vector ealcul1JIi yin

alternative programs : 6S3
V14..elor co rrtpu t t io 674-687

iipproa elle Li, 674-680
illustrated, 6??
stiiragi: 10 ru i. ter, 683
storage to storage : 68.3

Vectored interrupt, 212
\ice tor prOLesSing, 67.5

vector computation, 675-676

8 14 INDEX

Vccior procomIN
(3c rinirioit, 679

Vertical microinstruction, 60 L-602, 605, 616.
619

repertoire, 621
Very large system inli2rfaec (VLSI)

implenien t at i o t, 479
RISC, 477

Video Gas.seae IN2CIATLIALTS. (VCRs), 187
Video display terminals (VDTs). 197
View

of computc r, 6
Virtual address, 269
Virtual iTlI VT11[1 1 I1 ig

F.T4 1.,AGS register, 442
pending, 442

Virtual 1 an 12:s., 230
Virtual. memory, 102. 121, 263-268

machine in MAO iOn. 331-332
Virtual-0S6 mode extension (VME)

Pentium control register. 414
Virtual mode (WO) bit

E...3-. .LAGS register, 442
VLSI. 477, 479
V h3 bit

EFLAGS. register, 442
VME7..

Pentium control register, 444
memory. 102

Voltage and ground
Intel 8081, 591

Voltage so uree (VG(:). 1144
Von Neuinoior, John, 17..19, 50-51
Von Neumann architeelarc

concepts, .51
Von Neumann Machine, 17-20

V11 13
chip pacInging.]46

Vss, 144

Wlifor
Jc n , 29
gate and chip

relation ship, 29
Waiting

process state, 252
WA Ns

system bus, 72
WC'S data lick]

TI 629
Wet) pages

locality of re ferenee, 131
Wel) site. 13

ACM Special Interest Group on OpL.'..rating
Systems. 27R

arithmetic Gummier, 324
Charles Flahbage Institute, 45
Computer Archittxtute Eionle Page, 14
Ddia Soirage Magazine, 191
DIA'apc : 191
external memory systems, l41.
lire i re, 2-33
tloating•po int .arithmcli, 324
I A-64, 569

M 700, 44
11311 51390 procvszior. 324
lEEF. 754, 325
IF.F.F.'1.'echnical Committee. on Operating

Syslems .,i nd Applications, 278
IMPA.(570
Lou iii band. 233
infirata.nd AssOciation. 233
Intel Developer's Page, 45
I t aniu m; 570
lianitirn prcKe:Mc)f arch it e-Ctlire., 50.1.
Moore's Law.
Operating System Resource Center. 278
upexa Ling sySLCD1S. 277
Optical Storage Technology Association,

1 431
OS Web, 218
Pentium. 44
Pc:pwcr PC, 45
Power1-C archilcG11.1112, 44
RAID Advisory C i roup, L91
RAID tedutology, 191
Rambus Site, 16I)
R guide , 6)
RDR AM, 10t.1
recording IcchaMIOgy. 191
related to computer organi4iition iod

arch i leclun....; 14
wrniconducliat memory LE2chroLogic$,

TIO Home Page. 233
'C'op 500 SI1Ficl-Lor0 plal Si te,
1394 Trade Association. 233

Whole computer
definition, 644

i I no tvi:orks (W N s)
s:.,. stent bus, 72

W irk ei,"i; Lon[rol, 605-607
Wilkes's nueroinstruutions. 617

example. 608-609
'Oakes's. m]ceoprogrammcd 4.1 0 R1 TH I Unit : '606

Wilkes's scheme. 618
WIM

SPA EU', 495

INDEX 815

Wirichesrer disk, 170
track t,168

W infirm invalid mask (W1M)
SPARC, 495

Windowii-bascd register file
illustrilitd, 472

Virorcl. 19,97,3%. See:: frirvo Di.)LIFFIc word;
I fall word

length, 3%
Work queue entry { W Ej, 231
w p

Nrilium control I C:gki.cr, 444
Wi0F, 231
Wraparound : 361
Wrila Me control store, 638

damn 14,1
'Li MOO : 62)

W ii

Llata
CPL, 413

do]recidelicy, 515-51h
110. 2115
rmmory

[C'[TI M}Ind, R
operand

pipelining, 425
policy

eache design. 1M--I19
sign

RDRA Irk
11.11.1rit back, 657

cadle clifHiga., 118
Inwl 8046'6, 439
NI I I'S, •19:1

Lalls : :59,63

Write g 156
pins. 144
T1 32,633

Write hit
parallel processing, 662

Writc as
procEssing : 662

WMLAned. (WPi.
Perrier', control regibier, 444

Write dependency, 5i16,1 -511,515—.7...1fi
wG^ $r 657

bus watching
cache design, 118

Write-write dependency, 513
Written sequenco, 577

XER
Piawe.r PC processor, 450

X014.
logical functions, 345

Y
Y ou(pull m6 ac

'UMW : Eat

Zero
addrE.m irPitrwilions;35
oomnicirs iir nags, 417

Zero check
arilhmeiic, 317

ZEROIN
cnicroseciMTIC42T. 632

ZIP cait ridges, 96

Inform

Pra-Wce Hall end Inlui rrJ Tai e Inc:ernorkn of POWADO plc : Copyr Olt :E.: .2aoc. reEirLs'i

Visit 1 17f9irmii. today
and get great content

from PI1
Computer Science

Get answers when you need them -
from live experts or InformIT's
comprehensive library

Achieve industry certification and
advance your career

.4Sx.Acr tralio•It 411:1 I •••••■ •• •..... L.!,

•

rlogo 1,131,11.1.

VYvm 5f:4-A.47: n..11.13Ii
14.1r8 Di kturbid

Solutions from experts you know and trust

14°1." gfir# ~A Pr
•' ;,•• • -

• • • WM. •

Logifn Register About InformIT

www. i nform it _ co m
Free, in-depth articles and
supplements

.:kro Master the skills you need, when you
need them

Choose from industry leading books,
ebooks : and training products

ACRONYMS
ACM Association for Computing, Machinery
A LIT` Arithmetic and Logic Unit
ASCU American Standards Code for Information Interchange
ANSI American N4 ilionnl Standards
BCD Binary C:oded Decimal
CD Compel Disk
CD-ROM Compact Disk-Read Only Memory
CPU C:entral Processing Unit
CISC Complex Instruction Set Computer
DRAM Dynamic Randoni , Aci2,e.ss Memory
DMA Direct Memory Access
DVD Digital Versatile Disk
EPIC Explicitly Parallel !AND- La:lion Computing
EPROM Erasable Programmall ,k Read-Only Memory
EEPROM Elceiriealiv Erasable Programmable Rf,ad-Onl ,

v
. Memory

FILL High-Level Language
I/O InputIOntpui
I AR Instruction Address ReHsier
IC integrated Circuit
ILEE lris aut.e of Electrical and Flkictron ics Engineers
ILP Instruction-Level Parallelism
I R Instruction Register
LRU Least Recenily (Ned
L-S1 Large-Scale Integration
MAR Memory Address Register
.I BR Memory Huffer Registt2r
NEESL MI)di.fy-Lxclusivc-Shared-In valid
IVEMI; Memory Management Unit

Medium-Scale Iniegration
NUM A Nonuniform Memory Access
OS Operating System
PC Program Counter
PCI Peripheral Component lmeroinneet
PROM Programmable Read-Only Memory
NW Processor Status Word
PCB Process Control Bioek
RAID Redundant Array or Independent Disks
RA LL: RegisteriArithinetic-Lovic Unit
RAM Random-Access Memory
RISC Reduced Instruction Set C-omputer
ROM Read-Only Memory
SCSI Small Computer System Interface
SMP vnomu Lrie Multliprooessors
SRAM Static Random-Access tylernory ,
551 Small-Scale Integration
VLSI Very Large-Scale lntegraLion
VLIW Very Long Instruction Word

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438
	Page 439
	Page 440
	Page 441
	Page 442
	Page 443
	Page 444
	Page 445
	Page 446
	Page 447
	Page 448
	Page 449
	Page 450
	Page 451
	Page 452
	Page 453
	Page 454
	Page 455
	Page 456
	Page 457
	Page 458
	Page 459
	Page 460
	Page 461
	Page 462
	Page 463
	Page 464
	Page 465
	Page 466
	Page 467
	Page 468
	Page 469
	Page 470
	Page 471
	Page 472
	Page 473
	Page 474
	Page 475
	Page 476
	Page 477
	Page 478
	Page 479
	Page 480
	Page 481
	Page 482
	Page 483
	Page 484
	Page 485
	Page 486
	Page 487
	Page 488
	Page 489
	Page 490
	Page 491
	Page 492
	Page 493
	Page 494
	Page 495
	Page 496
	Page 497
	Page 498
	Page 499
	Page 500
	Page 501
	Page 502
	Page 503
	Page 504
	Page 505
	Page 506
	Page 507
	Page 508
	Page 509
	Page 510
	Page 511
	Page 512
	Page 513
	Page 514
	Page 515
	Page 516
	Page 517
	Page 518
	Page 519
	Page 520
	Page 521
	Page 522
	Page 523
	Page 524
	Page 525
	Page 526
	Page 527
	Page 528
	Page 529
	Page 530
	Page 531
	Page 532
	Page 533
	Page 534
	Page 535
	Page 536
	Page 537
	Page 538
	Page 539
	Page 540
	Page 541
	Page 542
	Page 543
	Page 544
	Page 545
	Page 546
	Page 547
	Page 548
	Page 549
	Page 550
	Page 551
	Page 552
	Page 553
	Page 554
	Page 555
	Page 556
	Page 557
	Page 558
	Page 559
	Page 560
	Page 561
	Page 562
	Page 563
	Page 564
	Page 565
	Page 566
	Page 567
	Page 568
	Page 569
	Page 570
	Page 571
	Page 572
	Page 573
	Page 574
	Page 575
	Page 576
	Page 577
	Page 578
	Page 579
	Page 580
	Page 581
	Page 582
	Page 583
	Page 584
	Page 585
	Page 586
	Page 587
	Page 588
	Page 589
	Page 590
	Page 591
	Page 592
	Page 593
	Page 594
	Page 595
	Page 596
	Page 597
	Page 598
	Page 599
	Page 600
	Page 601
	Page 602
	Page 603
	Page 604
	Page 605
	Page 606
	Page 607
	Page 608
	Page 609
	Page 610
	Page 611
	Page 612
	Page 613
	Page 614
	Page 615
	Page 616
	Page 617
	Page 618
	Page 619
	Page 620
	Page 621
	Page 622
	Page 623
	Page 624
	Page 625
	Page 626
	Page 627
	Page 628
	Page 629
	Page 630
	Page 631
	Page 632
	Page 633
	Page 634
	Page 635
	Page 636
	Page 637
	Page 638
	Page 639
	Page 640
	Page 641
	Page 642
	Page 643
	Page 644
	Page 645
	Page 646
	Page 647
	Page 648
	Page 649
	Page 650
	Page 651
	Page 652
	Page 653
	Page 654
	Page 655
	Page 656
	Page 657
	Page 658
	Page 659
	Page 660
	Page 661
	Page 662
	Page 663
	Page 664
	Page 665
	Page 666
	Page 667
	Page 668
	Page 669
	Page 670
	Page 671
	Page 672
	Page 673
	Page 674
	Page 675
	Page 676
	Page 677
	Page 678
	Page 679
	Page 680
	Page 681
	Page 682
	Page 683
	Page 684
	Page 685
	Page 686
	Page 687
	Page 688
	Page 689
	Page 690
	Page 691
	Page 692
	Page 693
	Page 694
	Page 695
	Page 696
	Page 697
	Page 698
	Page 699
	Page 700
	Page 701
	Page 702
	Page 703
	Page 704
	Page 705
	Page 706
	Page 707
	Page 708
	Page 709
	Page 710
	Page 711
	Page 712
	Page 713
	Page 714
	Page 715
	Page 716
	Page 717
	Page 718
	Page 719
	Page 720
	Page 721
	Page 722
	Page 723
	Page 724
	Page 725
	Page 726
	Page 727
	Page 728
	Page 729
	Page 730
	Page 731
	Page 732
	Page 733
	Page 734
	Page 735
	Page 736
	Page 737
	Page 738
	Page 739
	Page 740
	Page 741
	Page 742
	Page 743
	Page 744
	Page 745
	Page 746
	Page 747
	Page 748
	Page 749
	Page 750
	Page 751
	Page 752
	Page 753
	Page 754
	Page 755
	Page 756
	Page 757
	Page 758
	Page 759
	Page 760
	Page 761
	Page 762
	Page 763
	Page 764
	Page 765
	Page 766
	Page 767
	Page 768
	Page 769
	Page 770
	Page 771
	Page 772
	Page 773
	Page 774
	Page 775
	Page 776
	Page 777
	Page 778
	Page 779
	Page 780
	Page 781
	Page 782
	Page 783
	Page 784
	Page 785
	Page 786
	Page 787
	Page 788
	Page 789
	Page 790
	Page 791
	Page 792
	Page 793
	Page 794
	Page 795
	Page 796
	Page 797
	Page 798
	Page 799
	Page 800
	Page 801
	Page 802
	Page 803
	Page 804
	Page 805
	Page 806
	Page 807
	Page 808
	Page 809
	Page 810
	Page 811
	Page 812
	Page 813
	Page 814
	Page 815
	Page 816
	Page 817
	Page 818
	Page 819
	Page 820
	Page 821
	Page 822
	Page 823
	Page 824
	Page 825
	Page 826

