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PECEFACE 

••• ..••-:•  -4=3:r-2'r • ..."7•4,̀-1: 

bOok is about the structure and function of computers. Its purpose is to 
present. as clearly and completely as possible, the nature and characteristics 
of modern-day computer systems. 

rhis task is challenging for several re, sans. l first, there is a tremendous 
variety of products that can rightly claim the name of computer, from single-
chip microprocessors costing a tcw dollars to supercomputers costing tens of 
millions of dollars. Variety is exhibited not only in cost, but in size. perfor-
mance, and .application. Second, the rapid pace of change that has always 
characterized computer technology continues with no letup. These changes 
cover all aspects of computer technology, from the underlying integrated cir-
cuit technology used to construct computer components, to the increasing 
use of parallel organization concepts in combining those components. 

In spite of the ,,.. ariety and pace of change in the computer field. certain 
fundamental concepts apply consistently throughout. The application of 
these concepts depends on the current state of the technology and the 
pricelperformanc.e objectives of the designer. The intent of this hook is to 
provide a thorough discussion of the fundamentals of computer organization 
and architecture and to relate these to contemporary design issues. 

The subtitle suggests the theme. and the approach taken in this book. It 
has always been important to design computer systems to achieve- high per-
formance, but never has this requirement been stronger or more difficult to 
satisfy than today. All of the basic performance characteristics of computer 
systems, including processor speed, memory speed, memory capacity, and 
interconnection data rates, are increasing rapidly. Moreover• they are 
increasing ait different rates. This makes it difficult to desiv,rn a balanced sys-
tem that maximizes the performance and utilization of all elements. 'Thus, 
computer design increasingly becomes a game of changing the structure or 
function in one area to compensate for a performance mismatch in another 
area. We will see this game played out in numerous design decisions through. 
out the book. 
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A computer system, like any syStem, consists of an interrelated set of compo-
nents. The system is best characterized in terms of structure—the way in which 
components are interconnected—and function—the operation of the individual 
components. Furthermore, a computer's organization is hierarchical. Each major 
component can be further described by decomposing it into its major subcompo-
nents and describing their structure and function. For clarity and ease of under-
standing, this hierarchical organization is described in this hook from the top down: 

■ Computer System: Major components are processor. memory. and 1/0. 

■ Processor. Major components are control unit. register, A1.1), and instruc-
ti on execution unit. 
Control Unit: Major components are control memory, microinstruction se-
quencing logic, and registers. 

The objective is to present the material in a fashion that keeps new material 
in a clear context. This should minimize the chance t hat the reader will get lost and 
should provide better motivation than a bottom-up approach. 

Throughout the discussion, aspects of the system are viewed from the points 
of view of both architecture (those attributes of a system visible to a machine lan-
guage programmer) and organization (the operational units and their interconnec-
tions that realize the architecture). 

EXAMPLE SYSTEMS 

 

..;Ardrd, rr' 
 • dr  

  

'Phis hook uses examples from a number of different machines to clarify and re-
inforce the concepts being presented. Many, but by no means all, of the examples 
are drawn from two computer families: the Intel Pentium 4, and the IBWMotorola 
PowerPC. These two systems together encompass most of the current computer de-
sign trends. The Pentium 4 is essentially a complex instruction set computer (CISC) 
with some RISC Features. while the PowerPC is essentially a reduced instruction set 
computer (RISC). Both systems make use of superscalar design principles and both 
support multiple processor configurations. 

PLAN OF THE TEXT 

The book is organized into live parts: 

Part One—Overview: This part provides a preview and context for the remain-
der of the book. 
Part Two—The Computer System: A computer system consists of processor, 
memory, and 110 modules. plus the interconnections among these major com-
ponents. With the exception of the processor, which is sufficiently complex to 
he explored in Part Three. this part examines each of these elements in turn. 



PREFAch xvii 

Part Three—The Central Processing Unit: The CPU consists of a control unit, 
reaisters, the wirhrricikl and logic unit, the instruction execution unit, and the 
interconnections among these components. Architectural issues, such as i nstrue-
lion sot design and data types, are covered, Part Three also ]ooks at orLianiy.a-
tional issues, such as pipelining. 

Part Four—The Control Unit: The control unit is that part of the processor that 
aciivales the various components of the processor. This part looks at the func-
tioning of the control unil and its implementation using microprogramming. 
Part Five—Parallel Organization: This final part ]ooks at some of the issues 
involved in rnuiiiple processor mid vector processing organizations. 

The book also includes an extensive glossary. a list of frequcntiv used acro-
nyms, and a bibliography. Each chapter includes homework problems, review 
questions, a list of key words, suggestions for further reading, and recommended 
Web sites. 

A more detailed, chapter-by-chapter summary of each part appears at the 
beginning of lhaL part, 

INTENDED AUDIENCE 
• fry.f.:§‹;;;-*; - - 

Ire,..fry• - •rfer•#..-0.1.5p,"3',":•,5•1•
1.4 Xer.  eer ere ar 

The hook is intended  for both an academic and a professional audience. As a text-
book, it is intended as a one- or two-semester undergraduate course for computer 
science, computer engineering, and electrical engineering majors. It covers all the 
topic-5 in CS 220 Computer .0 .00f:titre, which is one of the core. subject areas in the 
EE ErA CM Cr .,pmputer Cr ricrila 2001 PTFOG 

For the professional interested in this field, the hook serves as a basic refer-
ence volume and is suitable for self-study. 

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS 

There is a Web site for this book that provides support for students and insiruetors. 
i he wile includes links to other relevant sites, copies of the figures and tables from 
the book in Pflb .  (Adobe Acrobat) format, and sign-up information for the book's 
Internet mailing list. The Web page is 11 WilliamS1allings,eonlICO Me.h1rnl: see 
the section, - Web Site for Computer 'Organizaticni and Architecture, Sixth Edi-
tion'', preceding [his Preface, for more information. An Internet mailing list has 
been set up so that instructors using this book can exchange information, sug-
gestions, and questions with each other and with the author. As soon as typos 
or olher errors are discovered. an  errata list for this book will be available at 

hiamStallings.com . In addition, the Computer Science Student Resource site, at 
WiiliamStallings,corn/StudentSupport.htud, provides dociimun is, information, and 
useful links for computer science students and professiona]s. 

http://hiamStallings.com
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PROJECTS FOR TEACHING COMPUTER ORGANIZATION 
AND ARCHITECTURE  

For army instructors, an important component of a computer organization and 
architecture course is a project or set of projects by which the student gets hands-
on experience to reinforce concepts from the text. This book provides an unparal-
leled degree of support for including a projects component in the course- The 
instructor's marmil not only includes guidance on how to assign and structure the 
projects, but also includes a set of suggested projects that covers a broad range of 
topics from the text: 

■ Research projects; The manual includes ri series of assignments that instruct 
the student to research a particular topic on the Web or in the literature, 4md 
write a report. 

• Simulation projects: The manual provides support for the use of the two sim-
ulation packages: SimplcScalar can be used to explore computer organization 
and architecture design issues. SkIPCache provides a powerful educational 
tool for examining cache design issues for symmetric multiprocessors. 

▪ Rcadiogireport assignotents: The manual includes a list of papers in the liter- 
ature. one or more for each chapter, that can be assigned for the student to 
read and then write a short rcport

, 
 

See Appendix C for details. 

WHAT'S NEW TN THE SIXTH EDITION 

In the three years since the fifth edition of this book was published, the field has 
seen continued innovations and improvements. In this new edition, I try to capture 
these changes while maintaining Li broad and comprehensive coverage of the entire 
field. To begin this process of revision, the fifth edition of this book was extensively 
reviewed by a number of professors who reach the ;40 0. In addition, a number of 
professionals working in the field reviewed individual chapters. The resell is that, in 
many plac.i.:27., the narrative has been clarified find tightened, and illustrations have 
been improved. Also, a number of new . 'field-tested' problems have been added. 

Beyond these refinements to improve pedagogy and user friendliness, there 
have been substantive changes throughout the book. Roughly the N.411TIC chapter 
organization has been retained, but much of the material has been revised and new 
material has been added. Some of the most noteworthy changes are the following: 

▪ 1A-64/I11inium architecture: This new architecture includes such important 
Concepts as predicated execution and speculal ive loading. 7 Ills edition features 
a chapter-length description and analysis. 
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• Cache memory .: Cache memory is a central element in the design of high-
performance processors, and cache detiign has become increasingly complex. 
An entire chapter is devoted to this issue in the new edition. 

• Optical memory: 'the material on optical memory has been expanded and 
updated. 

• Advanced I MAM architecture: More material has been added to cover this 
topic, including an updated discussion of SDRAM and RDRAM. 

• SMPK, clusters. and NUMA systems: The chapter on parallel organization has 
been expanded and updated. 

• Expanded instructor support: As mentioned previously, the book now pro-
vides extensive support for projects. Support provided by the book Web site has 
also been expanded, 
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PART 
ONE Overview 

The purpose of Part One is to provide a background and context for the 
remainder of this book, The fundamental concepts of comp u ter organization 

. and architecture are presented. 

• 

Chapter 1 Introduction 
Chapter I introduces the concept of the computer as a hierarchical system. 
A computer can be viewed as a structure of components and its function 
described in terms of the collective function of its cooperating components. 
Cach componeni, in turn, can be described in terms of its internal structure 
and function. The major levels of this hierarchical view arc introduced. The 
remainder of the. book is organized, top down, using these levels, 

Chapter 2 Computer Evolution and Performance 
Chapter 2. serves two purposes. First, a discussion of the history of computer 
technology is an easy and interesting way of being introduced to the basic 
concepts of computer organization and architecture. The chapter also 
addresses the technology trends that have made performance the focus of 
computer system design and previews the various techniques and strategies 
that are used to achieve balanced, efficient performance. 
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Thi, hook is about the structure and function of computers. Its purpose is to 
present, as clearly and completely as possible, the nature and characteristics 

  (A .  modern-day computers. This task is a challenging one for two reasons. 
I.irst, there is a tremendous variety of products, from single-chip microcom-

puters costing a few dollars to supercomputers costing tens of millions of dollars, 
Ihat can rightly claim the name computer. Variety is exhibited not only in cost, but 
also in size, performance, and application. Second. the rapid pace of change that has 
always characterized computer technology continues with no letup. These changes 
cover all aspects of computer technology, from the underlying integrated circuit 
technology used to construct computer components to the increasing use of par-
allel organization concepts in combining those components. 

In spite of the variety and pace of change in the computer field. certain funda-
mental concepts apply consistently throughout. To be sure, the application of these 
concepts depends on the current stale of technology and the priceiperformance 
objectives of the designer. The intent of this book is to provide a thorough discus-
sion of the fundamentals of computer organization and architecture and to relate 
these to contemporary computer design issues. This chapter introduces the descrip-
tive approach to be taken and provides an overview of the remainder of the book. 

1.1 ORGANIZATION AND ARCI-11TliCTURE 

In describing computers, a distinction is often made between computer archieecture 

and computer organizinion. Although it is difficult to give precise definitions for 
these terms. a consensus exists about the genera] areas covered by each (e.g., see 
[VRANNOI. [SIEW82], and IBELL78a]). 

Computer architecture refers to those attributes of a system visible to a pro-
grammer or, put another way those attributes that have a direct impact on the log-
ical execution of a program. Computer organization refers to the operational units 
and their interconnections that realize the architectural specifications. Examples of 
architectural attributes include the instruction set, the number of bits used to rep-
resent various data types (e.g., numbers, characters), I/0 mechanisms, and tech-
niques for addressing memory. Organizational attributes include those hardware 
details transparent to the programmer, such as control signals, interfaces between 
the computer and peripherals, and the memory technology used. 

As an example. it is an architectural design issue whether a computer will have 
a multiply instruction. It is an organizational issue. whether that instruction will be 
implemented by a special multiply unit or by a mechanism that makes repeated use 
of the add unit of the system. The organizational decision may be based on the antic-
ipated frequency of use of the multiply instruction, the relative speed of the two 
approaches, and the cost and physical size of a special multiply unit, 

Historically, and still today, the distinction between architecture. and organi-
zation has been an important one, Many computer manufacturers offer a family of 
computer models, all with the same architecture but with differences in organiza-
tion. Consequently, the different models in the family have different. price and per-
formance characteristics. Furthermore, a particular architecture may span many 
years and encompass a number of different computer models. its organization 
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changing with changing technology. A prominent example of both these phenom-
ena is the IBM System/370 architecture. This architecture  first introduced in 
1970 and included a number of models. The customer with modest requirements 
could buy a cheaper, slower model and, if demand increased, later upgrade to a 
more expensive. faster model without having to abandon software that had already 
been developed. Over the years, IBM has introduced many new models with 
improved technology to replace older models, offering the customer greater speed, 
lower cost, or both. These newer models retained the same architecture so that the 
customers software investment was protected. Remarkably. the Systemi370 archi-
tecture, with a few enhancements. has survived to this day as the architecture of 
IBM's mainframe product line. 

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence 
organization but also result in the introduction of more powerful and more complex 
architectures. Generally, there is less of a requirement for generation-to-generation 
compatibility for these smaller machines. Thus, there is more interplay between 
organizational and architectural design decisions. An intriguing example of this is 
the reduced instruction set computer (RISO, which we examine in Chapter 12. 

This book examines both computer organization and computer architecture_ 
The emphasis is perhaps more on the: side of organization. I lowever, because a com-
puter organization must be designed to implement a particular architectural speci-
fication, a thorough treatment of organization requires a detailed examination of 
architecture as well 

1.2 STRUCTURE AND FUNCTION 
- 

A computer is a complex system; contemporary computers contain millions of ele-
mentary electronic components. How, then. can one clearly describe them? The key 
is to recognize the hierarchical nature of most complex systems, including the com-
puter [SIM069]. A hierarchical system is a set of interrelated subsystems, each of 
the latter, in turn, hierarchical in structure until we reach some lowest level of ele-
mentary subsystem. 

The hierarchical nature of complex systems is essential to both their design 
and their description. The designer need only deal with a particular level of the 
system at a time. At each level, the system consists of a set of components and 
their interrelationships. The behavior at.each level depends only on a simplified, 
abstracted characterization of the system at the next lower level, Al each level, the 
designer is concerned with Structure and function: 

• Structure: The way in which the components are interrelated 
• Function: The operation of each individual component as part of the structure 

In terms of description. we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the 
system into its subparts. Evidence from a number of fields suggests that the top-
down approach is the clearest and most effective [WEIN75]. 
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The approach taken in this book follows from this viewpoint. The computer 
system  be duscribed from the top down. We begin with the major components 
of a computeY, describing their structure and function, mid proceed to successively 
tower laycN of the hierarchy. The remainder of this fection provides a very brief 
overview of this plan of attack. 

F unc tion 
Roth the structure and functioning of a computer are, in essence, simple, Figure 
1.1 depicts the basic functions thal a computer can perform. In general term, there 
are on4 ,  four: 

• Data processing 
• Data storage 

• Data movement 

• C0111-rtg 

Operating eirviroxinient 
t ,..ourou and destinatiun J datall 

III  Contra: 
mechanisni .11  

Figure Li A Functional Victv of thc. Computer 
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The computer, of course, must be able to process data, The data may take 
a wide variety of forms, and the range of processing requiretnents is broad. How-
ever, we shall see that there are Only a few fundamental methods or types of data 
processing. 

It is also essential that  computer store do u r.  Even it' the computer is pro-
cessing data on the fly  data come in and get processed, and the results go out 
immediately), the computer must temporarily store at least those pieces of data 
that are being worked on at any given moment. Thus, there is at least a short-term 
data storage function. Equally important, the computer performs a long-term data 
storage function. Files of data are stored on the computer for subsequent retrieval 
and update. 

The computer must he able to move data between itself and the outside world. 
The computer's operating environment consists of devices that serve as either 
sources or destinations of data. When data are received from or delivered to 
a device that is directly connected to the computer, the process is known as inpur-
ourPlit (1r'O). and the device is referred to as a perfpheral. When data arc moved 
over longer distances, to or from a remote device, the process is known as data 
commanications, 

Finally, there. must be control of these three functions. Ultimately, this control 
is exercised by the individual(s) who provides the computer with instructions. 
Within the computer, a control unit manages the computer's resources and orches-
trates the performance of its functional parts in response to those instructions. 

Al this general level of discussion, the number of possible operations that can 
be performed is few. Figure 1.2 depicts the four possible types of operations. The 
computer can function as a data movement device t Figure 1.2a), simply transferring 
data from one peripheral or communications line to another. It can also function as 
a data storage device (Figure 1.21)), with data transferred from the external envi-
ronment to computer storage (read) and vice versa (write). The final two diagrams 
show operations involving data processing, on data either in storage (Figure 1.2e) 
or en route between storage and the external environment (Figure 1,2d), 

The preceding discussion may seem absurdly generalized, it is certainly possi-
ble, even at a top level of computer structure, to differentiate a variety of functions, 
but, to quote 1SIEW821, 

There is remarkably little shaping of computer structure to fit the function to be 
performed. At the root of this lies the general-purpose nature of computers, in 
which all the functional specialization occurs at the time of programming and not 
at the time of design. 

Structure 
Figure 1.3 is the simplest possible depiction of a computer. The computer interacts 
in some fashion with its external environment, In general, all of its linkages to the 
external environment can he classified as peripheral devices or communication lines. 
We will have something to say about both types of linkages. 

But of greater concern in this book is the internal structure of the computer 
itself, which is shown at a top level in Figure 1.4, There are four main structural 
components: 
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Figure 1.2 Possibl urpui r Op rtxfinns 
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Figark: 1.3 The Computer 

• Central processing unit (CPU): Coma)Is the operation oI the computer and 
performs iEs drug processing functions often simply referred lo as procinaer 

• Main memory: Stores data 
• 110: Moves daia between the computer and its external cnvironment 
• System interconnection]: Some mechanism that provides for communication 

among CPU, rmin memory, and I/O 

There may he one or more of each of the aforementioned components, Tra-
ditionally, there has htxn just a Singh: CPI:, In recent years, there has been increas-
ing use of multiple processors in a single computer. Some design issues relating to 
multiple processors crop up and are discussed as the text proceeds: Part Fire focuses 
on such computers, 

Each of these components will he examined in some detail in Pad Iwo. How-
ever, for our purposes, the most interesting and in mile ways the most complex 
component is the (:13 1„:  its structure is depicted in Figure 1_5. Its major structural 
components are as follows: 

• Control unit: Controls the operation of the CPU and hence the computer 
• Arithmetic and logic unit (ALU): Performs the computer's data processing 

funct ions 
6  Registers: Provides storage inl erna I to the CPU 
• CPU interconnection: Some mechanism that provides for communication 

among the control unit, ALU, and registers 

Each Of these components will be examined in some detail in Part Three. where we 
will see that complexib.,.y is added by the use of parallel and pipeiined organizational 
techniques, Finally. l]iere arc several apprcmches to the implementation of the con-
trol unit, but the most common is a microprogrammed impiernentation• In essence, 
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Fivre 1.4 The Com1)111cr: rop-Lcvel Str LICt LL 

microprograrnmed ct Introl 1.111 t operates by executing microinstructions that tkriElo 
the functionalily of the control unit, With this approach, the structure of the control 
unit can be depicted as in Figure 1.6. This structure will be examined in Part Four. 

1.3 WHY STUDY COMPUTER ORGANIZATION . , 
AND ARCHITECTURE? 

ThQ1ELESACM Complier Curricula 200] Iii 1, prepared by the Joint Task 
Force on Computing Curricula of the lEEH (Institute of Electrical and Electronics 
Engineers) Computer Society and ACM (Association for Computing Machinery). 
lists computer architecture ari one of the core subjcet!i that should be in the curricu-
lum {,r all students in computer science and computer engineering. The report says 
the following: 
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The. compuiler lies at the heart or compoling. Without it most or the cornputjng 
disciplines today would be a branch of theorotical mathematics. To be a profes-
sional in any field of computing today. one sli .ould not regard the computo .  as . inst 
a black box That executes programs by magic. All students of computing should 
acq uire some and erstandin and appreciation of a cc.kmptiter s} stern's functional 
eumponents, their charact4:risties :  their perforinanm, and their interactions. 
'Fhere are prnctical implications as well. Students aced tik understand computer 
iirehitecture irk order trk structure a program so that it runs moire efficiently on a 
real machine_ in selecting a system to usu.. Ilicy should is able. to Unilurstand the 
tradeoff aniung various componi nts. such as CPI! .  clock speed vs. ir n  Mice. 

I CLEN1001 givG5 the following examples w reasons for studying computer 
architecture: 

Figure 1-5 The Cendr.ill l'ruc.:c.ssing Unit (CPU) 
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Figure l.6 Conirol Unit 

1. Suppose a graduate enters the inclus..lry and is asked lo select the namt cost-
effective computer for use throughout a large organization. An understanding 
()I' the implications or spending more for various alternatives. such as a largo' 
cache or a higher processor clock rare, is essential to making the deciSion. 

2. Many processors arc not used in PG or servers but in embedded systems, A 
designcr rria:%. ,  program it processor in C that is embedded in some real-time or 
larger system, such as 4i11 intelligent automobile electronics. controller. Debug-
ging the system may require the use of a logic analyzer that displays tic..rela-
tionship between interrupt requests from engine sensors and machine-level code, 

3. Concepts used in computer architecture find application in other courses. In 
particular, the way in which the computer provides architect ural support for 
programming languages and operating system facilities reinforces concepts 
Front those areas. 
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As can he seen by perusing the table of contents of this book, computer orga-
nization and architecture encompasses a broad range of design issues and concepts. 
A good overall understanding of these concepts will he useful both in other areas of 
study and in future work after graduation. 

1.4 OUTLINE OF THE BOOK 

The hook is organized into five parts: 

Part One Provides an overview of computer organization and architecture and 
looks at how computer design has evolved_ 

Part Two: Examines the major components of a computer and their intercon- 
nections, both with each other and the outside world. This part also 
includes a detailed discussion of internal and external memory, and of 
I/O. Finally, the relationship between a computer's architecture and 
the operating system running on that architecture is examined. 

Part Three; Examines the internal architecture and organization of the processor. 
This part begins with an extended discussion or computer arithmetic, 
Then we look at the instruction set architecture_ The remainder of the 
part deals with the structure and function of the processor, including 
a discussion of RISC and superscalar approaches, as well as a detailed 
look at the IA-64 architecture, 

Part Four. Discusses the internal structure of the processor's control unit and the 
use of microprogramming. 

Part Five: Deals with parallel organization, including symmetric multiprocessing 
and clusters_ 

1.3 INTERNEr AND WEB RESOURCES 

There are a number of resources available on the Internet and the Web to support 
this book and to help one keep up with developments in this field. 

Web Sites for This Book 
A special Web page has been set up for this book at WilliarnStallings.comiCOAfie.html. 
See the two-page layout at the beginning of this hook for a detailed description of 
that site. 

An errata list for this book will be maintained at the Web site and updated as 
needed. Please e-mail any errors that you spot to me. Errata .sheets for my other 
books are at WilliamStallings.com . 

/ also maintain the Computer Science Student Resource Site. at 
WilliamStallings.comiStudentSupport,htmh. the purpose of this site is to provide 
documents, information, and useful links for computer science students and profes-
sionals, Links are organized into our categories: 
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• Math: Includes a basic math refresher, a queuing analysis primer. a number 
system primer, and links to useful math Web sites 

• Flow-tu: Advice and guidance for solving homework problems, writing tech-
nical reports. and preparing technical presentations 

• Research resources; Links to important collections of papers, technical reports, 
and bibliographies 

• Miscellaneous: A variety of useful documents and links 

Other Web Sites 

There are numerous Web sites that provide information related la the topics of this 
book. In subsequent chapters. pointers to specific Web sites can be found in the 
"Recommended Reading and Web Sites' section. Because the URLs for Web sites 
tend to change frequently. I have not included these in the book. For all of the Web 
sites listed in the book. the appropriate link can be found at this book's Web site. 
Other links will be added when appropriate. 

,----- The following are Web sites of general interest related to computer orga-
nization and architecture: 

• VielleVi Computer Architecture Home Page; A comprehensive index to infor-
mation relevant to computer architecture researchers, including architecture 
groups and projects, technical organizations, literature, employment, and com-
mercial information 

• CPU Info Center: Information on specific processors, including technical 
papers. product information, and latest announcements 

• ACM Special Interest Group on Computer Architecture: Information on 
SI GA RCH activities and publications 

• IEEE Technical Committee on Computer Architecture: Copies of TCAA 
newsletter 

USENET Newsgroups 

A number of US ✓ NKT newsgroups are devoted to some aspect of computer orga-
nif.ation and architecture. As with virtually all USENET groups, there is a high 
noise to signal ratio, but it is worth experimenting to see if any meet your needs. The 
most relevant are as follows: 

• comp.arch.: A general newsgroup for discussion of computer arch iie.ctui 
Often quite good. 

• comp.arch.arithmetic: Discusses computer arithmetic algorithms and standards. 

• comp.arch.storuge: Discussion ranges from products to technology to practi-
cal usage issues ,  

• cump.parallcl: Discusses parallel computers and applications. 
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KEY POINTS. 

♦ The evolution of computers has been characterized by increasing processor 
speed, decreasing component size, increasin2.memory . size, and increasing 
capacity and speed. 

• One factor responsible for the great increase in proc-c.squi -  speed is the shrink-
ing size of microprocessor components; this re•duces the distance between 
components and hence increases speed. However. the true gains in speed in 
recent years have come from the organization of the proeessor, including 
heavy use of pipelining and parallel execution techniques and the use of spec-
ulative execution techniques, which results in the tentative execution of future 
instructions that ruight he needed. All of these techniques arc designed to 
keep the processor busy as much of the time as possible. 

• A critical issue. in Computer system design is balancing the performance of the 
various elements. so that gains in pernIrmance in one area arc not handi-
capped by a lag in other areas, In particular, processor speed has increased 
more rapidly than memory access time. A variety of techniques is used to com-
pensate for this mismatch, including caches. wider data paths from memory to 
processor, zind more intelligent memory chips. 

Wc begin our study of computers with a brief history. This history is itself 
• ,  interesting and also serves the purpose of providing an overview of corn-

puter structure and function. Next, we address the issue of performance, 
A consideration of the need for balanced utilization or computer resources provides 
a context that is useful throughout the hook. Finally, we look briefly at the evolu-
tion of the two systems that serve as key examples throughout the book: Pentium 
and Power PC, 

2.1 A BRIEF HISTORY OF COMPUTERS 

The First Generation: Vacuum Tubes 
ENIAC 

The ENIAC (Electronic Numerical Integrator And Computer), designed by 
and constructed under the supervision of John Mauchly and John Presper Eckert 
at the University Of Pennsylvania, was the world's first general-purpose electronic 
digital computer. 

The project was a response to U.S. wartime needs during World War 11. The 
Army's Ballistics Research Laboratory (BRL), an agency responsible for develop-
ing range and trajectory tables for new weapons, was haying difficulty supplying 
these tables accurately and within a reasonable time frame. Without these firing 
tables, the new weapons and artillery were useless to gunners. The [IL employed 



2.1 / A BRIPI HIS OF COMPUTERS 17 

more than 200 people who, using desktop calculators, solved the necessary ballistics 
equations. Preparation of the tables for a single weapon would take one person 
many hours, even days. 

Mauch a professor of electrical engineering at the[!niversity of Pennsyl-
vania, and Eckert, one of his graduate students, proposed to build a general-purpose 
computer using vacuum tubes for the 13111.. - s application. In 1943, the Army 
accepted this proposal, and work began on the ENIAC, The resulting machine was 
enormous, weighing 30 tons, occupying 1500 square feet of floor space, and con-
taining more than 18.000 vacuum tubes_ When operating, it consumed 140 kilowatts 
of power. It was also substantially faster than any electromechanical computer, 
being capable of 5000 additions per second. 

The ENIAC was a decimal rather than a binary machine. That is. numbers 
were represented in decimal form and arithmetic was performed in the decimal 
system. Its memory consisted or 20 "accumulators. -  each capable of holding a 10-digit 
decimal number. A ring of 10 vacuum tubes represented each digit. At any time, 
only one vacuum tube was in the ON slate, representing one of the 10 digiEs. The 
major drawback of the ENIAC was that it had to he programmed manually by set-
ting switches and plugging and unplugging cables. 

The ENIAC was completed in 1946, too late to he used in the war effort, 
Instead. its first task was to perform a series of complex calculations that were used 
to help determine the feasibility of the hydrogen bomb. The use of the ENIAC for 
a purpose other than that for which it was built demonstrated its general-purpose 
nature. The EN1AC continued to operate under BRL management until I 955, when 
it was disassembled. 

The von Neumann Malithium 
The task of entering and altering programs fur the EN lAC was extremely 

tedious. The programming process could be facilitated if the program could be rep-
resented in a form suitable for storing in memory alongside the data Then. a com-
puter could get its instructions by reading them from memory, and a program could 
be set or altered by setting the values of a portion of memory. 

This idea, known as the wored-prognan concept, is usually attributed to the 
ENIAC designers. most notably the mathematician John von Neumann, who was a 
consultant on the ENIAC project, Alan Turing developed the idea at about the 
same time, The first publication of the idea was in a 1945 proposal by von Neumann 
for a new computer, the EDVAC (Electronic Discrete Variable Computer). 

In 1946. von Neumann and his colleagues began the design of a new stored-
program computer, referred to as the lAS computer, at the Princeton Institute for 
Advanced Studies. The 1.AS computer. although not completed until 1952. is the 
prototype of all subsequent general-purpose computers. 

Figure 2.1 shows the general structure of the lAS computer. It consists of the 
following: 

• A main memor!,/, which stores both data and instructions 
• An arithmetic and logic unit (ALU) capable of operating on binary data 
• A control unit, which interprets the instructions in memory and causes them 

to be exeeuled 
▪ Input and output (110) equipment operated by the control unit 
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Figure 2.1 Structure of the I. -XS Computer 

This structure was outlined in von Ncurnann's earlier proposal, 'which k Wort h 
quotiny at this point IVONN431.. 

2.2 First Because the device is primarily a computer, it will have to perform the 
elementary operations of arithmetic most frequently. These arc addition. subtraction, 
multiplication and divisioi . it is therefore reasonable that it should contain specialized 
organs for 061 these operations, 

It must 1 .1, o1.1..R.rved, however, that while this principle as such is probably sound, 
the specific wo.y in which it is realized requires close scrutiny. , . At an rate a 4:cier1'al 
arithmetic:el part of 4111: &vice will probably have to exist .and this constitutes the first 
vecific pan: (.r1- 

2.3 Second: The logical control of the device. that is, the proper sequencing of 
its operations. can he most efficiently carried out by a central control organ. if the 
device is to be elastic, that is. as nearly .  as possible eel.? peapose, then a distinction must 
he made between the specific instructions given for and defining a particular T -prob-
tem, and the genefal control organs which see to it that these instructions—no mat-
ter what they are—are carried out. Tilt Cornier i-rsusl he stored in some way., the latter 
arc represented by definite operating parts o[ the dcvico, Ft the cemtral control we 
mean this latter function  and the organs which perform it form the second spe-
cific part: CC. 

2.4 'Third: Any due ice which is to carry out long and complicated sequences of 
operations (specifically of calculations) must have a con iderahlc memory . 

(11) The instructions which govern a complicated problem may constitute con-
siderable material- particularly so, if the code is circumstantial (which it is in most 
arrarigemcnt9, This inaledal must he remembered 

At any rate :  the total memory constitutes the third .specifiC pan of the device: M. 
2,6111.4...three specific part s CA. CC (together (), and NI correspond to the fr.v.so-

ciative neurons in the 'h uman nervous system. It remains to discuss the equivalents of 
the sensory or afferent and the. ?no.ror or elfr.rent nctuxons. These arc the input and ow. 
pea organs rrf the device ... 
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The device must be endowed with the al -a  v 10 maintain input and output (sen-
sory and motor) contact with some specific medium of this type. The medium will he 
called the outsides mytreling median of the dm is o:  , 

2.7 Fourth: The device must have organs to transfer ... information from R. into 
its specific parts C and M. These organs form its input', the Pro.rth specific part: L It will 
be seen that it is best to make all transfers from R (.h t  into M and never directly 
from C 

2,8 Fifth: The device must have organs to transfer ream its specific parts (.• and 
M into R. These organs form its ortipar, the fifth specific part.: O. It will In. seta, that it 
is again hest to make all transfers from M (by 0) into R. and never directly from C. 

With rare exceptions, all of today's computers have this same general struc-
ture and function and are thus referred to as von Neumann machines. Thus, it is 
worthwhile at this point to describe briefly the operation of the !AS computer 
[BCRIc-Itii. Following [HAYE.98I_ the terminology and notation of von Neumann 
arc changed in the following to conform more closely lo modern usage the exam-
ples and illustrations accompanying this discussion are based on that latter text. 

The mem ory of the lAS consists of 11 UU.1 storage locations, called t.wrds, of 40 
binary digits (bits) each. Both data and instructions are stored there. Hence, num- 
bers must be represented in binary form, and each instruction also has to be. a binary 
code. Figure 2.2 illustrates these formats_ Hach number is represented by a sign hit 
and a 39-bit value. A word may also contain two 20- 1-tit instructions, with each 
instruction consisting of an s-hit operation code (opcode) specifying the operation 
to he performed and a 12-hit address designating one of the words in memory (num-
bered from 0 to 949. 

The control unit operates the I AS by fetching instructions from memory and 
executing them one at a time. Fo explain this. a more detailed structure diagram is 
needed, as indicated in Figure 2.3. This figure reveals that both the control unit and 
the ALU contain storage locations, called registers, defined as follows: 

Left instruction Hilts instruction 

Opoude Address )pc ode Address 

(b) instruction word 

Figure 2.2 lAS Memory Format s  
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Arithmetic-logic unit (ALL) 

Program control unit (ALL) 

Figure 2.3 Expanded Structure of IAS Computer 

• Memory buffer register (MDR): Contains a word to he. stored in memc.)ry. ar 
is used to receive a word from memory. 

• Memory address register (MAR): Specifies the address in memory of the word 
to be written from or read into the NIBR. 

• Instrudion register (IR): Contains the 8-hit op-code instruction being executed. 
• Instruction buffer register (lBR): Employed acs hold temporarily the right-

hand instruction from a word in memory. 
• Program Counter (PC): Contains the address of the next instruction-pair to be 

fetched from memory. 
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■ Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-
porarily operands and results of AU! operations. For example. the result of 
multiplying two 40-hit numbers is an 80-hit number the must significant 40 hits 
are stored in the AC and the least significant in the MQ. 

The IAS operates by repetitively performing an instruction cycle, as shown in 
Figure 2.4. Each instruction cycle conskis of two subcycles. During. the fetch cycic, 
the opcode of the next instruction is loaded inio the IR and the address portion 
is loaded into the. MAR. This instruction may be taken from the 1BR, or it can 
be obtained from memory by loading 41 word into the MDR. and then down to the 1BR, 
I R, and MAR. 

start  )) 

No memory 
access 
required 

Is nod 
instruction 

in IBR? 

IR 4-- IBR (0:7) 
MAR 4.— IBR (F1:19) 

Lett No Yes 
instruction 

t uired? 

1BR <— MBR (20:39) 
1K e- MBR (0:7) 
MAR MBR (E4:19) 

Fetch 
cycle 

AC f M(X) 

Execution 
cycle 

Decode instruction in IR 

If AC 0 then AC 4— AC + M(X) 
go to M(X, 0:19) 

IS AC ) 0? 

Co to M(X, 0:19) 

MBR <— M(MARi 

MBR M(MAR) I I  PC 4-- MAR I 

AC <-11.4BR 

M(X) = contents of memory location whose address is X 
(X = bits X through 

Figure 2.4 Partial Flowchart of lAS Operation 

MBR (MAR) 

Ls,.0 4- AC + MBE 
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Why the indirection? Those operations are controlled by electronic circuitry 
and result in the use of data paths. To simplify the electronics, there is only one reg-
ister that is used to specify the address in memory for a read or write, and only one 
register to be used for the source or destination_ 

Once the opcode is in the IR, the ex•cure cycle is performed_ Control circuitry 
interprets the opcode and executes the instruction by sending out the appropriate con-
trol signals to cause data to be moved or an operation to be performed by the ALU. 

The lAS computer had a total of 21 instructions, which are listed in Table 2.1. 
These can be grouped as follows: 

• Data transfer: Move data between memory and ALL1 registers or between Iwo 
ALE: registers. 

• Unconditional branch: Normally, the control unit executes instructions in se-
quence from memory. This sequence can be changed by a branch instruction. 
This facilitates repetitive operations. 

• Conditional branch: 'Fhe branch can be made dependent on a condition. thus 
allowing decision points. 

• Arithmetic: Operations performed by the ALU. 

• Address modify: Permits addresses to be computed in the ALL' and then 
inserted into instructions stored in memory. 'F'his allows a program consider-
able addressing flexibility. 

Table 2,1 presents instructions in a symbolic, easy-to-read form. Actually, each 
instruction must conform to the format of Figure 2.2b. The opcode portion (first 
8 bits) specifies which of the 21 instructions is Lo he executed. The address portion 
(remaining 12 bits) specifies which of the 11.M.14.1 memory locations is to be involved 
in the. execution of the instruction. 

Figure 2.4 shows several examples of instruction execution by the control unit. 
Note that each operation requires several steps. Some or these. arc quite elaborate. 
The multiplication operation requires 39 suboperations, one for each bit position 
except that of the sign bit! 

Commercial Cons puters 

The 1950s saw the birth of the computer industry with two companies, Sperry 
and IBM, dominating the marketplace. 

In 1947. Eckert and Mauchly formed the Eckert-Mauchly Computer Corpo-
ration to manufacture computers commercially. Their first successful machine was 
the UNIVAC I (Universal Automatic Computer), which was commissioned by the 
Bureau of the Census for the 1.950 calculations. The Eckert-Mauchly Computer Cor-
poration became part of the UNIVAC division of Sperry-Rand Corporation, which 
went on to build a series of successor machines. 

'Die UNIVAC I was the first successful commercial computer. It was intended :  
as the name implies, for both scientific and commercial applications. The first paper 
describing the system listed matrix algebraic computations. statistical problems, 
premium billings for a life insurance company, and logistical problems as a sample 
of the tasks it could perform. 
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Table 2.1 the I AS losiruction ScL 

Instruction 
7

.1,11e Opcode 

Symbolic 

Representation Description 

DErta transfer 00001010 LOAD VIO . fra usfer contents register MO to 
the accumulator AC 

04001001 LOAD MO.M X) l'ratisler contents of fn.eMOky lot:11'60n 
X CO MO 

001 4111)t1 STDR MiX .) libra:lifer mill En LS Ili elixir Llluk tor C O 
Tn.:mew!: lomitjon X 

I MINK11:01 LOAD KT(X) Tranhcr r‘.1{ X) 145 I ho zieetirmi1m1or 
1:00:1(I1.)10 LOAD M(X} Transfer - M(X Li} LhL accurnLIIntor 

IKAXIOI/11 LOAD NUN)! TTaa}..1C1 4'.- 111AC!' 01 ;WM to 
the au:LnntilE11.(ir 

CIODOO t Of) LOAD • I M(X)1 TIonsfer —I47(X) to the :iccumulalui 

Unconditional 
branch 

(1 )]01101 JL 1 MP MPC,11:191 THk ncNI insirlieriOn from left halt of 
KIVX) 

01X100 i 10 ..1 1..1 1,,I13  M(X.20:39) Take next irISITUCLICIa ream rig1-11 half of 
!irl( X) 

Conditional 
branch 

1)0001111 31..:MP+M(X.02191 11 ninnber m ihc: necumillMor is 
nOnriuFaiive, inSCuocii on 
frorn left half 01 MIX )  

1-)00i0r.i.10 N•20:119) 11 r in I hc aLLLI nh nhiI oris 

aunn Livc. Lake nix I insl ruction 

Cron, righi. half 1.) 

.Arithme tic 00000101 ADD M(X) Add M(X1 to A (:; put the remit in AC 
01)001)11 / ADD '11(X)1 Add IM(X)1 10 AC; pi.v 1 he result in AC 
OfX1(JR1 51( } subtrkirt m(x) rivn, AC; put the re41.1.11 

in AC 
(01:)01.01)0' Si R IM( X) SuhLrael. frorEi AC: TruL ih: 

miniinder la AC 
40041(}1 I MU]_ Multiply M{X1 by MO: put inosi 

significant hitE of result in AC. put 
icant bib., in .M.Q 

(IOW' LOL) DJV MIX) 1)i %dile hy M(X):: put 1.11i rollout 
in ",...1() ;111c1 the ra.maihder ill AC 

00411i)(01./ LSH ?v]al iply dEcumul Dior l)?.. 
2 
 0.0.. Shift 

!ell. One hil !Imo on1 
0001.1111)1 KSI-E Diuidc ..112CLI TUIFacIT by 2 fj.C%, stLiI 

rich( one position) 

Alkiresr.. modify' 1)0010(110 STDR trli.X.5:19) Retched Icr1 L0dre.5 field at ?41(X:) hti 
ri eh i-rnoNt hots of AC 

000/01)1 I STOR M(X,2EI:119) Replace right addrccs i kI 4tC M(H) by 
[2 right-m(1EL bias arAC 

The UNIVAC II, which had greater memori, ,  capacity and higher TX!rfOrrilaitCC, 

than the UNIVAC I, was delivered in the laic 1950s and illustrates several trends 
that have rornainc.d characcetistic of the computer indumry_  adviuices in tech-
nology allow Companies 1[3 conlnn1.1 to build larger, more powerful compu ters. Sec-
ond_ each company tries to make its new machines upward compatible with the older 
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machines. This means that the programs written for the older machines can be exe-
cuted on the new machine. This strategy is adopted in the hopes of retaining the 
customer base: that is, when a customer decides to buy a newer machine, he or she 
is likely to get it from the same company to avoid losing the investment in programs. 

'Ile UNIVAC division also began devclopment of the 1100 series of comput-
ers, which was to be its major source of revenue. This series illustrates a distinction 
that existed at one lime. The first model, the UNIVAC 1103, and its successors for 
many years were primarily intended for scientific applications, involving long and 
complex calculations. Other companies concentrated on business applications, 
which involved processing large amounts of text data. This split has largely dis-
appeared, but it was evident for a number of years. 

IBM, which was then the major manufacturer of punched-card processing 
equipment, delivered its first electronic stored-program computer, the 701, in 1953. 
The 701 was intended primarily for scientific applications IBAS11811. In 1955, 
1BM introduced the companion 702 product, which had a number of hardware fea-
tures that suited it to business applications. These were the film of a long series of 
70017000 computers that established I HM as the overwhelmingly dominant com-
puter manufacturer, 

The Second Generation: Transistors 
The first major change in the electronic computer came with the replacement of the 
vacuum tube by the transistor, The transistor is smaller, cheaper. and dissipates less 
heat than a vacuum tube but can be used in the same way as a vacuum tube to con- 
struct computers, Unlike the vacuum tube, which requires wires. metal plates, a 
glass capsule, and a vacuum, the transistor is a solid-ware device, made from silicon. 

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched 
an electronic revolution. It was not until the late 1950s, however, that fully transisto- 
rized computers were commercially available. IBM again was not the first company 
to deliver the new technology, NCR and, more successfully, RCA were the front-run- 
ners with some small transistor machines. IBM followed shortly with the 7000 series. 

use of the transistor defines the second Toleration of computers. It has become 
widely accepted to classify computers into generations based on the fundamental hard- 
ware, technology employed (Table 2,2), Each new generation is characterized by greater 
processing performance, larger memory capacity, and smaller size than the previous one. 

TOW 2.2 Computer Generations 

Approximate 
Generation Dates Tedmology 

'typical Speed 
(operations per second) 

    

4 

S 

1946-1957 Vacuum tube 
Transi&t.or 

1 1.1.65-1971 Small- and 
mediunt-scale 
integration 

1972 .1417 L.arge-geale 
intxparion 

1975- Very-large-si:ale 
integration 

40,000 
200.000 

1 ; (11:41,000 

1t1,000,000 

100.004000 
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But there arc other changes as well. The second generation saw the introduc-
tion of more complex arithmetic and logic units and control units. the use of high-level 
programming languages, and the provision of system sofiware with the computer. 

The second generation is noteworthy also for the appearance of the Digital 
Equipment Corporation (DEC). DEC was founded in 1957 and in that year, deliv-
ered its first computer, the PDP-1. This computer and this company began the mini-
computer phenomenon that would become so prominent in the third generation. 

The IBM 7094 
From the introduction of the 700 series in 1952 to the introduction of the last 

member of the 7000 series in 1964, this IBM product line underwent an evolution 
that is typical of computer products. Successive members of the product line show 
increased performance. increased capacity. andior lower cost. 

Table 2.3 illustrates this trend. The size of main memory. in multiples of 2 1 " 
36-bit words, grew from 2K (l K = 2 ') to 32K words, while the time to access one 
word of memory the memory cycle time, fell from 30 is to 1.4 1,1.s. The number of 
opcodes grew from a modest 24 to L5. 

The final column indicates the relative execution speed of the central pro-
cessing unit (CPU). Speed improvements are achieved by improved electronics 
(e.g., a transistor implementation is faster than a vacuum tube implementation) and 
more complex circuitry. For,example, the IBM 7094 includes an lnstruetion Backup 
Register, used to buffer the next instruction. The control unit fetches two adjacent 
words from memory for an instruction fetch. Except for the occurrence of a branch-
ing instruction, which is typically infrequent, this means that the control unit has to 
access memory for an instruction on only half the instruction cycles. This prefetch-
ing significantly reduces the average instruction cycle lime. 

The remainder of the columns of Table 2.3 will become. clear as the text proceeds. 
Figure 2.5 shows a large (many peripherals) configuration for an IBM 7094. 

which is representative of second-generation computers IBELL71a]. Several dif-
ferences from the 1AS computer are worth noting. The most important of these is 
the use of data channels. A data channel is an independent I/O module with its own 
processor and its own instruction set. In a computer system with such devices, the 
C.PU does not execute detailed I/O instructions. Such instructions are stored in a 
main memory to be executed by a special-purpose processor in the data channel 
itself. The CPU initiates an I/O transfer by sending a control signal to the data 
channel. instructing it to execute a sequence of instructions in memory. The data 
channel performs its task independently of the CPU and signals the CPU when the 
operation is complete. This arrangement relieves the CPU of a considerable pro-
cessing burden. 

Another new feature is the multiplexor, which is the central termination point 
for data channels, the 03 1._, and memory. The multiplexor schedules access to the 
memory From the CPU and data channels, allowing these devices to act independently. 

The Third Generation: Integrated Circuits 

A single. self-contained transistor is called a discrete componem. Throughout the 
1950s and early 1960s, electronic equipment was composed hugely of discrete com- 
ponents—transistors, resistors, capacitors. and so on. Discrete components were 
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Figure 15 An 7094 Configuration 

manufactured scparaicly, p4icloged in their own conlainen ,.. and soldered or wired 
together onto 1113Sonite-like circuit boards, which were then installed in computers, 
oscilloscopes. and other electronic equipment. Whenever an electronic device called 
fora transistor, a Little tube of medal containing a pinhead-sized piece of silicon had 
to be soldered to a circuit hoard. The entire mlinufactuting process. from transistor 
to circuit board, was expensive and cumbersome. 

.1 1.ese facts of life were beginning to create problems in the computer industry. 
Early second-gcncra Lion comptilers con Lammed about 10.000 lransislors. This figure 
grew to the hundreds of thousands, making the inanufacture of ncwur,litirrc power-
ful machines increasingly difficult. 

In 145K came ibe achievement [hat revolutionized eloetronics and started the 
era of microelectronics: the inveri1ion of the iriwgnited cirQui1. IL is. d,: iniegrated 
circuit that defines the third generation of computers. In this section we provide a 
brief introduction to the technology of integrated circuits. Then we look at perhaps 
the two most importni members of the I hird genera Lion. both cif which wcre inlro-
duced at the beginning of that era; the IBM System/360 and the DEC PDP-8. 

MierOel ectrouies 

Microelectronics means, Literally, "small electronics." Since the beginnings of 
electronics and the computer industry, there has been a persistent and con- 

sistent trend ii)wurLI Ilic reduction in size of digital electronic. circuits. Bc[orc exkirn- 



28 CHAP .  TER 2 / C..011/41.PUTER EVOLUTION AND PERFORMANCE 

ining the implications and benefits of this trend, we need to say something about the 
nature of digital electronics, A more detailed discussion is found in Appendix A. 

The basic elements of a digital computer, as we know, must perform. storage: 
rin-avement, processing_ and control functions. Only two rundameni al types of com-
ponents are required (FiRure 2.6): gates and memory eel's. A gate is a device that 
implements a simple 'Boolean or logical function. such as IF A AND B ARE TRUE 
'TI FEN C IS TRUE (AN I) gate}. Such devices are called gales because they control 
data [low in much the same way that canal gates do. The memory cell is a device 
that can store one hit of data:. that is. the device can be in one of two stable states al, 
any time. By interconnecting large numbers of these fundamental devices, we ciin 
construe' a computer. We can relate this to our four basic functions as follows: 

• Data storage: Provided by memory cells, 

• Data processing: Provided by gates, 
• Data movement: The paths between componvnis are used to move data from 

memory to memory and from memory through gates to memory. 
■ Control; The paths between components can carry control signals_ rim exam-

ple, a gate will have one or two data inputs plus a control signal input that acti-
vates the. gate. When the control signal is ON, the gate performs its function 
on the data inputs and produces a data output, Similarly, the memory cell 
will store the bit that is on its input lead when the WRITE control signal is ON 
and will place the bit that is in the cell on Ifs output lead when the READ .  con-
in)! signal is ON 

Thus, a computer consists of gates, memory cells, and interconnections among 
these elements. The gates and memory cells are. in turn, constructed of simple dig-
ital electronic components, 

The integrated circuit exploits the fact iliaL such components am transiswrs, 
resistors, and conductors can he fabricated froin a semiconductor such as silicon. 
It is merely an extension of the solid-state art to fabricate an entire circuit in a 

line piece of silicon rather than assemble discrete eomponenLs made from separate 
pieces of silicon into the:Name circuit. Many transistors can be produced at the mime 
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Figure 2.6 Ikuliii-intental Computer Elements 
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Figure 2.7 ReIntiorisltip between Wafer, Chip, and Oate 

Rink on a single wafer of silicon. Equally important, these transistors can be con-
necti2d with a process of meiallization to form circuits, 

Figure 2.7 depicts the key uoneepts in nn inteunted circuit. A thin ivafer of sil-
icon is divided into a matrix of small areas, each a few millimeters square. The iden-
Lica' circuit pattern i6 fabricated in each area, and the wafer is broken up into claps. 
Each chip consi.qs of many gates rind or memory cells plus a number of input and 
output attachment points. This chip k then packaged in housing that protects it 
and provides pins for attachment to devices beyond the chip. A number of these 
packages can then he interconnecied on a printed circuit board to produce larger 
and more complex circuits. 

Initially, only a few . ates or memory cells could be reliably manufactured and 
pact aged together. These early integrated circuits are referred to as small-scale inte-
gration (SSi). As time went on, it became po7,.si ble to pack more nand more compo-
nents on the same chip. This growth in density is illustrated in Figure 2.8: it is ore 
of the most remarkable technological trends ever recorded. This figure reflects the 
famo us NI core's law, which propounded by (Jordon Moore, cofounder of 
in 1%5 IN,1 00R65j. Moore observed that the ntrrnber of trAnsiiitors that could he 
put on a single chip was doubling every year and correctly predicted that this pace 
would con tin ue into the near future. To the surprise of many, including Moore, 
the pace continued ycar after War mid decade 11 -1 r decade. The pace siowod to to 
doubling every 18 months in the 19711s. but sustained that rate ever since. 
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The consequences of Moore's law are profound: 

1. The cosi ()I' a chip has remained virtually unchanged during this period of rapid 
growth in density. This means that the cosi of computer logic and memory 
circuitry has fallen at a dramatic rate, 

2, Because logic and memory elements are placed closer together on more 
densely packed chips, the electrical path  is shortened, increasing oper-
ating speed. 

3. The computer becomeS smaller, making it more convenient to place in a vari-
ety of environments. 

4. There is a reduction in power and cooling requirements. 
5. The interconnections on the integrated circuit are much more reliable than 

solder connections. With more circuitry on each chip, there are fewer inter-
chip connections. 

1B A[ System/360 
Hy 1964, I f3 M had a firm grip on the computer market with its MOO series of 

machines. In that year. IBM announced the Systen060. a new family of computer 
products, Although the announcement itself was no surprise, it contained some 
unpleasant news for current IBM customers: The 360 product line was incompat- 
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Table 2.4 Key Characteristics of the Systerni360 Family 

Characteristic Model 30 Model 4(1 Model 50 Model 65 Model 75 

Maximum mummy sizq. (bytes) 64K 256K 256K 5121; 512K 
Data rate from memory 0.5 0.8 2.0 8.0 16.0 

(Mbyte.vs) 
Processor cycle Lime (i.Ls) 1.11 0.625 0, 5  0.25 0.2 
Relative speed 1 :3.5 10 21 .50 
Maximum number of data charmds 3 3 4 6 6 
Maxi MUM data rate  in uric channel 250 4110 )i00 1 2.5t) 1250 

(Khytesis) 

ible with older IBM machines. Thus, the transition to the 360 would be difficult for 
the current customer base. This was a bold step by IBM, but one IBM felt was nec-
essary to break out of sonic of the constraints of the 7000 architecture and to pro-
duce a system capable of evolving with the new integrated circuit technology 
[PADE8I, GIFTS?]. The strategy paid off both financially and technically, The 
360 was the success of the decade and cemented IBM as the overwhelmingly dom-
inant computer vendor, with a market share above 70%. And, with some modifica-
tions and extensions, the architecture of the 360 remains to this day the architecture 
Of IBM's mainframe' computers, Examples using this architecture can be found 
throughout this text. 

The System1360 was the industry's first planned family of computers. The 
family covered a wide range of performance and cost. Table 2.4 indicates some of 
the key characteristics of the various models in 1965 (each member of the family is 
distinguished by a model number). The models were compatible in the sense that 
a program written for one model should be capable of being executed by another 
model in the series. with only a difference in the lime it takes to execute. 

the concept of a family of compatible computers was both novel arid ex-
tremely successful. A customer with modest requirements and a budget to match 
could start with the relatively inexpensive Model 30. Later, if the customer's needs 
grew, it was possible to upgrade to a faster machine with more memory without 
sacrificing the investment in already-developed software. The characteristics of a 
family are as follows: 

o Similar or identical instruction set: In many cases, the exact same set of 
machine instructions is supported on all members of the family. Thus, a pro-
pram that executes on one machine will also execute on any other. in some 
cases, the lower end of the family has an instruction set that is a subset of 
that of the top end of the family. This means that programs can move up but 
not down, 

'The term mainframe is ti.scd for the. lareer, most powerful computers other than supercomptirers. 
Typical characteristics of a mainframe are that it supports a large database, has elaborate 110 hardware. 
and is used in a cuniral data processing 
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• Mintier or identical operating system: The same basic oparating system is avail-
able for al] family members. In some cases, additional features are added lo 
the higher-end members. 

• Increasing speed: The rate of instruei ion execution increases in going from 
lower to higher family members. 

• Increasing number of 110 ports: In going from lover to higher family members. 

• Increasing memory size; In going from lower to higher family members. 

• increasing cos: In going . from lower to higher family members. 

How could such a family concept be implemented? Differences were achieved 
based on three factors: basic speed, sire, and degree of simultaneity [STEV64]. For 
example, greater speed in the execution of a given in7iiruction could be gained by 
the  of more complex circuitry in the AT  allowing suboperations io be carried 
out in parallel. Another way of increasing speed was to increase the width of the 
data path between main memory and the. CPU. On. the Model 30, only 1 byte (8 bits) 
could be fetched from main memory al a time, whereas 8 bytes could be fetched 
at a time on the. Model 70. 

The Systent1360 not only dictated the future course of IBM but also had a 
profound impel on the entire industry. Many of its features have become standard 
on other large computers. 

DEC PUP-8 

in the same year that IBM shipped its first Systerni.;60, another momcnious 
first shipment occurred: PDP- from Digital Equipment Corporation (DEC). At 
a time when the average computer required an air-conditioned room, the PDP-8 
(dubbed a minicomputer by the industry, after the miniskirt of the day) WRS small 
enough Ihat it could be. placed on top of a lab bench or be built into other equip-
ment. It could not do everything the mainframe could. but at $1 ,0,000. it was cheap 
enough for each lab technician to have one. In contrasl. the System/360 series of 
mainframe computers introduced just a Lew months before cost hundreds of thou-
sands of dollars. 

The [ow cost and small size of the PDP-8 enabled another manufacturer 
to purchase a PDP-K and integrate it into a total system fur resale. These other 
manufacturers came to be known as original equipment manufacturers OEMs), 
and the OEM market became and remains a major segmenl or the computer 
marketplace. 

The FDP-8 was an immediate hit and made [)HC 's fortune. This machine and 
other members of the PDP-8 family that followed it (see Table 2.5) achieved a pro-
duction status formerly reserved for IRM computers, with about 50,060 machines 
sold over the next dozen years, As DEC"s official history puts it, the PDP-8 "estah-
iished the concept of minicomputers, leading the way to a multibillion dollar indus-
LTV,' It also established DEC as the number one minicomputer vendor. and, by the 
time the PDP-8 had reached the end of its useful life, DEC was the number two 
computer manufacturer, behind IBM. 
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In c.0111TaS1 to the central-switched architecture (Figure 2.3) ivied by IBM on 
its 700/7000 and 360 gystems, later models of [he MP-8 used a structure that is [low 
virtually universal for minicomputers and microcomputers: [lie bus structure, This 
is illustrated in Figure 2,9- The PDP-R bus, called the. Omnibus, consists of 96 sepa-
rate sigma[ paths. used to carry control, address, and data signals. BeckLIJSC all system 
components share a common set ot` i.2 ..rta[ pal hs, [heir use must be controlled by the 
CPU. This architecture is highly flexible., allowing modules to he plugged into [he bus 
to crea I e various contigura lions, 

Later Generations 

Beyond I he third generation there is less general agrE.crnent on defining generations 
of computers. Table 2,2 suggests that then: have been Li fourth and a fifth aenend-
1 i on, based on advances in integraled circuit technology. With the introduction of 
large'-scale integration (LSO. more than lOW components can he placed on ,LJ  single 
integrated circuil chip, Very-Earge-scale integration (VLSI) achieved more than 
/0,000 components per chip, and current VLSI chips can contain more than 100,00 
components. 
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With the rapid pace of technology, the high rate of introduction of new prod-
ucts. and the importance of software and communications as well as hardware. the 
classification by generation becomes less clear and less meaningful. It could be said 
that the commercial application of new developments resulted in a major change 
in the early .1970s and that the results of these changes are still being worked out. In 
this section, we mention two of the most important of these results. 

Semiconductor Memory 
Thc first application of integrated circuit technology to computers was eon-

struction of the processor (the control unit and the arithmetic and logic unit) out of 
integrated circuit chips. But it was also found that this same technology could be 
used to construct memories, 

in the 1950s and 1.960s, most computer memory was constructed from tiny 
rings of ferrom welie material. each about a sixteenth of an inch in diameter. These 
rings were strung up on grids or fine wires suspended on small screens inside the 
computer. Magnetized one way, a ring (called a (.'ore) represented a one: magnetized 
the other way, it stood for a zero. Magnetic-core memory was rather fast; it took as 
little as a millionth of a second to read a bit stored in memory. But it was expensive, 
bulky• and used destructive readout: The simple act of reading a core erased the 
data stored in it. It was therefore necessary to install circuits to restore the data as 
soon as it had been extracted. 

Then, in 1970, Fairchild produced the first relatively capacious semiconductor 
memory. This chip, about the sic of a single core. could hold 256 hits of memory. 
It was nondestructive and much faster than core. It took only 70 billionths of a 
second to read a bit. However.. the cost per hit was higher than for that of core. 

In 1974, a seminal event occurred: The price per bit of semiconductor mem-
ory dropped below the price per bit of core memory. Following this, there has 
been a continuing and rapid decline in memory cost accompanied by a correspond-
ing increase in physical memory density. This has led the way to smaller, faster 
machines with mentor.; sizes of larger and more expensive machines with a time lag 
of just a few years. Developments in memory technology, together with develop-
ments in processor technology to be discussed next. changed the nature of com-
puters in less than a decade. Although bulky, expensive computers remain a part of 
the landscape, the computer has also been brought out to the "end user," with office 
machines and personal computers, 

Since 1970, semiconductor memory has been through 11 generations: 1K, 4K, 
16K. MK, 256K, 1M, 4M, 16M, ►4M, 256M, and. as of this writing, 1 CT bits on a sin-
gle chip (.1K = 2 1 ". 1 M =  10 = 2n. Each generation has provided four times 
the storage density of the previous generation, accompanied by declining cost per 
hit and declining access time. 

Microprocessors 
Just as the density of elements on memory chips has continued to rise, so 

has the density of elements on processor chips. As time went on, more and more 
elements were placed on each chip. so  that fewer and fewer chips were needed to 
construct a single computer processor. 
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A breakthrough was achieved in 1971, when Intel developed its 4004. Ihe 4004 
was the first chip to contain all of the components of a CPU on a single chip: The 
microprocessor was born. 

The 4004 can add two 4-bit numbers and can multiply only by repeated addi-
tion. By today - s standards, (he 4004 is hopelessly primitive, but it marked the begin-
ning of a continuing evolution of microprocessor capability and power. 

This evolution can be seen most easily in the number of bits that the proces-
sor deals with at a time. There is no clear-cut measure of this, but perhaps the best 
measure is the data bus width: the number of bits of data that can be brought into 
or sent out of the processor at a time. Another measure is (he number of bits in the 
accumulator or in the set of general-purpose registers. Often, these measures coin-
cide, but not always. For example, a number of microprocessors were developed that 
operate on 16-bit numbers in registers but can only read and write 8 bits at a time. 

The next major step in the evolution of the microprocessor was the introduc-
tion in 1972 of the Intel 8008. This was the first 8-hit microprocessor and was almost 
twice as complex as the 404. 

Neither of these steps was to have the impact of the next major event: the 
introduction in 1974 of the Intel 8080. This was the first general-purpose micro-
processor. Whereas the 4004 and the 8008 had been designed for specific applica-
tions, the 8080 was designed to be the CPU of a general-purpose• microcomputer. 
Like the 8008, the 8080 is an 8-bit microprocessor. The 8080, however, is faster, has 
a richer instruction set. and has a large addressing capability. 

About the same li me, 16-bit microprocessors began to he developed, How-
ever. it was not until the end of the 1970s that powerful, general-purpose 16-bit 
microprocessors appeared. One of these was the 8086. The next step in this trend 
occurred in 1481. when both Bell Labs and I It:Men - Pack ard developed 32 - bit, 
single-chip microprocessors. Intel introduced its own 32-bit °processor, the 
80386, in 1985 (Table. 2.6), 

Table 2.6 Evolution of Intel Microprocessors 

fat 1970s Processors 

4004 8008 
1 

8080 8086 8088 

Introduced 11:15:71. 4102 4:104 OW75 6i4:79 

Clock speeds ltN KHz 108 KHz 
5 MHz, S MHz, 

2 MEI./ LO MHz 5 MHz, 8 MHz 

Bus width 4 hits.  8 bits 8 bits, 16 bits 8 His 

Number 41t.  transistors 
(ibierrins) 

2300 
3500 (10) 

&KID 
(6) 

29.0011 
ci../ 

29 (%10 
{3) 

Addressable memory 640 bytes l b kByLcs 64 K Bytes 1 MB 1 MB 

Virtual memory
— 

— — 
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Clack speeds 

Bus wOlri 

Number 61 
SiOrS(microns. )  
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Virtuill memory 

Pentium III 

r)6:99 

4.5D-660 MHz 

64 bits 

X15 millinn 
(0.19) 

64 14tgul',.01.1L.s 

ii4 terultytes 

Pentium 4 

1.1.:2.01X1 

1.3-1,8-1.31-1z 

64 bits 

42 ru alio a 

64 g .tilabytes 

64 terabytes 

Table 2.6 ',coot lituz4rti) 

111) Milk Processors 

1i02146 386111 DX 386TM SX 486TM DX CPI; 

rothieetl. 211. tit (.1."1 7N5 6:16111g 410189 

Clock speeds 
6 MHz 
12.c MHz' ]6 MHz-33 1 11-17. t6 MHz--33 '241-17. 25 MHz-51) MHz 

rius width 16 hill 32 bits 16 bits 32 114; 

Number of transistors 
( micronsl. 

134,000 
(1.9 

275,000 
{L) 

275,000 
(1-.) 

1.2 rniliigh 

Addressabk incrriory 16 rnetabytes 4 .i.4iti.ikbytes 4 gipbytes 4 .7i p,abytes 

Virtual rinerrsors.. 1 t.6p.abyLe 61 terabytes 64 tcrabyles 64 liz.TH1-):,..Leg 

(el 1991111s PrOM.SuirS 

486TM SX Pentium Pentium Pentium U 

In t rrOuced 412219 . 1 3122;93 1 1.:01195 

Clock spec ds 
14H7.— 

133 MT-1 
430 MI-12.- 
L61110142 

150 MHz-. 
200 MHz 

2011  h1 Hz- 
3(J MHz 

Bus width 32 bits 32 bit5.. 64 bitii 64 bits 

Number of 
transistors (Microns) 

1.1g5 
O.) 

:i.1 rrssllii 5rr 
( A) 

5.5 
(0.6) 

milflic m 
(0.35) 

Addr,7,155.21-11 c merrhiry 4 gi.githylMs 4 gigabys es 64 k6gabyLes 64 '..i gabyt.:;:s 

Virtual memory 64 ',erg- 3.1v 64 terabytes 64 1 eraN. Les Lerakaes 

(id) Recent PmeesSors 
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Year by vear, the cost of computer systems continues to drop dramatically. white 
the performance find capacity of  systems continue to rise equally dramatically. 
Al. 4i 104AI wm -chOUSe club, you can pick up a personal computer for Less than  0f}0 
that packs the wallop of an IBM rmiinfrome from 10 years ay.o. Inside that personal 
computer, including the microprocessor and memory and other chips, you get Ms 
of millions of transistors, You cannot buy [Iii) million of anything else for so little. 
That many sheets ,,r toilet paper would run more than $100,000. 

Thus, ,rve have virtually "free" computer power. And this continuing techno-
logical revolution has enabled the development of applicalions of astounding com-
plexity and poker- 1-err example, desktop 4i pplicw ions that require the great power 
of today's microproce.ssor-based systems include 

• image processing 
• Speech recognition 
• Videoconlereneing 

• Multimedia authorina 
• Voice ;'Ln d video annotation of riles 

• Simulation modeling 

'Workstation systems now support highly .,ophisi ieated engineering and scien-
tific applications, as well as simulation systems, and ha ,.•e the abilit!,. ,  to support image 
and video applications. In addition. businesses are relying on increasingly powerful 
s avers to handle. lransaction and &Lila base processing and to support nmssivc 
clientiserver networks that have replaced the huge mainframe computer centers of 
yesteryear. 

What is fascinating abou I all this from the perspective of computer organiza- 
tion arid architecture is that, on 1hc (me hand. the basic buildin, Mocks for today's 
computer miracles are virtually the same as those of the IAS computer from over 
50 years ago, while on the other hand. the techniques for squeezing the last iota of 
pCrIbrmnce IAA or I tic malt:11211s at hand have become increasingly sophisticated. 

This observai ion serves as. a guiding principle ['or the presentation in this hook. 
As we progress through the various elements and Components of a computer, two 
objeetives are pursued, First, the book explains the fundamental f unetionali y in 
each area under consideration, and .second, the hook explores those techniques 
required to achieve maximum perfortnance. In the remainder of this section, we 
highlight some of the driving factors behind the need to design for performance. 

cropro ces or Speed 
What gives the Pentium or the PowerPC such mind-boggling power is the relenilc.ss 
pursuiI,)r speed by  processor chip manufacturers. 'L'hc evolulion of these niklehi[ICS 
continues to hear out Moores Law. mentioned previously. So long as this law holds, 
chipmakers can unleash a new generation of chips every three years—with four 
times as many transistors. In mcrhory chips. this hum y uadruliled [he capacity if 
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dynamic random-access memory (DRAM), still the basic technology for computer 
main memory. every three years. In microprocessors, the addition of new circuits, 
and the speed boost that comes from reducing the distances between them, has 
improved performance four- or five fold every three years or so since Intel launched 
its x8ti family in 1978, 

But the raw speed of the microprocessor will not achieve its potential unless 
it is fed a constant stream of work to do in the form of computer instructions. Any-
thing that gets in the way of that smooth flow undermines the power of the proces-
sor. Accordingly, while the chipmakers have been busy learning how to fabricate 
chips of greater and greater density, the processor designers must come up with ever 
more elaborate techniques for feeding the monster. Among the techniques built into 
contemporary processors are the following: 

• Branch prediction: The processor looks ahead in the instruction code fetched 
from memory and predicts which branches, or groups of instructions, arc likely 
to be processed next. If the processor guesses right most of the time, it can 
prefetch the correct instructions and buffer them so that the processor is kept 
busy, The more sophisticated examples of this strategy predict not just the next 
branch but multiple branches ahead, Thus, branch prediction increases the 
amount of work available For the processor to execute, 

▪ Data now analysis: The processor analyzes which instructions are dependent 
on each other's results, or data, to create an optimized schedule of instructions, 
In fact, instructions are scheduled to be executed when ready, independent of 
the original program order. This prevents unnecessary delay. 

• Speculative execution: Using branch prediction and dal a flow analysis, some 
processors speculatively execute instructions ahead of their actual appearance 
in the program execution. holding the results in temporary locations. This 
enables the processor to keep its execution engines as busy as possible by exe-
cuting instructions that are likely to be needed. 

I'h csc and other sophisticated techniques are made necessary by the sheer power 
Of the processor. They make it possible to exploit the raw speed of the processor. 

Performance Balance 
While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance 
balance: an adjusting of the organization and archil eel ore to compensate for the 
mismatch among the capabilities of the various components, 

Nowhere is the problem created by such mismatches more critical than in the 
interface between processor and main memory: Consider the history depicted in 
Figure 2. ID. While processor speed and memory capacity have grown rapidly. the 
speed with whieh data can be transferred between main memory and the processor 
has lagged badly. The interface between processor and main memory is the most 
crucial pathway in the entire computer, because it is responsible for carrying a con-
stant flow of program instructions and data between memory chips and the proces-
sor. If memory or the pathway (ails to keep pace with the processor's insistent 
demands. the processor stalls in a wait state, and valuable processing time is lost. 
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Figure 2.10 Evolution of DRAM and Processor Characteristics 

The effects of these trends are shown vividly in Figure 2.11. The amount of 
main memory TIC.C.6.:(1 is going up, hill DRAM density is going up faster. The net 
result is that :  on average, the number of DRA rs,..k per system is going down. The 
solid black lines in the figure show that, for a fixed-size rnemort ,, the number of 
DRAMs needed is declining. But this has an effect on transfer rates, because with 
fewer DRAMs, there is less opporlunily for parallel transfer of data, The shaded 
hands show that for It particular type of system, main memory si;5e has slowly in-
creased while the number of DRAMs has declined. 

There are a number of ways that a system architect can attack this problem, 
all of which are reflected. in con L'orri poniry computer de signs. Examples include 
the following: 

• Increase the number 411' hit Lhai are retrieved at one time by making DRAMs 
"wider" rather than "deeper" and by using wide bus data paths, 

• Change the DRAM inierfaec to make i1 more efficient by including a cache 
or other buffering schelrie on the DRAM chip. 

• Red LIW the frequency of memory access by incorporating increasingly com-
pLex and efficient cache structures between the processor and main memory. 
This includes the incorporation of one or more caches on the processor chip 
as well as on an off-chip cache close to the processor. chip. 

■ Increase the interconnect Hridwidth between proecssurs Lind memory by 
using higher-speed buses and by using a hierarchy of buses to buffer and 
sirucl ore data flow, 
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Figure 2.11 Trends in Drain Use [PRZY94] 

Another area of design focus is the handling of I/O devices. As computers 
become faster and more capable, more sophisticated applications are developed that 
support the use of peripherals with intensive 110 demands. Table 2.7 gives some 
examples of typical peripheral devices in use on personal computers and work-
stations. 'These devices create tremendous data throughput demands. While the 
current generation of processors can handle the data pumped out by these devices, 
lhere remains the problem of getting that data moved between processor and 
peripheral. Strategies here include caching and buffering schemes plus the use of 
higher-speed interconnection buses and more elaborate structures of huses. In addi-
tion, the use of multiple-processor configurations can aid in satisfying 110 demands. 

Table 2.7 Typical Bandwidth Requirements for Various Peripheral Technologies 
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The key in all this is balance. Designers constantly strive to gallants the 
throughput and processing demands of the processor components. math memory, 
110 devices, and the interconnection structures. This design must constantly be 
rethought to cope with two constantly evolving factors: 

• The rate at which performance is changing in the various technology areas 
(processor, buse=s, memory, peripherals) differs greatly from one type of cle-
ment to another. 

• New applications and new peripheral devices constantly change, the na.trri.• 
of the demand on the system in ierms of typical instruetion profile:and ihc data 
access patterns. 

Thus, computer design is a constantly evolving art form. This book atturopts 
to present the fundamentals on which this an form is based and to present a suney 

ale current state of that art. 

23 PENTIUM AND POWERPC EVOLUTION 
.. ,erejbl-rrfk,rrt- 

eprr -;;Fr  

Throughout this hook. we rely on many concrete examples of compuler design and 
implementation to illustrate concepts and to illuminate trade-offs. Most of the time, 
the book relies on examples from two computer families: the Intel Pentium and the 
ri5werPC. The Pentium represents the results of decades of design effort on com-
plex instruction set computers (CI CO, Ii incorporates the sophisticated design 
principles once found only on mainframes and supercomputers and serves as an 
excellent example of CISC design. The PowerPC is a direct descendant of the first 
RISC system, the IBM S01. .11-ut is one of the most I:rowel-1111 and hest-designed 
RISC-based systems on the market, 

In this section, we provide a brief overview of both systems. 

Pentium 
In terms of market share, Into] has ranked as the number one maker of micro-
processors for decade t, a posilion it seems unlikely to yield. The evolution of its Hag.- 
ship microprocessor product serves as 21 good indicator of the evolution of computer 
technology in general. 

Table 2.6 shows that evolution. Interestingly, as microprocessors have grown 
faster and much more eomplex, Inlcl has actually picked up the pace-  In Lel used 
to develop microprocessors one after another, every four years. But Intel hopes to 
keep rivals at bay by trimming a year or two off this development time, and has done 
so with Wu most recent Pentium generalions. 

It is worthwhile to list some of the highlights of the evolution of the. Intl 
product tine. 

▪ 80S0: The world's first general-purpose microprocessor. This VC:IN 
machine, with an 8-bit data path to memory. The 8080 was used in the first 
personal computer, the Altair. 
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• 8086: A far more powerful, 16-bit machine_ In addition 10 a wider data path 
and larger registers, the 8086 sported an instruction cache, or queue, that 
prefetches a few instructions before they are executed. A variant of this 
processor, the 8088, was used in IBM's first personal computer. securing the 
success of Intel, 

• 80286: This extension of the 8086 enabled addressing a I6-MByte memory 
instead of just 1 MByte, 

• 80386: Intel's first 32-bit machine, and a major overhaul of the product. With 
a 32-bit architecture, the 80386 rivaled the complexity and power of mini-
computers and mainframes introduced just a few years earlier, This was the 
first Intel processor to support multitasking, meaning it could run multiple 
programs at the same time. 

• 80486: The 80486 introduced the use of much more sophisticated and power-
ful cache technology and sophisticated instruction pipelining. The 80486 also 
offered a built-in math coprocessor, offloading complex math operations from 
the. main CPU. 

• Pentium: lAYith the Pentium, Intel introduced the use of supersca]ar tech-
niques. which allow multiple instructions to execute in parallel. 

• Pentium Pro: The Pentium Pro continued the move into superscalar organi-
zation begun with the Pentium, with aggressive use of register renaming. 
branch prediction, data flow analysis, and speculative execution. 

• Pentium II: The Pentium 11 incorporated Intel MMX technology, which is 
designed specifically to process video, audio, and graphics data efficiently. 

• Pentium 111: The Pentium III incorporates additional Floating-point instruc-
tions to support 3D graphics software. 

• Pentium 4: The Pentium 4 includes additional floating-point and other en-
hancements for multime.dia.' 

• Hank= This now generation of Intel processor makes use of a (4-hit organi-
zation with the IA-64 architecture, which is discussed in detail in Chapter 15. 

PowerPC 

In 1975, the 801 minicomputer project at IBM pioneered many of the architecture 
concepts used in RISC systems. The 801, together with the Berkeley RISC I pro-
cessor, launched the RISC' movement, The 801. however, was simply a prototype 
intended to demonstrate design concepts. The success of the 801 project led IBM 
to develop a commercial RISC workstation product, the RT PC. The RT PC, intro-
duced in 1986, adapted the architectural concepts of Lfic 801 to an actual product. 
The RT PC was not a commercial success, and it had many rivals with comparable 
or better performance. In 1990, IBM produced a third system, which built on the 
lessons of the 801 and the RT PC. The IBM RISC System/6000 was a RISC-like 
superscalar machine marketed as a high-performance workstation; shortly after its 
introduction, IBM began to refer to this as the POWER architecture. 

' With ihc Pentium 4. Thiel switched from Roman numerals to Arabic numerali, for mixicl numbers. 
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For its next step, IBM entered into an alliance with Motorola, developer of 
the M000 series of microprocessors, and Apple, which used the Motorola chip in 
its Macintosh coroptilcrs. r iIte result is a series or machines that implement the 
PowerPC architecture. •1 his architecture is derived from 1.he POWER arcbiteel Life, 
Changes were made to add key missing features and to enable more efficient im-
plementation by eliminating some instructions and relaxing the specification to 
eliminate sonic troublesome speci411 eases. The resuhing PowerPC architecture is 
a superscalEu. RISC system, The PowerPC is used in millions of Applc Macintosh 
machines and in numerous embedded chip applications. An example of the lat-
ter is II- M' family of network management chips, which can be embedded in net-
work equipment to provide eornmon Infinal,comeni .Lee  os:s fOr users with rnultiVilndor 
platforms. 

The Following are the principal members of the PowerPC family (Table 2.8): 

• 601: The purpose of the 6.01 was to bring the PowerPC;.irehitcciurc. to the mar-
ketplace as quickly as possible. The 601 is a 32-bit r»achine. 

• 603: Intended for low-end desktop and portable computers, II is also a 32-bit 
machine, comparable in performance with the 601, but with lower cost and a 
more efficient implementation. 

• 604: Intended for desktop computers and low-cnd servers, Again, ihis is a 
32-hit machine, but it uses much more advanced superscalar design techniques 
to achieve greater performance, 

• 620: Intended for high-end servers. The first member of the PowerPC family to 
implement a full 64-hit architecture, including 64-bit registers and data paths. 

• 740/750; Also known as the (33 processor. This processor integrates two lcvelS 
of cache in the main processor chip, providing significant puforrriance 
improvement over a comparAle machine with off-chip cache organi2ation. 

• G4: processor increases the parallelism and internal speed of rhe pro- 
cessor chip. 

bihit 2.8 PowcrPC Processor Summary 
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2.4 RECOmMENDED READING. AND 11,--ifr<V454:.;4.  Fr. ary:Wier]..A.War ' 111A 4 0:1••••• 

A description of the IBM 7041)0 series can he found in IBELL714. 'There is good cowl
-ay. of 

the IBM 3W) in [SIEWEJ and of the PI)P x and other DEC machines in [BELL78a1. Thew. 
three hooks also contain numerous &talk:LI examples of other computers spanning the his-
tory of computers through the earls/ 1 ,.?:-;tis, A more recent book that includes an eNctlierit 
set of ease studies of historicat machines is [BLAA97]. A good hist my of the mieroproces-
sbr is [BETK971. 

One of the best 1.rcaiinents of the Pentium is ISHA N981. The Intel, docunne.imation itself 
is alsu good [INTL(.111- IEftREV001 provides a good survey of the Intel microprocessor line, 
with emphasis on the ;i.2-bit machines. 

LI1494] is a thorough treatment i he PowerPC architecture- ISHAN951 pro- 
vides similar coverage. [WEI594.1 Ireats I'oth the POWER and Power.PC architectures. 

For interesting discussions of Moore's law and its consequences, see •IU1C961. 
[SC'HA.97 J, and 1BOH R981. 

HEI.1.31a. Bell, C.4 and Newq111,. A. Cornpulep SiructRres.-  Readings and En..unpin New 
York: MeCiraw-Ili11, 

BELL78a Bell. Mlidge,l, and McNamara, J. Engi.Fremringf A 1)EC Vim.s: of 
Hardware. Bedford, MA: Digital Press. 1978. 

IRETK97 113e.Lker, ['ern:Ando, J.. and %V W ell, S. "The Hislory the MieroprocesscPC 
ne.211..ribs Irrilaricaf Journal, Autumn. 199 -1. 

IILAA,97 Binauw, G., and Brooks.. P. (..omiquer Architecture: Cord.cepti add Evethvion. 
Reading- MA: Addison-Wesley, 1997. 

1101-11198  Bohr, M. 'Silicon 'fiends and Limits for Adk.tiaxecd MieroprocesscFri.. -  COM-
MliniCaliONS of the ACM . 7litirch 1998- 

BRE'r1X1 Titd: Intel .19 irpopp.r.rcmors: 808.6.490.66, .10,786/801 88, 802.96, 80336. 
80486, Pitp.inen, liotTheni Pro and PcrnrirzoF 11 Proccssars. Uppcc Sttddte River, NJ; 

FICTC96 Hutcheson : and I Ititchesan..1. "'Technology and Economics in the Send- 
e.i. .inductor Industry." Scienrifk Arrwricaid, January 19%. 

11-1M94 International Busine.s,s Machines, Inc. The Powe.,f'<' 41 chireertere.-  rl Spe,ciritogoot 
for a Neg... Enmity 1?.M:' j"  r494:ussom. San Francisco.. CA,: 1organ Kaufmann", 1994. 

INTE01 bid Corp. Merl iirchitectrov ScOvar.e. Deueloper'..r. Manual volumes). 
Document 24.5470 and 14547.1. Aurora. CO. 2000. 

SCIIA97 Schaller. R. "Moores Law; Past, Ptesorrt, and Future."' Sprvirten. Jane 
194r1. 

SHAMS Shaulcy, T. 1'ovi...(71 1 (.' Syvirrn t A n'hiter.e.rwe. Reading. NIA.; Addison rWailey, 1095. 

SHAN98 Pro and Pentium 11 Sy y.rem ei.r.chire.crakre. Rai:R.411g% MA: 
Addison-Wesiey. 1998. 

SIEW82 Siewiorek. D.; Boll. C.: and A. Crm puter Srrrrclures, PrinCiPleS and 
1-..5rample.v. New York: 1982. 

WII.:IIS94:1 Weiss,-S-, cud Sruidi, J. POWER road Poli:erPC San PairicisN): rdorgail  lCaral- 
rnann, 
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Recoinmentied Web Sites: 

s Intel Developer's ['loge: Intel's 11,Ve1.3 page for developers! provides a starting point for 
accessing Pentium informarion. Also includes the Technology .Tournal. 

■ PoTherPC: Two likb. tine by rvlo1orola kirril one. by [BM. roc the PowerPC. 

■ Top501111 Supercomputer Site: Prcrvides brici description of architeclure and organiza-
tion of current supercomputer products, plus comparisons. 

■ Charles BabliPsige PreivideE, 'Mks 10 a number of Web sites dealing with the 
hisiory of computers. 

2.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Tering 

accurnulaior (AC) nisi ruction register (I1{) OpcoJe 
arithmetic and Logic inStrUctiC , II ParikliBB equipinom 

unit (ALL) integrated eircuil. (IC) manufacturer (0E:1/4,1) 
chip memory program control unit 

I EIenlciry a ddress 1nro)2rant cottritcfr (PC) 
execute cycle register (MAR) program coinputur 
fetch cycle rrrcrnc Fry btiffer iipward COM patible 

(I/0) re i.,tcc ( MI3R) 11I Neltimnit machine 
instructic  buffer microprocessor water 

register (111(?). multiplexor word 
inurniction cycle 

Review Questions 
2.1  What is a stored program computer? 
2,2 What are the four main compunents ulrtiny general -purpose computer? 
2.3 At the integrated circuit level. what are the1hree principal constituen ts at a computer 

syster0 
2.4 Explain Moores law. 

Lisl and 111; kcy chaructcrislics of a coniputor 
2. What is the k.Ly distinguishing feature of a microprocessor? 

Problems 
11e1 A = All ), A(2), A(.1.00,0) and P = B 1), B(2) B(10(f0) be two vector.; 
(one-ditmnsiontil arrays) 4.:41rnprising 1000 numbers each (hal aro to be added to 
form an array C such alai C(L) = A(1) + It I for = 1. 2  1.0%. Using the TA; 
instruclion sot, write a program For this problem. 

2.2 In the IBM 3.60 Models 65 and 75, addresses arc striocred in two separate ma in  
memory units (e.g., all even-numbered words in onc unit and all odd -numbered words 
in ki nolher). Vilhat might be the purpose or this technique? 
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A cCaliputar systetn COn'sists of processor, m  or emy, 170, miercon- 
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Chapter 3 A View of Computer Function 
and Interconnection • • ':•- 
At a top level, a computer Con its of ü process6r. memory. .t..firrd il acornpo-
'lents. The functional behavior of thc.ziystern con;,isrsof the ex.cillmge of data 
a rid C4 ini.F.o[si ot[s among ihesc componettts. To opal this cxchango, these 
components must be interconnected. C:hapter 3 1. -pogins with a brief examina-
tion of the computer's components and their inpui-oniput re tirni nt, Thu 
chaplxr then look ,  at key issues that .  affect interconnection design, especially 
the need to support intert.upts. The bulk of the chapictr is devoted to a siudy 
of the. tn95t co MD1011 approack - tg.: in.te.r.connectign; the use. of A .  s,trg.e4tirr.: 
L2J.J$e• .; 

CThapter 4 Cache Memory 
Computer merriory exhibilIF. a wide range or type, 1cehno1ogy, organization, 
perform:la [tee. tau] cost. The typical computer system is equipped with a 
hierarchy of memory subsystems. sortie internal (dircei Ey ziccessi Mc by the 
procesNor) mid some (Nicrrial (acees..siblc by the proccs.sor ir'w an 110 mod-
u[). Chapter 4 begins with an overview of this hiorarchy. Next, the ehapiet 
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deals in detail with the design of cache memory, including. separate. code and data 
caches and two-level caches. 

Chapter 5 Internal Memory 

The design of a main memory system is a never-ending battle among three com-
puting design requirements: large storage capacity. rapid access lime, and low cost_ 
Asmemory technology evolves. each of these three characteristics is changing, so 
that the design de.cisions in orgzmizing main memory must he revisited anew with 
each new implementation. Chapter 5 focuses on design issues related to internal 
memory, First. the nature and organization of semiconductor main memory is exam-
ined. Then, recent advanced DRAM memory organizations are explored. 

Chapter 6 External Memory 
For truly large storage capacity and for more permanent stora2e than is available 
with main memory, an external memory organization is needed. The most widely 
used type- of  mini memory is magnetic disk, anti much of Chapter 6 concentrates 
on this topic. first. we look at magnetic disk technology and design considerations_ 
Then_ we look at the use of RAID organization to improve disk mernory perfor-
mance. Chapter 6 also examines optical and tape storage. 

Chapter 7 Input/Output 
1.10 modules arc interconnected with the processor and main memory, and each 
controls one or more external devices. Chapter 7 is devoted to the various aspects 
of  organization, This is a complex area, and less well understood than other 
areas of computer system design in terms of meeting performance demands. Chap-
ter 7 examines the mechanisms by which an 110 module. interacts with the rest of 
the computer system, using the techniques of programmed PO, interrupt 1/0. and 
direct memory access (DMA). The interface between an lit) module and oNlyrnal 
devices is also described. 

Chapter 8 Operating System Support 
A detailed examination of operating systems ((As) is beyond the scope of this book. 
However. it is important to understand the Nisk. [unctions of an operating system 
and how the OS exploits hardware to proVidt• the desired performance. Chapter -

describes the. basic principles of operating systems and discusses the specific design 
features in the computer hardware intended to provide support for the operating. 
system, The chapter -  begins with a brief history; which serves TO identify the major 
types of Operating systems and . to motivate their use Next, multiprogramming 
is explained by examining the long-term and short-term scheduling functions. 
Finally, an examination of memory management includes a discussion of segmen-
tation, paging. and virtual memory. 
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KEY POINTS 

♦ An instritelion cycle consists of art instruction fetch, followed by zero or snore 
operand fetches, followed by zero or more operand stores, followed by an 
interrupt check (if intermpts are enabled). 

• The major computer VS Lern components (processor, main memory. 1../0 mod-
ules) need to be interconnected in order to exchange data litad control signals. 
'Flee most popular means of interconnection is the use of a shared system bus 
consisting of multiple lines. In contemporary systems, there typically is a hier-
archy of buses to improve performance.. 

• Key design el ements for buses include ii . bitrat ion (whether permission to send 
signals on bus lines is Controlled centrally or in a distributed fashion); liming 
(whether signals on the bus are synchronized to a central clock or are sent 
4iti ptchronously based on the most recent transmission); and width (number 
of address Lines and number of data lines). 

SO CHAPTER. 3 I A VFW OF COMPUI ER. I'L:NIC.TION AND INTERCONNECTION 

A t, top level, a computer consists of CPU (central processing unit), memory. 
.  iiicl 1/0 components, with one or more modules of each type. These com-

ponents are interconnected in some fashion to achieve the basic function of 
flit: Loin puter, which is to execute programs. Thus, at a top level. we can describe 
a computer system by ( I ) describing the em erna I behavior of each component. that 
is, the data and control signals that it exchanges with other components; and (2) 
describing the interconnection structure and the controls required to manage the 
use of the interconnection structure. 

This top-level view of structure and function is important because of its 
explanatory power in understanding the nature of a computer. Equally important is 
its use to understand the increasingly complex issues of performance evaluation. A 
grasp of the top-level structure and function offers insight into system bottlenecks, 
alternate pathways. the magnitude of ,,>.stem failures if a component fails, and the 
ease of adding performance enhancements. In many cases, requirements for treater 
system power and fail-safe capabilities are being met by changing the design rather 
than merely increasing the speed and reliability of individual components. 

This chapter focuses on the basic structures used for computer component 
interconnection. As background, the chapter begins with a brief examination of the 
basic components and their interface requirements. Then a functional overview is 
provided. We are then prepared to examine the use of buses to interconnect system 
components. 

3.1 COMPUTER COMPONENTS 

As discussed in Chapter 2. virtually all contemporary computer designs are based on 
concepts developed by John von Neumann at the institute for Advanced Studies, 
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Princeton. Such a design is referred to as the von N nano no a all i etcare and is based 
on three key concepts: 

• Data and instructions are stored in a single read—write memory, 
• The contents of this memory are addressable by location, without regard to 

the type of data contained there. 
• Execution occurs in a sequential fashion (unless explicitly modified) frail-Lone 

instruction to the next. 

The reasoning behind these concepts was discussed in Chapter 2 but is worth 
summarizing here. 'There is a small set of basic logic components that can be com-
bined in various ways to store binary data and to perform arithmetic and logical 
operations on that data. If there is a particular computation to be performed, a con-
figuration of logic components designed specificativ for that computation could be 
constructed. We can think of the process of connecting the various components 
in the desired configuration as a farm of programming. The resulting "program" is in 
the form of hardware and is termed a ha rilw red program. 

Now consider this alternative. Suppose we construct a general-purpose con-
figuration of arithmetic and logic functions. This set of hardware will perform vari-
ous functions on data depending on control signals applied to the hardware. In the 
original case of customized hardware, the system 4icuci-Pb.; data and produces results 
(Figure 3.1a). With general-purpose hardware, the system accepts data and control 
signals and produces results. Thus., instead of rewiring the hardware for each new 
program, I he programmer merely needs. to supply a new set of control signals. 

Flow shall control signals be supplied? The answer is simple but subtle. The 
entire program is actually a sequence of steps. At each step, some arithmetic or log-
ical operation is performed on some data. For each step, a new set of control signals 
is needed. Lc1 us provide a unique code for each possible set of control signals, and 
let us add to the general-purpose hardware a segment that can accept a code and 
generate control signals (Figure :Lib). 

Programming is now much easier. Insiead of rewiring the hardware for each 
new program, ail we need to do is provide a new scqucncc of codes. Each code is, 
in effect, an instruction. and part of the hardware interprets each instruction and 
generates control signals. To distinguish this new method of programming. a 
sequence of codes or instructions is called Nernware.. 

Figure 3.1b indicates two major components of the system: an instruction 
interpreter and a module of general-purpose arithmetic and logic functions. These 
two Constitute the CPU. Several other components are needed to yield a function- 
ing computer. Data and instructions must he put into the system. For this we need 
some sort of input module. This module contains basic components for accepting 
data and instructions in some form and converting them into an internal form of sig- 
nals usable by the system. A means of reporting resulls is needed, and this is in the 
form of an output module. Taken together, these are referred to as //C) CO/Hp:Men M. 

One more comroiwnt is needed - An input device will bring instructions and 
data in s.ccittenlially. But a program is not invariably executed sequentially; it may 
jump around (e.g., the 1AS jump instruction). Similarly, operatiouN on data may 
require access to more than just one element at a time in a predetermined sequence. 
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Figure 3.1  Hardware and Software Approaches 

Thus, there must be a place to store temporarily both instructions and data. That 
module is called memory, or main memory to distinguish it from external storage or 
peripheral devices. on Neumann pointed out that the same memory could he used 
to store both instructions and data. 

Figure 3.2 illustrates these top-level components and suggests the interactions 
among them. The CPU exchanges data with memory. For this purpose, it typically 
makes use of two internal (to the CPU) registers: a memory address register 
( MAR), which specifies the address in memory for the next read or write. and a 
memory buffer register (NeIBR), which contains the data to be written into memory 
or receives the data read from memory. Similarly, an 110 address register (I/0AR) 
specifies a particular  device. An  buffer register (.110BR) is used for the 
exchange of data between an module and the CPU. 

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a binary number that can be interpreted as 
either an instruction or data. Anil() module transfers data from external devices to 
CPU and memory, and vice versa. It contains internal buffers for temporarily hold-
ing these data until they can be sent on. 

having looked briefly at these major components, we now turn.to  an overview 
of how these components function together to execute programs. 
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3.2 C6MPUTER ---<?-0,efr-rg-X-rxrrze:,  arreefead.  , 

The bask function performed by a computer is execution of I, progrtml, which con-
sists of a set of instructionz ,. slorcd in memory. The processor does the actual work 
by executing instructions specified in the pmgram. This section provides an 
overview or the key elements of program excuution. In its 7:limplc.s1 fc..1rni. instruction 
processing consists of two steps: The processor reads (reicher.v) instructions from 
memory one at a time and executes each instruction. Program execution consists of 
repeating the prof.:(3ss of instruction fetch and instruction execution, r]'he instruction 
execution may involve several operations and depends on the nature of the instruc-
tion (see, for example, the iLhicr portion of Figure 2.4). 
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Thu processing required for a single instruction is called an instruction cycle. 
Using the simplified two-step description given previously. the instruction cycle is 
depicted in Figure 3,3. The two step RTC referred to as the fetch cycle and the 
execute cycle. Program execution halts only if the machine is turned off, some sort 
of LUITCce verablQ. error occurs, or a program instrucl ion nal halts the computer is 
encountered, 

Instruction Fetch and Execute 

Ai the beginning of each nisi ruction cycle, the processor fetches an instruction 
from memory, Ina typical processor. a resister called the program am-Later (PC) 
holds the address of the instruction to be fetched next. Unless told otherwise, the 
processor always increments the PC after each instruction fetch so that it will fetch 
1 he next instruction hi sequence (i.e., the instruction located at the next higher mem-
ory address). So. for example, consider a computer in which each instruction oecu-
pies one 145-bil word of memory, Assume that the program counter is set to location 
300. The processor will next fetch the instruction at location 300. On succeeding 
instruction cycles,. it will fetch instructions from locations 301. 302. 303, and so on. 
This sequence may be altered, as explained presently. 

The fetched instruction is loaded into a register in the processor known as 
the instruction regisier (I R). The instruction contains bits that specify the action lhe 
processor is to take. The processor interprets the instruction and performs the re-
quired action. In general, these actions fall into four.eategorics: 

• Processor-meroory: Data may be transferred from processor to memory or 
from memory to processor. 

• Proceskor4/0; Data may he transferred to or from a peripheral device by 
transferring between the processor and an 1 0 module. 

• Data processing; The processor may perform some arithmetic or logic opera-
ti on on data, 

• Control; An instruction may specify that the sequence of execution be alicred. 
For example, the processor may fetch an instruction from loetition 149, which 
specifies that the next instruction be from location 182. The processor will 
remember this fact by setting the program counter to 182. Thus, on the next 
fetch cycle, the instruction will be fe1ched from location 182 rather than 150. 

An instruction's execution may involve a combination of these actions. 

Fetch c21:cle Execute cycle 

Fipire 3,3 Basic hisEruction Cycle 
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(a) Instruction format 

Magnitude 

15 

4.b) Integer format 

Program counter CPC b = A dtlrexs cFt instruction 
instruction rr2.  g (JR 1 = oNlroction being xcruted 
Ac uniitialor 4. AC ) = Temporary storage 

Internal CPU registers 

MD I = Load. AC From 
= Siort. .AiC lo memory 

0101 = Add to AC from memory 

111) P'arnal of oracles 

M C'haracieristics of a Hy poihetieal Machina 

COnsickT a simple example using a hypothetical machine that includes the 
characteristics listed in Figure 3.4, The processor contains a single data register. 
called an accumulator (AC). Both instructions and data are 1.6 bile long- Thus, it is 
convenient to organize memory using 16-bit words. The instruction format provides 
4 hits for the c)peode, so that there can be as many as 2 4  — lb different opcodes, and 
up to 2' = 4096 (4K). words or memory can be directly acldressed. 

Figure 3.5 illustrates a partial program exeCuLion, showing ihu rcluvant por-
ti ons or memory and processor reRisters. The program fragment shown adds the 
contents of the memory word at address 940 to the contents of the memory word at 
address 941 and stores the result in the latter to  Three instructions, which can 
be described as three fetch and three execute cycles, are required: 

1. The PC contains 300 :  the address of 1he rinst instruction. This instruction (the 
value 1940 in hexadecimal) i loaded into the instruction register IN. and 1hc 
PC is incremented, Note that this process involves the use of a memory 
address register (Nel AR) and a memory buffer recister (MBR). For simplicity, 
these intermediate registers are ignored. 

I HAkitlucirli;t11101:Jlion ik IHLN.I. in which cad] digit represents 4 bits. This is the most convenient notation 
for rcpmEenling the corslcitts of ttlemory ki nd rlfgird.vrs when Llic word length is a multiple or 4 - See 
Appendix ri  rcircsiler on number Eystoras Wedmal. binary. hexadecimal). 
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301 5 94 T . 0 0 0 5-  AC 301 5 9 4 1 ,.- 0 0 0 T. AC 
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.2 9 4 1 ER • 10.1 2 

, . 
940 0 0 0 3 9401. 0 0 0 31 j

i  
941 0 0 0 2 941 0 0 5 [41--' 

Stop 5 Step 6 

Figure 3.5 EXaillpL of Program Executinn (contents of memory and 
registers in Imaidecimal) 

2. The first 4 bits (first hexadecimal digit} in the IR indicate tali the AC is to be 

loaded, The remaining 12 hits (three hexadecimal digits) specify the address 
(940) from which LI4.iia ate to.be  loaded. 

3. The next instruction (504 I) is fetched from location 301 and the PC is incremented. 

.4. The old contents of the AC and the contents of location 941 are added and the 
result is stored in the AC. 

5. The next instruction (2941) i fetched from location 302 and the PC is incremented. 

6. The contents of the AC are stored in location 941. 

In this example, three instruction cycles, eHch consisting of at fetch cycle and 
an execute. cycle. are needed to add the contents of location 940 to the contents of 
941. With a more compiex set of insiructions. fewer eyeios would he needed. Some 
older processors. for example, included instructions that contain MOrC than one 
memory ztCidress. Thus the execution cycle for a particular instruction on such 
processors could involve more than one reference. to memory. Also. instead of mem-
ory referancg!,_ an instruction may sped[) an Li0 operation. 

Fur example. the P1.)P-11 instruction expressed symbolically as ADD fi,A 
stores the sum of the contents of memory locations B and A into memory location 
A. A single inslruction cycle with the roilowina steps occurs:. 
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• Fetch the ADD instruction. 
• Read the contents of memory location A into the. processor. 
• Read the contents of memory location 13 inlo the processor. In order ihai 

contents of A are not lost. the processor must have at least two registers for 
storing memory values. rather than a single accumulator. 

• Add the two values. 

• Write the rctsutl, from the processor to memory location A. 

Thus, the execution cycle for a particular instruction may involve more Hum 
one reference to memory. Also. instead of memory references, an instruction may 
specify an 110 operation.  I hcse ilddilional considerations in mind, Figure 3.6 
provides a more detailed look at the basic instruction cycle of Figure. 3.3. ' MI .,: 

figure is in the form of a state diaaram. For any given instruction cycle, some states 
may be null and others may be visited more than once. The states can be described 
as follows; 

• Instruttion address calculation (lac): Determine the address of the next 
instruction to be executed. Usually, th is invoivcs adding a fixed number 10 the 
address of the previous instruction. For example, if each instruction is I6i bits 
long wi nd memory is organized into .1 6-bit words, then add 1 to the previous 
address. IL instead, memory is organized as individually addressable 8-bit 
bytes, then add 2 to the previous address, 

• Instriroimi Fetch (if): Read instruction from its memory location into the 
processor. 

• iristruction operation decoding (100 Analyze instruction to determine type 
of operation to he performed and operand(s) to be used. 

• Operand address calculation (oac): If the ope raLion involves 1'12 le rencc to 
rill ( Tumid in memory or available via UO, then determine the address of the 
operand. 
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• Operand fetch (of): 1:etch the operand from memory or read it in from I/O, 
• Data operation (do): Perform the operation indicated in the instruction. 

• Operand store (os): Write the result into memory or out to If0. 

Stales in the upper part of Figure 3.6 involve an exchange between the proces-
sor and either memory or an 110 module, States in the lower part of the diagram 
involve only internal processor operations. The oac slate appears twice, because an 
instruction may involve a read, a write, or both, However, the action performed 
during that state is fundamentally the same in both cases, and so only a single state 
identifier is needed. 

Also note that the diagram allows for multiple operands and multiple results, 
because some instructions on some machines require this. For example, the P.DN- 1 1 
instruction ADD A,B results in the following sequence of states: iac, if. iod, oac, of, 
oac, of. do, oac, os. 

Finally. on some machines, a single instruction can specify an Operation to 
be performed on a vector (one-dimensional array) of numbers or a string (one-
dimensional array) of characters. As Figure 16 indicates, this would involve repet-
itive operand fetch and/or store operations. 

Interrupts 

Virtually all computers provide a mechanism by which other modules (I/O. mem-
ory) may interrupt the normal processing of the processor, Table 3.1 lists the most 
common classes of interrupts. The specific nature of these interrupts is examined 
later in this book, especially in Chapters 7 and 12. However, we need to introduce 
the concept nov+. to understand more clearly the nature of the instruction cycle and 
the implications of interrupts on the interconnection structure. The reader need 
not he concerned at this stage about the details of the generation and processing 
of interrupts, but only focus on the communication between modules that results 
from interrupts. 

Interrupts are provided primarily as a way to improve processing efficiency. 
For example, most external devices are much slower than the processor. Suppose 
that the processor is transferring data to a printer using the instruction cycle scheme 
of Figure 3.3. After each write operation, the processor must pause and remain idle 
until the printer catches up. The length of this pause may be on the order of many 
hundreds or even thousands of instruction cycles that do not involve memory. 
Clearly, this is a very wasteful use of the processor. 

Table 11 Classes of Interrupts 

PrOgralla cknerauld try some condition that occurs a8 u mule of an instruction execution, 
such as arithim tic (werflo•, division by tern, attempt in exccole an illegal 
machine instrUclion, im reference outndk a ilSe.T'S irmnory space, 

Timer Gen orDi tl liy liTrH2r Wlfltln !he proveNsur. 0142 operating system 
to perform Certain Functions on a retrular 

VO Generated by an 110 controller, to signiii normal etimpletion nt tin Opc1aLiOn 

OT to qigi Lill. :1 calie rY I .  CrTor hdiLiCin..S. 

Hardware failure 001Cla by a laiiuro Such in, power failure or mentor parity error. 
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Figure 3.7a illustrates this state of affairs. The user program performs a series 
of WRITE calls interleaved with processing. Code segments I. 2, and 3 refer to 
sequences of instructions that do not involve I/O. The WRIT I-i calk are to an 
program that is a system utility and that will perform the actual I/O operation - The 
110 program consists of three sections: 

■ A sequence of instructions, labeled 4 in the figure, to prepare. for the actual 
I.10 operation. This may include copying the data to he output into a special 
buffer and preparing the parameters for a device command. 

• The actual I.0 command. Without the use of interrupts, once this command is 
issued, the program must wait for the I/0 device to perform the requested func-
tion (or periodically poll the device). The program might wait by simply repeat-
edly performing a test operation to determine if the 1/0 operation is done. 

• A sequence of instructions, labeled 5 in the figure.. to complete. the operation. 
This may include setting a flag indicating the success or failure of the operation. 

Because the 1/0 operation may take a relatively long time to complete, the 110 
program is hung up waiting for the operation to complete; hence. the user program 
is stopped at the point or oh: WRITE call for sonic considerable period of time. 

Interrupts and the Instruction cycle 

With interrupts, the processor can be engaged in executing other instructions 
while an 1.0 operation is in progress, Consider the flow of control in Figure 3.7b. 
As before, the user program reaches a point at which it makes a system call in the 
form of a WRITE call. 'I program that is invoked in this case consists only of 
the preparation code and the act ind I/O command. After these few instructions have 
been executed, contral returns to the user program, Meanwhile, the external device 
is busy accepting data from computer memory and printing il. This 1/0 operation is 
conducted concurrently with the execution of instructions in the user program, 

When the external device becomes ready to be serviced, that is, when it is 
ready to accept more data from the processor, the  module for that external 
device sends an interrupt request signal to the processor, The processor responds by 
suspending operation of the current program, branching off to a program to service 
that particular 1.10 device, known as an interrupt handler, and resuming the original 
execution after the device is serviced. The points at which such interrupts occur are 
indicated by an asterisk in 1•igure 3.7b. 

From I he point of view of the user program, an interrupt is just that: an inter-
ruption of the normal sequence of execution. When the interrupt processing is 
completed, execution resumes (Figure 3.g), Thus, the user program does not have 
to contain any special code to accommodate interrupts; the processor and the oper-
ating system are responsible for suspending the user program and then resuming it 
at the same point. 

To accommodate interrupts, an i nterrtpt cycle is added to the instruction cycle, 
as shown in Figure 3.9. In the interrupt cycle. the processor checks to see if any 
interrupts have occurred. indicated by the presence of an interrupt signal. If no 
interrupts are pending, the processor proceeds to the fetch cycle and fetches the 
next instruction of the current program. If an interrupt is pending, the processor 
does the following: 
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* It suspends execution of the current program being executed and saves its 
context. This niearm solving i he otidress or Ihe next inslruclion to be executed 
(current contents of the prognim counter) and any other data relevant to the 
processor's current activity. 

▪ It sets the pro gram counter to the starting address of an 161 21'07010 handler to 

The fare cc.ssor now proceeds lo lie fetch cycle and fetches Ihe first instruc-
tion in the interrupt handler program, which will service the inie mpt. The inter-
rupt handler program is generally part of the operating system. Typically, this 
program determines the nature of the interrupt and performs whatever actions 
are needed. In th.c cxample 'se have been using, the handler determines which 

Fetch cycle Execute cycle Interrupt cycle 

Figure 3.9 Instruction Cycle. with Interrupts 
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1; 0 module generated the interrupt, and may branch to ,o program that will write 
more data out to that 1;0 module. When the interrupt handler routine is com-
pleted, the processor can resume execution of the user program al the point of 
inter r u pti 

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the 
interrupt kind to decide on the appropriate action. Nevertheless, because of the rel- 

large amount of time that would he wasted by simply waiting on an 110 oper-
ation, the processor can be employed much more efficiently with the use of 
interrupts. 

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing dia-
gram based on the Mow of control in Figures 3.7a and 3.7b. Figures 3.7b and 310 
assume that the lime required for the 110 operation is relatively Short. less than the 
ti me to complete the execution of instructions between write operations in the user 
program. The more typical case, especially for a slow device such as a printer, is that 
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the 1/C) operation will take much more time than executing a sequence of user 
instructions. Figure 1.71: indicates this state of affairs. In this case, the user pro ram 
reaches the second WRITE call before !he I/O operation spawned by the first call 
is complete:. The result is that the user program is hung up at that point. When the 
pyeceding 1/0 operation is completed, this new WRITE. cal! may be processed, and 
a new 1.10 operation moy he started. Figure 3,11 shows the timing for this situation 
with and without the use of interrupt_ We can sec shat there is still a gain in effi-
ciency because part of the time durin.g which the I/0 operation is underway over-
iaps with the execution or user instructions. 

Tirrh. 

(k. 0 Withow 

Figure 3.11  PI- 1.1.4,10 in Timing: Long 1.0 Wait 
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Figure 3.12 shows a revised instruction cycle state diagram that includes inter-
rupt cycle processing. 

Multiple Interrupts 

The discussion so far has focused only on the occurrence of a single interrupt_ 
Suppose, however, that multiple interrupts can occur, For example, a program may 
be receiving data from a communications line and printing results. The printer will 
generate an interrupt every time that it completes a print operation. The communi-
cation line controller will generate an interrupt every time a unit of data arrives. The 
unit could either be a single character or a block, depending on the nature of the 
communications discipline. In any case. it is possible for a communications interrupt 
to occur while a printer interrupt is being processed. 

Two approaches can be taken to dealing with multiple interrupts. The first is 
to disable interrupts while an interrupt is being processed_ A disabled interrupt sim-

ply means that the processor can and will ignore that interrupt request signal. If an 
interrupt occurs during this time. it generally remains pending and will be checked 
by the processor after the processor has enabled interrupts_ 'Thus, when a user pro-
gram is executing and an interrupt occurs, interrupts are disabled immediately. 
After the interrupt handler routine completes, interrupts are enabled before re-
suming the user program, and the processor checks to see i1 additional interrupts 
have occurred. This approach is nice and simple, as interrupts are handled in strict 
sequential order (Figure 3.13a). 

The drawback to the preceding approach is that it does not take into account 
relative priority or time-critical needs. For example, when input arrives from the 
communications line, it may need to be absorbed rapidly to make room for more 
input_ If the first batch of input has not been processed before the second batch 
arrives, data may be lost_ 

A second approach is to define priorities for interrupts and to allow an in-
terrupt of higher priority to cause a lower-priority interrupt handler to be itself 
interrupted (Figure 3.13b). As an example of this second approach, consider a sys-
tem with three 110 devices: a printer, a disk, and a communications line, with 
increasing priorities of 2, 4, and 5, respective]y. Figure. 3_14 illustrates a possible 
sequence. A user program begins at r = 0. At t = 10, a printer interrupt occurs; 
user information is placed on the system stack and execution continues at the 
printer interrupt service routine (ISIS). While this routine is still executing, at 
t = 15, a communications interrupt occurs. Because the communications line has 
higher priority than the printer, the interrupt is honored. The printer ISR is inter-
rupted, its stale is pushed onto the stack. and execution continues at the commu-
nications !SR_ While this routine is executing, a disk interrupt occurs (r = 20). 
Beeau ,,e this interrupt is of tower priority. it is simply held, and the communica-
tions ISR runs to completion. 

When the communications 1SR is complete (t  25). the previous processor 
state is restored. which is the execution of the printer 'SR. However, before even 
a single instruction in that routine can be executed, the processor honors the 
higher-priority disk interrupt and control transfers to the disk ISR. Only when that 
routine is complete (t  35) is the printer ISR resumed_ When that routine com-
pletes (r — 40), control finally returns to the user program. 
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Figure 3.13 'Transfer of Control with Multiple Intcrrupts 

I/O Function 

Thus far, wu have discussed the operation of the computer as controlled by the 
processor, and we havc hacked primarily at the interaction of processor and mem-
ory, The discussion has only alluded Its dill role of the I/O component. This ro[e.k 
discuss.cd in detail in Chapter 7, but a brief summary is in order hero. 
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An I/O module (e.g., i disk conl roller) can exchange data directly with the 
processor. Just as the processor can initiate.a read or write with memory, designat-
ing Ihe address of a specific location, the processor can also read data from or write 
data to an 1K) module. In Lhk 1+1t1t2r case, lhe processor identifies a specific device 
that is controlled by a particular 110 module, Thus, an instruction seque.ncc. similar 
in form to that of Figure 3.5 could occur, with I/O instructions rather than memory-
refe re (lc i T1 g.  inst ructions. 

In sonic cases, it is desirable to allow IhO exchanges 10 occur directly with 
memory. In such a case, the processor grants to an 110 module the authority to rcmd 
from or write to memory, so that the 1/0-memory transfer can occur without tying 
up the processor. During such a transfer, the module issues read or write com- 
mands to memory, relieving the processor or rc ,,pomihility for the exchangc . , 
operation is known as direct memory access (DMA) and is examined Chapter 7. 
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A computer Consists of a SUL Of COmponuilE; or modules of three basic types (proces-
sor, memory, I10) that communicate with each other. In effect, a computer is a nel-
work of basic modules. Thus. there must be paths for connecting the modules. 

The collection or paths connecting the various modules is called the inrercon-
trection srraiclurr. The design of this Alruclure will depend on the UNUhanges that 
roust be made between modules. 

Figure 115 suggc4;is the exchanges that are needed by indicating the 
major forms of input and output for each module type: 



Memory 

A' words 
o =1:LL1) 

-1 E1T-7E.71 

Read 

Add  

Figury 3.1.5 Computer hielodulcs 

68 CHAPTER 3 r A VIEW OF COMPUTER FUNCTION AND INTERCONNECTION 

■ Memor: 'Typically, a memory module will consist of N words of equal length. 
Lach word is assigned a unique numerical address (l1, I ...... VV — 1)„A word 
of data can be read from or written into the memory. The nature of the oper-
ation is indicated by read and write wriirol signals. The location for the oper-
mion is specified by an address. 

■ I/O module: From an internal f to the computer system) point of view, 1/0 is 
Itinoionallv similar to memory. ' l'hcre arc two operations, read and write. Fur-
ther, an I/O module may control more than one external device. We can refer 
to each of I he interlaces to an external device as a port and give eac h a unique 
address (e.g (I  1. l }, In addition, there are external data paths fur 
the input and outpul cif dada with an external dcvice. Finally, an 1/C) module 
malt. be able to send interrupt signals to the processor. 
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* Processor: The processor reads in instructions and data, writes out data alter 
processing, and uses control signals to control the overall operation of the sys 
tent It also receives interrupt signals. 

The preceding list defines the data to he exchanged. The interconnection struc-
ture must support the following types of transfers: 

■ Memory to processor: The processor reads an instruction or a unit of data 
from memory. 

• Processor to memory: The processor writes a unit of data to memory. 
• I/O to processor: The processor reads data from an 110 device via an 110 module. 
• Processor to 110: The processor sends data to the 110 device. 
■ 1/0 to or from memory: For these two cases, an I/0 module is allowed to ex-

change data directly with memory. without going through the processor, using 
direct memory access (DMA). 

Over the years., a number of interconnection structures have been tried. By far 
the most common is the bus and various multiple-bus structures. The remainder of 
this chapter is devoted to an assessment of bus structures. 

3.4 BUS INTER. CONNECTION 

A bus is a communication pathway connecting tvvo or more devices. A key charac-
teristic of a bus is that it is a shared transmission medium. Multiple devices connect 
to the bus, and a signal transmitted by any one device is available for reception by 
all other devices attached to the bus. If two devices transmit during the same time 
period, their signals will overlap and become garbled. Thus. only one device at a 
ti me can successfully transmit. 

Typically., a bus consists of multiple communication pathways. or lines. Each 
line is capable of transmitting signals representing binary 1 and binary U. Over time,  
a sequence of binary digits can be transmitted across a single line. Taken together, 
several lines of a bus can be used to transmit binary digits simultaneously (in par-
allel). For example, an 8-bit unit of data can be transmitted over eight bus lines. 

Computer systems contain a number of different buses that provide pathways 
between components at various levels of the computer system hierarchy. A bus that 
connects major computer components (processor. memory, 110) is called a system. 
bus. The most common computer interconnection structures are based on the use 
of one or more system buses. 

Bus Structure 

A system bus consists, typically, of from about 50 to hundreds of separate lines_ 
Each line is assigned a particular meaning or function. Although there are many dif- 
ferent bus designs, on any bus the lines can be classified into three functional groups 
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(Figure 3.16)7 data, address, and control In addition, there may be power dis- 
iribution lines that supply power to the attached modules. 

The arena fines provide 4 path for moving data between system modules. These 
lines, collectively ., an called the dear bus, The data bus may consist of from 32 to 
hundreds of separate lines. the number of lines being referred to as the width of the 
data has. Because each line can carry only t bit at a time, ihe number of lines deter-
mines how many His can he transferred at a time-The. width of the data bus is a key 
facl or in determining overall system performance. For example. ii the data bus is 
8 bits wide and each instruction is 16 bits long, then the processor must access the 
memory module twice during each instruction cycle. 

The adiiresA lines are used to designate I he source or destination of the data on 
the data bus. For example, if the processor wishes to read a word (S, 16, or 32 bits) 
of data from memory, it puts the address of the desired word on the address lines. 
Clearly. the wichh of the address has determines ihe Maid rnum possible nicrnor!,. ,  
capacity of the system. Furthermore, the address lines are genera Ely also used to 
address 1.0 ports. Typically, the higher-order bits are used to select a particular 
module on the bus, and the Lower-order bits se]ecl a memory location or I/0 port 
within the module. For example, on an 8-hit address bus, address 011 HI 1 1 and 
below might reference locations in a memory module (module 0) with 128 words of 
memory, and address 10000000 and above refer to dev IL:es attached to an  mod-

ule (module 
rile control lines are used to control the access to and the use of the data and 

address lines. Because the dal a and address lines are shared by a]1 components, 
there must be a means of controlling their use, Controi signals transmit berth com-
mand ;ind timing information between system modules. Timing signals indicate the 

of data and address information. Command sign Elk specify operations Lo he 
performed. Typical control lines include the following: 

• Memory write: Causes data on the bus to be written into the addressed location_ 

▪ menrkory  read: Causes data from [he addressed location to be placed on the bus. 

• I/O write: Causes data on t he huN to be output to the addressed VC) port, 

•

 

I/O read: Causes data from the addressed 110 port to be placed on the bus. 

▪ Transfer ACK: indicates lhat data have been accepted from or placed on the bus. 

• Bus request: Indicates that a module needs lo gain control of the bus. 
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• Bus grant: Indicates that a requesting module has been granted control of the bus. 
• Interrupt request: Indicates that an interrupt is pending. 
• Interrupt ACK: Acknowledges that the pending interrupt has been recognized. 
▪ Clock: Used to synchronize operations. 
• Reset Initializes a]] modules. 

The operation of the bus is as follows. If one module wishes to send data to 
another, il must do two things: (I) Obtain the use of the bus, and (2) transfer dal a 
via the bus. If one module wishes to request data from another module. it must (i 
obtain the use of the bus. and (2) transfer a request to the other module over the 
appropriate control and address lines. It must then wait for that second module to 
send the data. 

Physically, the system bus is actually a number of parallel electrical conduc-
tors. In the classic bus arrangement, these conductors are metal lines etched in a 
card or board (printed circuit board)..f'he bus extends across all of the system com-
ponents, each of which taps into some or all of the bus lines. The classic •physical 
arrangement is depicted in Figure 3.17. In this example. the bus consists of two ver-
tical columns of conductors. At regular intervals along the columns, there are 
attachment points in the form of slots that extend out horizontally to support a 
printed circuit board. Each of the major system components occupies one or more 
boards and plugs into the bus at these slots. The entire arrangement is housed in a 
chassis. This scheme can still he used for some of the buses associated with a com-
puter system. However, modern systems tend to have all of the major components 
on the same board with inure elements on the same chip as the processor. Thus, an 
on-chip bus may connect the processor and cache memory. whereas an on-board bus 
may connect the processor to main memory and other components. 

Bus 

&Dards 

Figure 3.17 Typical Physical Realization 
of a Bus Architecture 
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This arrangement is most convenient. A small computer system may be 
acquired and then expanded later (more memory, more I/O) by adding more boards. 
if a component on a board fails, that board can easily be removed and replaced. 

Multiple-Bus Hierarchies 

if a •great number of devices arc connected to the bus, performance will suffer. 
There are two main causes: 

I. In general, the.more devices attached to the bus, the greater the bus length 
and hence the greater the propagation delay. This delay determines the time 
it takes for devices to coordinate the use of the bus. When control of the bus 
passes from one device to another frequently, these propagation delays can 
noticeably affect performance. 

2. The bus may become a bottleneck as the aggregate data transfer demand 
approaches the capacity tit the bus. This problem can be countered to some 
extent by increasing the data rate that the bus can carry and by using wider 
buses (e.g., increasing the data bus from 32 to 64 bits). l lowever, because the 
data rates generated by attached devices (e.g., graphics and video controllers, 
network interfaces) are growing rapidly, this is a race that a single bus is ulti-
mately destined to lose.. 

Accordingly, most computer systems use multiple buses, generally laid out in 
a hierarchy. A typical traditional structure is shown in Figure 118a. There is a local 
bus that connects the processor to a cache memory and that may support one or 
more local devices. The cache memory controller connects the cache riot only to this 
local bus. but to a system bus to which arc attached all of the main memory mod-
ules. As will be discussed in Chapter 4, the use of a cache structure insulates the 
processor from a requirement to access main memory frequently_ I knee, main 
memory can be moved off of the local bus onto a system bus, In this way,  trans-
fers to and from the main memory across the system bus do not interfere with the 
processor's activity. 

It is possible to connect controllers directly onto the system bus. A more 
efficient solution is to make use of one or more expansion buses for this purpose, 
An expansion bus interface buffers data transfers between the system bus and the 

controllers on the expansion bus. This arrangement allows the system to sup-
port a wide variety of I/O devices and at the same time insulate. memory-to-proces-
sor traffic from 1.10 traffic. 

Figure 3.18a shows some typical examples of 110 devices that might be 
attached to the expansion bus. Network connections include local area networks 
(LANs) such as a 10-Mbps Ethernet and connections to wide area networks (WA Ns) 
such as a packet-switching network. SCSI (small computer system interface) is itself 
a type of bus used to support lucid disk drives and other peripherals_ A serial port 
could he used to support a printer or scanner_ 

This traditional bus architecture is reasonably efficient but begins to break 
down as higher and higher performance is seen in the 1/0 devices. In response to 
these growing demands. a common approach taken by industry is to build a high- 
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speed bus that is closely integrated with the rest of the system, requiring only a 
bridge between the processor's bus and the high-speed bus. This arrangement is 
sometimes known as a mezzanine architecture. 

Figure '_l lib shows a typical realization of this approach. Again, there is a local 
bus that connects the processor to a cache controller, which is in turn connected to 
a system bus that supports main memory. The cache controller is integrated into a 
bridge, or buffering device. that connects to the high-speed bus. This bus supports 
connections to high-speed LANs, such as Fast Ethernet at 11I( Mbps, video and 
graphics workstation controllers, as well as interface controllers to local peripheral 
buSes, including SCSI and FireWire. The latter is a high-speed bus arrangement 
specifically designed to support high-capacity I/O devices, Lower-speed devices are 
still supported off an expansion bus, with an interface buffering traffic bet wcen the 
expansion bus and the high-speed bus. 

The advantage of this arrangement is that the high-speed bus brings high-
demand devices into closer integration with the processor and at the same time is 
independent of the processor. Thus, differences in processor and high-speed bus 
speeds and signal line definitions are tolerated. Changes in processor architecture 
do not affect the high-speed bus, and vice versa, 

Elements of Bus Design 
Although a variety of different bus implementations exist, there are a few basic 
parameters or design elements that serve to classify and differentiate buses. Table 
3.2 lists key elements. 

Bus Types 

Bus lines can be separated into two generic types: dedicated and multiplexed. 
A dedicated bus line is permanently assigned either to one function or to a physical 
subset of computer components. 

An example of functional dedication is the use of separate dedicated address 
and data lines, which is common on many buses. However, it is not essential. For 
example, address and data information may be transmitted over the same set of lines 
using an Address Valid control line, At the beginning of a data transfer. the address 
is placed on the bus and the Address Valid line is activated. At this point, each mod-
ule has a specified period of time to copy the address and determine if it is the 

Table 3.2 Eicnivilts of Bus Design 
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addressed module. The address is Ihcn removed from the bus, and the same bus 
connections are used for 1,11c Submgium read or write data transfer. This method of 
using the same lines for multiple purposes is known as rime tradriplexing. 

The advantage of limo multiplexing is the use of fewer ]ine s, which saves space. 
and, usually, cos. The disadvanl age is 1hat more complex cireuiiry is needed within 
each module. Also, there is potential reduction in performance because certain 
events that share the same lines cannot take place in parallel. 

Physical dedicatim refers lo ihe use ot multiple buses, it4i.e.tt  of which connects 
only a subset of modules. A typical example is the use of an IX) bus to interconnect 
all 110 modules this bus is then connected to the main bus through some type of 
I/ O adapter module, The potential advantage of physical dedication is high through-
pul, because al L'n:. is less bus contention. A disadvantage is the increased the and 
cost of the system. 

Method of Arbitration 
In all but the simplest systems, more than one module may need control of the 

bus. For example, an 110 module may need 10 read or writc direeFly 10 memory, 
without sendimz the data to the processor. Because only one unit at a time can suc-
cessfully transmit over the bus, some method of arbitration is needed. The various 
methods can be roughly classified as being either ccal tra izizd or distributed. In 
1ra Hod scheme, a single I- hrdwarc device, referred 10 ax a  controller or athifer, 
is responsible for allocating time on the bus, The. device may be a separate module 
or part of the. processor. In a distributed scheme, there is no central controller-
Rather, each module contains access control logic and the modulczi act together to 
share the bus. With both methods of arbitration, the purpose is to desianate one 
device. either the processor or an I/O module. as master. The master may then 
li me a data Iranster  read or write). with some other device, which fie[s AS siave 
for this particular exchange. 

Timing 
Timing refers Lo the way in which events arc coordinated Oh the bus. Buses 

use either synchronous timing or 4ts.!...nchronouz, tin ing- 
With synchronous timing, the occurrence of events on the bus is determined 

by a clock. The bus includes a clock line upon which a clock transmits a regular 
sequence Of alternating Is and tlx of equal duration. A single :L-0 transmission is 
referred to as a dock cycle or bus. cycle and defines a lime skit. All other devices 
on the bus can read the clock line. and all cYcrils sl ari a,L the be ;inning of a clock 
eyeie. Figure 3.19 shows a typical, hill simplified, tinning diagram for synchronous 
read and write operations (see Appendix 3A for a description of timing diagrams). 
Other bus signals may change at the leading edge of the clock signal (With a slight 
reaction delay), Most events occupy a single clock cycle,. In this simple example, 
the processor plaices a memory address on the address lines during the first clock 
cycle, and may assert various status ]ines. Once the address Lines have siabilized, 
the processor issues an address unable signal. For a read operalion, the processor 
issues.a read command at the start of the second cycle. A memory module reco2- 
nizes the address and, after a delay of one cycle, places the data on the data 

http://it4i.e.tt
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Figure 3.19 Timing of Synchronous Bus Operations 

For a write operation, the processor puts the data on the data lines at the start of 
the second cycle, and issues a write command after the data lines have stabilized. 
The memory module copies the information from the data lines during the third 
clock cycle. 

With asynchronous timing, the occurrence of one event on a bus follows and 
depends on the occurrence of a previous event. In the simple read example of Fig-
ure 3.20a, the processor places address and status signals on the bus. After pausing 
for these signals to stabilize, it issues a read command. indicating the presence of 
valid address and control signals. The appropriate memory decodes the address and 
responds by placing the data on the data line. Once the data lines have stabilized, 
the memory module asserts the acknowledged line to signal the processor that 
the data are available. Once the master has read the data from the data lines, it 
&asserts the read sienal. This causes the memory module to drop the data and 
acknowledge lines. Finally, once the acknowledge line is dropped, the master re-
moves the address information. 

Figure 3.20h shows a simple asynchronous write operation. In this case, the 
master places the data on the data line at the same lime that is puts signals on the 
status and address lines. The memory module responds to the write command 
by copying the data from the data lines and then asserting the acknowledge line. 
The master then drops the write signal and the memory module drops the acknowl-
edge signal. 
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3,2411  Timing c Aqynchronnus Bus Operations 

Synchronous timing is z.;iinpler to implement and test. However, it is loss flex-
ible than asynchronous timing, Because ME devices on a synchronous hus..urr2 tied to 
a fixed clock rate. the system cannot take advantage cyf advanen in device. perfor-
IlliffiQc. With asynchronous liming, 41 mixture of alien and fast devices, using ()Eder 
and newer technology, can share a bus- 

B us Width 

We have already addressed the concept of his width. The widl.h of the data 
bus has an impact on system performance; The wider the data bus. the greater the 
number of hits transferred ;0 a ntic ti me. The width of the address bus has an impact 
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on system capacity: The wider the address bus, the greater the range of locations 
that can he referenced. 

Data Transfer Type 

Finally, a bus supports various data transfer types, as illustrated in Figure 
3.21. Al] buses support both write (master to slave) and read (slave to master) 
transfers. In the case of a multiplexed address/data bus. the bus is first used for 
specifying the address and then for transferring t h e  data. For a read operation, 

there is typically a wait while the data is being fetched from the slave to be put on 
the bus. For either a read or a write, there may also be a delay 11 11 is necessary to 
go through arbitration to gain control of the bus for the remainder of the opera-
tion (i.e., seize the bus to request a read or write, then seize the bus again to per-
form a read or write). 
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In the case of dedicated address and data buses. the address is put on the 
address bus and remains there while the data are put on the data bl/S. For a write. 
operation, the master puts the data onto the data bus as soon as the address has 
stabilized and the slave has had the opportunity to recognize its address, For a read 
operation, the slave puts the data onto the data bus as soon as it has recognized its 
address and has fetched the data. 

There are also several combination operations that some buses allow. A read-
modify-write operation is simply a read followed immediately by a write to the same 
address. The address is only broadcast once at the beginning of the operation. The 
whole operation is typically indivisible to prevent any access in the data element by 
other potential bus masters. The principal purpose of this capability is to protect 
shared memory resources in a multiprogramming system (see Chapter 8). 

Read-after-write is an indivisible operation consisting of a write followed im-
mediately by a read from the same address_ The road operation may be performed 
for checking purposes. 

Some bus systems also support a block data transfer. In this ease. one address 
cycle is followed by n data cycles. The first data item is transferred to or from the 
specified address; the remaining data items are transferred to or from subsequent 
addresses. 

The peripheral component interconnect (PCI) is a popular high-bandwidth, 
processor-independent bus that can function as a mezzanine or peripheral bus. 
Compared with other common bus specifications, PCI delivers better system per-
formance for high-speed 1.0 subsystems (e.g., graphic display adapters, network 
interface controllers, disk controllers, and so on), Thc current standard allows the 
use of up to 64 data lines al fifi MHz, for a raw transfer rate of 526 .MBytels, or 4.224 
Gbps. But it is not just a high speed that makes PCI attractive_ PC1 is specifically 
designed to meet economically the 110 requirements of modern systems; it requires 
very few chips to implement and supports other buses attached to the PCI bus. 

Intel began work on PC'i in 1990 for its Pentium -based systems. Intel soon 
released all the patents to the public domain and promoted the creation of an indus-
try association, the PCI SW, to develop further and maintain the compatibility of 
the PC1 specifications_ The result is that PO has been widely adopted and is find-
ing increasing use in personal computer, workstation, and server systems, As of this 
writing, the current version is PCI 2.2. Because the specification is in the public 
domain and is supported by a broad cross section of the microprocessor and periph-
eral industry. PCI products built by different vendors are compatible. 

PCI is designed to support a variety of microprocessor-based configurations. 
including both single - and multiple -processor systems. Accordingly, it provides a 
general -purpose set of functions. It makes use of synchronous timing and a central-
ized arbitration scheme. 

Figure 3.22a shows a typical use of PCI in a single-processor system. A com-
bined DRAM controller and bridge to the PCI bus provides tight coupling with the 
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processor and the ability to deliver data al high speedzs. The bridge aets as a data 
buffer so that the speed of the PC.I bus may differ from that of the processor's 
capability. In a multiprocessor system (Figure 3.22b), one or more PCI configura-
tions rruiy be connected by bridges to the processor's system bus. The system bus 
supports only the processoricaehe units, main memory- and the PO bridges. Again. 
the use of bridges keeps the PCI independent of the processor speed yet provide.1 ,. 
the a313iIi1y to receive and deliver data rapidly. 

Bus Structure 

PC:l may be configured its it 32- or 64-bin bus. Table 3.3 defines the 49 mandatory 
signul lines for PC'1. These are divided into the following functional groups: 

■ System pins: Include the clock and reset pins. 
■ Address and data pins: include 3.2 hoc ,. ! hat are 1 irne multiplexed fc.lr addresses 

and data. The other lines in this :group tux used to interpret and validate the 
signal Lines that carry the addresses and data. 

■ Interface control pins: Control the liming of tr;irkwctionF.; anal provide coorcli6: 
nation among initiators and targets. 

• Arbitration pinN: Unlike the other PCI signal lines, these arc riot shared lines. 
Rather. each PCI master has its own pair of arhiira [ion lines I hat connect it 
directl!, ,  to the PCI bus arbiter. 

• Error reporting pins: Used to report parity and other errors. 

In addition. the PCI specification defines 51 optional sigitpl lines (fable 3,4), 
di iced in 10 the following functional groups: 

• Interrupt pins: These are provided for PCI devices that must generate requests 
for service. AS with the arbitration pins, these are not shared lines. Rather, 
e;ic]1 PC[ device has its own interrupt line or lines to an interrupt controller. 

• Cache support pins: These pins are needed to support a memory on PCI that 
can lie ckiched in the processor or anol her &vice- These pins support snoopy 
cache protocols (see Chapter 18 for a discussion of such protocols). 

• 64-bit bus extension pins: include 32 lines that arc time multiplexed for ad-
dresses ;ind dah'i and than are combined with the mandatory address data lines 
to form a 64-hit address/data bus. 01 her lines iIa this group arc used to inter-
pret and validate the signal lines that carry the addresses and data. 
there are two lines that enable two PCT devices to agree to the. use of the 
64-bit capability. 

• JTAGibonndary scan pins: These signal lines support testing proced u res  
defined in IEEE Standard 114Q]. 

PCI Commands 
Bus activity occurs in the form of transactions between an initiator, or master. and 
a target. When a bus master' acquires control of the bus. it determines the type of 
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Table 3.3 Mandatory PC' Signal Lines 

I 
Designation Type Description 

System Pins 

CIA  in Provides timing for all transactions and is sampled by all inputs on the rising 
edge. Clock rates up to 33 MHz are supported_ 

RST# in Forces all E'Cl.specific registers. sequencers, and signals to an initialized state. 

Address and Data Pins 

AD I: t :Al tis Multiplexed lines used for address and data. 

OBE[3::010 [Is Multiplexed bus command and byte enable signals. During the data phase. the 
lines indicate which of the four byte limes carry meaningful da ta_ 

PAR Us Provides even parity across AD and OSE lines one clock cycle later. The 
master drives PAR for address and write data phases: the target drive PAR for 

read data phases. 

interface Control Pins 

FRAME* I sAis Driven by current master to indicate the start and duration of a transaction. 
It is asserted at the start and deasserted when the initiator is ready to begin the 
final data phase. 

1RDY, sitis• Initiator Ready. Driven by current bus master ;initiator of transaction), During 
a read. indicates that the master is prepared to accept data: during a write, indi-
cateS that valid data are present on AD. 

TRDY-FF sits Target Ready. Driven by the target (selected device). During a read, indicates 
I hat valid data are present on AD; during a write, indicates that target is ready 

to accept data_ 

STOPS kik.'s Indicates that current target wishes the initiator to stcup.the current transaction. 

I DSEL in Inicialierition Device Select. Used as a chip select during configuration read and 

write transactions. 

DEVSF.I ,t4  

I_ 

in Device Select. Asserted by target when it has recognized its address. Indicates 
to current initiator whether any device has been selected. 

Arbitration Pins 

REQo L's Indicates to the arbiter that this device requires use of the bus, This is a device-

specific point•tO-prune line. 

ONTA tis Indicates to the device that the arbiter has granted bus access. This is. ii device-
. specific point-to-point line. 

Error Reporting Pius 

PERR# sills Parity Error. Indicates a data parity error is detected by a target during a write 
data phase or by an initiator during a read data phase. 

SERRff old System Error. May he pulsed by any device to report address parity errors and 
critical errors other than partly. 
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-rabic 14 Optional Fti Signal Lints 

Designation 19±, pe Description 

Interrupt Pins 

TNTA# I (1.:a used to n2CIL.LESI an interrupt. 

I NTI:i old Used In TcgLicRI, ;in in V2Tr upl.: c nil y Iii 1114:216.11g un a inuttifuniction device. 

I. TC',a ad Used to request an inierrupt: only has nicnn mg on ;..1 I-fl annel:Lan device. 

INTD.: 419'11 Used to requerd an interrupt! only has meaning on inulltfunclion iin..ice.. 

Cache Support MIS 

SBON infout Snoop Back ell Indicalcs a hil to .3 rricidifiLd. line. 

SDQNE irIkrUL Snoop Done. Indicates (lie 31.aras ot. 11.1C Nnoop For she current acc&nt. Asseriled 
wile.'" snoop has been completed. 

64 -bit HIPS Extension Pins 

A11, [63;;34 L/.5 Multiplexed linuh used for kithirc.v rind data 1.0 enend hus LC. M bits. 

Ci]3E[7ii4l L.S Multiplexed bus command and byte. c Ra IA 12 Niglvl I s . During the: rates phase. 
the lines provide additional bus commandri. During LFIE Haiti phase, the lines 
indicate wluch or the lour e.xtcu.de .d hyl la ri.;:s cury 11.1CLInirpjul data. 

REQ64 sills Used to request 64-bit transfer. 

ACk64.100 
... _ 

.PAR64 

sith, Midi cul6s l a rger  is w:illinj..:: to perform 64 -bit transfer. 

r/S Provides .: .: ,....:n 1 -..irri:... ACTI MS i2xientlEd AD and OBE lines' one clock cycle liter, 

ITAC/Boundury Simi Pins 

ICI( in Test Clod.... 1..:s42d Lci. dock ....f ..11.t. inionnation and i t data into aric.I out of Ulu 
du vicc durin .F hcrundmy WWI. 

MI hi 1'.......st Input. Used to .scriiilly shill le .q. IILL a aitd insbuctions into the device. 

TDO out Test Out put. L:sed to serially shift ic.sl. data and instructiuris out of the device. 

MIS. in Test l'vlode Select. Used t CCI nisei! state of te51 a CCC35 pint control! LT: 

TRSTfF in Test Resut. I.IECti to ill iLiali2e: test access port c\-5ittrallu• 

in lnput-only signal 
tiut Output-only signal 

signal 

SuLained id-state signal driven by only on. owne r 
rr t1 Open dniiii: multiple destiCei to share a 3 a wire -OR 

#I 0 i5.1! sI M occurs ak. Inw vollavg 
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transaction that will occur next. During the address phase of the transaction. the 
OBE lines are used to signal the transaction type. The commands arc 

• Interrupt Acknowledge 
• Special Cycle 
• I/0 Read 
• 110 Write 

• Memory Read 
• Memory Read Line 

• Memory Read Multiple 
• Memory Write 

• Memory Write and Invalidate 
• Configuration Read 
• Configuration Nkrrite 
• Dual Address Cycle 

Interrupt Acknowledge is a read command intended for the device that func-
tions as an interrupt controller on the PCI bus. The address lines are not used dur-
ing the address phase- and the byte enable lines indicate the size of the interrupt 
identifier to be returned, 

The Special Cycle command is used by the initiator to broadcast a message to 
one or more targets. 

The Read and Write commands are used to transfer data between the ini- 
tiator and an 110 controller. Each I/0 device has its own address space, and the 
address lines are used to indicate a particular device and to specify the data to be trans- 
ferred to or from that device. The concept of I/O addresses is explored in Chapter 7. 

The memory read and write commands are used to specify the transfer of a 
burst of data. occupying one or more clock cycles. The interpretation of these com-
mands, depends on whether or not the memory controller on the PCI bus supports 
the PCI protocol for transfers between memory and cache. If so. the transfer or data 
to and from the memory is typically in terms of cache lines, or blocks,' 

. 1.-he three 
memory read commands have the uses outlined in Table 3.5, The Memory Write 
command is used to transfer data in one or more data cycles to memory_ The Mem-
ory Write and Invalidate command transfers data in one or more cycles to memory. 
In addition, it guarantees that at feast one cache line is written. This command sup-
ports the cache function of writing back a line to memory. 

The two configuration commands enable a master to read and update config-
uration parameters in a device connected to the PCI, Each PC1 device may include 
up to 25 ► internal registers that are used during system initialization to configure 
that device. 

'The funda menial principles of cache memory are described in Chapter 4; bus based cache prolocols are 
described in Chapter 1K 
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Table 3.5 Interpretation of PCI Read Commands 

held Command For Cgichnhie 
manure For Nonesichahle Memory 

MC111CITV RCM' unc-half or 1 ,2!-.ti 

fi C2Cht 

Me111CITV Redd. MCF1'12 tIrdu or:L.-11;1ft 

Line a tf,chr line 1. 4.1 C411:E).2. Ines 

Me11.1CITy Rcad. Bursling rricivu 

Multiple Lachc hues 

Busting 2 <lath transfuc....clos IV. '.('S`; 

Bursting 3 to 12 data srN nsirrw 

Burstiag more than 1,7 dm,' trmisfc.rs 

The Dual Address Cycle command is used by an initiator to indicate that it is 
using 64-bit addressing. 

Data Transfers 
Every data transfer on the ['CI bus is n Irmisaell ion consisting of one address 
phase and one or inore ryhases. in this discussion, we illustrate iI typical read 
operation; a write operation proceeds similarly. 

Figure 3.23 shows the timing of the read transacLlon.. All events are synchro-
nized to [he falling transitions 01 the: clock, which occur in the middle of each clock 
cycle- Bus devici2S sample  the bus lines on the rising edge at the beginning of a bus 
cycle. The followina are the significant events, labeled on !he diagram: 

a. Once a bus master has gained control of the bus, it may begin the [tons-
action by asserting FRAME. This line remains Laili I the initiator 
is ready to complete the, last dota phase. '1 . 111,2 initiator also puts the start 
address on the address bus, and the read command on the CIBE lines. 

b. At the start of clock 2, the target device will recognize its .iddrcss on the 
AD lines. 

c. The initiator ceases driving the AD bus. A turnaround cycle. Ondiented 
by the.two circular arrows) is required on all signal lines That 'nay be dri-
ven by more lhan one device, so that the dropping of the address signal 
will prepare the bus for use by the target device. The initiator chongcs 
the information on the CiBE lines to desigru  which Al) lines are to be 
used for transfer for the currently addreAsed Clfi La to 4 bytes), 

iniLia tor also 4i;iscil:s 11-Z17Y Lo indicate that it is ready for the first 
data hum. 

d. selected target asserts DEVSEL to indicate that it has recognized its 
address and will respond. IL phIces the re vested data on the AD lines and 
asserts T'RDY to indicate that valid data is present on the bus. 

e. The initiator reads the dab+ al the beginning of clock 4 and changes the 
byte enable lines m; ni;cdcd in preparation for the next read. 
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Figure 3.23 PC1 Read Operation 
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Figure 3.24 FC1 Bus Arbiter 

r. In this example, the target needs some time to prepare the second block 
of data for transmission_ Therefore. it deasserts TRI)Y to signal the ini-
tiator that there will not be new data during the coming cycle. Accord-
ingly, the initiator does not read the data lines at the beginning of the fifth 
clock cycle and does not change byte enable during that cycle. The block 
of data is read at beginning of clock 6. 

g. During clock 0, the target places the third data item on the bus- However, 
in this example. the initiator is not yet ready to read the data item (e.g., it 
has a temporary buffer full condition). It therefore deasserts IRDY. This 
will cause the target to maintain the third data item on the bus for an extra 
clock cycle, 

h. The initiator knows that the third data transfer is the last, and so it de-
asserts ll-Z.AME: to signal the target That I his is the last data transfer. It 
also asserts IRDY to signal that it is ready to complete that transfer. 

i. The initiator deasserts fRDY, returning the bus to the idle state, and the 
target deasserts 'I'RDY and DEYSEL. 

Arbitration 

PC 1 makes use of a centralized, synchronous arbitration scheme in which each mas-
ter has a unique request ( REQ) and grant ((NT) signal. These signal lines are 
attached to a central arbiter (Figure 3,24) and a simple request-grant handshake is 
used to grant access to the bus. 

The I'C'I specification does not dictate to particular arbitration algorithm. The 
arbiter can use a first-come-first-served approach, a round-robin approach, or some 
sort of priority scheme. A PCI master must arbitrate for each transaction that it 
wishes to perform, where a single transaction consists of an address phase followed 
by one Or more contiguous data phases .  

Figure.3.25 is art example in which devices A and B are arbitrating for the bus. 
The following sequence occurs: 

a. At some point prior to the start of clock 1, A has asserted its REQ 
The arbiter samples this signal at the beginning of clock cycle 1. 

h. During clock cycle 1. B requests use of the bus by asserting its RI X) signal. 



CLK 

REQ#-A  
1 

REQ#-B 

GNT#- A 

GIN T#-B 

I   

I I 
# 

AD 

IRDY# 

-41I-Access A-111- 

Figure 3.23 Ft:113m Arbitration between Two Masters 
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c. At the same time, the arbiter asserts oNT-A to grant bus access to A. 

d. Bus master A samples CiNT-A at the beginning of clock 2 and learns that 
it has been granted bus access. It also finds IRI)Y and TROY deasserted, 
indicating that the bus is idle. Accordingly, it asserts FRAME and places 
the address information on the address bus and the command on the CBE 
bus (not shown). It also continues to assert RF.Q-A, because it has a sec-
ond transaction to perform after this one. 

e. The bus arbiter samples all REQ lines at the beginning of clock 3 and 
makes an arbitration decision to grant the bus to B for the next trans-
action. It then asserts GNT-B and deasserts CNT-A. B will not be able to 
use the bus until it returns to an idle state, 

1. A deasserts FRAME to indicate that the last (and only) data transfer is in 
progress. It puts the data on the data bus and signals the target with I R I)Y_ 
The target reads the data al the beginning of the next clock cycle. 

g. At the beginning of clock 5, B finds IRI)Y and FRAME deassertect and 
so is able to take control of the. bus by asserting FRAME.. It also deasserts 
its REQ line, because it army wants to perform one transaction. 

Subsequently, master A is granted access to the bus for its next transaction_ 
Notice that arbitration can take place at the same time that the current bus 

master is performing a data transfer. Therefore, no bus cycles are lost in perform-
ine arbitration. This is referred to as hidden arbitration, 

3.6 RECOMMENDED READING AND WEB SITES 

rhiL litL.rature on buses and other interconnection structures is, surprisingly, not very exten-
sive. ALE 93J includes an in-depth treatment of bus structures and bus transfer issues, 
including accounts of se v era specific buses. 

The clearest buck -Icrw ri description of PCI is NIIAN951. IARBOGOI also contains a 
lot of solid information on PCl. 

ABB000 Abbot, D. PC! Bros Demys.afied, Eagle Rock, VA: LI .Ft Technology Pohlish-
ing, 2000, 

ALF.X93 Alexandridis, N. Desiv? Micropwccs.vor-Based Systems. Englewood Cliffs, 
NJ: Prentice Hall, 1993, 

SIIAN95 Manley, and Anderson. D. PC.1 Sysiemy Ayritifeerttre. Richarclsou, TX: 
Mindshare Press, 1995. 

Recornmoaded Web Sites: 

• PC Special Interest Group: Informal ECM about I'C'I specifications and products. 

• PCI Pointers: I .inks to PCI vendors and other sources of information. 
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3,7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS • 

Key Terms 

address bus 
asynchronous Lintilig 
bus 
bus 4ir bitratiim 
bus width 
CQ1111:111iZOCI arbitration 
data bus 
disablei.1 interrupt 

                

 

distributed arhittation 
instructiiin cycle. 
41 1ti1rLuction CkCCUre 
ills !suction te' tcic  
interrupi 
inif rrupl. handler 
intrrupt service routine 

 

tiicri-lory address rt'E,rislxz 
( MAR) 

memory butter rc.gister 
(AM). 

r.riptseral. COInp47 1 110E1 

into rwikaect (PC1) 
svmlironous 
gystern bus 

  

  

  

  

  

  

                

Review Questions 
3.1 What general categories of function% are specified by computer instructions? 

3,2 List and briefly define the possible stales I hat define an instruction execution. 
3.3 List arid briefly define two .i .ipproadies to dealing with multiple 

3,4 What lypes of transfers must a computer's interauniection structure (e.g.. bus) sollilore 
3,5 What is the benefit of using a multiple-bus architecture compared to a single-bus 

architecture'' 
3.6 List and brictly define ale functional groups 411: signal lines for P.C.1. 

Problems 
3.1  The hypothetical ma tine of Figure 3.4 also has two 1110 instructions; 

0011 — Load AC from I.10 
01 I I — Store AC to I/O 

In these eases. the 12•bil address identifies a particular 110 device. Show tlic. program 
cxeciii lien (itsing the format of Figure 3.5) for the followinn program! 
L Load AC from deviec 5. 
1. Acid contents of IT1611143ty 14.1CatiCM 1440. 

3. Store AC to device 6. 
Assume that the next value retrieved from dkivice 5 is 3 and that location 940 contains 
a value of 2. 

3.2 The proir,rain execution or Figure 3.5 is described in the text using six steps. Expand 
this description Lo show the use of the MAR and MBR. 

3-3 Consider a hypothetical 32-bit microprocessor having instructions composed 
of two fields: . 1. 'he first hvie contains the sirode and the remainder the humodiate 
operand or an operand address. 
a, What is the maximum. directly addressable inerm-iry capacity' in bytes)? 
h. Disct-s file impact on the system speed if the microprocessor bus lac 

1, a 32-bit local address bus and a 16i-bit local data bus, or 
2, a 1.6-bit local address bus and a hit loon data buis. 

c, How many hits are needed for the progr;ini countor and the instruction ree,ister? 
,Sr drrce; [AIJ iX93] 
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3.4 Consider a hypothetical microprocessor generating a 16-bit adcirvis (foi' example, 
assume that the program counter and the address registers are l6 bits wide) and hav-
ing a 16. bit data bus. 
a. What is the maximum memory addross•space that the processor earl Fi =ss directly 

if it is connected to a "16-bit memory"? 
k What is the maximura memory address space that the processor can access directly 

if it is connt.cted to an "8-bit memory"?' 
c. What architectural teal tires will allow this microprocessor to access a separate 

•• apace."? 
d. If an input and an output instruction can specify an ti-hit 1.0 port number, how 

many 8-bit PO ports can Ihe microprocessor support? 110Y.' inany 16-bit I/O Boris? .  
Explain. 

Source; 
3.5 Consider a 32-bit microprocessor, with a 16-hit external data bus. tiriveil by an 8-.N.T1Le 

input clock. Assume that this microprocessor has a has cycle whose minimum dura-
tion equals four input clock cycles, What is the maximum clam  11;111!nh2r Tats that this 
microprocessor can sustain? To increase its performance. would it lie beitr to make 
its eat:A -nal data bus 32 hits or to double Ilitt eN1ernal clock ireqwency supplied to the 
microprocessor? State any other assumptions you make, and explain. 
Source: 1AL EX931 

3.6 Consider .k1 coniputer system that contains an PO module controlling a si mple key-
boardiprinler teletype. The following  coritainod in the processor and 
wrinomd directly to the Aysleru bus: 

11‘,;Pk! Inpul Re.2,ister, f hiss; 
OUTR: Output Register, 8 hits 
Hic; Inpul Flag, 1 bit 
MO: Output Flag, 1 bit 
TEN: Interrupt Enable. I bit 

Keystroke input front the (eietype and printer output to the teletype are controllcd 
by the 110 oic ulti le. '1 he ieletype is able to encode an alphanumeric symbol to an 
t hit word dad deeialc an 8-bit word into an alphanumeric symbol. 
a. Describe how the processor. using.the first four registers listed in this problem, can 

achieve. TIO with the teletvp... 
b. Descrik how the Function Can lie performod more efficiently by also e mploying  TEN. 
Figii ini11122HL.N rikiii.a] arbitration scheme that can be used with an obsu- 
i,th• as Midi thus T. Agents are daisy chained physically in prior- 
ity wile'. left-most agent in the diagram receives a constant but, prioriiy /it 
(BPR\) signal indicating that no highcr-priorily agent desircs• the bus. If the agent 
does not wish the bus. it asserts its bus priority BPRO) I.iu e. At thm beginning of 

LiLiSY  
Bus 

motor 

4   
1-5.PRN BPRO 

(Highest priority) 

Master 1 I  

1.q."K.7.4 

Master 2 

Bug 

termi-
nator 

Figure 3.26 Mtillilnp,  I 1) Jaributea Arbitration 
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a clock cycle. any agent can request control or the bus by lowering 131 1R0 line. 
This lowers the BPRN line of the next agent in the chain, which is in turn required 
to lower its BPRO line. 'f'hus, the signal is propagated the length of the chain. At the 
end of this chain reaction, there should be only one agent whose BPRN is asserted 
and whose BPRO is not, This agent has priority. lf,  the beginning of a bus cycle. 
the bus is not busy (BUSY inactive), the agent that has priority may seize control 
of the hus by asserting the BUSY line, 

It lakes a certain amount of time for the BPR signal to propagate from the high-
est-priority agent to the lowest Must this time he less than the clock cycle? Explain, 

3.? The VAX SIEff bus uses a distributed, synchronous arbitration scheme-. F:ach SBI 
device (i.e., processor, memory. 1.0 module) has a unique priority and is assigned a 
unique transfer request (TR) line. The SBI has 16 such lines (TRO, TR1, _ TR15), 
with TR(} having the highest priority. When a device wants to use the bus, it places a 
reservation for a future time slot by asserting its 'T R line during the current time slot, 
AL the end or the current time slot, each device with a pending reservation examines 
the TR lines; the highest -priority device with 7 reservation uses the next time slot, 

A maximum of 17 devices can be attached to the bus. The device with priority 16 
has no TR line. Why not? 

3.9 Paradoxically, the lowest-priority device usually has the lowest average wait time. For 
this reason. the processor is usually given the lowest priority' on the SBI. Why does 
the priority 16 device usually have the lowest average wait time? Under what cir-
cumstances would this not he true'? 

3.10 Draw and explain a timing diagram for a PCI write operation (similar to Figure 3.23), 

APPENDIX 3A TIMING DIAGRAMS 

In this chapter. ti ming diagrams are used to illustrate sequences of events and 
dependencies among events. For the reader unfamiliar with timing diagrams, this 
appendix provides a brief explanation. 

Communication among devices connected to a bus takes place along a set of 
lines capable of carrying signals. Two different signal levels (voltage levels), repre-
senting binary 0 and binary 1, may he transmitted. A timing diagram shows the sig-
nal level on a line as a function of time (Figure 3.27a). By convention, the binary I 
signal level is depicted as a higher level than that of binary 0. Usually, binary 0 is the 
default value. fhat is, if no data or other signal is being transmitted, then the level 
on a line is that which represents binary 0. A signal transition from 0 to 1 is fre-
quently referred to as the signal's leading edge: a transition from l to 0 is referred 
to as a trailing edge_ Such transitions are not instantaneous, but this transition lime 
is usually small compared with the duration of a signal level. For clarity, the transi-
tion is usually depicted as an angled line that exaggerates the relative amount of 
time that the transition takes. Occasionally, you will see diagrams that use vertical 
lines, which incorrectly suggests that the transition is instantaneous. On a timing dia-
gram, it may happen that a variable or at least irrelevant amount of time elapses 
between events of interest. This is depicted by a gap in the .  time. 

Signals are sometimes represented in groups (Figure 3.27b). For example. if 
data are transferred a byte at a time, then eight lines are required. Generally, it is. 
not important to know the exact value being transferred on such a group, but rather 
whether signals are present or not 
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Figure 3.27 liming Diagrams 

A signal transition on one line may trigger an attached device k 'slake sinal 
changes on other lines. For example.. if a memory module di,:tects a read control sig-
nal ((l or 1 traniLion), it will place data signals on 1he data lines. Such eau:94-41nd-
effc.ei re14itionships produce. sequences of events. Arrows are used i H1 Inning 

diagrams to show these dependencies (Figure 3.27c). 
In Figure 3.27c, the overbar over the signal name indicates that the signal is 

active [ow ws shown, For example, Command iS ,icEive, or asserted, at 0 voIts. This 
means drat Command = is interpreted as logical 1, or true, 

A clock line is often part of a system bus. An electronic clock is connected to 
the clock Lint:. and provides a repetitive, r ul,ir sequence of transitions (E"igure 
3.27d). Other events may he synchronised to the clock signal. 
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KEY POINTS 

• Computer memory is organized into a hie-ravehy. At the highest level (closest 
to the processor) are the processor registers. Next comes one or more levels 
of cache. When multiple leve15., are used, they are denoted LI. L2, etc. Next 
comes main memory, which is usually made out of dynamic random-access 
memory (DRAM). All of these a ►re considered internal to the.computer sys-
tem. The hierarchy continues with external memory, with the next level typi-
cally being a fixed hard disk, and one or more levels below that consisting of 
removal* media such as ZIP cartridges, optical disks. and tope. 

• As one goes down the memory hierarchy, one finds, decreasing cosi/bit, 
increasing capacity, and slower access time. .11 would be nice to use only the 
fastest memory, but because that is the most expensive. memory, we trade off 
access time for cost by using more of the slower memory. The trick is to orga-
nize the data and programs in memory so that the memory words needed are 
usually in the faster memory. 

♦ In general. it is likely that most future accesses to main memory by the proces-
sor will be to locations recently So the cache automatically retains a 
copy of some of the recently used words from the DRAM. If the cache is 
designed properly, then most of the time the processor will request memory 
words that ace already in.the cache. 

A•  fthough seemingly simple in concept, computer memory exhibits perhaps 
the: widest range of type. technology, organization. performance, and cost 
of any feature of a computer system. No one technology is optimal in satis- 

fying the memory requirements for a computer system. As a consequence, the typ-
ical computer system is equipped with a hierarchy of memory subsystems, some 
internal to the system (directly accessible by the processor) and some external 
(accessible by the processor via an 110 module). 

'I bis chapter and the next focus on internal memory elements, while Chapter 
6 is devoted to external memory. To begin, the first section examines key charac-
teristics of computer memories. The remainder of the chapter examines an essen-
tial clement of al] modern computer systems: cache memory, 

4.1 COMPUTER MEMORY SYSTEM OVERVIEW 

Characteristics of Memory Systems 

The. complex subject of computer memory .  is made more manageable if we classify 
memory systems according to their key characteristics. The most important of these 
are listed in f able 4.1, 
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Table 4.1 Key' Characteristiai of C:{riptitt..1 Mernoty Sysients 

1.04.-ation lierformitriee 
Procussa. Access time 
fritt•rna.1 CyCie. tI me 
ExcerItal (secorklar:Ii.) 'fraosfer rile 

Capiicity Physical 'type 
word size SQmiconductor 
Number of words Magnetic 

[Jai of Transfer 
.M.HgooLo -op/ i 

Block Physical Characteristics 
Access Method lerolatileirionvolaLile 

ErasnbleinorLerusable 
tlrgaitizatiort 

Rand noi 
t 

The term location in Table 4.1 refers to -whether memory is internal and exter-
nal to the computer. Internal memory is often equated with main memory_ But there 
are other l'orms of internal memory. The processor requires its own local memory, 
in the form of registers (e.g., see Figure 2.3). Further. as we shall see, the control 
unit portion of the processor may also require its own internal memory. We will 
defer discussion of these latter two types of internal memory to later chapters. 
Cache is another form of internal memory. External memory consists of peripheral 
storage devices, such as disk and tape, that arc accessible to the processor via I/O 
conirollus. 

An obvious characteristic of memory is its capacity. For internal memory, this 
is typically expressed in terms of hyles (I byte- = ii bits) or words. Common word 
lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in 
terms of bytes. 

A related concept is the unit of transfer, For internal memory, the unit of 
transfer is equal to the number of data lines into and out of the memory module. 
This may be equal to the word length, but is often larger. such as 64. 128, or 256 bits. 
To clarify this point, consider three related concepts for internal memory: 

• Word: The "natural" unit of organization of memory. The size of the word is 
typically equal to the number of bits used to represent a number and to the 
instruction length. Unfortunately. there are many exceptions. For example, 
the CRAY C90 has a 64-bit word length but uses a 46-bit integer representa-
tion. The VAX has a stupendous variety of instruction lengths, expressed as 
multiples of bytes. and a word size of 32 bits. 

• Addressable units: In some systems, the addressable unit is the word. How-
ever, many systems allow addressing at the. byte level_ In any case. the rela-
tionship between the length in bits A of an address and the number N of 
addressable units is = N. 
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• Unit of transfer; For main memory, this is the number of hits read out of or 
written into memory at a time. The unit of transfer need not equal a word or an 
addressable unit. For external memory, data are often transferred in much 
larger units than a word, and these are referred to as blocks_ 

Another distinction among memory types is the method of accessing units of 
data. These include the following: 

• Sequential access: Memory is organized into units of data, called records. 
Access must he made in a specific linear sequence. Stored addressing infor-
mation is used to separate records and assist in the retrieval process. A shared 
read/write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record. 
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access, 

■ Direct access: As with sequential access, direct access involves a shared 
read—write mechanism_ However, individual blocks or records have a unique 
address based on physical location. Access is accomplished by direct access to 
reach a general vicinity plus sequential searching, counting. or waiting to reach 
the final location. Again, access time is variable. Disk units, discussed in Chap-
ter 6. are direct access. 

■ Random access: Each addressable location in memory has a unique, physically 
wired-in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location 
can be selected at random and directly addressed and accessed. Main memory 
and some cache systems are random access. 

• Associative: Ch is is a random-access type of memory that enables one to make 
a comparison of desired hit locations within a word for a specified match, and 
to do this for all words simultaneously. Thus, a word is retrie ved e- h OD a 
portion of its contents rather than its address. As with ordinary random-access 
memory. each location has its own addressing mechanism_ and retrieval lime 
is constant independent of location or prior access patterns. Cache memories 
may employ associative access. 

From a user's point of view, the two most important characteristics of mem-
ory are capacity and performance. Three performance parameters arc used: 

• Access time (latency): For random-access memory, this is the time it takes 
to perform a read or write operation. that is, the time from the instant that 
an address is presented to the memory to the instant that data have been 
stored or made available for use. For non-random-access memory, access 
ti me is the time it takes to position the read—write mechanism at the desired 
location. 

■ rti e mo ry cycle time: This concept is primarily applied to random-access mem-
ory and consists of the access time plus any additional time required before 
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a.  second access can commence_ This additional time may be required for 
transients to die out on signal lines or to regenerate data if they are read 
destructively. Now that memory cycle time is concerned with the system bus, 
not the processor_ 
Transfer rate: This is the rate at which data can he transferred into or out of a 
memory unit_ I tor random-access memory, it is equal to 11(cycle time). 

For non-random-access memory, the following relationship holds; 

rV = - — 

R 
where 

T. = Average time to read or write N bits 
Average access time 

N = Number of hits 
R = Transfer rate, in bits per second (bps) 

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory. magnetic surface memory, used for disk and 
tape, and optical and magneto-optical. 

Several physical characteristics of data storage are important. In a volatile 
memory, information decays naturally or ii lost when electrical power is switched 
off_ In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion_ Magnetic-surface memories are nonvolatile. Semiconductor memory may he 
either volatile or nonvolatile. Nonerasable memory cannot be altered, except by 
destroying the storage unit. Semiconductor memory of this type is known as read-
only memory (ROM). Of necessity, a practical nonerasable memory must also he 
n onvolatil e.  

For random-access memory, the organization is a key design issue. By organi-
zarion is meant the physical arrangement of bits to form words, The obvious ar-
rangement is not always used, as will be explained presently. 

The Memory Hierarchy 

The design constraints on a computer's memory can be summed up by three ques-
tions: How much? How fast? How expensive? 

The question of how much is somewhat open ended. If the capacity is there. 
applications will likely be developed to use h. The question of how fast is, in a sense. 
easier to answer_ To achieve greatest performance, the memory must be able to 
keep up with the processor. That is, as the processor is executing instructions, we 
would not want it to have to pause waiting for instructions or operands. The final 
question must also be considered. For a practical sy stern , rhocost of memory must 
be reasonable in relationship to other components. 

As might be expected. there is a trade-off among the three key characteristics 
of memory: namely, cost, capacity..and access time. At any given time, a variety of 
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ieetinologies are. used to implerncut memory systems. Across this spectrum of kcch-
riologies, the following relationships hold: 

* FasLer access time, greater cost pi2r hit 
• Oreatercapacity, smaller cost per hit 
• Cireater capacity, s l ArkL # time 

'Clic dilemma facing the designer is clear. The designer would like to use 111Qm-
ory technologies abut provide for lare-capacit!,. ,  mcmory. both because ihc capacity 
is. needed 4i nd because the cosi per bit is low, How  to meet periormance 
rcquirerri4,:nt, the designer neeth I o Lin expinisive, relatively lower-capacity memo 

s with short access times. 
The way out of this diluriima is riot to rely on a :iiagje memory compon'ent or 

technology, hui Lo employ a mpiory hierarchy. A typical hierarchy is illustrated in 
Figure 4.1...AN one goes down lhc hierateliv, the following occur! 

41. Beercasing cost per bit 

b. Increasing capacity 

ligurc 4.1 The Mu.r[14..ir .s..' .1.1iCcarchy 



4.1  COMPUTER MEMORY SYSIEM ovERvaw 101 

T 1 + T., 

ai 

1; 
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1 
1-raLtion of accesse5, involving only level 1 (hit ratio) 

Figure 4.2 Performance of a Simple Two-Level Memory 

C. Increasing access time 
d. Decreasing frequency of access of the memory by Lift processor 

Thus, smaller, more expensive., faster memories are supplemented by larger, 
cheaper, slower memories. The key to the sulLES!..ti of this organization is item (d): 
decreasing frequency of access. We examine this concept in greater detail when 
we discuss the cache. later in this chapter, and virtual memory in Chapter 8. A brief 
explamilicin is provilticAl a1 this pc..)inl. 

Suppose.: that the processor has access to tw.o levels of MCMOly. Level 1 con-
tains 1000 words and has an access time of 0.01  level 2 contains 100,000 words 
and has an access time of 11.1 Ills. Assume, that if a word to be accessed is in level L 
then the processor ac,cesses it directly- If  is in level 2, then the word is first trans-
ferred to level 1 and then accessed by the processor. For simplicity, we ignore the 
ti me required for the processor to determine. whether the word is in level 1 or level 
2. Figure 4.2 shows the general shape of the curve that covers this situation. The 
figure shows the average access time to a two-level memory as a function of the hit 
ratio H, where 

1/ = fraction of all memory accesses that are found 
in the faster memory the cache) 

1 .
1  = access Lime 10 level 

T, = aceem time to level 2 

As can he seen, fur high percentages of level I access, the average total access time 
is much closer to that of level 1 than that of level 2. 
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In our example, suppose 95% of the memory accesses are found in the cache. 
Then the average time to access a word can be expressed as 

(0,95) (0.01 p.$) + .(0.05) (0,01 µs 4- 0.1 n.$) = 0,0095 — 0.0055 = 0,015 is 

In this example, the average access time is much closer to 0.01 1.i.s than to 0.1 
n.s, as desired, The use of two levels of memory to reduce average access time works 
in principle, but only if conditions (a) through (d) apply. By employing a variety of 
technologies, a spectrum of memory systems exists that satisfies conditions (a) 
through (c). Fortunately, condition (d) is also generally valid. 

The basis for the validity of condition (d) is a principle known as locality of 
reference I1)ENN681. During the course of execution of a program, memory refer-
ences hy the processor, for both instructions and data, tend to cluster, Programs 
typically contain a number of iterative loops and subroutines, Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions. Sim-
ilarly, operations on tables anti arrays involve access to a clustered set of data words. 
Over a long period of lime, the clusters in use change, but over a short period of 
ti me, the processor is primarily working with fixed clusters of memory references. 

Accordingly, it is possible to organize data across the hierarchy such that the 
percentage of accesses to each successively lower level is substantially less than that 
of the level above. Consider the two-level example already presented. Let level 2 
memory contain all program instructions and data, The current clusters can be 
temporarily placed in level 1, From time to time, one of the clusters in level 1 will 
have to he swapped back to level 2 to make room for a new cluster coming in to 
level 1. On average, however. most references will be to instructions and data con-
tained in level 1. 

1 his principle can be applied across mote than two levels or memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a 
processor will contain a few dozen such registers, although some machines contain 
hundreds of registers. Skipping down two levels. main memory is the principal inter-
nal memory system of the computer. Each location in main memory has a unique 
address. Main memory is usually extended with a higher-speed, smaller cache. The 
cache is not usually visible to the programmer or, indeed, to the processor. It is a 
device for staging the movement of data between main memory and processor reg-
isters to improve performance. 

The three forms of mernory just described are, typically, volatile and employ 
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory conics in a variety of types, which differ in speed and cost. Data are 
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable disk. tape, and optical 
storage. External. nonvolatile memory is also referred to as secondary or auxiliary 
memory, These are used to store program and data files and are usually visible to 
the programmer only in terms of files and records, as opposed to individual bytes or 
words, Disk is also used to provide an extension to main memory known as virtual 
memory, which is discussed in Chapter R. 
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Other forms of memory may be included in the hierarchy. For example, large 
IBM mainframes include a form of internal memory known as Expanded Storage. 
This uses a semiconductor technology that is slower and less expensive Than that 
of main memory. Strictly speaking, this memory does not fit into the hierarchy but 
is a side branch: Data can be moved between main memory and expanded stor-
age but not between expanded storage and external memory. Other forms of sec-
ondary memory include optical and magneto-optical disks. Finally, additional 
levels can he effectively added to the hierarchy in software. A portion of main 
memory can he used as a buffer to hold data temporarily that is to be read out to 
disk. Such a technique_ sometimes referred to as a disk cache.' improves perfor-
mance in two ways: 

• Disk writes are clustered. Instead of many small transfers of data, we have a 
few large transfers of data. This improves disk performance and minimizes 
processor involvement. 

• Some data destined for write-out may be referenced by a program before the 
next dump to disk. In that case, the data is retrieved rapidly from the software 
cache rather than slowly from the disk. 

Appendix 4A ex-amines the performance implications of multilevel memory 
structures, 

4.2 CACHE MEMORY PRINCIPLES 

Cache memory is intended to give memory speed approaching that of the fastest 
memories available, and at the same time provide a large memory size at the price 
of less expensive types of semiconductor memories, The concept is illustrated in Fig-
ure 4,1 There is a relatively large and slow main memory together with a smaller, 
faster cache memory. The cache contains a copy or portions of main memory. When 

Block transfer 
Word transfer 

    

   

  

Main ruernory 

    

Figure 43 Cache. and Main Memory 

' Disk cache is generally a purely software technique and is not examined in ihk ho4.51. -.. Sec ISTALUI] for 
a discussion 
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Figure 4A Caeheavlain Memory Structure 

the processor attempts to read a word of memory, a check is made to determine if 
the word is in the cache. If so, the word is delivered to the processor. If not, a block 
of main memory, consisting of some fixed number.of words, is read ink) the cache 
and then the word is delivered to the processor. Because of the phenomenon of 
locality of reference., when a block or data is fetched into the cache to satisfy a sin-
gle memory reference, it is likely that there will he future references to that same 
unemor?,/ location or to other words in )lie block. 

Figure 4.4 depicts the structure of a cacheimain-memory system. Main mem-
ory consists of up to 2' addressable words, with each word having a unique n-hit 
address. For mapping purposes, this memory is considered to consist of a number 
of fixed-length blocks of K words each. That is, there are M = TIK blocks. Cache 
consists of Clines of K words each. and the number of lines is Considerably less than 
the number of main memory blocks {C « Ai). At any time, some subset of the 
blocks of memory resides in lines in the cache. if a word in a block of memory is 
read, that block is transferred to one of the lines of the cache. Because there are 
more blocks than lines, an individual line cannot be uniquely and permanently ded-
icated to a particular blmk. Thus, each line includes a tag that identifies which par-
ticular block is currently being stored_ The tag is usually a portion of the main 
memory address, as described later in this section. 
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Figure 4.5 illustrates the read operation. The processor generates the address, 
R A, of a word Io be read. if the word is contained in the cache, it is delivered to the 
processor. Otherwise, the block containing 1haR word k Ic..padcd into the cache:, and 
the word is delivered to the processor. Figure 4.: 7i shows these Last two operations 
occurring in parallel and reflects the organization shown in Figure 4.45, which is typ-
ical of contemporary cache organizations_ In this organization, the cache connects 
to the processor via data, control, and address lines. The data and address lines also 
attach to data and address buffers, which attach to a system bus from which main 
memory is reached. When j cache hit occurs, the data and ii114.1ress buffers are dis-
abled and communication is, only h.clveccn pre cc5,scii-  aril unche_ with no system bus 
traffic. When a cache miss occurs, the desired address is Loaded onto the system 
hus. and the data are returned through the data buffer to both the cache and the 
processor. In other organi .fations, the cache is physically interposed between ihe pro-
cessor and the main memory for all data, address, and control lines. In this latter 
case, for a cache miss, the desired word is first read into the cache and then trans, 
ferred from cache in processor. 
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Processur 

lgure 4.6 Typical Cacho:.  ()rpm i7.2rLion 

A discussion of i he performance parameters related to cache use iscontained 
in Appendix 4A, 

4.3 FLENIENTS OF CACHE DESIGN 

This .section provides an overview of cache &sign parainetcrs and reports some 
typical resuli.s NT'Ve ocensionaJly refer to the ILI SQ of cad-i n in high-performance com-
puting (l-IPC). HPC. deals with supereomputcrs and supercomputer SOftwEirc, espe-
cially for scientific applications that involve large amounts of data, vector and 
matrix computation, and the use of parallel o lgorithms. Coehe design for HPC is 
quite Jirroreat thFin for ol her hardware platforms mid applications. indeed., many 
researchers have found that MK:applicairions perform poorly on computer archi-
tectures Thai employ caches [RA IL931. Other researchers have since shown [h 
mclie hicrorchv can be useful in. improving performance if theapplication software 
is tuned to exploit the cache IWANC199, PRES011. 2  

Although [here are a Large number of cache implementations, thcre are a few 
basic design elements that SC.re to classify and differentiate cache architectures. 
fable 4,2 Lists key elements. 

'Fo a ?erwral dsscussitni. of Hi-x7 : 1.1))WDLhil. 
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Tabl• 4.2 Eleineriis txf Cac-IIL. I] wtQil 

Cache Size 
:Mapping Function 

Dircct 
Associ:k I i vc 

rl ms,aicia.tik,;.%. 
Replicernemt ANorithm 

roxritly uzie.4.1 a.Rif 
First in first out (FIFO) 

ul.:1211;1.F1.:j 
Rilvidurn 

Write Pohc  
Wilie [hrouRb 
Write hack 
Writc ono.: 

Line gixe 
Number of emlies 

S11101.1 iwo 
1 1 16ilied ur 

Cache Size 

The first element, cache size, has already been discussed. We would like the size of 
the c4whe to be small enough so that the overall average cost per hit is close to that 
of main mentor). alone and large enough KO I hat the overall  access lime is 
close to that of the cache alone. There are several other motivations for minimizing 
cache size, The larger the cache, the larger the number of gates involved in address-
ing the cache, 'Fite resu!L is Thal large caches Lend to be slightly slower than small 
ones—even when built with the same integrated circtti I Icchnoiogy and put in Ike 

same place on chip and circuit board, The available chip and board area also limits 
cache size. Because the performance of the cache is very sensitive lo the nature of 
the workload, n ix i mpossible  irrive at  singly •Loptimurn -  eaehe size. 'fable 4.,1. 
lists the cache sizes of some current and past processors. 

Mapping Function 

Because there are fewer cache lines.than main memory blocks, an algorithm is needed 
for mapping main memory blocks into cache lines. Further. a means is needed for 
deterrnininy, which main memory block ei1 moLy occupies as cache li ne. The choice 
of the mapping function dictates how the cache is organized. Three techniques can 
be used: direct. associative, and set associative. We examine each of these in turn. 
In each (2;i2“;, we Look at the general structure and then a specific example. For xII 
three cases_ the example includes the following elements: 

■ The cache can hold 64 '<Bytes. 
• Data is Iransferred between main memory and the cache in blocks of 4 bytes 

each. This means that the cache is organiAed = 2 14 161‹. li nos ol'4 hyLcs 

• The main memory consists of If) Mbytes, with each byte directly addressable 
by a 24-bit address (2' 4  = lev1). Thus, for mapping purposes., we can consider 
math memory to consist of 4N1 blocks of 4 bytes each. 

l he simplest technique, known as direct mapping, maps each block .  or main 
memory into only one possible cache line. Figure 4:7 illustrates the genera] mecha-
nism. The mapping is expressed as 
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Table 43 Cache Sizes iJE Sonic. Processors 

Type 
Year of 

Introduction 
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= cache Fine number 
I .= main memory block number 
Pk1 = DILISiber or lines iii the cache 

of cache access. ekieli main memory address can be viewed as consisting of 
Th• mapping function easily impkcrdcntcd using the address. For purposes 

three fields, The least significant iv bits identify i unique word Or byle within a 
block. of main memory; in most con Lanporar .,.

,  machine, the - aldress is at the hyle 

Level The remaining s bits specify one, or the  blocks of Main 1I10mOry• The cache 

logic interprets these. s hits as a tag of s — r bits (most significant portion) and a 

li ne field of r biLs. This bitter field identifies one or the on = 2' !Ines of the cache. 

To summar ize. 
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• Address length = (s + w) bits 

• Number of addressable units — words or hyl cw 

• Block size = line size = 2 words or bytes 

• Number of blocks in main memory — 7,7,7 = 2' 

• Number of lines in cache = 2' 

• Size of lag = (5 • r) hill 

The. effect of this mapping is that blocks or main memor!,. ,  are assigned to lines 
of the cache as follows; 

- Cache line Main memory blocks assigned 

u C:  yyr. 29.n.. .. 2' on 

I 1 :  m -. L 9  2.117 - 1 9  . . 2` m • I. 

- 

• 

. 

• 

roo -- I Ai - I. 2x7•3 - I. 3m - I... . . 9  2' 

Thus, the use of a portion of the address as a line number provides a unique 
mapping of each block of main memory into Inc cache- When a block is actually 
read into its assigned Line, it is nceessary to tag the data to distinguish ii from other 
blocks that can fit into that line. The most significant s  r bits s.erve this purpose. 

Figure 4.8 shows our example system using direct mapping,' In the example, 
rrd = 2." and i = modulo 2 .4 . The mapping becomes as follows; 

Cache lime Starting memory address of block 

4 1}00/.300. 010000- . ..1-12001)(1 

1 DO41]04. 010004 9  . . . 9  FF001.4 

, 
. 

• 
- 

2 - 1 00FFFC.1.111-11-q.".. . .. FI:FFFC 

Note that no Iwo blocks. I hill map into the same line number have Lhc same Lag 
number. Thus, blocks Willi' starting addresses 000000, 010000  FF01100 have tag 1111R1- 

hers 00, 01, .... FF. respectively. 
Referring back to Figure 4.5, a rea d operation works as follows. The cache sys 

Lem i ptcwn14.H1 with a 24-hit address. The 14-hit line number is used as an index 
into the cache to access a particular line. if the s-bit lag number matches the tag 

r 

In khl and subsciimiik fieures. And m.r2111(3ry V:11L1122% Hit ru15rusatted . h.i. lic!xadecirnal noEnlion. Sec 
A pp.! n fi5r.a basic rt.fresher on nunther systems (decimal, hinare. 
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Figure 4.8 Direct Mapping Example 

number currently stored in that hoe, then the 2-bit word number is used lo select 
one of the four bytes in that line. Otherwise. the 22-bit tag-plus-line field is owed 
feta block from main rnemod-. Tht: icidress that is used for the fetch is the 
22-bit tag-plus-line concatenated with two El bits, so that 4 bytes are fetched starting 
on a block boundary. 

the clirccl mapping icchniquc is simple and inoxpensive to implement. Its 
main disadvantage is that there is a fixed cache location for any given block, Thu s . 
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if a program happens lo reference words repeatedly from two different blocks that 
map into the same line, then the blocks will be continually swapped in the cache, 
and the hit ratio will be low (a phenomenon known as thrashing), 

Associative mapping overcomes the disadvantage of direct mapping by per-
mitting each main memory block to he loaded into any line of the cache. In this case, 
the cache control logic interprets a memory address simply as a tag and a word field. 
The tag field uniquely identifies a block of main memory_ To determine whether a 
block is in the cache. the cache control logic must simultaneousl!. , ,  examine every 
line's tag for a match. 1 7igure 4.9 illustrates the Logic. Note that no field in the address 
corresponds to line number, so that the number of lines in the cache is not deter-
mined by the address format. To summarize, 

• Address length — w) bits 

• Number of addressable units = 2 ..  words or bytes 

• Block size. = line size = 2" words or bytes 

• Number of blocks in main memory — = 

• Number of lines in cache = undetermined 

• Size of tag = s hits 

Figure 4.1.0 shows our example using associative mapping. A main memory 
address consists of a 22-hit tag and a 2-bit byte number, 'Ite 22-bit tag must he stored 
with the 32-bit block of data for each line in the cache. Note that it is the leftmost 
( most significant) 22 bits of the address that form the tag.' Thus, the 24-bit hexadec-
imal address 16339C has the 22-bit tag 058CE.7 . This is easily seen in binary notation: 

memory address 0001 0110 0011 0011 1001 1100 (binary) 
1 6 3 3 9 C (hex) 

tag (leftmost 22 hits) 00 0101 1000 1100 1110 0111 (binary) 
0 5 8 C E 7 (hex) 

With associative mapping, there is flexibility as to which block to replace when 
a new block is read into the cache. Replacement algorithms, discussed later in this 
section, are designed to maximize the hit ratio. The principal disadvantage of assc.)- 
eiative mapping is the complex circuitry required to examine the tags of all cache 
lines in parallel. 

Set associative mopping is a compromise that exhibits the strengths of both 

the direct and associative approaches while reducing their disadvantages. In this 
ease, the cache is divided into v sets, each of which consists of k lines. The rela-
tionships arc 

•IIrt Figure 4.11). the 2,2-bil 1.;15.1 is re.prochsc:d by a 6-digit licxadeciinal number. The most significant hexa-
decimal digit in fact ih milk. 2 hits in length. 
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tn —rxk 

j modulo i) 

whurc 
= cachc set numbcr 

j = rimin memory block number 
m = number of lines in the cache 

This is refured to as k-way set associative mapping,. With set associative mappinv, 

Hoch S i 
 cith be mapped into any of the lines of scf.i 1. in this ease, the cche control 

logic interprets a rnonory addre!4s simph.,.
,  us three fields: tag, set, an word, The d 
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set bits specify one of if = 2.1  sets. The s hits of the tag and set fields specify one of 
the 2' blocks of main memory. Figure 4.11 illustrates the cache control logic. With 
fully associative mapping. the lag in a memory address is quite large and must be 
compared to the tag of ever; line in the cache. With k.-way set associative mapping, 
the tag in a memory address is much smaller and is only compared to the k tags 
within a single set. To summarize, 

• Address length = I  iv) bits 

• Number.of addressable units — 2' .. '" words or bytes 

• Block size = line size = 2" words or bytes 
y 

• Number of blocks in main metnory= = 2' 

• Number of lines in set = k 
• Number of sets 

• Number of lines in cache k 
• Size of tag = (s — d) bits 

Figure 4.12 shows our example using set associative mapping with two lines in 
each set, referred to as two-way set associative.' The 13-bit set number identifies a 
unique set of two lines within the cache. It also gives the number of the block in 
main memory, modulo 2". This determines the mapping of blocks into lines. Thus, 
blocks 000000. 008000 ,  FF8000 of main memory map into cache iset O. Any of 
those blocks can be loaded into either of the two lines in the set. Note that no two 
blocks that map into the same cache set have the same tag number. For a read oper-
ation. the 13-hit set number is used to determine which set of two lines is to be 
examined, Both lines in the set arc examined for a match with the tag number of the 
address to be accessed. 

In the extreme case of r = m, k = 1, the set associative technique reduces to 
direct mapping, and for v =  k — in, it reduces to associative mapping. The use of 
t wo lines per set (ly = nr /2. k = 2) is the most common sct associative organization. 
It significantly improves the hit ratio over direct mapping. Four-way set associative 
(1,  =  4. k = 4) makes a modest additional improvement for a relatively small 
additional cost IMAY1384, HILL89]. Further increases in the number of lines per 
set have little effect. 

Replacement Algorithms 
When a new block is brought into the cache, one of the existing blocks must be 
replaced. For direct mapping, there is only one possible line for any particular block, 
and no choice is possible. For the associative and set associative techniques, a 
replacement algorithm is needed. To achieve high speed, such an algorithm must be 
i mplemented in hardware. A number of algorithms have been tried: We mention 
four of the most common, Probably the most effective is least recently used (LAW): 
Replace that block in the set that has been in the cache longest with no reference to 

Figure 4.1'2. the 9 -bil sag is represented by a 3-digit hexadecimal numbor. The most significant hexa-
decimal digit in Fact is only I ail in lenglh, 
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RBI two-way aSsoei.Nlivi,:, this is nisi ly itnplemented, Each line includes a USE 
HE When aHne§ T aecrc d, its IS hit is set to 1 and the USE bit of the other 
line in that set is set to.O. When a Hock is to be read into the set, th.E.iirte. whoNe USL 

0 is used. Because we are assuming that morQ rQcently used memory locations 
are more likcly to  referenced, LRI. J should give the best hit ratio. Another pos-
sibility is first-in-first-out (F[F0): Replace that block in the set ilia 1 -ms been in Lhe 
c2iche longest FIFO c.asily implemQnicd as a round-robin or circularbuffer tech- 
nique. Still another possibility is leastfrequently used (LFU): Replace that 1. -5l ock in 
the set that has experienced the fewest references. LFU could bc iroplumcntc:d by 
associating a counter with each line. A techniqu 1;7 not based on usage is to pick a li ne 
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at random from arriong the candidate lines. Simulation studies have shown that ran-
dom replacement provides only slightly inferior performance to an aleorithm based 
on usage [SMITS2], 

Write Policy 

More a block that is resident in the cache can be replaced. it is necessary to con-
sider whether it has been altered in the cache but not in main memory. if it has not, 
then the old block in the cache tnav be overwritten. If it has, that means that at least 
one write operation has been performed on a word in that line of the cache. and 
main memory must he updated accordingly. A variety of write policies, with per-
formance and economic trade-offs. is possible. There are two problems to contend 
with. First, more than one device may have access to main memory. For example. 
an 110 module may he able to readlwrite directly to memory. If a word has been 
altered only in the cache. then the corresponding memory word is invalid. Further, 
if the 110 device has altered main memory, then the cache word is invalid. A more 
complex problem occurs when multiple processors are attached to the same bus and 
each processor has its own local cache. Then, if a word is altered in one cache. it 
could conceivably invalidate a word in other caches. 

The simplest technique is called write through. Using this technique, all write 
operations are made to main memory as well as to the cache, ensuring that main 
memory is always valid. Any other processor—cache module can monitor traffic to 
main memory to maintain consistency within its own cache. The main disadvantage 
of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes. 
'Writ h write back, updates are made only in the cache. When an update occurs. an 
upDATE bit associated with the line is set. Then, when a block is replaced, it is 
written hack to main memory if and only if the UPDATE bit is set. The problem 
with write back is that portions of main memory are invalid, and hence accesses by 
110 modules can be allowed only through the cache. This makes for complex cir-
cuitry and a potential bottleneck. Experience has shown that the percentage of 
memory references that are writes is on the. order of 15% [SMIT82]. However. for 
HPC applications, this number may approach 3 % (vector-vector multiplication) 
and can go as high as 5(t% (matrix transposition). 

In a bus organization in which more than one device (typically a processor) 
has a cache and main memory is shared, a new problem is introduced. If data in one 
cache are altered, this invalidates not only the corresponding word in main mem-
ory, but also that same word in other caches (if any other cache happens to have 
that same word). Even if a write-through policy is used, the other caches may con-
tain invalid data. A system that prevents this problem is said to maintain cache co-
herency. Possible approaches to cache coherency include. the. following: 

a Bus watching with write through: Each cache controller monitors the address 
li nes to detect write operations to memory by other bus masters. If another 
master writes k..) a location in shared memory that also resides in the cache 
memory, the cache controller invalidates that cache entry. This strategy 
depends on the use of a write-through policy by all cache. controllers. 

• Hardware transparency: Additional hardware is used to ensure that all up-
dates to main memory via cache are reflected in all caches, 'l'hus. if one proces- 



4_3 / ELEMENTS OF CACHE DESIGN 119 

sor modifies a word in its cache. this update is written to main memory, In 
addition, any matching words in other caches are similarly updated. 

■ 1Noneacheithle memory: Only a portion of main memory is shared by more 
than one processor, and this is designated as noncacheable. In such a system, 
all accesses to shared memory are cache misses. because 1he shared memory 
is never copied into the cache. The noncacheable memory can he identified 
using chip-seleet logic or high-address bits. 

Cache. coherency is an active field of research. This topic is explored further 
in Chapter 18. 

Line Size 

Another design element is the line size. When a block of data is retrieved and placed 
in the cache, not only the desired word but also some number of adjacent words are 
retrieved. As the block size increases from very small to larger sizes, the hit ratio 
will at first increase because. of the principle of loenlity, which states that data in 
the vicinity of a referenced word are likely to be referenced in the near future. As the 
block size increases, more useful data are brought into the cache. 'The hit ratio will 
begin to decrease, however, as the block becomes even bigger and the probability 
of using the newly fetched information becomes less, than the probability of reusing 
the information that has to be replaced. Two specific effects come into play: 

• Larger blocks reduce the number of blocks that fit into a cache. Becauk each 
block fetch overwrites older cache contents, a small number of blocks results 
in data being overwritten shortly after they are fetched. 

• As a block becomes larger, each additional word is farther from the requested 
word. and therefore less likely to be needed in the near future. 

The relationship between block size and hit ratio is complex, depending on the 
locality characteristics of a particular program. and no definitive optimum value 
has been found. A size of from ti to 32 bytes seems reasonably close to optimum 
ISMIT87, PRZY88, PRZY9O. HAND98j. For TIPC systems. 64 and 128 byte cache 
line sizes are most frequently used. 

Number of Caches 

When caches were originally introduced, the -typical system had a single cache. 
More recently, the use of multiple caches has become the norm, 'Iwo aspects of this 
design issue concern the number of levels of caches and the use of unified versus 
split caches. 

Multilevel Caches 
As logic density has increased, it has become possible to have a cache on the 

same chip as the processor: the on-chip cache. Compared with a cache reachable via 
an external bus, the on-chip cache reduces the processor",, external bus activity and 
therefore speeds up execution times and increases overall system performance. 
When the requested instruction or data is found in the on-chip cache, the bus access 
is eliminated. Because of the short data paths internal to the processor, compared 
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with bus lengths, on-chip cache accesses will complete appreciably faster than would 
even zero-wait state bus cycles. Furthermore, during this period the bus is free to 
support other transfers. 

The inclusion of an on-chip cache leaves open the question of whether an 
off-chip. or external, cache is still desirable. Typically, the answer is yes. and most 
contemporary designs include both on-chip and external caches. The resulting orga-
nization is known as a two-level cache, with the internal cache designated as level 1 
(1-1.) and the external cache designated as level 2 (L2). The reason for including an 
L2. cache is the. following. If there is no L2 cache and the processor makes an access 
request for a memory location not in the LI cache, then the processor must access 
[)RAM or ROM memory across the bus. Due to the typically slow bus speed and 
stow memory access time, this results in poor performance. On the other hand, if an 
L2 SRAM (static RAM) cache is used. then frequently the missing information can he 
quickly retrieved. if the SRAM is fast enough to match the bus speed, then the data 
can be accessed using a zero-wait state transaction, the fastest type of bus transfer. 

Two features ()I' contemporary cache design for multilevel caches are note-
worthy. First, for en off-chip 1.2 cache, many designs do not use the system bus as 
the path for transfer between the L2 cache and the processor, but use a separate 
data path, so as to reduce the burden on the system bus. Second, with the continued 
shrinkage of processor components, a number of processors now incorporate the 
L2 cache on the processor chip, improving performance. 

The potential savings due to the use of an 1..2 cache depends on the hit rates 
in both the Ll and 1...2 caches, Several studies have shown that, in general, the use 
of a second-level cache does improve perfOrmance (e.g., see [AZ1M92J, INOVI93]. 
IIIAND98]). I lowever, the use of multilevel caches does complicate all of the design 
issues related to caches, including size. replacement algorithm, and write policy; see 
[HAND981 and [PEIR99] for discussions. 

Unified versus Split Caches 
When the on-chip cache first made an appearance, many of the designs con-

sisted of a single cache used to store rcicrences to both data and instructions. More 
recently, it has become common to split the cache into two; one dedicated to instrue-
Lions and one dedicated to data. 

There arc two potential advantages of a unified cache: 

▪ For a given cache size, a unified cache has a higher hit rate than split caches 
because it balances the load between instruction and data fetches automati-
cally. That is, if an execution pattern involves many more instruction fetches 
than data fetches, then the cache will tend to fill up with instructions, and if an 
execution pattern involves relatively more data fetches. the opposite will occur. 

• Only one cache needs to be designed and implemented. 

Despite these advantages, the trend is toward split caches, particularly for 
superscalar machines such as the Pentium and Poi.verPC., which emphasize parallel 
instruction execution and the prefetehing of predicted future instructions. The key 
advantage of the split cache design is that it eliminates contention for the cache 
between the instruction fetchfdccode unit and the execution unit. This is important 
in any design that relies on the pipelining of instructions, Typically, the processor 
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will fetch instructions ahead of time mid lilt a buffer. or pipeline, with instructions 
Lc) be executed. Suppose now that v•e have a unified instruction/data cache. When 
the execution unit performs a memory access to load and store data, the request is 
submitted to the unified cache. If. at the same„ time, the instruction prefetcher issues 
a read request to The cache for an instruction, lhril request will be temporarily 
blocked so that lite cache can service the execution unit first, enabling it to complete 
the currently CHeekiLing instruction. This cache contention can degrade performance 
by interfering with efficient use of the instruction pipeline. The split cache structure 
overcomes this difficulty. 

4.4 PENTIUM 4 AND POW-ER.11 C CACHE ORGANIZATIONS 

Pentium 4 Cache Organization 
The evolution of cache organization is seen eleiirly in the evolution of Intel micro-
processors. The S0386 does not include an on-chip cache. The 80486 includes a sin-
gte On-chip cache of 8 Kilytes, using a line, size of 16 bytes and a four-way set 
associative organization. All of the Pentium processors include two on-chip 1.1 
caches, one for data and one for instructions. For the Pentium 4, the Li akila cache 
is g ((Bytes, using a line size of 64 bytes and a four-way set associative. 0 
The Pentium 4 instruction cache is described subsequently The Pentium 4 also 
includes an L2 cache that feeds both of the L1 caches. The L2 cache is eight-wav set 
associalive with a size of 256KB and a line size of l2K bytes. 

Figure 4-].3 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches- 'The processor core consists of four major 
components; 

* Fetch/decode unit; Fetches program instructions in order from the U cache, 
decodes these into a series of micro-operations. and stores the results in the 
LI instruction cache. 

• Lii-of-order execution logic: Schedules execution of the rnicto-operations sub- 
ject to data dependencies and resource availability; thus, micro-operations may 
be scheduled for execution in a different order than they were fetched from the 
instruction stream. As time permits, this unit .schedulesspecuLtivc execution of 
micro-operations that may be required in the future. 

• Execution units: These units executes micro-operations, fetching the required 
data from the LI data cache and temporarily storing rCsul1r in registers. 

• Memory subsystem: This unit includes the L2 cache and the system bus, which 
is used hr access main memory when the LE and L2 caches have a cache miss, 
and to aceess the system resources. 

Unlike the organization used in all previous Pentium modets. d ; an_ i n most other 
processors, the Pentium 4 instruction cache sits between the instruction decode logic 
and the execution core. The reasoning behind this design decision is as follows.  dis-
cussed more fully in Chapter 14, the Pentium process decodes, or translates, Pentium 
machine instructions into simple RISC-like instructions called micro-operations. The 
use of simple, fixed-length micro-operations enables the use of superscalar pipelining 
and scheduling techniques that enhance performance. However, the Pentium machine 
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Table 4,4 I-'...! ntiurn 4 C h n ai..!..(2 __berating IN.1(5LICS 

operating ?dude Contra' Bits 

NW Cache FilLs Write Throughs Invalidates 

41 4.1. Enabled Enabled Enabled 

1. 4-1 Disabled Enabled I:mobled 

J. L riiiiiblud Di,iubled Disabled 

C() = U: = L is.aq'suvsliJ coinhirlariori. 

instructions are cumbersome to decode; they have a variable number of bytes and many 
differont c}plions. IL turns out that performance is enhanced if this decoding is done inde- 
pendently of the scheduling and pipelining [ogle. We return lo this topic in Chapter 14. 

The data cache employs a write-back policy! Data are written to main memory 
only when they arc removed from the cache and there ]ias been an update. The Pen-
tium 4 processor can he dynamically eoririgurcd lo support write-through caching. 

The LI data cache is controlled by two bits in one of the control registers, 
labeled the CD {cache disable} and NW (not write-through) bits (Table 4,4). There 
are also two Pentium 4 instructions that can be used to control the data cache: 
LNVD invalidates (flushes) the intern& cache rnaulory and signals nic external 
cache (if any) to invalidate. WB1NVD writes hack and invalidates internal cache, 
then writes hack and invalidates external cache. 

PowerPC Cache Organization 

The PowcrPC cache organization ]ias evolved with the overall architecture of the 
PowerPC family, reflecting the relentless pursuit of performance that is the driving 
force for a]] microprocessor designers. 

Table 495 shows this evolution. The original model, the 601, includes a single 
codcidain 32-k Byte cache that is eight-way set associative. The 603 employs a more 
sophisticated RISC: design but has a smaller cache: let KBytes divided into separate 
instruction and data caches, both using two-way set associative organiz,ation. The 
result is that the 603 gives approximately the same performance as the Mil at hrwer 
cost. The 64I4 and 620 each doubled the size of the caches from the preceding model. 
The US and G4 models has the same size 1,1 caches 4i2S the 620. 

Figure 4.14 provides a simplified view of the PowerPC G4 organization, high-
lighting the plac.emen I of the two caches. The core execution units are two integer 

Table 11.5 PowerPC Internal Caches 

Model Sixc Bytes/Line Organization 

PowerPC: 61:11 1 32-KbytE 32 8 -wily set associaLive 

1-.45werl-" C 1503 2 S•Kbyte 32 2-way set rissociatik .e 

PowerPC 604 2 1E.-Kby 32 4-way SQL assnclatiAv 
PowerPC 620 2 32-KbyLe 64 8-9futi seL aV.LaCiaLi ...Lt. 

PoW4211-KC 03 2 32•KbyLe 64 - .slioiy set ili fSociativo 

PowerF'C.: G4 2 '32-E(1.-v!elo 32 Sway set assmative 
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arithmetic. and logic units, which can execute in parallel, and a floating-point unit 
with its own registers and its own multiply. add, and divide components. The data 
cache feeds both integer and floating-point operations via a loadIstore unit. The 
instruction cache, which is read only, feeds into an i nstruction  unit, whose operation 
is discussed in Chapter 14. 

The Li caches are eight-way set associative. The LZ cache is a two-way set 
associative cache with 256K. 5.12K, or I MB of tu mefy_ 

4.5 RECOMMENDED READING >. •••- .4r 
er:e 

A thorough treatment of cache design is to be found in [HAN' 1)94 A discussion of Pentium 
4 cache organization can he found in ININT011 and of PowerPC 04 cache organization in 
I MO1 001.]. A classic paper that is still well worth reading is ISMIT821; it surveys the various 
elements of cache design and presents the results of an extensive set of analyses. [AGAR89] 
presents a detailed examination of a variety of cache. design issues related to multiprogratn-
ming and multiprocessing, [HICiB901 provides as 4, 1 of simple formulas that can he used to 
estimate cache performance as a function of .011 kap, cache parameters. 
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4.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terms 

access time 
associative mpping .  
cache hit 
cache line 
cache memory 
cache miss 
en elle Set 
data cache 
diteci access 
direct mapping 
high performance 

computing (HPC) 

hit ratio 
instruction cache. 
1...1 cache 
L2 cache 
L3 cache 
locality 
nieinory hierarchy 
Multilevel cache 
random CCC517; 

replacein el it algorithm 

sequential access 
set-asSOciative mapping 
spatial locality 
split cache 
tag 
temporal locality 
unified cache 
write back 
Write once 
write through 
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Review Questions 
4.1  What are the differences among sequential access. direct access, and random access? 
4.2 What is the general relationship among access time, memory cost. and capacity? 
4.3 How does the principle of locality relate to the use of multiple memory levels? 
4.4 What are the differences among direct mapping, associative mapping, and set -asso- 

ciative mapping? 
4.5 For a direct-mapped cache, a main memory address is viewed as consisting of three 

fields. List and define the three fields, 
4.6 For an associative cache, a main memory address is viewed as consisting of two fields. 

List and define the two fields. 
4.7 Fur a set-associative cache. a main memory address is viewed as consisting of three 

fields. List and define the three fields. 
4.8 What is the distinction between spatial locality and temporal locality? 
4.9 In general, what arethe strategics for exploiting spatial locality and temporal locality? 

Problems 
4.1 A set associative cache consists of 64 lines, or slots, divided into four-line seas. Main ',lem- 

on contains 4K blocks of 128 words each. Show the format of main memory addresses, 
4.2 For the hexadecimal main memory addresses 111111 .666666, BBBBBB. show the fol- 

lowing information, in hexadecimal format: 
a. 'tag. Line, and Word values for a direct-mapped cache. using the format of Figure 

4.8. 
b. Tag and Word values for an associative cache, using the format of Figure 4.10. 
c. Tag, Set, and Word values for a two-way set associative cache, using the format of 

Figure 412, 
4.3 List the following values; 

a. For the direct cache example of Figure 4.8: address length, number of addressable 
units, block size. number of blocks in main memory, number of lines in cache. size 
of tag. 

b. For the associative cache example of Figure 4.10: address length, number of 
addressable units, block size, number of blocks in main memory, number of lines 
in cache, size of tag. 

e. For the two-way associative cache example of Figure 4.1.2: address length. number 
of addressable units, block size, number of blocks in main memory. number of lines 
in set, number ,±1 .  Sets, number of lines in cache. size of tag, 

4.4 Consider a 32-bit mk:Hiproeessor that has an on-chip 16 KByte four-way set-associative 
cache. Assume that the cache has a tine size of four 32-hit words. Draw a block dia-
gram of this cache ~bowing its organization and how the different address fields are 
used to determine a cache hitimiss. Where in the cache is the word from memory loca ,  
Lion ABM F.8F8 mapped? 
Source: L ALEX931 

4.5 (liven the following specifications for an external cache memory: four-way set associa-
five: line size of two I 6-bit words; able to accommodate a total of 4K 32-bit words from 
main memory; used with a 16-bit processor that issues 24-bit addresses. Design the 
cache structure with  pertinent information and show how it interprets the proces-
sor's addresses. 
Source: [ALEX931 

4.6 The Intel 80486 has an on-chip, unified cache, It contains 8 KBytes and has a four-
way set associative organization and a block length of four 32-bit words. The cache is 
organized into 128 gets. There is a single "line valid bit" and three hits, BU. 131, and 



least recently used least recently used 
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B2 (the "LR1.7 bitS), per line, On a cache miss, the 80486 reads a 16-1100 line front 
main memory in a bus memory read burst, Draw a simplified diagram of the cache 
and show how the different fields of the address are interpreted. 
Soarcr: JALEX931 

4,7 Consider a machine with a byte addressable main memory of 2' bytes and block size 
of S bytes. Assume that a direct mapped cache consisting of 32 lines is used with this 
machine. 
a. !low is a 16-bit memory address divided into tag, line number, and byte number? 
b. Into what line would bytes with each of the following addresses he stored'? 

0001 0001 0001 1011 
1100 0011 0011 0100 
1101 0000 0001 1101 
1010 1010 1010 1010 

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are 
the addresses of the other bytes stored along with it? 

d. flow many total bytes of memory can be stored in the cache? 
e. Why is the tag also stored in the cache 

4.8 For its on-chip cache, the Intel 80486 uses a replacement algorithm referred to as 
pseudo least recently used. Associated with each of the 125 sets of four tines (labeled 
LO, 1.1.1,2, (3) are three bits Bit, B1, and B2. The replacement algorithm works as fol-
lows: When a line must be replaced, the cache will first determine whether the must 
recent use was front 1.0 and 1,1 or 12 and L3. Then the cache will determine which of 
the pair of blocks was least recently used and mark it for replacement. Figure 4,15 illus-
trates the logic. 
a. Specify how the hits BO, BI, and B2 arc set and then describe in words how they 

are used in the replacement algorithm depicted in Figure. 4,15, 
b. Show that the 80486 algorithm approximates a true algorithm. Hint: Omsider 

the case in whiCh the most recent order of usage is 1,0. L2. 13, Ll. 
e. Demonstrate that a true UZI.: algorithm would require 6 hits per set. 

4.9 A set associative cache has a block size of [our 16-bit words and a set size of 2. The 
cache can accommodate. a total of 4048 words. The main memory size that is cache-
able is 64K X 32 hits, Design the cache structure and show how the processor's 
addresses are interpreted. 
Source: [ALL 93] 

All lour liri•s in No Replace 
the set valid? non slid line 

Yes 

BO = 0? 
Yes. LO or L1 NO, L2 or L3 

131 = 0? 112 

Yes Yes 

Replace eplace Replace Replace 
1.0 Li L2 L3 

Figure 4.15 Intel 80456 On-Chip Cache Replacement Strategy 
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4.10 Consider a memory system that uses a 32-hit address to address at the byte level. plus 
a cache that uses a 64-byte line sin-. 
a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the 

address format and determine the following parameters: number of addressable 
units, number of blocks in main memory, number of lines in cache, size of Lag. 

h. Assume an associative cache. Show the address formal and determine the follow-
ing parameters: number or addressable units, number of blocks in main memory, 
number of lines in cache, size of tag. 

c. Assume a 4-way set associative cache with a lag field in the address of 9 hits. Show 
the address format and determine the following parameters; number of address• 
able units. number of blocks in main memory, number of lines in set. number of 
sets in cache. number of lines in cache. size of tag, 

4.11 Describe a simple technique for implementing an LRli replacement algorithm in a 
four-way set associative cache. 

4.12 Consider the following code: 

for ii. 0; a. < 20; L+-F) 
for (j - 0; j < :o 

= * 

a. Give one example of the spatial locality in the code, 
b. Give one example of the temporal locality in the code, 

4.13 Generalize Equations (4.1) and (42), in Appendix 4A, ill N'-level memory hierarchies. 

4.14 A computer system contains a main memory of 32K 16-bit words. It also has a 4K-
word cache divided into four-line sets with 64 words per line, Assume that the cache 
is initially empty. 'rite processor fetches words from location s fl, 1,2 ,,,,, 4351 in that 
order. It then repeats this fetch sequence nine more times. The cache. is 11) times faster 
than main memory. Estimate the improvement resulting from the. use of the cache. 
Assume an LA( policy for block replacement. 

4.15 Consider n memory system with the following parameters: 
= 100 as = 0_01 ebia 

T;,, = 1,2(K) ns C ,,  — 0.001 

a. What is the cost of I MO: of main memory? 
IN What is the cost of I MByte of main memory using cache memory technology? 

c. if the effective access time is 10% greater than the cache access time, what is the 
hit ratio H? 

4.111  A computer has a cache, main memory. and a disk used for virtual memory. If a ref-
erenced word is in the cache, 20 ns are required to access it. If it is in main memory 
but not in the cache, 60 ns arc needed to load it into the cache, and then the reference 
is started again, If the word is not in main memory. 12 MS arc required to fetch the 
word front disk, followed by 60 ns to copy it to the cache. and then the reference- is 
started again. The cache hit ratio is 0.9 and the main memory hit ratio is 0.6_ What is 
the average time in its required to access a referenced word on this system? 

APPENDIX 4A PERFORMANCE CHA_RACTE14§TICSP 
OF. TWO-LEVEL MEMORIES i. 

 

in this chapter, reference is made to a cache that acts as a buffer between main 
memory and processor, creating a two-level internal memory. This two-level archi-
tecture provides improved performance over a comparable one-level memory, by 
exploiting a property known as locality, which is explored in this appendix. 
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Table 4.6 Characteristics of Two-Lc vc1 tarriorie.s 

Cache 
Virtual Memory 

(Paging) Disk Cache 
'Typical access time 40f1 (om-crtip cm:1w to 14.00011 (main manory Dapuoii (Inaiti rncrnory 

ratios main memory) to disk) if.) disk) 
10.1 Ahep c ache 1. o 

T(12i.11 111C.11107 

NiErnory management truplermnicd by CC)111h111a1L031 Ildrdwarc SVNILCM E(111WRTE 

System speci a l hardwom aged symluo scillwrirc 

Typiwi Nock wire 4 u 126 bye s ().4 to 40% fn....ics 64 to .111% bytils 

Access of processor 
to irarowl level 

Direct access Indirect access Indirect access 

The main memory cache mechanism is part of the computer architecture. 
implemented in hardware and typically invisible to the operating system. There are 
two other instances of a two-level memory appro4ieh That also exploit lueah[y .and 
that are, at least parthi ly. implemented in the operating system: virtual memory 
and the disk cache (Table. 4.6). Virtual memory is explored in Chapter 8, disk cache 
is beyond the scope of this book but is examined in ISTAL01]. In this appendix, we 
look at some of the performance characteristics of tWO-level memories t hal are com-
mon to all throe approacho.7i. 

Locary 

f he basis fin-  rho porlorninnea advantage or a two-level memory is a principle 
known as locality of referene.-e I)E 1,S I. This principle states that 111C1I101N refer-
ences tend to cluster. Over a long period of time, the clusters in use change, but over 
a short period of time, the processor is primarily working with fixed clusters of mem-
ory references, 

irrorn vin intuitive point of view, thEi principle of locality makes sense. Consider 
the following line of reasoning: 

1. Except for hranch and call instructions, which constitute oitiv a small fraction of 
all program instructions, program execution is sequential. Hence. in most cases, 
the next instruction to be fetched immediately foliOW ,, 1 11 t2 LISI instruction fetched. 

2. ft is rare to have a long uninleiTupled sequence or procedure calls fonowed 
by the corresponding sequence of returns. Rather. a program remains con-
fined to a rather narrow window of procedure-invocation depth. Thus. over a 
short period of time references to instructions lend to be localized to a kw 
procciUre 

3. Most iterative constructs consist of a relatively small number of instructions 
repeated many times. For the duration of the iteration, computation is there-
fore COT1 lined to a :;.mall contiguous portion of a, program. 

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to thc.e (Wu structures will be 10 closely located claw items. 
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Table 4.7 Relative Dynamic Frequency cif high-Level Language Operations 

Study 
Language 
Workload 

[FlUcK831 
Pascal 

Scientific 

[KAU" 1711 
FORTRAN 

Student 

[PATTS21 
Pascal C 

System System 

[TANEN 
SAL 

System 

Assign 74 67 45 38 42 

Loop 4 3 5 3 4 

Call I 3 I5 12 12 

IF 2.1) II 29 43 36 
COTO 2 9 3 

Other 7 6 l b 

This line of reasoning has been confirmed in many studies. With reference to 
point 1, a variety of studies have analyzed the behavior of high-level language pro-
grams_ 'T'able 4.7 includes key results, measuring the appearance of various state-
ment types during execution, from the following studies. The earliest study of 
programming language behavior, performed by Knuth (KNUT711. examined a col-
lection of FORTRAN programs used as student exercises, Tanenbaum [TANE78L 
published measurements collected from over 300 procedures used in operating-
system programs and written in a language that supports structured programming 
(SAL). Patterson and Sequent. IPATTS2a] analyzed a set of measurements taken 
from compilers and programs for typesetting, computer-aided design (CAD), sort-
ing, and file comparison. .1'he programming languages C and Pascal were studied. 
Huck [HUCK83] analyzed four programs intended to represent a mix of general-
purpose scientific computing, including fast Fourier transform and the integration 
of systems of differential equations. There is good agreement in the results of this 
mixture of languages and applications that branching and call instructions represent 
onl!,. ,  a fraction of statements executed during the lifetime of a program_ Thus, these 
studies confirm assertion I. 

With respect to assertion 2. studies reported in [PATT85a I provide confirma-
tion_ This is illustrated in Figure 4_16, which shows call-return behavior. Each call is 
represented by the line moving down and to the right, and each return by the line 
moving up and to the right. In the figure, a window with depth equal to 5 is defined, 
Only a sequence of calls and returns with a net movement of 6 in either direction 
causes the window to move. As can be seen. the executing program can remain 
within a stationary window for long periods of time. A study by the same analysts 

Crof  and Pascal programs showed that a window of depth 8 will need to shift only 
on less than 1% of the calls or returns [TAMI.83]. 

The principle of locality of reference continues to be validated in more recent 
studies. For example, Figure 4.17 illustrates the results of a study of Web page access 
patterns at a single site. 

A distinction is made in the literature between spatial locality and temporal 
locality. Spatial locality refers to the tendency of execution lo involve a number of 
memory locations that arc clustered. This reflects the tendency of a processor to 
access instructions sequentially_ Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such a..s when processing a table of daiie 
Temporal locality refers to the tendency for a processor to access memory locations 
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that have been used recently. For example, when an iteration loop is executed, the 
processor executes the same set of instructions repeatedly. 

Traditionally, temporal locality is exploited by keeping recently used instruc-
ti on and data i4 Lies in cache incroory Fula by eNploiling a c;ichc. Iticlarch v. Spatial 
locality is generally exploited by using EarKer cache. blocks and by incorporating 
prefetching mechanisms (fetching items of anticipated use) into the eacR. control 

Recently, Ihcre has been considerable res .eareh on refining these techniques 
to achieve greater performance, but the basic strategies remain the same. 

Operation of Two -Level Memory 
The locality property can be exploited in the formation. of FI Imo-Few] rtioniory. The 
upper-level memory (Ml) is smaller, faster, and more expensive (per bit) than the 
lower - level mumory (M2). Pvil is used t temporary store for part of the contents 
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of the Larger M2. When a memory reference is made, an attempt is made to access 
the item in Ml. If this succeeds, then a quick access is made. If not, then a block of 
memory locations is copied from M2 to MI and the access then lakes place via Ml. 
Because of locality, once a block is brought into Ml, there should be a number of 
accesses to locations in that block. resulting in fast overall service. 

To express the average time to access an item, we must consider not only the 
speeds of the two levels of memory, but also the probability that a given reference 
can he found in Mi. We have 

T, — (1 — H) x (T, + 7'2 ) (4.1) 
= T,  ( 1 — H) X T,, 

where 

T, — average (system) access time 
T, = access time of MI (e.g., cache, disk cache) 

= access time of M2 (e,g., main memory, disk) 
tf = hit ratio (fraction of time reference is found in M1) 

Figure 4,2 shows average access time as a function of hit ratio. As can be seen, 
for a high percentage of hits, the average total access time is much closer to that of 
M•I than M2. 

Performance 

Let us look at some of the parameters relevant to an assessment of a vivo-level mem-
ory mechanism. First consider cost. We have 

Cs  = — • (4.2) 
S, + 

where 

C, average cost per bit for the combined two-level memory 
C, = average cost per hit of upper-level memory M1 
C, average cost per bit of lower-level memory M2 

= size of MI 
= size of M2 

We would like C C2. Given that C 1  >> C,. this requires S ,  « 5,, Figure 4.18 shows 
the relationship. 

Next. consider access time. For a two-level memory to provide a significant 
performance improvement, we need to have T., approximately equal to T, (Ty  ----- 
Given that T, is much less than 7; (T, 'I), a hit ratio of close to 1 is needed. 

So we would like M1 to be small to hold down cost, and large to improve the 
hit ratio and therefore the performance. Is there a size of Mi that satisfies both 
requirements to a reasonable extent'? We can answer this question with a series of 
subquestions: 

• What value of hit ratio is needed so that .7", 
• What size of MI will assure the needed hit ratio? 

• Does this size satisfy the cost requirement? 
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Figure 4.18 Relationship of Average Memory Cost to Relative Minatory Size l'or a Twii-LevelMemory 

To get at this, consider the quantity 1', r T,. which is referred to as the occesA effi-
ciency, It is a measure of how close average access time (T) is to MI access time 
( T 1 ). From Equation (4.1). 

7:1  
T

v 1 — — 

(4.3) 

In Figure 4. [ 9, we plot 
T1 

 1T, as a function of the hit ratio H. with the quantity 
1 I T 1  as a parameter. Typically, on-chip cache access time is about 25 to 50 times 
faster than main memory access time (i.e., 1 . , IT, is 5 to 10), off-chip cache access 
time is about 5 or 15 times faster than main memory access time (i.e., 1 ,/7 -  is 5 to 
15).' and main memory access lime is about 1000 times faster than disk access time 
(T2 17.

1  = NM). Thus, a hit ratio in the range of near 0.9 would seem to be needed 
to satisfy the performance requirement_ 

'For example. at I he time of [lib writing, for the Pentium 4, on-chip cache acces,i time is 1 ns fur data 
cache. 2 ns for instruction cache, and 3,5 its For L2 cache.; main memory access time is 3U ns. For the 
liatli.11M.  ch ip cache a ccess time is 2 us tar LI cache and 6 ns Fro' 1.2 cad112.. of r-chip access time I 'a.wr 1-3 
cache is 21 ns: main memory access ti me is 5II ns- 
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Vtre can now phrase the question'about relative memory size more exactly. is 
a hit ratio of. say, 0,8 or better reasonable for S i  << S,? This will depend on a num-
ber of factors, including the nature of the software being executed and the details of 
the design of the two-level memory. The main determinant is, of course. the degree 
of locality. Figure 420 suggests the effect thEli locality has on the hit ratio. Clearly. 
if MI is the same size as M2. I hen the hit ratio will he 1.0: All of the items in M2 are 
always stored also in Ml. Now suppose that there is no locality; that is, references 
are completely random. In that ease the hit ratio should be a strictly linear function 
of the relative memory size. For example, if M1 is half the size of M2, then at any 
time half of the items from M2 are also in Iv11 and the hit ratio will he 0..5. In prac-
tice, however, there is some degree of locality in the references, 'file effects of mod-
erate and strong locality are indicated in the figure. 

So if there is strong locality, it is possible to achieve high values of hit ratio 
even with relatively small upper-level memory size. For example, numerous studies 
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless 
of the size of ;wait? inaruYry  [AGAR89], [PRZYKSI, [STRE83], and iSlylIT821). 
A cache in the range of lK to 128K words is generally adequate, whereas main mem-
ory is now typically in the multiple-mcgabyle range. When we consider virtual 
memory and disk cache.. we will cite other studies that confirm the same pheno-
menon, namely that a relatively small Ml yields a high value of hit raiio because 
of locality. 

Figure 4.19 Access Efficiency as a Function of hit Rath.] v = T. in 
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Figure 4.20 Hit Ratio as a Function of Relative Memory Size 

This brings us, to the last question listed earlier: Does the relative size of the 
two memories satisfy the cost requirement? The answer is clearly yes. If we need 
only a relatively small upper-level memory to achieve good performance, then the 
average cost per hit of the two levels of memory will approach that of the cheaper 
lower-level memory. 

Please note that with L2 cache, or even L2 and L3 caches, involved, analysis 
is much more complex_ See RTIR991 and [HAND98I for discussions. 
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KEY POINTS 

• The two basic forms of semiconductor random-access memory are dynamic 
RAM (DRAM) and static RAM (SRAM). SRAM is faster, more expensive, 
and less dense than DRAM, and is used for cache memory. DRAM is used for 
main metnor!,, , 

• Error correction techniques are commonly used in memory systems. These 
involve addino, redundant bits that are a (unction of the data bits to 1:01'311 are 
error-correcting code, If a bit error occurs, the code will detect and, usually, 
correct the error. 

• To compensate for the relatively slow speed of DRAM. a number of advanced 
DRAM organizations have been introduced. The two most common are syn-
chronous DRAM and Ronifius DRAM. Both of these involve using the sys-
tem clock to provide. for the transfer or blocks of data. 

T his chapter begins with a survey of semiconductor main memory subsystems, 
including ROM, DRAM. and SRAM memories. Then we look at error con-. 
trol techniques used to enhance memory reliability. Following this, we look 

at more advanced DRAM architectures. 

5.1 SEMICONDUCTOR MAIN MEMORY 

In earlier compmers, the most common form of random-access enrage for com-
puter main memory employed an array of doughnut-shaped ferromagnetic loops 
referred to as cores. Hence, main memory was often referred to as core, a term that 
persists to this day, The advent of, and advantages of, microelectronics has long 
since vanquished the magnetic core memory. Today, the use of semiconductor chips 
for main memory is almost universal. Key aspects of this technology are explored 
in this section, 

Organization 

The basic element of a semiconductor memory is the memory cell, Although a vari-
ety of electronic technologies arc used. all semiconductor memory cells share cer-
tain properties: 

• They exhibit two stable (or semistablc) states, which can be used to represent 
binary I and O. 

• They are capable of being written into (at least once), to set the state. 

• They are capable or being read to sense the state. 
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Control 

(a) Write 

Figure 5.1 MOTH LPry r1.1 11 OpCi•kl i4J11 

.11)i. Head 

Figure 5.1 depicts the operation of a memory Cc.11..Mosi commonly, the cell has 
three functional terminals capabie of carrying an electrical signal. The select termi-
nal, as the name suggests, selects a memory cell for a read or write operation. The 
control tevniinal indicates read or write. Far writing, the other terminal provides an 
electrica] signal that sets the state of the cell to 1 or 0. For reading. Out terminal is 
used for output of the cell's state. The. details of the internal organization, func-
ti ming, and timing of the memory cell depend on the specific integrated circuit tech-
nology used and are beyond the scope 0.1' this book,4.:xcepi for 41 blia gli-Tnnary.11,or 
our purpa gcs. we will take it. is given t Ht individual cells can be selectci for read-
ing and writing operations. 

DRAM and SRAM 
All of the memory types that we will explore in this chapter arc. random access. 
That is, individual words of memory are directly accessed through wired-in ad-
dressing logic, 

Table 5.1 lists die major types of semiconductor memory. The most common 
is referred to as random-access Merflary ( RAM). This is, of course. a misuse of the 
t erm, because all of the types listed in the table are random access. One distin-
guishing characteristic of RAM is that it is possible both to read data from the mem-
ory and to write new data into the memory easily and rapidly. Both the reading and 
writing are accomplished through the  of electrical signals. 

The other distinguishing characteristic of RAM is that it is volatile. A RAM 
must be provided with a C.Dostni power supply. 11 the power is interrupted, then 
the data are lost Thus, RAM can he used only as temporary storage. The two tra-
ditional forms of RAM used in computers are DRAM and SRAM, 

Dynamic RAM 
RAM technology is divided into two technoloyics: dynamic and static. A 

dynamic RAM (DRAM) is made with cells that store data as charge on capacitors. 
The presence or absence of charge on a capacitor is interpreted as a binary l or 6. 
Because capacitors have natural tendency to dimThargc, dynamic RAMS require 
periodic charge refreshing to maintain data storage. The term elynamic refers to this 
tendency of the stored charge to leak away. even with power continuously applied. 
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Table 5.1 Memory Types 

Memory Type iiry Erasure Write Media also' Volt Iilit} 

Rorsdom-access 
memory (RAM) 

FiccRrica I ty. 
Read.write memory 

h} to Ityr 
Eloc(rieally 

Nucsoola tilk  

Rt'd d-wanly 
rriertkuty (ROM) 

Remd-only critmor:y Not possible 

Masks 

Programmable 
ROM . (PROM) 

Electrically 

Erasable PROM 
{EPROM) 

Readtncaly memory 

chip level 

Elecirically Erasable 
FROM (EEPRDM} 

Electrically, 
byte lcvd 

Flash memory 
Elcpctri CH I I y. 

h1{14:k C'c1 

Figure 5,2a is a typical DRAM structure. for an indit,idual cell that stores one 
bit. The address line is activai ed when the hit value. from this cell is to be read or 
written. The transistor acts as 3 sgitch that is closed (allowing current to flow) if a 
voltage is ,ripplicd to the address line and open (no current fiows) if no voltage is 
present on the address line. 

For the write operation, a vollagi2 signal is applied to the bit line; a high volt-
age represents 1, and a iow voltage represents 0, A signal is then applied to the 
addresf, line, allowing a charge to be transferred to the capacitor. 

For the read operation, when the address line is selected. the transistor turns 
on and the charge stored cm the capacitor is fed out onto a hit line and to a sense 
amplifier. The sense amplifier compares the capacitor voltage to a reference value 
and determines if the cell contains a logic 1  a logic 0. The read out from the cell 
discharges the capacitor, which musk he restored to complete the operation. 

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially 
an analog device. 'The capacitor can store any charge value within a ranee: a thresh-
old value determines whether ale charge is interpreted as 1 or O. 

Static KAM 
In contrast, a static RAM (SRAM) is a digital device, using the kaiTlle logic ele-

ments used in the processor. In a SRAM, binary values are siortx1 using traditional 
flip-flop logic-gate configurations (see Appendix A for a description of flip-flops). 
A static RAM will hold its data as long as power is supplied to it. 

Figure 5.2b is a typical SRAM structure for an individual cell_ Four transistors 

T), 'U,. T4 ) Are (TOSS' CA.}[Merted in an arrangement alai produces a stable logical 
state. In logic state 1. point C, is high and point C, i ioxy in this state, T, and  ariz 

oft and T, and T, 1  arc on.' In logic state 0. point C 1  is low and point C, is high; in 

'The circles at the head ot T-, and 7 4.1  indicate tii grkal ncgatiCni. 
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this stale, T.. and . 1: 1  are on and T.-. and T 3  are off. Both states are stable as long as 
the direct current (de) voltage is applied. Unlike the DRAM, no refresh is needed 
to retain data. 

As in the DRAM, the address line is used to open or close a switch. The ad-
dress line controls two transistors (T, and TO. When a signal is applied to this line, 
the two transistors are switch on, allowing a read or write operation. For a write 
operation, the desired hit value is applied to line B, while its complement is applied 
to line B. This forces the four transislorS (T i . 1 .

2 , 13, .PL ) into the proper state. For a 
read operation, the bit value is read from line B. 

SRAM versus DRAM 
Both static and d!.. , natnic RAMs are volatile that is, power must he contin-

uously supplied to the memory to preserve the bit ‘raities, A dynamic memory cell 
is simpler and smaller than a stalie memory eel[. 'Thus, a DRAvt is more dense 
(smaller cells = more Cells per unit area) and less expensive than a corresponding 
SRAM. On the other hand, a DRAM requires the supporting refresh circuitry. For 
Larger memories. the fixed cost of the refresh circuitry is more than compensated 
for by, the smEilier variable cost or DRAM cells. Thus, DRAMs tend to be favored [or 
Large memory requirements. A final point is that SRAMs are generally somewhat 
faster than DRAMs. Because of these relative characteristics, SRAM is used for 
cache memory (both on and off chip). and DRAM is used for main. memory. 

Types of ROM 

As the name suggests, a read-only memory (ROM) contains a permanent pattern 
of data that cannot be changed. A ROM is nonvolatile: that is, no power source is 
required to maintain the hit values in memory. While it is possible to read a ROM, 
it is not possible to write new data into it, An important application of ROMs is 
microprogramming, discussed in Part Four. 01 her potenliid applications include 

• Libniry subroutines for frequently wanted functions 
• System programs 
• Function tables 

For a modest-sized requirement, the advantage of ROM is that the data or program 
is permanently in main memory and need never be. loaded from a secondary stor-
age device. 

A ROM is created like any cal her inlCgraled circuit chip, with the data actually 
wired into the chip as part of the fabrication process. This presents two problems: 

■ The data insertion step includes a relatively large fixed cost, whether one or 
thousands of copies of a particular ROM arc rAticated_  

▪ 

']'here is no room for error. If one hit is wrong, the whole batch of ROMs must 
be thrown out. 

When only a s mutl number of ROMs with a particular memory content is 
needed. a Less expensive alternative is the programuuable ROM (PROM), i.ike the 
ROM, the PROM is nonvolatile and may be written into un(v once. For the PROM, 
the writing process is performed electrically and may be performed by a supplier or 
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c,:ustorner at a time Iaier than the original chip fabrication. Special equipment is 
required for the writing or "programming" process. PROMs provide flexibility and 
convenience. The ROM remains attractive for high-volume production runs. 

Another variation on read-only memory is the read-mostly memory, which is 
UserLd COT applications in which read operations are far more frequent than write 
operations but for which nonvolatile storage is required. There are three common 
forms of read-mostly memory: EPROM, [EPROM, and flash memory. 

optically crumble programmable read-only memory (EPROM) is read 
and written electrically, as with PROM. However, before a write operation, all the 
storage cells must be erased to the same initial state by exposure of the packaged 
chip to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet 
light through a window that is designed into the. memory chip. This erasure process 
can be performed repeatedly; each erasure can take as much as 20 minutes to per-
form. Thus, the EPROM can be altered multiple times and, like the ROM and 
FROM, holds its data virtually indefinitely. For comparable amounts of storage. the 
EPROM is more evensive than PROM. Elul. it has the advantage of the multiple 
update. capability. 

A more attractive form of read-mostly memory ix elOctrically erasable pro-
grammable read-only memory (EKPROM). This is a read-roost]!, . ,  memory that can 
be written into at any time without erasing prior contents: only the byte or bytes 
addressed are updated. The write operation takes considerably longer than the read 
operation. on the order of several hundred microseconds per byte. The LLPROM 
combines the advantage of nonvolatility with the flexibility of being updatable in 
place, using ordinary bus control, address. and data lines. EEPROM is More expen-
sive than EPROM and also is less dense, supporting fewer hits per chip. 

Another Form of semiconductor memory is flash memory  named because 
of the speed with which it can he reprogrammed). First introduced in the mid-19f10s, 
flash memory is intermediate between EPROM and EEPROM in both cost and 
functionality. Like EEPROM, flash memory uses an electrical erasing technology. 
An entire flash memory can be erased in one Or a few seconds, which is much faster 
than EPROM. In addition, it is possible to 0122:.y iLLS1 blocks of memory rather than 
an entire chip. Flash memory gets its name because the microchip is organi .t.cd so 
that a section of memory cells are erased in a single action or 'llash." I LowcYcr, 
flash rricniory does not provide byte-level erasure. Like EPROM, flash memory 
uses only one transistor per bit. and so achieves the high density (compared with 
EEPROM) of EPROM. 

Chip Logic 

As with other intet..,rrared circuit products :  semiconductor memory comes in pack-
aged chips (Figure 2.7). Each chip contains an array of memory cells, 

In the memory hierarchy as a whole, we saw dial there are trade-offs among 
speed, capacity, and cost. These trade-offs also exist when we consider the organi-
zation of memory cells and functional logic on a chip. For semiconductor memories, 
one of the key design issues is the number of bits or data that may he readiwritte.n 
at a time. At one extreme is an organization in which the physical arrangement of 
cells in the array is the same as the logical arrangement as perceived by I he proces-
sor) of words in memory. The array is organized into W words of  bits each. For 
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example, a 16-Mbit chip could be organized as 1M 16-bit words. At the other ex-
treme is the so-called one-bit-per-chip organization. in which data is readiwritten 
one hit at a time, We will illustrate memory chip organization with a DRAM: ROM 
organization is similar. though simpler. 

Figure 3.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits 
are read or written at a time. Logically, the memory array is organized as four square 
arrays of 2()48 by 2048 elements. Various physical arrangements are possible, In any 
case, the elements of the array are connected by both horizontal (row) and vertical (col-
umn) lines. Each horizontal line connects to the Select terminal ()leach cell in its row; 
each vertical line connects to the Data-ln/Sense terminal of each cell in its column. 

Address lines supply the address of the word to be selected, A total of log, W 
lines are needed. In our example, 11 address lines are needed to select one of 2048 
rows. These 11 lines are fed into a row decoder. which has II lines of input and 
2045 lines for output. The logic of the decoder activates a single one of the 2048 out-
puts depending on the bit pattern on the 11 input lines (2 1 ' = 2048). 

An additional I I address lines select one of 2048 columns of 4 bits per column. 
Four data lines are used for the input and output of 4 hits to and from a data buffer_ 
On input (write), the bit driver of each bit line is activated for a 1 or 0 according 
to the value of the corresponding data line. On output (read), the value of each hit 
line is passed through a sense amplifier and presented to the data lines. The row line 
selects which row of cells is used for reading or writing. 

Because only 4 bits are read/written to this DRAM, there must be multiple 
DRAMs connected to the memory controller to readlwrite a word of data to the bus. 

Note that there are only 11 address lines (AO—A10), half the number you 
would expect for a 2048 x 2048 array. This is done to save on the number of pins. 
The 22 required address lines are passed through select logic external to the chip 
and multiplexed onto the 11 address lines. First, 11 address signals are passed to the 
chip to define the row address of the array, and then the other i i addreSs signals 
arc presented for the column address_ 'Mese signals are accompanied by row address 
select (RAS) and column address select (CAS) signals to provide timing to the chip. 

The write enable (WE) and output enable (OE) pins determine whether 
write or read operation is performed. Two other pins_ not shown in Figure 5.3, arc 
ground (Vss) and a voltage source (Vcc). 

As an aside, multiplexed addressing plus the use of square arrays result in a 
quadrupling of memory size with each new generation of memory chips_ One more 
pin devoted to addressing doubles the number of rows and columns, and so the size 
of the chip memory grows by a factor of 4. 

Figure 5.3 also indicates the inclusion of refresh circuitry, All DRAMs require 
a refresh operation. A simple technique for refreshing is, in effect. to disable the 
I) RAM chip while all data cells are refreshed, The refresh counter steps through all 
of the row values. For each row. the output lines from the refresh counter are sup-
plied to the row decoder and the RAS line is activated. The data are read out and 
written back into the same location, This causes each cell in the row to be refreshed, 

Chip Packaging 
As was mentioned in Chapter 2, an integrated circuit is mounted on a package that 
contains pins for connection to the outside world. 
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Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip orga-
ni4ed as 1M x 8. In this case, the organization is treated as a one-word-per-chip 
package. The package includes 32 pins. which is one of the standard chip package 
sizes_ The pins support the following signal lines: 

• The address of the word being accessed. For I M words, a total of 20 (2 25  = 1 M) 
pins are needed (AU--A 19). 

• The data to he read out, consisting of 8 lines (DO-D7). 

• The power supply to the chip (Nice). 
▪ A ground pin (Vss). 
• A chip enable (CE) pin. Because there may he more than one memory chip. 

each of which is connected to the same address bus. the CE pin is used to indi-
cate whether or not the address is valid for this chip. The CE pin is activated 
by logic connected to the higher-order bits of the address bus (i.e., address bits 
above A19). The use of this signal is illmtrated presently_ 

• A program voltage (Vpp) that is supplied during programming (write operations). 

A typica] DRAM pin configuration is shown in Figure 5.4b. for a 16-Mhit chip 
organized as 4M X 4. There are several differences from a ROM chip- Because a 
RAM can he updated, the data pins arc inputioutput. The write enable (WE) and 
output enable (011) pins indicate whether this is a write or read operation. Because 
the DRAM is accessed by row and column, and the address is multiplexed, only 
1 "address pins are needed to specify the 4M row/column combinations (2' I x 2 11 
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222  = 4M). The functions of the . row 4iddress select (RAS) and column address select 
(CAS) pins were discussed previoustv. Finally, the no connect (NC) pin is provided 
so that there arc. on CVCri number of pins. 

Mo dul e Organization 

If 41 RAM chip contains Drib/ 1 hit per word, then cicAv we will need at least al -R.117- 
E3er of chips equal to the number of bits per word, As an example. Figure 5.5 shows 
how a memory module consisling of 256K 8-bit words could he orgy tiled, For 256K 
words, an [8-bit tic dress is needed and is supplied to the [nodule From sonic exter-
nal source (e.g._ the address lines of zi bus to which the module is attached), The 
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Figure. 5.6 Memory Organization 

address is presented to 8 256K Y, 1-hit chips, each of which provides the input! 
output of I bit. 

This organization works as long as ihe size of memory equals the number of 
bits per chip. In l he case in which larger memory is required, an array of chips is 
net4r.led. Figure 5.6 shows the possible organization of a memory consisting of llvl 
word by 8 bits per word. in this case, we have four columns of chips, each column 
containing 256K words arranged as in Figure 5.5, For '1 NI word, 20 address lines are 
needed. The ig least si gnificant bits are routed to ail 32 modules, The high-order 
2 bits are input to a group select logic module thin sends a chip enable signal to one 
of the four CII]untris of modules, 

5.2 ERROR ColtRECTION! -  

 

", efirr 6f'C ,5 "10e"  e g•f
ir"  

." • 

A semiconductor memory system is subject to errors. These can be categorized as 
hard failures and soft C1T0E-r - A bard failure is a permauenl physical defect so that 
the memory cell or cells affected cannot reliably store data, but become stuck at 0 
or 1 or switch erraticatt!,. ,  between 0 and 1, Hard errors can be caused by harsh envi-
ronmental abuse, manufacturing defects, and wear. A soil error is a random, non-
destructive event that alters the contents or one or more memory cells, without 
damaging the memory. Soft errors can he caused by power supply problems or alpha 
particles. These particles result from radioactive decay and are distressingly com-
mon because radioactive nuclei are found in small quantities in nearly all materials, 
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Figure 5.7 Error-Correcting C..ode Function 

Both hard and soft errors are clearly undesirable, and most modern main memory 
systems include logic for both detecting and correcting error:. 

Figure. 5.7 illustrates in general terms how the process is carried out. When 
data are to be read into memory, a calculation, depicted as a function f, is performed 
on the data to produce a code. Both the code and the data are stored. Thus, if an 
M-bit word of data is to be stored, and the code is of length K hits, then the actual 
size of the stored word is M + K bits. 

When the previously stored word is read out. the code is used to detect 
and possibly correct errors. A new set of K code bits is generated from the M data 
bits and compared with the fetched code bits. The comparison yields one of three 
results: 

• No errors are detected. The fetched data hits are sent out. 
• An error is detected, and it is possible to correct the error. The data bits plus 

error correction hits are fed into a corrector, which produces a corrected set 
of :14 hits to be sent out. 

• An error is detected, but it is not possible to correct it. This condition is reported_ 

Codes that operate in this fashion are referred to as error -correcting codes. 

A code is characterized by the number of hit errors in a word that it can correct 
and detect, 

The simplest of the error-correcting codes is the Hamming code devised by 
Richard Hamming at Bell Laboratories. Figure 5,S uses Venn diagrams to illustrate 
the use of this code on 4-hit words (214 = 4). With three intersecting circles, there 
are seven compartments, We assign the 4 data bits to the inner compartments (Fig-
ure 5.8a). The remaining compartments are filled with what are called parity hits. 
Each parity bit is chosen so that the total number of Is in its circle is even (Figure 
5.8b), Thus, because circle A includes three data is, the parit!,. ,  hit in that circle is set 
to I . Now, if an error changes one of the data bits (Figure 5,8c). it is easily found, 
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Figure 5.8 Hamming Error-C orrecting Coat 

By checking the parity bits, discrepancies are found in circle A and circle C but not 
in circle B. Only one of the seven compartments is in A and C but not B. The error 
can therefore be corrected by changing that bit. 

To clarify the concepts involved, we will develop a code that can detect and 
correct single-bit errors in 8-bit words, 

To start, Let us determine how long the code must he Referring to Figure 5.7, 
the comparison logic receives as input two K-hit values. A bit-by-hit comparison is 
done by taking t he exclusive-or o1 i he two inputs. The result is called the syndrome 
word. Thus, each bit of the syndrome. is 0 or 1 according to if there is or •k, not a 
match in that hit position for the two inputs. 

The syndrome word is therefore K bits wide 4i nd has a range between 0 and 
— I. The value 0 indicates that no error was detected, [caving 2 K  — 1 values to 

indicate, if there is an error, which bit was in error. Now because an error could 
occur on any of the r l data hits or K check hits, we roast have 

2" — K 

This ineguality gives the number of hits needed to correct a *Ingle bit error in a word 
containing Al data hits. For example. for a word  8 data hits (M = we have 

K = 3: 
• K = 4: 24  

— 1 
- 1 

< 8 
> 

+ 3 
4 .  4 

Thus, eight data bits require four check bits. The first three columns of Table 
5.2 lists the number of check hits required for various data word lengths. 
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Table 5.  Increase in Word Length with Error Correction 

Single -Error .Correction 
Single-Error Comc t 

ti hle-Error Dcteetion 

Data 1#11s Check Bits % Incr&19... Check Bits % Increase 

4 5(1 5 62.5 

5 31.25 6 37,5 

32 fi 1S.7:r. 7 21.875 

7 I11.94 g 12.5 

I2S 8 6,25 CP 7.11; 

25:6 3..52 10 3.91 

For convenience, we would like to gcncra I c a 4-bit syndrome for an K-hi I data 
word with the following characteristics: 

• If the syndrome contains all Os, no error has been detected. 
• I  the syndrome contains one and only one hit Set to I. then an error has 

occurred in one of the 4 chock bits. No correction is reeved, 
• If the syndrome ctmlaina more than one bit scr 10 I, then the numerical value 

of the syndrome indicate's the position of the data hit in error. This data bit is 
inverted for correction. 

To achieve these characteristics, the data and check hits are arranged into a 
12 -N1 word as depicted in Figure 5.9, The bit positions are numbered from 1 to 12. 
Those bit positions whose position nurnbcrs are powers of 2 a ri2 designated as check 
hits. The check bits are calculated as follows , where the symbol ED designales the 
exel usivc-or operation! 

Cl = DI e D2 tf:',. D4 .$  D5 ED D7 
C'Z — D1. ED. D3S D4 e D6 e D7 
C4 D2.  We D4 ED D8 
CS = D5 ED D6 ED D7 e DK 

position 1 2 --1
1 

1 10 : 7 
fi 

5 4 3 2 Bit  

Position 

P11ab4.._....PR PI _P6. t35  I} E1 P 
. 

number I: 1. 00' 1.011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 

Check hit . :C8  ... C4 C2 IT C t _1 

Figure 5.9 1.,ayuut of Data Flits acid Check Bits 
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Each check bit operaits on every data bit whose position number contains al 
in the same bit position as the position number of that check bit- Thus, data hit posi-
tions 3, :9, 7, 9, and 11 (D1, D2, D4, 05. U.7) all contain a 1 in the least significant 
hit of their position number as does CL; bit positions 3, 6, 7, 10, and 11 all contain 
a 1 in the second bit pOsition, as does C24 and so on. Looked at another way, bit 
posilion e2 is checked by those bits C ;  such that Si —  Eor example, position 7 is 
checked by bits in position 4, 2, and I: and 7 = 4 1. 2 — 

Let us verify that this scheme works with an example, Assume that the 8-bit 
input word is 00111001. with data bit D1 in the tightmosl position. The calculations 
are as follows: 

= e o.e o o = 1 
C:2 = 1 EI) oelerie0-1 
c4=0e0 e t  0 - 
C8 = 1 El) 1 0 ED 0 

Suppose now that data hit 3 sustains an error and is changed from 0 to 1. When the 
check bits are recalculated, we have 

ci=1 eosie1 a)0=i 
C2 =iete:1$11130-o 
C:4 = 0 a:11 EF) 1 .2) 0 — 0 
CS = eleoW0=0 

When the new cheek bits are compared lo.rith the old check bits, the syndrome 
word is formed: 

C8 C4 C.2 C.J. 
0 1 1 1 

B  0 0 0  1 
0 1 1 I 

The result is 0110. indicating that bit position 6, Which contains data hit 3, is in error. 
Figure 5,10 illustrates the preceding calculation. The data and check hits are 

positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded 
in the table), and their bit position values arc XORed to produce the Damming 
code 01.11, which forms the tour check digits, The entire block that is.siored is 
001101001111. Suppose now that data bit 3, in bit position n, sustains an error and 
is changed flora 0 to L..1'hu resulting block is 003101101111. The resulting Hamming 
code is still 0111, An XOR of the I !attuning code and all of the bit position values 
for nonzero data bits resells in 0110. The nonzero result detects an error and indi-
cates that the error is in bit position 6. 

The code just described is known as a single-error-correcting (SEC) code_ 
More commonly, semiconductor memory is equipped with a single-error-correcting, 
double-error-detecting (SEC.-DEL)) code. As Table 5.2 shows, such codes requirc 
one mitlitional MI compared with SEC codes. 
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Figure 5.10 Check Bit Calculation 

Figure 5,11 illustrates how 7..41ch a eode works, again with a 4-bit data word. 
' Mc sequence shows that if two errors occur (Figure 511 c), the chixking procedure 
goes astray (J) and worsens the problem by creating a third error (c). To overcome 
the problem, an eighth bit is added 'hal is set so that the total number of is in the 
diagram is even. The extra parity bit catches the. error (f). 

An error-correcting code enhances the reiiability of the memory at the cost 
of added complexity. With a one-bit-per-chip organiza0on, an SEC -DED code is 
generally considered adequate, For example. the IBM 30xx implementations use 
an 8-bi1 SFC-DED wile  02Lch 64 bits of data in main memory. Thus, Lhc  of 
main memory is actually about 12% larger lion .i:l app4m:J11. to the user. The VAX 
computers use a 7-bit SEC-DED for each 32 hits s.)1 memory, for a 22% overhead. 
A number of contemporary DRAMs use 9 check bits for each 128 bii;s of c1a1H, for 
a 7% overhead ISIIA11971. 

Figure 5.11 Hamming SEC -DEC Code. 
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As was discusscl in Chapter 2, one of the most critical system bottlenecks when 
using high-performance processors is the interface to main internal memory, This 
interface is the most important pathway in the entire computer system. Thu basic 
building Nock of main memory remains the DRAM chip, 4L!..  has for decades; until 
recently. there had been no signi ricanI changes in DRAM architecture since the 
early 1970s. The traditional DRAM chip is constrained both by its internal archi-
tecture and by its interface to the processor's memory bus. 

We have seen that one attack on the performance problem of DRAM main 
memory has been to insert one or more levels of high-speed SRAM cache between 
the DRAM main memory and the processor. But SRAM is much costlier than 
DRAM. and expanding cache size beyond a certain puinl. yields diminishing returns. 

In recent years, a number of cnhanceTnenis to the basic DRAM architecture 
have been explored, and some of these are now on the market. The Iwo schemes 
that currently dominate the market are SDRAM and RDRAM.  RANI has also 
received considerable attention, We examine each of these approaches in this section. 

Synchronous DRAM 

One of the most widely used forms of DRAM is the synchri moos DRAM (SDRAM) 
NOCTL.941, Unlike the traditional DRAM, which is asynchronous, the SD RAM 
exchRT1gcs data with the processor synchronized to an external clock signal .and run-
ning at the full speed of the processorimemory bus without imposing wait states. 

In a typical DRAM. the processor presents addresses and control levels to 
the memory, indicating that a set of data at a particular location in memory should 
be either read from or written into the DRAM. After a delay, the ti cC.css ti me, the 
DRAM either writes or reads the data, During the access-time delay, the DRAM per-
forms various internal functions, such as activat ing  (ilk: high capacitance of the row and 
column Imes. h031.7-.4 the data, and routing the. data out through the outpul buffers. 
The processor must simply wait through this delay. slowing system performance. 

With synchronous access, the DRAM move:,1data in ztnd out under control of 
Lbc., y,t,m ciock. Thu procesm)r or other lliasti2r issues the instruction and address 
information, which is latched by the DRAM. The DRAM thcn responds after a 
set number of clock cycles. Meanwhile, the master eau safely do other tasks while 
the SDR AM k processing Lhc requnt. 

Figure fi.12 shoiA.s the internal logic of IBlyts 64 Mb SDRAM [11-1Mtil 1. which 
is typical of SDRAM organization, and Table 5.3 defines the various pin assign-
ments. The SDRAM employs a burst mode io eliminate the address setup time and 
row and column line prechargc Lime aur the first access. In burst mode, a series of 
data bits can he clocked out rapidly after the first bit has been accessed. This mode 
is useful when all the bits to be accessed are in sequence and in the same row of the 
array as the initial 41CiA:S.!-:..  In addiLion, the SDRAM has a multiple-bank internal 
architecture that improves opportunities for on-chip parallelism. 

The mode register and associated control logic is another key feature differ-
entiatin  from convtmi iona I DRAMs. It provides a mechanism to cus-
lornur die SDRAf 1 10 suit specific !,ystern needs. The mode register specifics the 
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TaIlk 5.3 SDRAM Pin Assignments 

Ail in Al.!. AddIL inputs 

CLK Clock Input 
-- - 

Clock c:nallk' CKE 

C.7.3 Chip select 

RAS ROW LICIIETOS}, S114.1:bl! 

CAS 01113 M R OCIT2SU L11)1)..' 

WE Write: 011E1111c 

1)0 1 ) to D07 Date input:00Lp LIL 

11. ) 104'‘..1 Dater TrinSk 

burst length, %vhich is the number of separate units of da I a synchronously fed onto 
the bus. The register also allows the programmer to adjust the latency between 
receipt of fl read request and the beginning of data transfer. 

The SDRAM performs best when it is transferring large blocks of data seri-
ally, such as for applications like word processing, spreadsheets, and multimedia. 

Figure 5.13 shows an example (4 SDRAM operation. In this case. the burst 
length is 4 arid Ihr latency is 2. The burst read command is initiated by having 
CS and CAS low while holding RAS and WE high at the rising edge of the clock. 
The address inputs determine the Martin column address For the burst, and the 
mode register sers the type of burst (sequential or interleave) and the burst Length 
(1, 2, 4, 8, full page). The delay from the start of the.cornmand to when the. data 
from the first cell appears on the outputs is equal to the valet.' of the CAS latency 
that is set in the mode register. 

There is now an enhanced version. of SD RAM, known as double data rate 
SD RAM (DDR-SD RAM) that overcomes the once-per-cycle limitation. DDR-
SDRAM can send data to the processor twice per clockcy cle_ 

Ratnbus DRAM 
RDRAM, developed by Rambus [FARM92. CRIS97], has been adopted by Intel 
for its Pentium and Itanium procmors. It has become the main compelitur 
SDRA M. RDRAM chips are vertical packages, with al] pins on one.side, The chip 
eN.changes data with the processor over 28 wires no more than 12 centimeters long. 
The bus can address up to 320 RDRANI chips and is rated ac 1.6 Gaps. 

The special RDRAM bus delivers address and control information using an 
zft.vnchronons Hoek-otiented protocol. After an initial 480 ns access time. this pro-
duces the 1.6 Gaps data rate. What makes this speed possible is the bus itself, which 
defines impedances, clocking, and signals very precisely. Rather than being controlled 
by the explicit RAS, (AS, R.PW, and CE signals used in conventional DRAMs, an 
RDRAM gets a memory request over the high-speed bus. This request contains the 
desircd address, the type of operation, and the number of bytes in the. operation, 

Figure 5.l4 ill asi ra[e: ,:. the RD RAM layout. The. configuration eunsixis of a 
cum roller and a number of RDRAM modules connected together via a common 
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bus. The controller is at one end of the configurai ion, and the far end of the bus is 
a parallel termination of the butt lines. The bus includes 1S data lines (16 actual 
data, two parity) cycLing  twice the clock rate; that is one hit is tent at the lead-
ing and following edge of each clock signal. This resukEs in a signal rate on each 
data line of 800 Mhps. There is a separate set of 8 lines (RC) used for address and 
control signals. There is also a cloek signal that starts at the far end from the con-

trfillur propagates to the controller end and then loops bi]ck. A RDRAM module 
sends data to the controller synchronously to Ike clock to master, and the con-
troller sends data to an RDRAIVI synchronously with the clock signal in the oppo-
site direction. The remaining bus lines include a reference voltage, ground. and 
power source. 

Cache DRAM 
Cache DRA (CDRAM), developed by Mitsubishi [HI [)A ]f}, ZHAN011, inte-
grates a small SRAM cache 06 Kb .) onto to gencrie DRAM chip. 

The SRAM on the (DRAM can be used in two ways, First, i1 can be used as 
a true cache, consisting or a number of 64-bit lines. The cache mode of the CDRAM 
is effective for ordinary random access to memory. 

The SRAM on the CDRAM can also he used as a buffer to support the serial 
access of a block of data, For example, to refresh a hit-mapped screen. the CDRAM 
can prefetch I he data from the DRAM into the SRAM buffer. subsequent accesses 
to Eh. ehip result in accesses solely to the SRAM. 

PR1N9 I provides a comprehensivc Oi semiconductor memory tedmoiogies, 
including SRAM. DRAM, and flash inentorii..s. [SI EAR 917] COVCTS the same maieriul, with 
more emphasis on testing and roliabi[i(y issues, l'fiR)N9r1)1 focuses on advanced DRAM and 
SRAM architectures. For an in-depth look al IMAM., see IKEET011. 

A good explanation ni error-correcting, codes ix conlain.cd in [MCELS5]. For a deeper 
s[oc]k, worthwhile book-lelligili treatments are IADAM91.] and [BLAII.831. [SHAR97] con-
...rills S 50001 survey of codes used in contemporary main memories. 

ADANT91 Ada mok, J. Ftwo?dations of C'oding, New YIN k %Vile:yr I i.19 I 
BL A..1113.3, BUhiit, R. Theory and Practice (3.f Ert:or cot rird Re.ading. MA; Addison- 

1y'LL.sley..1083. 
KEF.T01 Reeth, B. :  and Baker, R. DRAM Circarif Dili got; A Tzar:47'411. Piscataway, Nil: 

IEEE Press, NW. 
ri4CF-1,85 McElicue, R. "i'he Reliability of Comprii4...r Memories." Scientefie: American, 

January 1985. 
PR1E491 Ptiiice, 13. Semicotsdurriw. .34,2rtiori.c.v. New York -. WiTcy, 1991. 
PRINT) lifinc.d, H. MR)? Pe rtbrrPranCe Memories:: Neiv Arch &corn' nRA.Ms and SRAM's, 

.F.:volJaion axed Firneaon. 'dew York; Wiley. 1999. 
51-1.4297  Sharma, A. Sm. iconducior Alenakries.: .tryhnedogy, Tesritig. anei 

New York: IEEE Press, 19447, 
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Recommended 1,Veh Sites: 

• The RAM Guide: Good overview of RAM technology plus a number of useful links 

• RamhusSite: Useful collection of documents and pointers to RDRAM vendors 

■ RDRAM: Another useful site for RDRAM information 

5,5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

key 'lertriS 

cache DRAM (CDRAM) 
dynamic RAM {DRAM) 
electrically crasablc 

programmable ROM 
(FE:PROM ) 

erasable programmable 
(EPROM) 

error-corr..din code 
(EC(?) 

error correction 
flash memory 

Hamming code 
hard failure 
nonvolatile memory 
programmable ROM 

(PROM) 
R am Bus DRAM 

( RDRAls.1) 
read ,nmstly memory 
read-only memory 

(ROM) 
semiconductor mennir 

Review Questions 
5.1 What arc the key properties OF semiconductor memory? 
5.2 What arc two senses in which the term remr,om-access memory is used? 
5.3 What is the difference between DRAM and SRAM, in terms of application? 
5.4 What is the difference between DRAM and SRAM, in terms of characteristics such 

as speed, size, and cu-5r? 
5-5 Explain why one type of RAM is considered to he analog and the other digital. 
5:6 What arc some applications for ROM? 
5.7 What arc the differences among EPROM. F.F.PROM, and flash rnetnorv? 
5.8 Explain the function of each pin in Figure 5.4b, 
5.9 What is a parity bit? 

5.10 How is the syndrome for the Hamming code interpreted? 
5.11 How does SDRAM differ from ordinary DRAM? 

Problems 
Si Suggest reasons why RAMS traditionally have been organized as only one bit per chip 

whereas ROMs arc usually organiz.ed will' multiple bits per chip- 
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5.2 Consider a dynamic RAM that must be gi‘ren a refresh cycle 64 times per rns. Each 
refresh operation requires 150 ns; a memory cycle requires 250 ns. What percentage 
of the mernor....

, 's total operating time must be given to refreshes? 
5.3 Design a 16 -bit memory of total capacity 8192 hits using SRAM chips of size 44 

hit. Give thi:.  tray erpiillguration of the chips on the memory board showing all 
requited ioput and output signals for assigning this hicintiry to the lowest address 
sp4icc. The design should allow for both byte and 16-bit word accesses_ 
S (.4!: E 93 

5.4 For the Hamming code shown in Figure 5.10, show what happens when a chock bit 
rather than a data bit is in crror. 

5.5 Suppose an data word stored in memory is 1101100111 Using the Hamming algo- 
rithm. determine what check bitg. would he stored in memory with the c..lara word. 
Show how you got your answer. 

5.6 For the word 00111001, the check bits stored with it would be 1)1 I I. Suppose 
wizen the word is read from memory, the check hits arc calculated to he 1101. What 
is the data word that was road from memory? 

5.7 How many check hits are needed if the Hamming error correction code is used to 
detect single bit errors in a 1024-1}ii daiii word? 

5.8 Develop an SEC code for a 16 - hit data word. Generate the code for the data word 
0101 U011110001 I I WI.. Show [hat the code will correctly identity an error in data bit 5. 
Source!: [ALEX931 
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.KEY POINTS 

• Magnetic disks remain the most important component of external memor).. 
Both removable and fixed, or hard, disks are. used in systems ranging from per-
sonal computers to mainframes and supercomputers. 

♦ To achieve greater performance and higher availability, a popular scheme on 
servers and larger systems is the RAID disk. technology. RAID refers to a 
family of techniques for using multiple disks as a parallel array of data storage 
devices, with redundancy built in k compensate for disk failure. 

♦ Optical storage teennOlogy has become. increasingly important in all types of 
computer systems. While CD-ROM has been widely used for many years. 
more recent technologies, such as writable CD and DVI), are becoming. 
increasingly important, 

T hi ,., chapter examines a range of external memory devices and systems. We 
oco n with the most important device, the magnetic disk. Magnetic disks are 
th E foundation of external memory on virtually a]1 computer systems, The 

ric xi section examines the use of disk arrays to achieve greater performance, look-
ing specifically at the family of systems known as RAID (Redundant Array of inde-
pendent Disks). An increasingly important component of many computer systems 
is external optical memory, and this is examined in the third section. Finally, mag-
netic tape is described. 

6.1 MAGNETIC DISK 

A disk is a circular platter constructed of nonmagnetic material, called the substrate, 
coated with a magnetizable material. Traditionally, the substrate has been an alu-
minum or aluminum alloy material. More recently, glass substrates have been intro-
duced. The glass substrate has a number of benefits, including the following: 

• I mprovement in the uniformity of the magnetic film surface to increase disk 
reliability 

• A significant reduction in overall surface defects to help reduce read—write errors 
• Ability to support lower fly heights (described subsequently) 
• Better stiffness to reduce disk dynamics 

• Greater ability to withstand shock and damage 

Magnetic Read and Write Mechanisn- 

Data are recorded on and later retrieved from the disk via a conducting coil 
named the head; there are in many systems two heads. a read head and a write head. 
During a read or write operation. the head is stationary while the platter rotates 
beneath it. 
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Figure GI Inductive Wrik,'MagncLorcsistivc Read F1 .ad 

The write mechanism is based on the fact that electriCit V.  flowing through a coil 
produces a magnetic field. Pulses arc sent to the write head, and magnetic patterns 
are recorded on the surface below, with different NUei -nz, Ivor positive and negative 
currunt:s. Pic write head itself is made of easily magnetizable material and is is the 
shape of a rechmgalat doughnut with a gap along one side and a few lures of con-
ducting wire along the opposite side (Figure 6.1). An electric current in the wire 
induces a magnetic field across the gap, which in turn magnetizes a small area of the 
recording Tnedium. Reversing the direction of the current reverses the direction c. -pf 
the magnetization on the recording medium. 

The traditional read mechanism is based on the fact that a magnetic field mov-
ing relative to a coil produces an electrical current in the coil. 'When the surface of 
the disk passes under the head, it generales a current of the S41111e polarily as the one 
already recorded. 'The structure of the head for reading is in this case essenLiAv the 
same as for writing and therefore the same head can be used for both. Such single 
heads are used in floppy disk systems and in older rigid disk systems. 

Contemporary rigid disk systems use a different read ineehanism, requiring a 
separate read head. positioned for convenience close to the write head. The read head 
consists of .a partially shielded magnetoresistive (MR) sensor. The MR material has 
an electrical resistance that depends on the direction of the magnetization of ihe 
medium moving under it. By passing a current through the MR sensor, resistance 
changes are detected as voltage signals. The MR design allows higher-frequency 
operation, which equaics to greater storage densities and operating speeds. 

Data Organization and Formatting 

The head is a relatively small device capable of reading from or writing to a portion 
of the. piai ter rotating beneath it. This gives rise to the organization of data on the 
platter in a concentric set of rings. called tracks. Each track is the same width as the 
head. There ;ire Ihuusands of tracks per surface. 
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Figure 6.2 Disk Data Layout 

Figure 6.2 depicts this data layout. Adjacent tracks are separated by gaps. This 
prevents, or at least minimizes, errors chic lo misalignment of the head or simply 
interference of magnetic fields. 

Data are transferred to and from the disk in sectors (Figure 6,2). There are 
typically hundreds of sectors per track, and these may be of either fixed or vari-
able length. In most coniernponiry  fixed-length sectors are used. wish 
512 bytes being the nearly universal sector size. To avoid imposing unreasonable 
precision requirements on the system, adjacent sectors are separated by intratrack 
{inter -sector) gaps. 

A bit near the center of a rotating disk travels past a fixed point (such as a 
read—write head) slower than a bit on the outside. Therefore, some way must be 
found to compensate for the variation in speed so that the head can read a]] the bits 
at the same rate. This cart be done by increasing the spacing between his of infor-
malion recorded in segments of the disk. The in roemation can then be .scanned at 
the same rate by rotating the disk at a.fixed speed, known as the constun€ angular 
velocity (CAV). Figure 61a shows the layout of a disk using CAV, The disk is 
divided into a number of pie-shaped sectors and inter 21 series or concentric tracks. 
The advan tap of using CAV is that individual blocks of data can he directly ad-
dressed by track and sector. To move Lhe head from its current local ion to a specific 
address, it only takes a short movement of the head to a specific track and a short 
wait rot the proper sector to spin under the head. The disadvantage of C7AV is that 
the amount of dale that can be stored on the long outer tracks is the same as what 
can be stored on the short inner tracks_ 
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(a) Constant angular velocity (b) Multiple zoned recording 

Figure 6.3 Compariman of Disk Layeu( Meatocls 

Because the density. in bits per linear inch, increases in moving from the outer-
most track Icy I hi: innermost tr,Hek. disk storage capacity in a straightforward CAV 
system is limited by the maximum recording density that van be 0Qhievcd on the 
innermost track. To increase density, modern hard disk systems use a technique 
known as multiple zone recording, in which the surface is divided into a number of 
zones (l6 is typicA). Within a Aorie, the number of bits per track is consl ant, Zones 
farther from the center contain more bits (more sectors) than zones closer to the 
center. This allows for greater overall sloragc capacity at the expense of somewhat 
more. complex cireunry. As the disk head moves from one zone to Smother, The 
length (along the track) of individual bits changes, causing a change in the timing 
for reads and writes. Figure 6.3b suggests the naiurc of multiple zone recording in 
this illustration. each  k only a single track wide. 

Some means is needed to locate sector positions within a track. Clearly. there 
must be some starting point on the track and a way of identifying the start and end 
of each sector. These requirements are handled by means of control data recorded 
on the disk, Thus, the disk is formatted with some extra data used only by the disk 
drive and not accessible to the user. 

An example of disk formatting is shown in Figure In this case, each track 
conluins 30 fixed-length scctors of 600 bytes each. Each sector holds 51.2 bytes of data 
plus control information useful to the disk controller. The II) rick] is a unique iden-
tifier or address used to locate a particular sector. The SYNCH byte is a special bit 
pattern that delimits the beginning of the field. The track number identifies a track 
on a soriux- ' the hcrid number identifies a head, because this disk has multiple surfaces 
(explained presently). The ID and data fields each contain an error-dcteeting code. 

Physical Characteristics 
Tablc (ILl lists the major characteristics that differentiate among the various types 
of magnetic disks. First, the head may either be fixed or movallte with respect to the 
radial direction of the platter, In a fixed-head disk, there is one read-write head per 
track. All or the heads are mounted on a rigid arm that extends across all tracks; 
such systems are rare today. In a movable -head disk. there is only one read-write 
head. Again, the head is mounted on an arm -  Became the head must be able to be 
positioned above any track, the arm can be extended or retracted for this purpose. 
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Table 6.1 C 11 M -el  OriH tiCS iI I)i sk System'''. 

The disk itself is mounted in a disk drive. which consists of the arm, Eishari that 
rotates the disk. and the electronics needed for inpui and output of binary data. A 
non re rnovahl u disk is petrnanentl!, ,  mounted in the disk drive.; the hard disk in a per-
sonal computer is a nonremovable disk. A removable disk c.In he TUmoved and 

replaced with another disk. The advantage. of the latter type is that unlimited 
amount...; or data arc. available with a limited number of disk systems. Furthermore, 
such a disk may he moved from one computer system to another, Floppy disks mid 
ZIP cartridge disks are examples of removable, disks. 

For most disks, I he 111 kignednible coating is to both sides of the plat- 
ter, which is then referred to as double sided. Sonic less expensive disk systems 
single sided disks. 

Some disk drives accommodate multiple philters stacked vertically a fraction 
of in inch apart. Muttipie arms are provided (Figure 6.5). Multiple-platter disks 

Read—write head (1 per surfacel Direclion of 
arra (1111t11) 

I 
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Figure 6.6 Tracks and Cylinders 

einplo!,. a me val-FIc head. with one read-write head per platter surface. All of the 
heads are mechanically fixed so that all are at the same distance from the center of 
the disk and move together. Thus, at any time, a]] of the heads are posilioned over 
tracks that are of equal distance from the center of the disk, The set c..4 all i he tracks 
in the same relative position on the platter is referred to as a cylinder. For example. 
all of the shaded tracks in Figure 6.6 are part of one cylinder. 

Firm I lv, the head mechanism provides a classification of disks into three types-  
Traditionally. the read-write head has been positioned fixed distance above the 
platter, allowing an air gap. At the other extreme is a head mechanism that actually 
conies ink) physical contact with the medium during a read En -  write operation. This 
mechanism it used with the 'hippy dirk, which is a small, flcsible platter and the [east 
expensive type of disk. 

To understand the third type of disk, we need to comment on the relationship 
between data density and the size (.1.1 the air gap, The head must gerieraiQ or weave art 
eiectromagnetic field of sufficient magnitude to write and read properly. The nar-
rower the head is. the closer it must be to the platter surface to function. A narrower 
head means narrower tracks and therefore greater data density. which is desirable. 
However, the closer the head is to the disk. the greater the risk of error from im-
purities or imperfections. To push the technology further, the 'Winchester disk was 
developed, Winchester heads are used in sealed drive assemblies that are almoSt free 
or contaminan1s. They are designed to operate closer to the disk's surface than con-
ventional rigid disk heads, thus allowing greater data density. The head is actually an 
aerodynamic foil that rests lightly on the platter's surface when the disk is motionless. 
'['he  pressure. generated 

by, 
 a spinning disk is enough 10 make the  rise aho 

the surface. The resulting noncontact system can be engineered to use narrower 
heads that operate closer to the platter's surface than conventional rigid disk heads. 

As a m Alter of basI miva I i icrrn Wiriehesser wos Origi usod he ITN ,;.ts ri code niimc. I'm the 
3MLI. disk model prior to its aruloWICerrtent. Thu 3:1AD WM it miiscavable ckir k pack with the heads sealed within 
she pack. The term is now applied to any sealed-unit disk drive with aerodynamic hend design, . I be Winchcsuo 
disk is curninonly found built in to pci-sprimicomputm and WI WkNtations, whom it is mlun-ed to k& hard disk. 
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!Able 6.2 Typical Hard Disk Drive Pararnotcrs 
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delay 

4-17 013 7.1.4 tris S..33 a1.5 

Maximum Lranac.r 
rate .1 60 :ABA 522 1.3 719 MI3:s 25 Ma:5 66 MBIs 13.3 MBI.s 

By per s ector 512 512 512 512 572 

SW{ Fr per 'track 793 4g5 N11) 

Tracks per cylindu 
(riumhcr (31: plpito-

$LITRICC.9 

24 2 

of track s On km::: 24.247 L8,479 2 1.4. .•55 I 10,350 
sidc p.inttur) 

    

     

     

Table 6.2 gives disk parameters for typical contemporari;,
,  high-performance 

disks. 

Disk Performance Parameters 

The adu;i4 details of disk 1/0 operation depend on the computer system, the oper-
ating system, and the nature of the WO channel ;..ind disk controller hardware. A gen-
eral timing diagram of disk I/O 1rnnsrei-  i2.; shown in Figure 6.7. 

When the click ffrive is operating, the.. disk is rotating at constant speed. To 
read or write, the head inust be positioned at the desired track and at the beginning 

of thil desired sector on that track. Track NeIceLion involves moving the hcad in a 
movable-head system or clixtronieolly selecting one head on a fixed-head 5:,. ,stern. 
On a movahle-head sy2tern :  the time it takes to position the head at the track k 
known as seek time. In either case, (Alec the track is selected, the c,lisk controller 
waits until the appropriatc scul car rotates to line up with the head, The time it takes 
[`or the beginning of the sector to reach the heart is known as rotational delay, or 
rotational latency. The sum of the seek iirric, if any, and the rotational delay equals 
the access time, which is the time it takc,  10 get into position to read or write. Once 
the head is in position. the rend or write operation is then performed as the sector 
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moves under the head; this is the data transfer portion of the operation: the time 
required for the transfer is the transfer time. 

In addition to the access time and iransier time, there are several queuing 
delays normally associated with a disk I/O operation. When a process issues an 
I.10 request, it must first wait in a queue for the device to be availabk. AL that 
lime. ale device is assigned Lo the process. 11 the device shares a single I/0 chan-
nel or a set of 170 channels with other disk drives, then there may be an additional 
wait for the channel to he available. At that point, the seek is performed to begin 
disk access. 

In some high•end sysurns for servers, a teehnique known as rotational posi-
tional sensing (RPS) is used This works as follows: When the seek command has 
been issued. the channel is released to handle other 1/0 operations. When the seek 
is completed. the device determines when the data will rotate under the head. As 
that sector approaches the head, the device tries to reestablish the communication 
path back to the host. 11 either the control unit or the channel is busy with another 

Lhcn Lhc recOnmxtion attempt fails and the device must rotate one whole rev-
olution before it can attempt to reconnect :  which is called an RPS miss. This is an 
extra delay element that must be added to the time line of Figure 6.7. 

Seek Time 

Seek time is the timei required to move the disk arm to the required track. It 
turns out that this is a difficult quantity to pin down. The seek lime consists of two 
key components= the initial startup time, and the time taken to traverse the tracks 
that have to be crossed once the.access arm is up to speed. Unfortunately, the tra-
versal time iw not a linear function of Lhc number of tracks, but includes a startup 
time and a settling time (Hine aiLer positioning Lhc head over the tar .et track until 
track identification is confirmed). 

Much improvement comes from smaller and lighter disk components. Serne 
years ;Igo. a typical disk was 14 inches {36 ern) in diameter, whereas the most com-
mon size today is 3.5 inches (8.9 cm), reducing the distance that the arm has to 
travel. A typical average seek time on contemporary hard disks is under .L0 ms. 

Hot-Anna' Delay 

Disks, oilier Ihan floppy disks, rotate at speeds ranging from 3600 rprn (for 
handheld devices such as digital carnera.$) up to, as of this writing. 15,000 rpm at this 
latter speed. there is one revolution per 4 nis. Thus, on the average, the rotational 

Wait for Wait Fur Sea Rotational Data 
device channel dela*. transter 

Device busy 

Figure 61.7 Tiiiiirpe of a Disk Transtur 
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delay will be 2 Ins. Flopp ...• disks typicall!,. ,  rotate at between 300 and 61)1) rpm. Thus 
the average delay will be. between 100 and 50 ms. 

Trunsier Time 

The transfer time lo or from t he disk. depends on the rotation speed of the disk 
in the following fashion; 

h 
T = 

riN 
where 

- tramrer time 
= number of bytes to be transferred 

N = number of bytes on Li track 
r rotation speed, in revolutions per second 

Thus the total average access time can be expressed as 

1 
T •  - 2r  IN 

where 7', js•the average seek time. Note that on a zoned drive, the number or bytes 
per track is variable, complicating the calculation. 

A Timing Comparison 

With the foregoing pararneiers defined, let us look at Iwo different P.O oper-
ations that illustrate the danger or relying on average values. Consider Li disk with 
an advertised average seek time of 4 ms, rotalion speed ci f 1 ,00()  and 512-byte 
sectors with 500 sectors per track. Suppose that we wish to read a file consisting 
of 2500 sectors for ik total of 1.2H Mbytes. We would like to estimate the tolal Lime 
for the transfer. 

First. let us assume that the file is stored as compel ly as possible on the disk. 
That is the rile occupies all of the seekvs can 5 adjacent tracks (5 tracks  500 sectors.? 
track - 2M10 .sectors). This is known as sequeraial organiz.rition, Now, the time to 
read the first track is as follows: 

.Average seek 4 ms 
Rotational delay 4 ms 
Read 500 sectors ms  

16 iris 

Suppose that the remaining tracks can now be read with essentially no seek 
time. That is, the 1/0 operation can keep up with the flow from the disk. Then, at 
most, we need to deal with rotational delay for each succeeding track. Thus each 
successive track is read in 4 -F 8 = 12 ins. To read the entire fill:, 

Total time = l6 - 4 x 2 = 64 ms = 0.064 seconds 
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Now let us calculate the time required to read the same data using random 
access rather than sequential access: that is. accesses to the sectors arc distributed 
randomly over the disk. For each sector. we have 

Average seek 4 ms 
Rotational delay 4 ms 
Read I sectors 0,016 ms 

.016 ms 

Total time — 500 x 8,016  4008 ms = 4.008 seconds 

It is clear that the order in which sectors arc read from the disk has a tremen-
dous effect on I/O performance. In the case of file access in which multiple sectors 
arc read or written. we have some control over the way in which sectors of data arc 
deployed, and we shall have something to say on this subject in the next chapter. 
However, even in the case of a file access, in a multiprogramming environment, 
there will be  requests competing for the same disk. Thus, it is worthwhile to 
examine ways in which the performance of disk I/0 can be improved over that 
achieved with purely random access to the disk. This leads to a consideration of disk 
scheduling algorithms, which is the province of the operating system and beyond the 
scope of this book (see [STAL0 I I for a discussion). 

6.2 RATC6 4'W-F; 
As discussed earlier_ the rile in improvement in secondary storage performance 
has been considerably less than the rate for processors and main memory. 'This mis-
match has made the disk storage system perhaps the main focus of concern in im-
proving overall computer system performance. 

As in other areas of computer performance. disk storage designers recognize 
that if one component can only he pushed so far, additional gains in performance arc 
to be had by using multiple parallel components. In the case of disk storage. this leads 
to the development of arrays of disks that operate independently and in parallel. 
With multiple disks, separate 110 requests can be handled in parallel, as long as the 
data required reside on separate disks. Further, a single .1.10 request can be executed 
in parallel if the block of data to he accessed is distributed across multiple disks, 

With the use of multiple disks, there is a wide variety of ways in which the data 
can be organized and in which redundancy can be added to improve reliability_ This 
could make it difficull to develop database schemes that are usable on a number of 
platforms and operating systems. Fortunately, industry has agreed on a standardized 
scheme for multiple-disk database design. known as RAID (Redundant Array of 
Independent Disks), The RAID scheme consists of seven levels. :  zero through six. 

:Additional levels have been defined by sonic resc,3rchers and some companies. but the seven levels 
&scribed in this section sire ihti ones universally aereed on. 
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1 hese icveis do not imply a hierarchical reialionship but designate different design 
architectures that share three common (,:haracieristics 

1. RAID is a set of physical disk drives viewed by the operating system as a single 
logical drive. 

2. Data are distributed across the physical drives of an array. 
3. Redundant disk capacity is used to store parity information, which guarantees 

data recoverability in case of a disk failure. 

The c,letai Is of the second and third characteristics differ ror the different RAID ley-
cis. RAID 0 does not support the third uharacteristie, 

The term RAID was originally coined in a paper by a group of re.!,.carChel's at 
the University or California; at Berkeley [PATTSS],'"Fhe paper outlined various 
RAID configurations and applications and introduced the definitions of the RAID 
levels that are still used. The R.A1D strategy replaces large-capacity disk drives with 
multiple smaller-capacity drives and distributes data in such a way as to enable 
si multaneous access to data from multiple; chives_ thereby improving 1.0 perfor-
mance and allowing easier incremental increases in capacity. 

The unique contribution of tlic RAID proposal is to address effectively the 
need for redundancy. Although allowing multiple heads and actuators to operate 
simull ancously achieves higher I/O and transfer rates, the use of multiple devices 
increases the probability of failure. To compensate for this decreased reliabiiity, 
RAID makes use of stored parii y information that enables the recovery of data lost 
due to a disk faiiure, 

We now examine each of the RA 11.3 levels. Table 6.3 summarizes 
th e 

 seven 
levels. Of these, levels 2 and 4 are not commercially offered and are not  to 
achieve industry acceptance. Nevertheless, a description of these levels helps lo clar-
ify the design choices in some of the other levels, 

Figure 6.8 is an example that illustrates the use of the seven RAID schemes to 
support a data capaci1y requiring four disks not counting redundane.y. The figure 
highlights the layout of user data and redundant data and in di cates the. relative stor-
age rctiuireritertts of the various levels. We refer Lo this figure throughout !he fok 
lowing discussion. 

RAID Level 0 

RAID level 0 is not 41 Irttu member of the RAID family. because it does not include~ 
redundancy to improw performance. However, there are a few applications, such 
as some on supercomputers in which performance and capacity are primary con-
cerns and low cost is more important than improved reliability, 

; Fri lbw paper. the acrcrnyrn RAID stood for Redundant Array Or ITIEXprUil'it DIAL The C UM inPVprq ■ -  
vive .  was used to contrast the small relatively inexpensive. disks in the. RAID array iu I he allernaLivti, 
{in glc Inre expenp.ivir disk (SLED}. The SLED is e3sK3utiallls. 9 I hing al the past, with similar 4.1iiik tech-
nology being tiled for both RAID and non-RA ED CI Fri  orations. Accordingl'y, the industry has adopted 
1bc term ItidependeRr to emphn2,ize that the RAID array maws sign' $ic,1 n 1 irer Eirrninnee and reliability eains. 
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Table 6.3 RAID Levels 

Category Level Description Request Rate 
(Readfri/Vrite) 

Data 
Transfur Rate 
(Read/Write) 

Striping 6 Koareliandant 
I ,arge strips: 

Rxcellent 
Small strips; 

Excelknt 

Mirroring MallMed Good:fair Fairifair 

Parallel 
access 

2 
Redundant via 
Hamming code 

Poor tee llcnl  

3 Bit-interleaved 
parity 

Poor ENcc.11erit 

[Tidcpundent 
3CeCsS 

4 Block-interleaved 
parity 

Fa iripoor r 5 Block-interleaved 
distributed Nrity Exellentifair Fairpoor 

Block-interleaved dual 
distributed parity 

,  r   Acciientipoor Fair/poor 

Typieal 
Application 

Applications 
requiring high 
performance for 
noncritical data 

System drives: 
critical files 

large 1:0 request 
size applications, 
such as imaging, 
CAD 

High request rate, 
read intermive:. 
data lookup 

Applications 
requiring extremehi 
high avnilablity 

For RAID 0, the- user and system dal a are distributed across all of the disks in 
the array. This has a notable advantage over the use of a single large disk: If Iwo dif-
ferent 110 requests are pending for two different blocks of data, then there is a good 

chance that the requested blocks are on different disks, Thus, the two requests can 

he issued in parallel, reducing the 1!0 queuing time, 
But RAID 0, as with all of the RAID levels, goes further than simply distrib-

uting the data across a disk array: The data are striped across the available disks. 
this is best understood by considering Figure 6,9. All of the user and system data 
are viewed as being stored on a logical disk. The disk is divided into strips; these 
strips may he physical blocks, sectors, or some other unit. The strips are mapped 
round robin to consecutive array members, A set of logically consecutive strips that 
maps exactly one strip to each array menthe] .  is referred to as a stripe, In an n-disk 
array, the first n logical strips are physically stored as the first strip on each of the n 
disks, forming the first stripe; the second n strips are distributed as the second strips 
on each disk; and so on. The advantage of this layout is that if a single  request 
consists of multiple logically contiguous strips. then up to n strips for that request 
can he handled in parallel, greatly reducing the I/O transfer time. 

Figure 6,9 indicates the use of array management software to map between 
logical and physical disk space. This software may execute either in the disk sub- 
system or in a host computer. 

(text co,ifirrele.s. 1)( ituge 1801 
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RAID 0 for High Data Transfer Capacity 

The performance of any of the RAID levels depends critically on the request 
patterns of the host system and on the layout of the data. These issues can he most 
clearly addressed in RAID 0, where the hupaci or redundancy does not interfere 
with the analysis. First, let us consider the use of RAID tl to achieve a high data 
transfer rate. For applications to see a high transfer rate, two requirements must be 
met. FirSt, a high transfer capacity must exist along the entire path between host 
memory and the individual disk drives. This includes internal controller buses. 
host system 110 buses, 110 adapters. and host memory buses. 

The second requirement is that the application must make I/O requests that 
drive the disk array efficiently. This requirement is met if the typical request is for 
large amounts of logically contiguous data, compared to the size of a strip. In this 
case, a single I/O request involves the parallel transfer of data from multiple disks. 
increasing the effective transfer rate compared to a single-disk transfer. 

RAID 41 For I ligh I/O Request Rate 

In a transaction-oriented environment. the user is typically more concerned 
With response time than with transfer rate. For an individual  request for a small 
amount of data, the I/O time is dominated by the motion of the disk heads (seek 
ti me.) and the movement of the disk (rotational latency). 

In a transaction environment, there may he hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the 1/0 load 
across multiple disks. Effective load balancing is achieved only if there are typically 
multiple I/O requests outstanding. This, in turn, implies that there are multiple inde-
pendent applications or a single transaction-oriented application that is capable of 
multiple asynchronous I/O requests. The performance will also be influenced by the 
strip size. If the strip size is relatively large, so that a single 1/0 request only involves 
a single disk access, then multiple waiting 1/0 requests can he handled in parallel, 
reducing the queuing time for each request. 

RAID Level 

RAID 1 differs from RAID levels 2 through C in the way in which redundancy is 
achieved. In these other RAID schemes, some form of parity calculation is used to 
introduce redundancy. whereas in RAID I. redundancy is achieved by the. simple 
expedient of duplicating all the data, As Figure 6.8b shows, data striping is used, as 
in RAID 0. But in this case, each logical strip is mapped to two separate physical 
disks so that every disk in the array has a mirror disk that contains the same data. 

There arc a number of positive aspects to the RAID 1 organization: 

L A read request can be serviced by either of the two disks that contains the 
requested data, whichever one involves the minimum seek time plus rota-
tional latency. 

2. A write request requires that both corresponding strips he updated, but this 
can be done in parallel. Thus, the write performance is dictated by the slower 
of the two writes (i.e., the one that involves the larger :seek time plus rota- 
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clonal latency). However, there is no "write pcmalt:y. - .with RAID 1. RAID levels 
2 through 6 involve the use of parity bits. Therefore, when a single strip is 
updated, thc array management software must first compute and update the 
parity bits as well as updating the actual strip in question. 

3. Recovery from a failure is simple, When a drive fails. the data may still be 
accessed front the second drive. 

The principal disadvantage of RAID 1 is the cost; it requires twice I he disk 
space of the logical disk that it supports. Because of I hal, a RAID configuration 
is likely to be limited to drives lhat store system software arid data and other highly 
critical files. 111 these cases, RAID l provides real-time backup of all data so that 
in the event of a disk failure, all of the critical data arc still immediately available. 

In a transaction-oriented environment, RAID 1 can achieve high 110 request 
vales if the bulk 01 [he requests arc reads. In this situation, the performance of RAI F.) 
1 can approach double of that of RAID 

0. 
 However, if a substantial fraction of the I /O 

requests are write requests. [hen [here may be no ,,i gnificant performance gain over 
RAID 0- RAID 1 may also provide improved perf'ormance over RAID 0 for data 
transfer intensive applications with x high percentage of reads, improvement occurs 
if the application can split each read request so Thal both disk members participate. 

RAID Level 2 
RAID levels 2 and 3 make use of a parallel access technique- In a parallel access 
array, all member disks participate in I he execution or every 110 request. Typically. 
the ,pindles of the individual drives are synchronized so that each disk head is in 
same position on each disk at any given time. 

As in the other RAID schemes, data striping is used. In the case of RAID 2 
and 3. the strips are very small, often as small as a single byte or word. With RAJ!) 
2, an error-corteciing code is calculated across corresponding hits on each data disk. 
and the bits of the. code are stored in the corresponding bit positions oil. multiple 
parity disks. Typically, a Hamming code is used. which is able to correct single-bit 
errors and detect double-bit errors. 

Although RAID 2 requires fewer disks than RAID I. it is slill rather costly, 
The number of redundant disks is proportional to the log of the number of data 
disks. On a single read, all disks are simultaneously accessed. The requested data 
and the associated error-correcting code are delivered to the array controller, If 
there is a single-bit error. the controller can recognize and correct the error 
instantly, so that the read access lime is not slowed. On a single write, a]] data disks 
and parity disks MUSI he aectmed for the write operation. 

RAID 2 would only be an effective choice. in an environment in which many 
disk errors occur. Given the high reliability of individual disks and disk drives, 
RAID 2 is overkill and is not iraplernurited. 

RAID Level 3 
RAIL) 3 is organized) in a simi kir Fashion to RAID 2. The difference is that RAID 
3 requires only a single redundant disk. no matter how large the disk array- RAID 3 
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employs parallel access, with data distributed in small strips. Instead of an erropeor-
reeling code. a simple parity bit is computed for the set of individual bits in the same 
position on all of the data disks. 

Redundancy 
In the event of a drive failure, the parity drive is accessed and data is recon-

structed from the remaining devices. Once the failed drive is replaced, the missing 
data can be restored on the new drive and operation resumed. 

The data reconstruction is quite simple, Consider an array of five drives in 
which X0 through X3 contain data and X4 is the parity disk. The parity for the ith 
bit is calculated as follows: 

X4(i) = X3(0 .9 X2(i) Xl(i) ER WO 

Suppose that drive XI has failed. If we add X4(i) e X1 (i) to both sides of the pre-
ceding equation, we gel 

Xl(i) X4(i) 4 X3(i)  X2(i) X0(i) 

Thus, the contents of each strip of data on X1 can be regenerated from the contents 
of the corresponding strips on the remaining disks in the array. This principle is true 
for RAID levels 3 through 6. 

In the event of a disk failure, all of the data arc still available in what is 
referred to as reduced mode. In this mode, for reads, the missing data are regener-
ated on the fly using the exclusive-OR calculation. When data are written to a 
reduced RAID.3 array, consistency of the parity must be maintained for later regen-
eration. Return to full operation requires that the failed disk he replaced and the 
entire contents of the failed disk be regenerated on the new disk. 

Performance 
Because data are striped in very small strips, RAID 3 can achieve very high 

data transfer Tates. Any 110 request will involve the parallel transfer of data from 
all of the data disks. For large transfers, the performance improvement is especially 
noticeable. On the other hand, only one 110 request can be executed at a time. Thus, 
in a transaction-oriented environment, performance suffers. 

RAID Level 4 

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate 
I/O requests can be satisfied in parallel. Because of this, independent access arrays 
are more suitable for applications that require high 110 request rates and are rela-
tively less suited for applications that require high data transfer rates. 

As in the other RAID schemes :  data striping is used. In the case of RAID 4 
through 6. the strips are relatively large, With RAID 4, a bit-by-hit parity strip is cal-
culated across corresponding strips on each data disk, and the parity bits are stored 
in the corresponding strip on the parity disk. 
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RAID 4 involves write penalty when an I/O write request of small size is per-
formed, Each time that a write•oocurs, the array management software must update 
not only the user data but also the corresponding parit:; . ,  bits. Consider an array 
five drives in which X0 ihrough X3 eontain data and X4 is the pari disk. Suppose 
That a write is performed that only involves a strip on disk Xt. Initially, for each bit 
i, we have the following relationship: 

X4(i) —X3() e X2(i) .9) XI(i)  WI) 

Mier th,2 upda le, with potentially altered bi1s indicated by a prime symbol, 

— X3(i)  X2(i) c XV(i) e xo(i) 
x3(i) o x2(r) e xr(i) e Xt)(i) EP xi cty ox.1(i) 

= x4(i) e xi (i) c> Xr(ii 

To calculate the new parity, Lhu array management software must read the old user 
strip and the old parity strip. Then it can update these two strips with the new data and 
the newly calculated parity. Thus. each strip write illiVOMS two reads and 1wo writes. 

In the case of a larger sizc 1.0 write that involves strips on all disk drives, parity 
is easily computed by calculation using on]} ,  the new dal a hits. Thus, the parity drive 
on be updated in parallel with the data drives and there are no extra reads or writes. 

In any case, every write operat io n must involve the parity c.ikk, which there-
fore can become a hot ill:neck. 

RAID Level 5 

RAID 5 is organiAed in a similar fashion to RAID 4. I he difference is that RAM 
5 distributes the parity strips across all diski;. A iypical allocation is a round-robin 
scheme, as illustrated in Figurc. 6.81. For an n-disk array. the parity strip is on a dif-
ferent disk for the first n s.triFs :  and the pattern then repeats. 

The di ,dri bullion of parity strips across all drives avoids the potential 1. 10 bot-
tleneck round in RAID 4. 

RAID Level 6 

RAI D 6 was introduced in a subsequent paper by the Berkeley researchers I I( ATZ89]. 
In the RAID 6 scheme, iwo different parity calculations are carried out and stored 
in suparale blocks on different disks. Thus, a RAID 6 array whose user data require 
N disks con.:-.isis of N -F 2 disks. 

Figure 6.82 illustrates the :scheme. P and Q are two different data check al-
2orithms. One of ihe two is the eXe[LLSive-OR calculation used in RAID 4 and 5. But 
the other is an independent data check algorithm. .rhis makes it possible to regen-
erate data even if two disks containing USer data [ail. 

The advantage of RAID 6 is that it provides extremely high data avaiiabi]ity. 
Three dis.ks would have to fail within the M . 1'1 . 1  (mean time to repair) interval to 
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penafty, 
because each write affects two parity blocks. 
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6.3 OPTICAL MEMORY 

In 1983, one of the most successful consumer products of all time was introduced: 
the compact disk (CD) digital audio system. The CD is a nonerasable disk that can 
store more than 60 minutes of audio information on one side, The huge commercial 
success E)1 the CD enabled the development of low-cost optical-disk storage tech-
nology that has revolutionized computer data storage. A variety of optical-disk sys-
tems have been introduced (Table 6,4). We briefly review each of these. 

Compact Disk 
CD-ROM 

Both the audio CD and the CD-ROM (compact disk read-only memory) share 
a similar technology. The main difference is that CD-ROM players are more rugged 
and have error correction devices to ensure that data are properly transferred from 
disk to computer, Both types of disk arc made the same way. The disk is formed 
from a resin, such as polycarbonate. Digitally recorded information (either music or 
computer data) is imprinted as a .scries of microscopic pits on the surface of the poly. 
carbonate. This is done, first of all. with a finely focused, high-intensity laser to cre-
ate a master disk. The master is used, in turn. to make a die to stamp out copies onto 
polycarbonLite. The pitted surface is then coated with a highly reflective surface, usu-
ally aluminum or gold. ' Ms shiny surface is protected against dust and scratches by 
a top coat of clear acrylic. Finally, a label can be silkscrcened onto the acrylic,. 

Table 6.4 Optical Disk Products 

CI) 
Compact Disk. A none•asabli.: disk tkvat stores digitht. !;.,d audio inlornsation..l'he standard 
system uses I 2 ,ern disks and call record more thall tininh-.trupted 1 1 iawiu tinK. 

(1) ,-ROM 
Compact Disk Reud-Only MeinCrry ,  ,  A rionefiSSIIne disk llSed for storinir computer data. 
The standard system uses .i2--•tts disks And con hold mom than 650 Mbytes. 

C1)44 
CD Recordable. Similar to a CD-ROM. Thti iisc.-1 can write to the disk ord.!, {mice. 

C.1.)-RW 
C 0 Rewritahle. Similar a CD-ROM. The user carrerase and rewrite to the disk multiple 

Diiaitil Vidu.1. Disk. A it uchaolugly for producing digitilced. exinpri,.ksed ropresentation. or 
video tni•rrnation, fin well as large Yolumws cli ollim digital data. Roth'and 1.2.cm iliametcn; 
are mud. with a double -sided capaciuy of up to .17 {.1hyi basic —11 Y.0 is -read-0311 ,F 
( DVD-ROM). 

Mit) Recordable. Similar to zk D - ROM. he -OW cun write. im the disk only otio3. Only 
one-sided disks can tic! used. 

DVIto-RW 
DVD kcwritable, Sitnilar to a D VD-ROM. The user can write to the disk multiple times. 
Only 0u - sick:a disks can Tv. used. 
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Protective 
acrylic Label 

Figure &III CD Operation 

Information is retrieved from a CD or CD-ROM by a low-powered laser 
housed in an optical-disk player, or drive unit. The laser shine!, through the clear 
po[ycarbonkice while a motor Tim [he disk past it (Figure 6.11)). The intensity of the 
reflected light of the laser changes as it encounters a pit. Specifically, if the laser 
beam falls on a pit. which has a somewhat rough surface, the lieu scatters and a low 
intensity is reflected back to t he source. 'Elie areas between pits are called /and,. A 
land is a smooth surface, which reflects hack at higher intensity. The change 1-14.2t wc.Qn 

pits and lands is detected by a photosensor and converted into a digital signal. The 
sensor tests the surface at regular intervals-'['he beginning or end of a pit represents 
a 1; when no 6ange in elevation occurs between intervals, a 0 is recorded. 

Recall that on a magnetic disk, information is recorded in concentric tracks. 
With the simplest constant angular velocity (CAN') system, the number of bits per 
track is constant. An increase in density is achieved with multiple zoned recording, 
in which the surface is divided into a number of zones. with zones farther from the 
center containing more bits than zones closer to the center. Ali hough ihis technique 
increases capacity, it is still not oplimal. 

To achieve greater capacity. CDs and CD-ROMs do not organize information 
on concentric tracks. Instead. the disk contains a single spiral track. beginning near 
the center and spiraling out to the outer edge of the disk- Sectors near the outside 
cif the disk are the same length as those near the inside. Thus, information is packed 
cven Ey across the disk in segments t.if the same size and these are scanned al 1he 
same rate by rotating the disk at a variable speed. The pill are then read by thi2 laser 
at a constant linear velocity (CLV)- The disk rotates more slowly for accesses 
near the outer edge than tor those near. the center. Thus, the capacity of a track and 
the rotational delay both increase for positions nearer the outer edge of the disk. The 
data capacity for a CD-ROM is ghoul 6180 Mb. 

Data on the CD-ROM are organized as a sequence of blocks. A typical block 
format is shown in Figure 6.11. It consists of the following fields: 
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• Sync The sync field identifies the beginning of a block. It consists of a byte of 
all Os. 10 bytes of all Is. and a byte of all Os. 

• Header The header contains the block address and the mode byte. Mode 0 
specifies a blank data field; mode 1 specifies the use of an error-correcting 
code and 2048 bytes of data: mode 2 specifics 2336 bytes of user data with no 
error-correcting code. 

• Data: User data. 

• Auxiliary: Additional user data in mode  In mode .1., this is a 288-byte error-
correcting code. 

With the use of CLV, random access becomes more difficult. Locating a spe-
cific address involves moving the head to the general area, ji djasting the rotation 
speed and reading the address, and then making minor adjustments to find and 
access the specific sector. 

C[) - ROM is appropriate for the distribution of large amounts of data to a 
large number of users. Because of the expense of the initial writing process, it is not 
appropriate for individualized applications. Compared with traditional hard disks, 
the Cl)-ROM has two advantages! 

• The optical disk together with the information stored on it can be mass repli-
cated inexpensively—unlike a magnetic disk. The database on a magnetic disk 
has to be reproduced by copying one disk at a time using 1, WC) disk drives. 

• The optical disk is removable, allowing the disk itself to be used for archival 
storage. Most magnetic disks are nonremo'ahle. The information on non-
removable magnetic disks must first he copied to tape before the disk drive/disk 
can be used to store new information. 

The disadvantages of CD-ROM are as follows: 

• It is read-only and cannot be updated. 
• It has an access time much longer than that of a magnetic diSk drive, as much 

as lin I r a second. 
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Figure 6.11 CD-ROM Block Formal 
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CD Recorcloble 

To accommodate applie;itions in which only one or a small number of copies 
of a set of data is needed, the write-once read-many CD, known as the Cl) record-
able (CD-R), has been developed. For CD-R, a disk is prepared in such a way that 
it can be subsequently written once with a laser beam of modest intensity, Thus, with 
a somewhat more expensive disk controller than for CD-ROM, the cuslomer can 
write once as well as read the disk. 

The CD-R medium is similar to but not identical to that of a CD or CD-ROM. 
For CDs and CD-ROMs, information is recorded by Ihe pitting of the surface of the 
medium, which changes reflectivity. For a CD-R, the medium includes a dye laver. 
The dye is used to change reflectivity and is activated by a high-intensity laser. The 
resulting disk can be read on a CD-R drive or a CD-RO:VI drive. 

The CD-R disk is attractive for archival 241 orage of documents and il k!, 
It provides a permanent record of large volumes of user data, 

CD Rewritahle 

. 1 he. CD-RW optical disk can be repeatedly written and overwritten, as with a 
magnetic disk. Although a number of approaches have been tried, the only pure 
optical approach that has proved attractive is called phase change. The phase change 
disk uses a material that has two significantly different reflectii,ities in iwt, different 
phase slates. There is an amorphous stale, in which the ,  molecules exhibit a random 
orientation and which reflects light poorly: and a crystalline state, which has a 

smooth surface that reflects light well. A beam of laser light can change the mater-
ial from one phase to the other. The primary disadvantage of phase change optiZ-2i1 
disks is that the material eveniiiallv and permanently loses its desirable properties. 
Current materials can be used for between 500.000 and I ,000,000 erase cycles. 

The CD, kW has the obvious advantage over CD-ROM and CD-R that it can 
be rewritten and thus used as a true secondary storage. As Such., it competes with 
Tnagnetic disk. A key advantage of the optical disk is that the engineering tolerances 
for optical disks arc much less severe than for high-capacity magnetic disks. Thus, 
they exhibit higher reliability and longer life. 

Digital Versatile Disk 

With the capacious digital versatile disk (DVD), the electronics industry has at 
last found an acceptable replacement for the analog VHS video tape. The DVD will 
replace the video tape used in video cassette recorders (VCRs) and, more important 
for this discussion, replace lhe CD-ROM in personal computers and servers. The 
DVD takes video into the digital a2e. It delivers movies with impressive picture 
quality, and it Call be randomly accessed like audio CDs, which 1.3V I) machines can 
also play. Vast volumes of (141ta can be crammed onto the disk, currently seven times 
as much as a CD-ROM. With DVD's huge storage. capacity and vivid quality, PC' 
games will become more realistic and educational software will incorporate more 
video. Following in the wake of these developments will he a new crest of traffic over 
the 'Memel and corporate intranets. as I his material is incorporated into Web sites. 

'f'he DVD's greater capacity is due in three differences from CDs (Figure 6.12): 
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Label 

Protective layer 
(acrylic.) 

1.2 nun 

Reflective layer thick 

(aluminum) 

1.au r focuses on polycarbonate 
pits in front of reflective layer. 

CD-ROM—Capacity 682 MB 

Polycarbona le substrate 
(plastic' 

Polyearbonate substrate, side 2 

Nem iretlective layer, side 2 

Polycarbonate layer, side 2 

Fully reflective layer, side 2 

Fully reflective layer, side 1 

Polyearbonate layer, side 1 

Semirellective layer, side. I 

Polycarbonate substrate, side 1 

Laser focuses on pits In one layer 
on one side at a time. Disk must 
be flipped to read other side. 

1.2 mm 
thick 

(b) DVD-RON1, double-sided, dual-layer—Capacity 17 GI! 

Figure 6.12 CD-ROM and DVD-ROM 

1. Bits are packed more closely on a DVD, The spacing between loops of a spi-
ral on a CD is 1.6 Arn and the minimum distance between pits along the spiral 
is 0.834 p.m. Thu 1)VD uses a laser with shorter wavelength and achieves a 
loop spacing of 0.74 p.m and a minimum distance between pits of 0.4 Am. The 
result of these two improvements is about a seven-fold increase in capacity, to 
about 4_7 GB. 

2. The DVD employs a second layer of pits and lands on top of the first layer. A 
dual-layer DVD has a semiruflective layer on top of the reflective layer. and 
by adjusting focus, the lasers in DVD drives can read each layer separately. 
This technique almost doubles the capacity of the disk, to about 8.5 GB, The 
lower reflectivity of the second layer limits its storage capacity so that a full 
doubling is not achieved. 

3. The DVD-ROM can be two sided whereas data is recorded on only one side 
of a CD. This brings total capacity up to 17 GB. 

As with the CD, DVDs come in writeahic as well as read-only versions (Table 6.4). 
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6.4 MAGNETIC TAPE ,  

Tape systems use the same reading and recording techniques as disk systems. The 
medium is flexible polyester (similar to that used in some clothing) tape coated with 
magnetizable material. The coating may consist of particles of pure metal in special 
hinders or vapor-plated metal films. The tape and the tape drive are analogous to a 
home tape recorder system, Tape widths vary from 0,3S cm (0.15 inch) to 1.27 cm 
(0,5 inch), .tapes used to he. packaged as open reels that have to be threaded through 
a second spindle for use. Today, virtually all tapes are housed in cartridges. 

Data on the tape are structured as a number of parallel tracks running length-
wise, Earlier tape systems typically used nine tracks, This made it possible to store 
data one byte. at a time, with an additional parity bit as the ninth track. This was 
followed by tape systems using 18 or :k6 tracks, corresponding to a digital word or 
double word. The recording of data in this form is referred to as parallel recording. 
Most modern systems instead use serial recording, in which data arc laid out as a 
sequence of hits along each track, as is done with magnetic disks. As with the disk, 
data are read and written in contiguous blocks, called physical records, on as tape. 
Blocks on the tape are separated by gaps referred to as wrrecord gaps. As with the 
disk, the tape is formatted to assist in locating physical records. 

The typical recording technique used in serial tapes is referred to as serpen-
tine recording. in this technique, when data are being recorded. the first set of bits 
is recorded along the whole length of the tape. When the end of the tape is reached, 
the heads are repositioned to record ii new ack, and the tape is again recorded on 
its whole length, this time in the opposite direction. That process continues, hack 
and forth. until the Lap,: is full (Figure 6.13a). To increase speed, the read-write head 
is capable of reading and writing a number of adjacent tracks simultaneously (typi-
cally 2 to 8 tracks). Data are still recorded serially along individual tracks, but blocks 
in .!,,equence are stored on adjacent tracks, as suggested by Figure 6,13b. Table 6.5 
shows parameters for one system. known as Dljnape, 

Table 6.5 DLTiapo Urines 
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Figure 6.13 Typical Magnetic Tap:.  Pctaturcs 

A tape drive is a sequentivd- rcce.,s.s device. If the tape hoad is positioned at 
record 1, then to read record N, ii is necessary to read physical records J. through 
A.' — 1, one at a time. if the. head is currently positioned beyond the desired record. 
it is necessary to rewind the tape a certain di r t nee and begin reading forward. 
Unlike the disk, the tape is in motion only daring a read or wrilc operation. 

In con t rast to the tape, I he. disk drive is referred 10 as a direct-access device. A 
disk drive need not read all the sectors on a disk sequentially to get to the desired 
one, it must only wait for the intervening 2ic!.C1(11'5 within one track and can make. suc-
cessive accesses to any traek. 

Magnetic. tape was the first kind of secondary memory. It is still widely 
 used 

as the loweAt-cast, slowest-speed member of the memory hierarchy. 
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6.5 RECOMMENDED READING AND WEB SITES 

[ M.F.E90a] provides a good survey or the underlyinlvt -qii ding technoloy Ft tape sys- 
tems. [MEE96b]focuses on the data storage techniipics for disk and tape systems. [COMEX)] 
is a short but instructive article on current treni Is in magnetic disk storage technology. 

An excellent survey of RAID technii10,2, v,rit ten by the inventors of the RAID con-
cept. is ICHEN94]. A more detailed disci•ion is published by the RAID Advisory Board, 
an association of suppliers and consumers or RAID-related products [MASS97]. A good 
recent paper is [FR 11 4.961. 

I MARC901 an excellent overview of the optical storage field. A good survey of 
the underlying IL:cording and reading technology is [MANS97], 

FROSC991 provides a comprehensive. overview of all types or external memory systems. 
with a modest amount or technical detail on each IKHUR011 is another good survey. 

CIIEN94 Chen, P.; Lee, E.; CiihsoR, O.; Katz. R.; and Patterson, D. "RAID: High-
Performance. Reliable Secondary Storage, -  r1 (31 Computing Surwys, June 1994. 

COME00 Comerford, R. "Magnetic Storage: The Medium that Wouldn't .Die," IFEE 
Spectrum, Dc.cember 2000. 

FRW96 Friedman, M. -RAID Keeps Going and Going and "IEEE Spectrum.. April 
19%. 

KIJUR01 Khtu -shudov, A, The Esseirtiol Guide to Computer flaw Siotage. t Ipper Saddle 
River, NI Prentice Hall, 2001. 

Al A NS97 Mansuripur,.M., and Sineerbox, 0, 'Principles and Techniques of Optical Data 
Storage." P•ocerelin,t;r.,. or A- IEEE. November 1997. 

r+Ls.RC90 Marcham, A. Optical .R{fearYfing. Readin, MA: Addison-Wesley. 1990. 

MASS97 Massiglia, P. The RAID Book: A Srorage Syslern Tr:•hnology Ilemahook. St. 
Peter, MN: The. Raid Advisory Board, 1997. 

MEE96a Mee, C., and E. eds. Magneik Recording Technology, New York: 
McGraw-Hill, 1tt96. 

ME .961) Mee. C., and Daniel. F. eds. Afrignetic Soyfogr ilandbook. New York: McGraw-
Hill, 19%. 

ROS094 Rosch, 'W. Vt•ieur L. Ro.seh Kurth are Bible, Indianapolis, IN: Sams, 1999. 

Recommended Web Sites; 

• RAID Advisory Group: RAID industry group. Information about RAID technology 
and products. 

• Optical Storage Technology Assodation: Good source of information about optical 
storage technology and vendors, plus extensive list of relevant links. 

• DI,Ttapc: Good collection or technical information and links to vendors, 

• Data Storage Magazine: The magazine's Web site contains extensiv.2. information on 
data storage products and vendors. 
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6.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terms 

DV D RW 
fixed-head disk 
floppy disk 
gap 
head 
land 
magnetic disk 
maguerie tape 
magnetoresistive 
movable-head disk 
multiple zoned 

recording 
nonremovablc: disk 

access time 
CL) 
CD-ROM 
CD- R 
CD - RW 
constan[ ar riglllar 

velocity (CA V ) 
cOtiStaill linear 

velocity (CI.,V) 
cylinder 
DVD 
DVD-ROM 
DVD-R 

Review Questions 
6.1 What are the advantages of using a glass substrate for a magnetic disk? 
6.2 llow are data written onto a magnetic disk? 
63 Haw are data read from a magnetic disk? 
6.4 Explain the difference between a simple CAV system and a multiple zoned record-

ing system. 
6i Define the terms track, cylinder, and sector. 
6.6 What is the typical disk sector size? 
6.7 Define the terms .seek rime, reariiiional rfetur. decess rime, and transfer time. 

(i.8  What common characteristics are shared by all RAID levels? 
69 Briefly define the seven RAN) levels, 

6,10 Explain the term striped data. 
6.11 How is redundancy achieved in a RAID system? 
6.12 In the context of RAID, what is the distinction between parallel access anti indepen-

dent access? 
6.13 What is the difference between CAV and CLV? 
6.14 Whtat differences between a CD and a DVD account for the larger capacity of the latter? 

6.15 Explain serpentine recording 

Problems 
6,1 Consider a disk with N tracks numbered from 0 to (A - 1) and assume that requested 

sectors are distributed randomly and evenly over the disk. We Want to calculate the 
average number of tracks traversed by a seek. 
a. First, calculate the probability of a seek of length j when the head is currently posi• 

honed over track t. Him: this is a matter of determining the total number of com-
binations. reeogni2ing that all track positions for the destination of the seek are 
equally likely. 

optical memory 
pit 
platter 
RAID 
removable disk 
rotational del H y 
sector 
seek time 
serperiiitte recording 
striped data 
substrate 
track 
transfer time 
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h. Next. calculate the probability of a seek of length K_ Hint this involves the sum-
ming over all possible combinations of movements of K tracks. 

c. Calculate the average number of tracks traversed by a seek. using the formula for 
expected value 

= Ei — 

n(n — 1) n(n — )(2n + I) 
Hint Use the equalities: Ei  

2   
d. Show that for large values of N. the average number of tracks Traversed by a seek 

approaches 
6.2 Define the following for a disk system: 

t  • seek time average time to position head over track 
r — rotation speed of the dikk, in revolutions per second 
n — number of hits per sector 
N = capacity of a track,.in bits 

= time to access a sector 

Develop a formula for r ...1  as a function of the other parameters. 
6.3 Assume a I0-drive RAID configuration, Fill in the following matrix, which compares 

the various RAID levels: 

Storage 
Density RAID Level Bandwidth 

Performance 
Tra nsaction 
Performance 

1 

2 

3 

5 

Each parameter is normalized to the RAID level that delivers the best performance; 
therefore, the remaining numbers in the matrix should have a value between 0 and 1. 
Storage density refers to the fraction of disk storage available for user data. Bandwidth 
performance reflects how fast data can be transferred out of an array. Transaction per-
formance measures how many  operations per second an array can perform. 

6.4 It should be clear that disk striping can improve data Transfer rate when the strip size 
is small compared to the 110 request size. Ii should also be clear that RAID II pro-
vides improved performance relative to a single large disk, because multiple 110 
requests can be handled in parallel. However, in this latter case, is disk striping nec-
essary? That is, does disk striping improve 11/0 request rate performance compared to 
a comparable disk array without striping? 
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KEY Pf)INTS 

♦ The computer system's 10 architecture is its imerfacc to the outside world. 
This architecture is designed to provide a systematic means of controlling 
interaction with the outside world and to provide the operating system with 
the information it needs to manage 1:'(. ). activity effectively. 

♦ The are three. principal I/O techniques: progranmied I10, in which I/O occurs 
under the direct and continuous control of the program requesting the I.10 
operation; interrupt-driven 1/0, in which a program issues an 110 command 
and then continues to execute, until it is interrupted by the I/O hardware 
to signal the end of the operation: and direct memory access (DMA), in 
which a specialized [10 processor lakes over control of an 1/0 operation to 
move. a large block of data. 
Two important examples of external 1/0 interfaces are FireWire and lallnilmnd. 

I n addition to the processor and 4i set of memory modules, the third key element 
0r ,., computer system is a set of 110 modules, Each module interfaces to the 
system bus or central switch and controls. one or more peripheral devices. An 

1/0 module is not simply a set of mechanical connectors that wire a device into the 
system bus. Rather. the. 110 module contains some "intelligence"; that is, it con-
tains logic for performing a communication function between the peripheral and 
the bus. 

The reader may wonder why one does not connect peripherals directly to the 
system bus. The reasons are as follows: 

• There are a wide variety of peripherals with various methods of operation. It 
would he impractical to incorporate the necessary logic within the processor 
to control a range of devices. 

• The data transfer rate of peripherals is often much slower than that ()I' the. 
memory or processor. Thus, it is impractical to use the high-Speed system bus 
to communicate directly with a peripheral, 

• On the other hand, the data transfer rate of some peripherals is faster than that 
of the memory or processor. Again, the mismatch would lead to inefficiencies 
if not managed properly. 

• Peripherals often use different data formats and word lengths than the com-
puter to which they are attached. 

Thus, an I/O module is rcquired. This module has two major functions (Fig-
ure 7.1): 

* Interface to the processor and memory via Ihe system bus or central switch 

■ Interface to one or more peripheral devices by tailored data links 

We begin this chapter with a brief discussion of external devices, followed 
by an overview of the structure and function of an Ii0 module, Then we look at 
the various ways in which the 110 function can be performed in cooperation with 
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I inks to 
peripheral 
di. dices 

Figure 7.] Generic Model of an 110 Module 

the processor and memory: the internal 110 interface- Finally. we 4: N.,d  ine the exter-
nal 110 interface. between the VO module and the outside world. 
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openations arc .1ccomplished through a wide assortment of external devices that 
provide a means of exchanging data between the external environrnc:mt and the com-
puter. An external device attaches to the computer by a link to an 110 module (Fig-
ure 7.1). The link is used to exchange control, status, and data between the 110 
module and the external device. An external device connected to an I/O module is 
often referred to as a peripheral device or. simply, a pffipiwra 

We can broadly elassiry external devices into three categories 

■ Human readable: Suitable for communicating with i he computer user 
• Machine readable: Suitable for communicating with equipment 

• Communication: Suitable For Communicating with remote devices 

Examples of human-readable devices are video display terminals (VDTs) and 
printers. Examples of machinc -re;idable devices are magnetic disk and tape systems, 
and sensors and actuators, such as are used in a robotics application. Note that we 
are viewing disk and tape system s as I/O devices in this chapier, whereas in Chap-
ter 6 we viewed them as memory devices. From a functional point of view. these 
devices are par1 of the memory hierarchy, and their use is appropriately discussed 
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in Chapter t5, From a structural point of view, these devices are controlled by LIO 
modules and are hence to be considered in this chapter. 

Communication devices allow a computer to exchange data with a remote 
device, which may be a human-readable device. such as a terminal, a machine-read-
able device, or even another computer. 

In very general terms, the nature of an external device is indicated in Figure 
7.2. The interface to the 1/0 module is in the form of control, data, and status signals. 
Control signals determine the function that the device will perform, such ati send data 
to the I/O module (INPUT or READ), accept data from the I/0 module (OUTPUT 
or WRITE.), report status. or perform some control function particular to the device 
(e.g., position a disk head). Data are in the form of a set of hits to be sent to or 
received from the 110 module. Sratery signet's indicate the state of the device. Examples 
are READY/NOT-READY to show whether the device is ready for data transfer. 

Control le.qic associated with the device controls the device's operation in 
response to direction frorn the 110 module. The transthicer converts data from elec-
trical to other forms of energy during output and from other forms to electrical dur-
ing input. Typically. a buffer is associated with the transducer to temporarily hold 
data being transferred between the I/O module and the external environment; a 
buffer size of g to L6 bits is common. 

The interface between the I/0 module and the external device will be exam-
ined in Section 7.7. 'The interface between the external device and the. environment 
is beyond the scope of this book, but several brief examples arc given here. 

Keyboard/Monitor 

The most common means of computer/user interaction is a keyboard/monitor ar- 
rangement. The user provides input through the keyboard. This input is then trans- 

Control A  Status Data hits 
signals from signals to to and from 
1/0 module 110 module I/O module 

Data (device-unique) 
to and from 
environment 

Figure 7.2 Block Diagram of an External Device 
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Table 7.1 'Iite International Reference Alphabet (IRA) 
hii posilion 

b, #I 0 0 , 0 1 t 1 .1 
h,. a 11 I I I.) II 1 1 

b. 0 1 0 I 0 I 0 I 

NI:I. DLE. SP 0 ir.LF P P 

SOH DC1 ! 1 A 0 :l Li 

r STX DC2 9. 2 ii R II 

ETX DO is 2, ( 9  S c s 

t'.QT DC4 $ 4 D T d L 
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BEL ETR 7 U W g Sii 
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Vl ESC — K ( k I 

FF FS 9 L . I I 
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S1 US r ..) 0 _ 0 DEL 

b,1 h, h. 
0 0 
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0 0 I I 

0 

1 

0 1 l 0 

0 1 1 I 

3 tj Ii 0 

I 0 0 

I 0 I 0 

I 0 I I 

I I iI 

I t 11 [ 

I L I 0 

I 1 I 

milted to the computer and may also he displayed tin the monitor. In addition, the 
monitor displays data provided by the computer. 

The basic unit of exchange is the character, Associated with each character is 
a code, typically 7 or 8 bits in length. The most commonly used text code is ihe Inter-
national Reference Alphabet (IRA).' Each character in this code is represented by 
a unique 7-bit binary elide: thus, 128 different characters can be represented. Table 
7.1 lists all of the code values. In the table, the bits of each character are labeled 
from b,. which is the most significant bit, to b, the least significant bit. =  Charac-
ters are of two types: printable and control (Table 7.2). Printable characters 
are the alphabetic. numeric. and special characters that can be printed on paper 
or displayed on a screen. For example, the hit representation of the character 
"K" is b,b,b,b AbJ),b, = 1001.011. Some of the control characters have to do with 

'IRA ]s defined in 1TU-T Recommendation T.50 and was formerly known as international Alphabet 
Number 5 (IA51. The U.S. national version of IRA is referred to as the American Standard COLL for 
Information Interchange (AKIO, 

'IRA-uncodell characters are almost always stored and transmitted using' bits per character. The 
eighth hit is a parity bit used for error detection, The parity hit is the most significant hit and Is there-
fore labeled 
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Table 7,2 IRA Control Characters 
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one position. 
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IF (Line feed): Indicates rnovermi.nt of the printing 
nteehanisin cir display cursor to the start rat the 
lieu line. 

Control 
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manner exccTit that their hierarchy RhHil he FS 
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y0. 11.;'' request icir a s tation C O idenEiry 

Mistvlidne0116 
NUL (Mill): No charactur. l.. st ci For ii ILLeg in 

Of Filling spac.r,. on I  pC ...WELC LI '.I I 12 re are no 
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that fallow shall be interrircle4 us outside of the 
standard character SCL Hail a SI character is 
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rh.oc follow shill be interpreted according l o L1-112 
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it Ell H mess age or block shoukl b. disregarded 
(tmually because. an caul likay been del.c..esed 

• ( bid of medium)! indicates the ph riica I end of 
tripe c.ir other MediuM, or LI-iu end of Elle requarea 

us..7.(1 porhan of tElLhr Lued , 
S :IS ;. .S ubstit u Lo). Su bsti.ltkii.:41 liar a character that is 

io Li nd to h4 c tron eouS or invalid. 
i:19.NEVEJ: A eharaccer inl ende.t1 Lu Provide eotic.  

ex Len lion in thal ii OVEN LI NI.veified number DC con-
tinuously (olloveing characters en N.I.Lurnate, 
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controlling the printing or displaying of characters; an example is carriage return. 
Other control characters are concerned with communications procedures. 

For keyboard input, when the user depresses a key_ this generates an elec-
tronic signal that is interpreted by the transducer in the keyboard.and translated into 
the hit pattern of the corresponding IRA code. This bit pattern is then transmitted 
to the 110 module in the computer. At the computer, the text can be stored in the 
same IRA code. On output, IRA code characters arc transmitted to an external 
device from the 110 module. The transducer at the device interprets this code and 
scuds the required electronic signals to the output device either to display the 'indi-
cated charact er or perform the requested control function. 

Disk Drive 
A disk drive contains electronics for exchanging data, control, and status signals with 
an I/O module plus the electronics for controlling the disk read/write mechanism. 
In a fixed-head disk, the transducer is capable of converting between the magnetic 
patterns on the moving disk surface and bits in the devices buffer (Figure 72 A 
moving-head disk must also be able tc . i caLise the disk arm to move radially in and out 
across the disk's surface. 

7.2 110 MODULES 
r 

" 
5  • 

Module Function 

The major functions or requirements for an I/O module fall into the following categories: 

• (.7ontrol and timing 
a Processor communication 
• Device communication 
■ Data buffering 
• Error detection 

During any period of time. the processor may communicate with one or more 
external devices in unpredictable patterns, depending on the program's need for I/O. 
The internal resources, such as main memory and the system bus, must be shared 
among a number of activities, including data 110. Thus, the 1/0 function includes a 
control and timing requirement. to coordinate the flow of traffic between internal 
resources and external devices. For example. the control of the transfer of data from 
an external device to the processor might involve the following sequence of steps: 

1. The processor interrogates the I/O module to check the status of the attached 
device. 

2. The 110 module returns the device status. 
3. if the device is operational and ready to transmit, the processor requests the I 

transfer of data, by means of a command to the 110 module, 
4. The I/O module obtains a unit of data (e.g„ 8 or 16 bits) from the external device. 
5. The data are transferred from the I/O module to the processor. 
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11 !he sysWrn LTn.ploys a bus. then each of the interactions between the proces-
sor and the I/O module involves die or more bus arbitrations. 

The preceding simplified scenario also illustrates that the I/O module musk 
communicate with the prcwe..4sof and with the external device. Prneessor committal• 
cation involves the following: 

• Command deeoding: The I/O module accepts ec.mim;inds from the processor, 
typically seat as signals on the control bus. For example, an 1/0 module For 
disk drive might accept the following, commands: READ SECTOR, WRITE 
SECTOR, SEHK track number, and SCAN record III The latter two com-
iniinds each inciude a parameter that is sent on the data bus, 

• Data: Data kire exchanged between I.hc processor and the I/O module owl' 
the data bus. 

• Stsifin reporting: [[ecriuse peripherals are so slow, it is important to know the 
status of the 1/0 module, For example, if an I/O module is asked to send data 
to the processor (road). it may not he ready to do so because it is still working 
on the previous I/O comrmind. This fact can he reported with a status signal. 
C:ornmvn statuN 2,ignals are BUSY and READY. There may also he signals to 
report various error conditions. 

* Address recognition: Just as each word of memory has an address. so does 
each Ii0 device, Thus, an [I0 module must recognize one unique address for 
each peripheral it controls. 

On ghee olhcr sick. the I/O module must be able 10 perform device COMM. 

['legion, This communication involves commands, status information, and data 
(Figure 7.2). 

An essential task of an I/O module is data buffering. The need I'm- this fan .c- 
lion is apparent from Figure 7.1 Whereas the transfer rate into and out of main 
memory or the processor is quite high, the 1- 41 W is orders of magnitude lower for 
many peripheral devices and covers. a wide. range. Data coming from main memory 
are sent to an P.O moduli: in a rapid burst. The data are buffered in the I/O•  module 
and then sent to the peripheral device at its dala rate. In the opposite direction, dati 
are buffered so as not lo tic up the memory in a slow transfer operation. Thus, the 
I/O module moat he ihie to 011i:tate at both device and memory speeds. Similarly, 
it` the I/O device operates at a rate higher than the memory access rate. then the I10 
[nodule performs the needed buffering operal ic n.  

Finally, an 1/0 module is often responsible for error detection and for subse-
quently reporting Q.1 -rors to the processor. One class of errors includes mechanical 
and electrical inalfuncliom reported by the device (s,,g,, Nper jusr, had disk track). 
Another class consists of unintentional changes to the bit pattern as it is transmit-
led from device to I/0 module. Some form of error-detecting code is Often used t0 
detect transmission errors. A simple example is the use of a parity hit on each char-
acter of data. For example, the IRA ch.:wader code occupies 7 bits of a by1e. The 
eighth hit k mi so Ebel Ihe total number of Is in the byte is even (even parity) or 
odd (odd pariiy). When a byte is received, the I/ O module checks the parity to 
determine whether an error has occurred. 
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Figure 7,3 Typical I10 Device lilts. Rates 

I/O Module Structure 

1/0 modules vary considerabl!, ,  in complexity and the number of external devices 
that dicy control. We will attempt only a very general description here. (One spe-
cific device. t he inicl 82C55A, is described in Section 7.4.) Figure 7.4 provides a 
general block diagram of an 110 module. The module connects 10 the rest of the 
computer through a set of signal lines (e.g., s!,. ,stern bus lines). Data transferred to 
and from I he module are buffered in one or more data registers. There may also be 
one or more slaws regisicrs aro provide current status information. A status regis-
ter may also function as a control register, to accept detailed control information 
from the processor. The logic within the module interacts with the processor via a 
set of control lines. '11 -te processor uses the control lines 10 iSSI.PC commands to the 
110 module. Sonic of the control lines may he used by the I/O moduic (e.g., for arbi-
tration and status signals). The module must also be able to reco gnize and generate 
addresses associated with the devices it controls. Each 1/0 modu]e has a unique 
addres..s or, if it controls more than one external device, a unique set of addresses. 
Finally. the 1/0 module contains logic .specific to the interface with each device that 
it controls. 

An 1/0 module Funclions to allow Ihe processor to view a wide range of 
devices in a simple-minded way. 'There is a spectrum of capabilities that may he pro-
vided. '['he I/O modu]e may hide the details of timing, formats, and the electro-
mechanics of an external Llevice so that the processor can function in terms of simple 
read and write commands, and possibly open and close file cornmandq. In its sim-
plest form, the I/0 module may still leave much of the work of controlling a device 
(e.g - . rewind a Tape) visible to the processor. 
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Figure 7.4 Block Diagram of an 1/0 Moduk 

An 11 module that lakes on most of the detailed processing burden. pi esent-
ing a high-level interface to the processor, is usuillly referred to as an 110 channel or 
1.10 processor, An I10 module that is quite primitive and requires detailed control 
is usually referred to as an 110 controller or device coniroilcr. 1.10 controllers are 
commonly seen on microcomputers. whereas 110 channels are•used on mainframes. 

In what follows, we will use the generic term 1/0 modale when no confusion 
results and will use more specific terms where necessary. 

7.3 PROGRAMMED I10 

Three techniques are possible for 1/0 operations. With programmed I/O, data are 
exchanged between the processor and the I/O module. The processor executes a 
program that gives it direct control of the 1/0 operation, including sensing device 
status, sending a read or write command, and transferring the data. 'Mien the 
processor issues a command to the 1/0 module, it must wait until the 110 operation 
is complete. if the processor is lamer than the 110 module, this is wasteful of proces-
sor time. With interrupi-driven 1/0, the processor issues an 110 command, continues 
to execute other instructions, and is interrupted by the I/O module when the. latter 
has completed its work. With both programmed and interrupt 110, the processor is 
responsible for extracting data from main memory for output and storing data in 
main memory for input. The alternative is known as direct memory access ( DMA), 
In this mode. the 110 module and main memory exchange data directly, without 
processor involvement. 
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Tokple 7.3 1.0 Techniquc.s 

Table 7.3 indicates the relationship among these three techniques. In [his 
section. we explore programmed 1/0. Interrupt 110 and DMA are explored in the 
following 1 WO sections, respectively. 

Overview of Programmed I/O 

When the proi:essor is executing a program and encounters an instruction relating 
to I/O, it executes that instruction by issuing a command to the appropriate I/O 
module. With programmed I/O, the I/0 :nodule will perform the requested action 
and then set the appropriate bits in the 110 status register (Figure 7.4). The I10 mod-
ule takes no further action to alert the processor. In particular, it does not interrupt 
the processor. Thus. it is the responsibility of the processor periodically to check the 
status of the I/O module until it finds that the operation is complete, 

( .0 explain the programmed 110 technique, we view it first from the point of 
view of the I/O commands issued by the processor lo the PO module, and then jrorio 
the point of view of the I/O instructions execute'd.by the processor- 

I/O Commands 

To execute an I/0-related instruction. the processor issues an address, specifying 
the particular 110 module and external device, and an 110 command. There are 
four types of I/O commands [hal an I/O module may receive when it is addressed 
by a processor: 

• Control: Ned to aeliv,a Le a peripheral and tell it what to do. For example, a 
magnetic-tape unit may he instructed to rewind or to move forward one record. 
These commands are tailored to the particular type of peripheral device. 

• Test: Used to test various sLittts C onditioos associated wit h an I/O module and 
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most 
recent I/O operation is completed and if any errors occurred. 

• Read: Causes the 1/0 module to obtain an item of data from the peripheral 
and plaice it in an internal buffer (depicted as a data register in Figure 7.4). The 
processor can [hen obtain the data item by requesting that the I/O module 
place it on the data bus. 

• Write: Causes the 1.10 module R.1 take an item of data (byte or word) From lhe 
data bus and subsequently transmit that data item to the peripheral. 

Figure 7.Sa gives an example of the use cif programmed I10 10 read in a block 
of data from a peripheral devic„e t record from tape) into memory. Data are 
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read in one word (e.g.. 16 bits) at a tirnc. For each word that is read in, the proces-
sor nau;711 remain in a statils-chQ.eking cycle until it Lletermines dial the word is 
available in the I/O modules data register.  flowchart highlights the main di--
advantage of this technique: it is a time-consuming process Ihai keeps the processor 
busy needlessly. 

I/O Instructions 

With programmed 110, there is a close correspondence between the 1/0-related 
instructions that the proccssor fetches from memory and the I/O eornmands that the 
processor issues 10 an 110 module to execute the instructions. 'That is. the in.s1rue-
lions are emily mapped into 110 commands, and there is often a simp[c one-to-one 
relationship. The form of the instruction depends on the way in which external 
devices are addrf:Ased: 

Typically, there. will be many [10 devices connected through 110 modules to 
the.vstern. Each device is given a unique idenlifier or address. When the processor 
issues an 110 commend. the cornmand Exn Wins the address or the desired th.vice. 

Thus, mach I/O (nodule must inLCrl3ret the address lines to determine if the com-
mand is [or itself. 

When the processor, main memory, and 1.10 share a common bus, two modes 
of addressing re possible: memory mapped and isolated. With memory-mapped 

PT 
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I/0, there is a single address space for memory locations and I/0 devices, The 
processor treats the status and data registers of 1'( modules as memory locations 
and uses the same machine instructions to access both memory and 1.1r) deviee:71, So, 
for example, with 10 address lines, a combined total of 2' 11 =1024 memory locations 
and I.10 addresses can be supported, in any combination, 

With memory-mapped 170, a single read line and a single. write line are needed 
on the bus. Alterriatiyel!,. ,, the bus may be equipped with memory read and write. 
plus input and output command lines. Now, the corm -nand line specifies whether 
the address refers to a memory location or an  device. The full range of addresses 
may he available for both. Again, with IC) address lines, the system may now sup-
port both 1024 memory locations and 1024 LT_) addresses. Because. the. address space 
for 110 is isolated from that for memory, this is rererrc...d 10 as isolated1/0. 

Figure 7,6 cc ritrasis these two programmed I/O techniques. Figure 7.6a shows 
how the interface for a simple input device such as a terminal keyboard mighi ap-
pear to a programmer using memory-mapped I/O. Assume a 10-bit address, with a 

0 = busy start read 

ADDRESS INSTRUCTION OPERAND COMMENT 
200 1Aiad AC ,1,, Load accumulator 

Store AC 517 Initiate keyboard read 
202 Load AC 571 Co. slataf, byte 

Kranch if Sign i 0 202. Loop until ready 
Load AC 516 Load data byte 

la) Memory-mapped 110 

ADDRESS INSTRUCTION OPERAND COMMENT 
200 I,nad I/O 5 Initiate keyboard read 
201 Test I/O 5 Check for completion 

Branch Not Read* 201 Loop until complete 
In 5 Load dala byte 

(b) Isolated I/O 

Figure 7.6 Mc.rtiont-Maptx..1J and 1 ,..otaced 
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512-bit memory (locations 0-511) and up to 512 I10 addresses (locations 512-10231. 
Two addresses are dedicated to keyboard input from a particular terminal, Addres 
5l6 refers to the data register and address 517 refers to the status register, which also 
functions as a control register for receiving processor commands, The. program 
shown will read 1 byte of data from the keyboard into art accumulator register in the 
processor. Note that the processor loops„until the data byte is available. 

With isolated I10 (Figure 7.617), the I/O ports are accessible only by special M 
commands, which activate the 1/0 command lines On the bus. 

For most types of processors, there is a relatively large set .of different instruc-
tions for referencing memory, If isolated I/O is used, there are only a few I/O 
instructions. Thus. an advantage of memory-mapped 110 is that this large repertoire 
of instructions can he used, allowing more efficient programming. A disadvantage 
is that valuable memory address space is used up, Both memory-mapped and iso-
lated  are in common use. 

7.4 

The problem wit programmed 110 is that the processor has to wait a tong time For 
the I/O module of concern to be ready for either reception or transmission of data. 
The processor, while waiting, must repeatedly interrogate the status of the I/O mod-
ule. As a result, the. level of the performance of the entire system is severely degraded. 

An alternative is for the processor to issue an 110 command to a module and 
then ao on to do some- other useful work. The 110 module will then interrupt the 
processor to request service when it is ready to exchange data with the processor. 
The processor then executes the data transfer, as before, and then resumes its for-
mer processing. 

Let us consider how this works, first from the point of view of the I/O module. 
For input, the  module receives a READ command from the processor. The LO 
module then proceeds to read data in from an associated peripheral. Once the data 
are in the module's data register, the module signals an interrupt to the processor 
over a control line. 'the module then waits until its data are requested by the proces-
sor. When the request is made, the module places its data on the data bus and is then 
ready for another I10 operation. 

From the processor's point of view, the action for input is as follows. The 
processor issues a READ command. lt then goes off and does something else (e.g., 
the processor may be working on several different programs at the same time). At 
the end of each instruction cycle, the processor checks for interrupts (Figure 3.9). 
When the interrupt from the 110 module occurs, the processor saves the contest 
(e.g.. program counter and processor registers) of the current program and 
processes the interrupt. In this ease., the processor reads the word of data from the. 
110 module and stores it in memory. It then restores the context of the program it 
was working on (or some other program) and resumes execution. 

Figure 7.5b shows the use of interrupt I/O for reading in a block of data. Com-
pare this with Figure 7,5a. Interrupt 110 is more efficient than programmed 1/0 
because it eliminates needless waiting. However, interrupt 1.0 still consumes a Jot 
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of processor Orne, 1-pec,o LiSk, every word of data ihaL goes rrorn memory to I/O mod-
ule or from IIC.) module to nicinory must pass through the processor.. 

Interrupt Processing 

Let us consider the role of the .  processor in interrupt-driven DO in more detail. The 
occurrence of an interrupt triggers a number of events, both in the processor hard-
ware and in soliware. Figure 7.7 shows a typical sequence. When an I/O device com-
pletes an 1.O operation. t he following secincore of hardware. weal* oeeurs: 

11. The device issues an interrupt signal to the processor. 
2. The processor finishes execurion of the current insiruction before responding 

to the interrupt, as indicated in Figure 3.9, 
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3. The processor tests for an interrupt. determines that there is one, and sends an 
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal. 

4. The processor now needs to prepare to transfer control to the interrupt rou-
tine_ To begin, it needs to save information needed to resume the current 
program at the point of interrupt. The, minimum information required is (a) 
the status of the processor, which is contained in a register called the program 
status word (PSW), and (b) the location of the next instruction to be executed, 
which is contained in the program counter. These can he pushed onto the sys-
tem control stack. ).  

5. The processor now loads the program counter with the entry location ol' the 
interrupt-handling program that will respond to this interrupt. Depending on 
the computer architecture and operating system design, there may be a single 
program. one program for each type of interrupt, or one program for each 
device and each type of interrupt. if there is more than one interrupt-handting 
routine, the processor must determine which one to invoke. This information 
may have been included in the original interrupt signal. or the processor may 
have to issue a request to the device that issued the interrupt to get a response 
that contains the needed in formation. 

Once the program counter has been loaded, the processor proceeds to the next 
instruction cycle. which begins with an instruction fetch. Because the instruction 
fetch is determined by the contents of the program counter. the result is that con-
trol is transferred to the interrupt-handler program. The execution of this program 
results in the following operations: 

6. At this point, the program counter and PSW relating to the interrupted pro-
gram have been saved on the system stack. However, there is other information 
that is considered part of the -state" of the executing program. In particular, 
the contents of the processor registers need to be saved. because these registers 
may be used by the interrupt handler. So, all of these values, plus any other 
state information, need to be saved. Typically, the interrupt handler will begin 
by saving the contents of all registers on the stack. Figure 7.6a shows a simple 
example. In this case, a user program is interrupted after the instruction at loca-
tion N. The contents of all or the registers phis the address of the next instruc-
tion (N + 1) are pushed onto the stack. The stack pointer is updated to point 
to the new top of stack. and the program counter is updated to point to the 
beginning of the interrupt service routine. 

7. The interrupt handler next processes the interrupt. This includes an exam-
ination of status information relating to the 1/0 operation or other event 
that caused an interrupt. It may also involve sending additional commands 
or acknowledgments to the I/O device. 

8. When interrupt processing is complete, the saved register values are retrieved 
from the stack and restored to the registers te,,g_ see Figure 7.84 

'See Appcntiir I OA For a discussion of sk Fick rspc Ntion. 
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9- The final act is lo restore the PSW and program counter values from the stack. 
As a result. the next ingirnetion lo kpc. executed will be from the previously 
inierrtipted program. 

Note th4i1ii is important to save all the state information about the interrupLea 
program for later resumption. 'rhis is because the. interrupt is not a routine called 
from the program. Rather, the interrupt can occur at any time and therefore at any 
point in the execution of a user program. Its oceurreiree is unpredietahle.lndecd. as 
we wi[[ see in the next chapter. the two programs may not have anything in common 
and may belong to two different users, 
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Design Issues 
Two design issues arise in implementing interrupt I10, First, because there will 
almost invariabl!,,  be multiple I/0 modules, how does the processor determine which 
device issued the interrupt? And second, if multiple interrupts have occurred, 
does the processor decide which one tea process? 

Let us consider deice identificatiOn first. Four general categories of tech-
niques are in common use: 

• Multiple interrupt lines 

• Software Fail 

• Daisy chain (hardware poll, vectored) 

• Bus arbitration (vectored) 

The most straightforward approach to the problem is to provide multiple 
interrupt lines between the processor and the  modules. However, it is imprac-
tical to dedicate more than a few bus lines or processor pins to interrupt lines. Con-
sequently. even if multiple lines are used, it is likely that each line will have multiple 
I/O modules attached to it. Thus, one of the other three techniques must be used on 
each line. 

One alternative is the software poll. When the processor detects an interrupt, 
it branches to an interrupt-service routine whose job it is to polleach I/O module to 
determine which module caused the interrupt. The poll could be in the form of a 
separate command line (e.g., TEST110). In this case, the processor raises TEST110 
and places the address of a particular 110 module on the address lines, The I/O. mod-
ule responds positively if it set the interrupt. Alternatively, each I/O module could 
contain an addressable status resister. The processor then reads the status register 
of each 1/0 module to identify the interrupting module. Once the correct module is 
identified, the processor branches to a device-service routine specific to that device, 

The. disadvantage of the software poll is that it is time consuming. A more effi-
cient technique is to use a daisy chain, which provides, in effect, a hardware poll. An 
example of a daisy-chain configuration is shown in Figure 3.25. For interrupts, all 
110 modules share a common interrupt request line. The interrupt acknowledge line 
is daisy chained through the modules. When the processor senses an interrupt, it 
sends out an interrupt acknowledge_ This signal propagates through a series of ED 
modules until it gets to a requesting module. The requesting module typically 
responds by placing a word on the data lines. This word is referred to as a vector and 
is either the address of the 110 module or some other unique identifier. In either 
case, the processor uses the vector as a pointer to the appropriate device-service 
routine. This avoids the need to execute a general interrupt-service routine first. 
This technique is called a vectored interrupt 

There is another technique that makes use of vectored interrupts, and that is 
bus arbitration. With hus arbitration. an  1i0 module must first gain control of the taus 
before it can raise the interrupt request line. Thus_ only one module can raise the 
li ne at a time, When the processor detects the interrupt, it responds on the interrupt 
acknowledge line. The requesting module then places its vector on the data lines. 

The aforementioned techniques serve 10 identify the requesting module. 
They also provide a way of assigning priorities when more than one device is 
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requesting interrupt service, With multiple lines, the processor just picks the inter-
rupt line with the highest priority. With software polling. the order in which mod-
ules are polled determines their priority- Similarly, the order of modules on a daisy 
chain determines their priority. Finally. bus arbitration can employ a priority scheme, 
as discussed in Section 3.4. 

We now I urn to Iwo examples of interrupt strueLures. 

Intel 82C59A Interrupt Controller 
The Intel 80386 provides a single Interrupt .Request N' ER) and a single Interrupt 
Aek.nov,.ledge  line. 'ro i]low the 80386 to handle a variety of devices and pri-
ority structures, it is usually configured with an external interrupt arbiter. the 82C:59A. 
External devices are connected to the 82C'59A, which in turn connects to the 80386. 

Figure. 7,9 show  showf the use of the 82C.59A to connect. multiple 1. 10 modules for 
the 80386. A single 8205 )A can handle up to 8 modules. If control for more than 
modules is required, a cascade arrangement can he used to Lindlc up  64 modules. 

The 82C9A - s sole responsibility i.s the management of interrupts. it accepts 
interrupt requests from attached modules, determines which interrupt has the 
highest priority, and then signals the processor by raising the INIR line. rho pro-
cessor acknowledges via the 1NTA line- This prompLs the 2C.5 1,1 A to place the 
appropriate vector ihrormai ion on the data bus. The processor can then proceed 
to process the interrupt and to communicate directly with the I10 module to road 
or write data, 

The 82C59A is programmable. The 80386 determines the priority scheme to 
be used by setting a control word in the 82C59A. The following interrupl modes 
are possible: 

• Fully nested: The interrupt requests are ordered in priority from 0 1RO.) 
through 7 (IR7). 

• Rotating: In some applications a number of inierrupting devices are of equal 
priority. In this mode a Jeviec, after being serviced, receives the lowest prior-
ity in the group. 

• Special musk: This allows the processor lo illhihji interrupts l'rom certain devices. 

The Intel 82C55A Programmable Peripheral Interface 
As an example of an Ii0 module used for programmed I/O and interrupt-driven 
110. we consider the Inwl 82C55 A Programmable Peripheral Interlace. The 82(:35A 
is a single-chip, gLAteral -purpose I/O module designed for use with the Intel 80386 
processor, Figure 7.10 shows a general block diagram plus the pin assignment for 
the 40-pin package in which it is houscd. 

The right side of the block diagram is the external interface of the 82C55A, 
The 24 110 lines are programmable by the 80386 by means of the covil rol register. 
' rhe 8038.fican set the value of the conlrul register to specify a variety of operating 
modes and configurations. The 24 lines are divided into three 8-bit groups (A, B, 
C). Each group can function as an 8-bit I/O port. In addition, group C' is subdivided 
into 4-bit groups (C', and C H ), which may he used in conjunction with the A and B 
lit) ports. Configured in this manner, they carry control and sLitus signals. 
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The left side of the block diagram is the internal interface to the 80386 bus. 
It includes an 8-bit bidirectional data bus (DO through D7), used to transfer data 
to and from the 110 ports and to transfer control information to the control regis-
ter, The two address lines specify one of the three 1/0 ports or I he control register. 
A transfer takes place when the CHIP SELECT line is enabled together With either 
the READ or WRITE line. The RESET, line is used to initialize the module. 

The control register is loaded by the processor to control the [node of opera-
tion and to define signals, if any. In Mode 0 operation. the three groups of eight 
external lines function as three 8-hit 110 ports. Each port can he designated as input 
or output. Otherwise. 2,rour, A and B function as Ii0 ports. and the lines of group 
C serve as control lines for A and B. 'The control signals serve two principal pur-
poses: -handshaking" and interrupt request. Handshaking is a simple liming mech-
anism. One control line is used by the sender as a DATA READY line, to indicate 
when the data are present on the 110 data lines, Another line is used by the receiver 
as an ACKNOWLEDGE, indicating that the data have been read and the data lines 
may he cleared. Another line may be designated as an INTERRUPT REQUEST 
line and tied back to the system bus. 

Because the 82.(:55A is programmable- via the control register, it can be used 
to control a variety of simple peripheral devices. Figure 7.11 illustrates its use to con-
trol a keyboard/display terminal. The keyboard provides 8 hits of input. Two of 
these bits, SHIFT and CONTROL. have special meaning to the keyboard-handling 
program executing in the processor. However, this interpretation is transparent to 
the $2C55A. which simply accepts the 8 hits of data and presents them on the sys-
tem data bus. Two handshaking control lines arc provided for use with the keyboard, 

The display is also linked by an 8-bit data port. Again, two of the bits have spe-
cial meanings that are - transparent to the 82C55A. In addition to Iwo handshaking 
lines, two lines provide additional control functions. 

7.5 DIRECT MEMORY ACCESS 

Drawbacks of Programmed and Interrupt-Driven I/O 

Interrupt-driven 1/0. though more efficient than simple programmed I/O, 
requires the active intervention of the processor to transfer data between memory 
and an 1.10 module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of 1/0 suffer from two inherent drawbacks: 

1. The I/O transfer rate is limited by the speed with which the processor can test 
and service. a device. 

2. 'file processor is tied up in managing an 110 transfer: a number of instructions 
must be executed for each I/O transfer (e_g.. Figure 7.3). 

There is sornc•kkhat of a trade - off between these two drawbacks. Consider the 
transfer of a block of data. I.:sing simple programmed I/O, the processor is dedicated 
to the task of I/0 and can move data ul a rather high rate.. at the cost of doing noth-
ing else. Interrupt 1/0 frees up the processor to some extent at the expense of the 
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110 1ransil2r ratc. Nevertheless, both methods have an adverse impact on both 
processor activity and 1/0 transfer rale. 

When 1arge. volunie:s cif dalu 2irc kr Ile moved, a more efficient k.%21iniquc is 
ruquitc:d: direct meinory access (DMA). 

DMA Function 

I)MA involves an additional module on the system bus, Iht: ,  I)M A module (Figure 
7.12) is capable of mimicking the processor and. indeed, of taking over control of 
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11-ic systcrn 1 . rorn the processor. It needs to do this to transfer data to and from mem-
ory over the. system bus. For this purpose, the DMA module must use the bus only 
when the processor does not need it. or ii must force the processor to suspend oper-
ation lemporarily. 'tile fatter technique is more common and is referred to as c yde 
Nieedirig, because the DMA module in effect steals a bus cycle. 

When the processor wishes to read or write. a Mock of data, it issues a command 
to the DMA module, by Ki,:ndirtg to the DMA module the following information; 

• Whether a read or write is requesled, using the read or write control line 
between the processor mid the DMA module 

■ The address of the 110 device involved, communicated salt the data lines 
• The starting location in mernor!,. ,  to read from or write to, communicated on 

the data lines and stored by the DMA module in its addr4,:ss register 

• The. number of words to he read or written, again communicated via the doto 
li nes and stored in the data count register 

The processor then continues with other work. It has delegated this 110 opcc. 
ation to the DMA module. The DMA module transfers the entire block of data :  one 
word at a time, directly to or from memory, withoin going through the processor. 
When the transfer is complcle. the DMA module sends an interrupt signal to she 
processor, Thus. the processor is involved only at the beginning and end of the trans. 
ter (Figure, 7,5c), 
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Figure 7.13 shows where in the instruction cycle the procesSor may he sus-
pended. In each case, the processor is suspended just before it needs to use the bus, 
The DMA module then transfers one word and returns control to the processor, 
Note that this is nOt an interrupt; the processor does not save a context and do some-
thing else. Rather. the processor pauses for one bus cycle. The overall effect is to 
cause the processor to execute more slowly, Nevertheless, for a multiple-word 110 
transfer, DMA is far more efficient than inte rrupt -dri yen or programmed 1/0, 

The DMA mechanism can he configured in a variety of ways. Some possibili-
ties are shown in Figure 7,14. 10 the first example, all modules share the same sys-
tem bus_ The DMA module, acting as a surrogate processor, uses programmed I/O 
to exchange. data between memory and an 110 module through the DMA module, 
This CUR figuration, while it may be inexpensive, is dearly inefficient. As with proces-
sor-controlled programmed I/O, each transfer of a word consumes two bus cycles. 

The number or required bus cycles can be cut substantially by integrating the 
DMA and 110 functions. As Figure 7.14b indicates, this means dial there is a path 
between the DMA module and one or more I/O modules that does not include the 
system bus. .1 he DMA logic may actually be a part of ;in I/O module, or it may be 
a separate module that controls one or more I/O modules. This concept can he 
taken one step further by connecting 110 modules to the DMA module using an I/O 
bus (Figure 7.14c). 'this reduces the number olliO interfaces in the DMA module 
to one and provide:, for an easily expandable configuration. In all of these cases (Fig-
ures 7.14b and c). the system bus that the DMA. module shares with the processor 
and memory is used by the DMA module only to exchange data with memory. The 
exchange of data between the DMA and  modules takes place off the system bus. 
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7.6 1/0 CHANNELS AND PROCESSORS 

The Evolution of the 1/0 Function 

computer "63,gems he  ve evoived, there has been a pattern of in com- 
piexity and sop.histication of individual components. Nowhere is this In ore evident 
than in the 1.10 function. We ] already wen pi.irt of thatevolution. The evoiu- 

nary steps can mma &dm folic-Avg: 

•  
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I. The CPU directly controls a peripheral device. This is seen in simple micro-
processor-controlled devices, 
A. controller or I/O module is added. The CPU uses programmed I/O without 
interrupts. With this step, the CV( becomes somewhat divorced from the spe- 
cific details of external device interfaces. 

3, .l'he same configuration as in step 2 is used, but now inte]Tupnx arc employed. 
The CPU need not spend lime waiting for an 1/0 operation to be performed, 
increasing efficiency. 

4, The I/O module is given direct aceesz., to memory via DMA.  can now move 

a block of data ICT or from memory without involving the CPU, except at the 
beginning and end of the transfer. 

5. The 1/0 module is enhanced to become a processor in its own right,.with a spe-
cialized instruction ;,1c1 tailored for 1.10. The CPU directs the processor to 
execute an I/O program in memory, The 110 processor fetches and executes 
these instructions without .CPU intervention. This allows !he CPU to specify a 
sequence of LII) ad ivi ties and to be interrupted only when the entire sequence 
has been performed. 

6. The I/O module has a local memory of its own and is, in fact. a computer in its 
own right, With this architecture., a large set of I/O devices can be controlled, 
with mipirnal CPU involvement. A common use for such an arch ileei tire has 
been to control communication with interactive terminals. Hie I/O processor 
takes care of most of the lacks; involved in controlling the terminals. 

As one proceeds along this evoluiionary path .. more and more of the I/O func-
tion is performed wilho w. CPU involvement. The CPI! is increasingly relieved of 
I.10-related  improving performance.  h the Last two steps (5-6), a major 
change occurs with the introduction of ihe 0.311.Cept of an I/O module capable of exe-
cuting a program. For step 5, I he I/0 module is often referred Lo as an I/O channel. 
For step 6. the term PO processor is often used. However, both terms are Lm occa-
sion applied toy both situations. In what follows, we will use the term /.. 10 channel, 

Characteristics of If0 Channels 
the 1/0 channel represents an extension of the DMA concept. An I/O channel has 
the ability to execulc I10 instructions, which gives it complete control over I/O oper-
ations. In a computer s!,•stein with such devices, the CPU does not execute I/O 
instructions. Such instructions are stored in main memory to be executed by a spe-
eial-pu•posc processor in the I/O channel itself. Thus, the CP( initiates an I/O 
transfer by instructing the I/O channel to execute a program in memory. The pro-
gram will specify the device or devices, the area or areas of memory ['or storage, 
priority, and actions to be taken for [(Alain error conditions. the 1/0 channel fol-
lows these instructions and controls the data transfer. 

Two types or I/O channels are common. as illustrated in Figure 7.13. A selee-
oof uheumel controls multiple high-speed devices and. at any one Lime, is dedicated 
to the transfer of data with one of those devices, Thus, die I/O channel selects one 
device and effects. the data transfer. Each device. or a small set of devices, is han-
dled by a coyuroller, or 1/0 module, that is much like the I10 modules we have been 
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discussing. Thus, the 1rO channel serves in place of the CPU in controlling these ISO 
controllers, A multiplexor channel can handle 1.10 with multiple devices at the same 
time, For low-speed devices, a byte multiplexor accepts or transmits characters as 
fast as possible to multiple. devices.HFT example, the resultant character stream from 
three devices with different rates and individual streams A, A 2A,A,  B I B,13 ; 144  

and C I C,C.,S'4  ... might be A i B,C,AC-A 3 B,C,A4, and so on. For high-speed 
devices, a block multiplexor interleaves blocks of data from several devices, 
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7.7 THE EXTERNAL INTERFACE: FIREWIRE AND INFINIBAND 

Types of Inter6ces 
. 1 . 11.c interface to a peripheral from an module must be tailored to the nature and 
operation of the peripheral. One, major characteristic of the. interface is whether it 
is serial or parallel (Figure 7.16). In a parallel interface, there are multiple lines con-
necting the I/O module and the peripheral, and multiple hits are transferred simul-
taneously. just as all of the bits of a word are transferred simultaneously over the 
data bus. In a serial interface, there is only one line used to transmit data, and bits 
must be transmitted one at a time. A parallel interface has traditionally been used 
for higher-speed peripherals, such as tape and disk, while the serial interlace has tra-
ditionally been used for printers and terminals. With a new generation of high-speed 
serial interfaces. parallel interfaces are becoming much less.common, 

In either case, the module must engage in a dialogue with the peripheral. 
In general terms, the dialogue for a write operation is as follows: 

L. The ID module sends a control signal requesting permi.ssion to send data. 
2. The peripheral acknowledges the request. 
3. I he module transfers data (one word or a block depending on the 

pc riphera I ). 
4. The peripheral acknowledges receipt of the data. 

A read operation proceeds 
Key to the operation of an I/O module is an internal hurler that can store data 

being passed between the peripheral and the rest of the system. This buffer allows 
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the module to compensate for the differences in speed between the system but 
and its external lines. 

Point-to-Point and Multipoint Configurations 

The connection between an 1/0 module in a computer system and external deNims 
can be either point-to-point or multipoint. A point-to-point interface provides .. 
dedicated line between the I10 module and the external device. On small systems 
(VCs, workstations), typical point-to-point links include those to the keyboard. 
printer, and external modem. A typical exampIC of such an interface is the EiA-n 
specification (see [STAUXI] for ti description). 

Of increasing importance are multipoint external inierfaces, used to supporl 
external mass storage devices (disk and tape drives) and multimedia devices (CD• 
ROMs, video, audio), These mullipoirit interfaces are in effect external bums. anc 
they exhibit the same type of logic as the buses discussed in Chapter 3. In this sec-
Li on, we look at two key examples: Fire,Wire and I nfiniBand. 

FireWire Serial Bus 
With processor speeds reaching 0Hz range and storage . devices holding multiple 
gigabits, the L1O demands for personal computers, workstations, and servers an 
formidable, Yet the high-speed  channel technologies that have been developed 
for mainframe and supercomputer systems are loo expensive and bulky for use on 
these smaller systems. Accordingly, the  has been great interest in developing a 
high-speed alternative lo SCSI and tither small-system LIO interfaces.. The result is 
the IEEE standard 1194, for a high-performance serial bus, commonly known as 
FireWire. 

FireWire has a number of advantages over older I10 interfaces. It is very high 
speed, ]ow cost. and easy to implement. In fact, FireWire is finding lavor not only 
for computer systems, but also in consumer electronics products, such as digital cam-
eras. VC'Rs, and televisions. In these products. FireWire is used to transport video 
i mages, which are increasingly coming from digitized sources. 

One of the sircngths of i.he FireVv'ire interface is that it uses serial transmis-
sion (hit at a lime) rather than parallel. Parallel inlerfaccs, such as SCSI, require 
more wires, which means wider, more expensive cables and wider, more elm-
sive connectors with more pins to bend or break. A cable with more wires requires 
shielding to prevent electrical interference between the wires. Also, with a parallel 
interface, synchronization between wires becomes a requirement, a problem that 
gets worse with increased cable length- 

In addition, compuiers are getting physically smaller even As they expand in 
computing power and  needs. Handheld and pocket-siv.c computers have little 
room for connectors yet need high data raLes Lo handle images and video, 

The intent of FireWire is to provide a single I10 interface with a simple con-
nector that can handle numerous devices through a single port, so that the mouse, 
laser printer, external disk drive, sound. and local area network hookups can be 
replaced with this single conconnector The connector is inspired by the one used in the 
Nintendo Gameboy. I i is so convenient that the user can reach behind the machine 
and plus it in without Looking. 
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Figure 7.17 Simple EircWire Configuration 

FireWire Configurations 

FireWi re uses a daisy-chain configuration, with up to 63 devices connecLcd off 
a single port. Moreover, up log 1022 FireWire buses can he in1erconnucted using 
bridges, enabling a system to support as mani,. periphera Is as required. 

FireWire provides for what is known as hoi plugging, which makes it possible 
to connect and disconnect periphern Is without having to power the computer sys-
tem down or reconfigure the system, Also, FireWire provides for automatic config-
uration: it is not necessany. manually lo set device fas or to be concerned W ith the 

relative position of devices. Figure. 7. t 7 shows a simple FireWire configuration. With 
FireWire, there are no tunurmi kills. and the system automatimIly performs a con-
figuration function Lo assign addresses. Also note lhal  FircWire bus need not be 
a so-id cLisy chain. Rather, a tree-structured configuration is possible. 

Au important feature of the FireWire standard is that it specifies a set of three 
layers of protocols to standardize the way in which the host system interacts with 
the peripheral devices over the serial bus. Figure 7.18 itlu.strates this stack. The three 
layers of the stack are as follows: 

• Physical layer: Defines the transmission media that are permissible under 
FireWire and the electrical and signaling characteristics of each 

• Link layer: Describes the transmission of data in the packets 

• Transaction layer: Defines a request-response protocol that hides the lower-
layer details of FireWire from applications 

PhyNical Laker 

The physical layer of FireWire specifies several alternative. transmission 
media and their connectors, with different physical and data transmission proper-
ties. Data rates from 25 to 400 lsilbps are defined. The physical laver converts 
binary Jain into electrical signals for various phy;,lical media. This layer also 
provides the arbitration service that guarantees that only one device at a time will 
transmit data 
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Two forms of arbitration are provided by FireWire, The simplest form is based 
on the tree-structured a rrallRerenl of the nodes on a FireWire bus, mentioned ear-
lier. A special case of this structure is a linear daisy chain. The physical layer cap 
tains logic that allows all the attached devices to configure themselves so that one 
node. is designated as the root of the tree and other nodes are organized in a par-
ent/child relationship forming the tree topolo*.r. Once this configuration is cgab-
fished, the root node acts as a central arbiter and processes requests for bus access 
in a first-conic-first-served fashion. In the case of simultaneous requests, the nede 
with the highest natural priority is granted access. The natural priority is determined 
by which competing node is closest to the root and. among those of equal distance 
from the root, which one has the lower ID number. 

The itforementioned arbitration method is supplemented by two adlitional 
functions: fair arbitration and urgent arbitration. With fairness arbitration. time 
on the bus is organized into fairness itervals. Al the beginning of an interval. 
each node sets an arbitration_enable flag. During the interval, each node may com-
pete for 1-Pus access. Once a node has gained access to the. bus, it resets its arbitra-
tion _enable tlag and may not again compete for fair access during this interval. This 
scheme makes the arbitration more fair. in that it prevents one or more busy high-
priority devices from monopolizing the bus. 
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In addition to the fairness scheme, some LkviQc.s may be configured as having 
urgent priority. Such nodes may gain control of the bus multiple time during a fair-
ness interval- In CNScnce, a counter is used at each high-priority node that enables 
the high-priority nodes to control 75% of the availabre bus time. For each packet 
that is transmitted as nonurgent, three packets may Inc transmitted a6. urgent. 

Litrk Layer 

The link layer defines the transmission of data in the form of packets. Two 
types of transmission are k.upported: 

■ Asynchronous: A variable amount of data and several bytes of transaction 
layer infOritlai t,re 1nm:slurred as a packet to an explicit address and an 
acknowledgment is returned, 

• Isochronnus: A variable aMoulfil of data is transferred in a sequence of fixed- 
size. packets transmitted at regular intervals. This flPrin crf transmission uses 
simplified addressing and no acknowledgment. 

Asynchronous transmission is used by data that have no fixed data rate require-
ments. Both the fiiirarfaiLTI [ion and urgent arbitration schemes may he used for asyn-
chronous transmission. The default method is fair arbitration. Devices that desire a 
substaMial Fraction of the bus capacity or have severe .141.1xnry requirements use the 
urgent arbitration method. For example, a high-speed real-time data eoltection node 
may use urgent arbitration when critical data buffers are more than half full. 

Figure 7.19a depicts a typic-at asynchronous transaction. The process of deliver-
ing a single packet is called a subaction. The subaction consists of five lime periods! 

▪ Arbitration sequence: This is the enchange of signals required to give one 
device control of the bus. 

■ racket transmission: Every packet includes a header containing the source and 
desiinalion Ids. The header also contains packet type information, a CRC 
(cyclic redundancy check) checksum, and parameter information for the spe-
cific packet type. A packet may also include a data block consisting of user 
data and another CRC. 

• Acknowledginent gap: l'his is the time delay for the destination to receive and 
decode a packet and generate an acknowkdgment, 

▪ Acknowledgment; 'The recipient of the packet returns an acknowledgment 
packet with a code indicating the action taken by the recipient. 

■ Subaction gap: Thk is an enforced idle period to ensure that other nodes on 
the. bus do not begin arbitrating before the acknowledgment packet has been 
transmitt ed. 

AL the time that the acknowledgment is sent, the acknowledging node is in 
control of the bus. Therefore, if the exchange is a request/response interaction 
between two nodes :  then the responding node can immediately transmit the re-
sponse packet without going through an arbitration sequence (Figure 7. L9b). 

For devices that regularly generate or consume data, such as digital sound or 
video, isochronoos access is provided. This method guarantees that data can be 
delivered within a specified latency with a guaranteed data rate. 
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To accommodate a mixed traffic load of isochronous and asynchronous data 
sources, one node is designated as cycle master_ Periodically. the cycle master issues 
a cycle_start packet, This signals all other nodes that an isochronous cycle has 
begun. During this cvelc, Only isochronous packets may be sent (Figure 7.19c). Each 
isochronous data source arbitrates for bus access. The winning node immediately 
transmits a packet. There is no acknowledgment to this packet, and so other 
isochronous data sources immediately arbitrate for the bus after the previous iso-
chronous packet is transmitted. The result is that there is a small gap between the 
transmission of one packet and the arbitration period for the next packet, dictated 
by delays on the bus. This delay, referred to as the isochronous gap, is smaller than 
a subaction gap. 

After all isochronous sources have transmitted, the bus will remain idle long 
enough for a subaction gap to occur. This is the signal to the asynchronous sources 
that they may now compete for has access. Asynchronous sources may then use the. 
bus until the beginning of the next isochronous cycle. 

isochronous packets are labeled with 8-hit channel numbers that are previ-
ously assigned by a dialogue between the two nodes that arc to exchange isochro-
nous data. The header. which is shorter than that For asynchronous packets, also 
includes a data length field and a header CRC. 
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lnfiniBand 

InfiniBand is a recent 110 specification aimed at the high-end server market,' The 
first version of the specification was released in early 2.[)(1t and has attracted nurner-
()UN vendors. The standard describes an architecture and specifications for data 
flow between processors and inteliigent I/O devices, InfinilIand is intended lo 
replace the ?CI bus in servers, to provide greater capacity, increased expandability, 
and enhanced flexibility in server design. In essence, InfiniBand enables servers, 
remote storage. and other network devices to be attached in a central fabric of 
switches and links, The switch-based architecture can connect up to 64,000 servers, 
storage systems, and networking devices, 

Infiniband Architecture 
Although PCI is a reliable interconnect method and continues to provide 

increased speeds, up to 1 Gbps, it is a limited architecture compared to In finiband. 
With InfiniBand, it is not necessary to have the basic I/O interface hardware inside 
the server chassis. With infinilIand, remote storage, Del working, and connections 
between servers arc accomplished by altaching all devices to a central fabric of 
switches and ]inks. Removing I/O from ihc server chassis allows greater server den-
sitt  allows for a more 11,:xibie arid scakiNe data center, as independent nodes 
may be added as necked, 

Lin likc Pek which measures distances from a CPU motherboard in centime-
ters, I afiniBand's channel design enables 1/0 devices to be placed up to 17 ln away 
from the server using copper. up to 31111 in using mid ti mode optical fiber. and up +to 
10 km with single-mode optical fiber. Transmission rates has high as 30 Gbps can 
he achieved. 

Figure 7,20 illustrates the InfiniBand architecture. The key elements are as 

follows; 

* Host channel adapter ( HCA): Instead of a number ,,r pfa slots. a typical 
server needs a single interface to an HCA that links the server to an Infini-
Band switch, The HCA attaches lo the server at a memory controller, which 
has access to the system bus and controls traffic between the processor and 
memory and between the FICA arid memory. The !ICA uses direct-memory 
access (I)Iv(A) to read and write memory, 

• Target channel adapter (TCA): A TCA is used to connect storage systems, 
routers. and other peripheral devices to an InfiniBand 

• lnimiliond switch: A switch provides pains-to-point physical connections to a 
arteL of devices and switches traffic from one link to another. Servers and 

devices commliniCiJ Le ihrough their adapters. via the switch. The switch's intel- 
li gence manages the linkage without inlerruptirux the servers' operation. 

• Links: The link between a switch and a channel adapter, or between. two switches- 

4 1hilini.band is thc rusult col Lis roor r of two corr3pclin2 projucIF: Future U0 I h.rickQLI Ivy risco, HP. 
Compnti, and 1[310) art] Next CTCLIC78 1 100 1. 0 i*,..121oped by Intel and hacloz.d by  vanisher 4.)C ocher 
cotnrtanisk 
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Figure 7.20 infinitiand Switch Fabric 

• Subnet: A subnet consists of one or more interconnected switches plus the 
links that connect other devices to those switches. Figure 7.20 shows a subnet 
with a single switch, but more complex subnets arc required when a large 
number of devices are to be interconnected. Subneis allow administrators to 
confine broadcast and multicast transmissions within the subnet. 

• Router: Connects HIM Rand subnets, or connects an Infiniband switch to a net-
work, such as a local area network, wide area network, or storage area network. 

The channel adapters are intelligent devices that handle all 1/0 functions with-
out the need to interrupt the server's processor. For example, there is a control pro-
tocol by which a switch discovers all I'CAs and FCAs in the fabric and assigns 
logical addresses to each. 'Ibis is done without processor i nvolvement. 

The I n finiband switch temporarily opens up channels between the processor 
and devices with which it is communicating. The devices do not have to share. a 
channel's capacity. as is the ease with a bus-based design such as PCI. which requires 
that devices arbitrate for access to the processor. Additional devices are added to 
the configuration by hooking up each device's TCA to the switch. 

InfiniBand Operation 

Each physical link between a switch and an attached interface (1-ICA or WA) 
can he support up to  logical channels, called virtual lanes. One lane is reserved 
for fabric management and the other lanes for data transport, Data are sent in the 
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form a stream of packets, with each packet containing some portion of the total 
data to be transferred, plus addre ssing and control information. Thus, a set of com-
munications protocols are used lu manage the transfer of data, A virtual lane is tem-
porarily dedicated to the transfer of data from on,.. end node to another over the 
1nCiniBand fabric. The InfiniBand swilch maps Inatic horn an incoming lane to an 
outgoing lane to route the Li M41 between the desired clad points. 

Figure 721 indicates the logical structure used lo support exchanges over 
tnrinikand. Ter account for the fact that some deviccs can send data faster than 'tem-
porarily buffers excess outbound and inbound data. The queues can tie located in 
the channel adapter or in I he attached deyice'.s memory. A separate pair of queues 
is used fot each virtual lane, The host ILL se.s these queues in the following fashion. 
The host places a transaction, called .a work queue entry (WOE) into either the 
send or receive queue. of the queue pair. The two most imporianl WQLs are.SEND 
and RECF I VE. Bear a SEND operation, the WOE specifies a Hock of data in the 
device's memory space for the hardware lo send to the destination. A RECH i'v 
WOE specifies where the hardware is ti place data received from rancrther dcviec 

when that cons.urner executes a SEND operation. 'The channel adapter processes 
each posted WOE in the proper prioritized order and gclierite, a completion queue 
entry (COE) to indicate the completion status. 

Figure 7,21 also indicates that a layered protocol architecture is used, consist-
ing ()I' four lavers! 

I  Physical: The physical-laver specification defines three ]ink speeds (1X. 4X, 
and 12X) giving transmission rates of 25. I [1, and 30 (ihps, respectively {Tableh 
7.4). The physical layer also defines the physical media, including copper and 

optical fiber, 
• Link: This layer defines the basic packet slructure used to exchange data. 

including an addressing scheme that assigns a unique link address to every 
device in a subnet. This level includes the. Logic for setting up viritiai lanes and 
For .swi tching data through switches from source lo destination within a subnet. 
The packet structure includes an error de14,:ei ion code to provide reliability. 

• Network: The network laver routes packets between different ]nfiniBand subnets. 

• Transport: The transport layer provides reliability mechanism for end-to-end 
transfer of packets across one nr more subnets. 
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Review Questions 
7.1 List three broad classifications of external. or peripheral, devices. 

7.2 What is the International Reference. Alphabet? 
73 What are the major functions of an module? 

7.4 List and briefly define three techniques for performing I/O. 
7.5 What is the difference ber.veen memory-mapped I/O and 'isolated IiO'l 

7.6 When a device interrupt occurs, how does the processor determine which Linda 
issued the interrupt? 

7.7 When a DMA module takes control of a bus, and while it retains control of the hi. 
What does the processor do? 

Problems 

7.1  In Section 7.3, one advantage and One disadvantage of memory-mapped I/O. comp:T . ...I 
with isolated I/O. were listed. List two more advantages and two more disadvaara.o. 

7.2 In virtually all systems that include DMA modules. DMA access to main memoiv 
given higher priority than CPI: access to main memory. Why? 

7.3 Consider a disk systern with 960 512-byte sectors per track and assume the disk 
at 3600 r pm. A processor reads one sector from the disk using interrupt-d riven 
with I'm:. interrupt per byte. If it takes 2.5 (I; to process each interrupt, what perccni 
age of the time will the processor spend handling 110 (disregard seek time)? 

7.4 Repeat Problem 7.3 using DMA. and assume one interrupt per sector. 
7.5 A DMA module is transferring characters to memory using cycle stealing, from a 

device transmitting at 9600 bps_ 'The processor is fetching instructions at the rate ci 
1 million instructions per second (1 MIPS), By how much will the processor bestowed 
down due to the DMA activity? 

7.6 A 32-bit computer has rwo selector channels and one multiplexor channel. Each selw 
for channel supports two magnetic disk and two magnetic tape units. The multiplexor 
channel has two lino printers. two card readers, and 10 VDT terminals connectedly 
it. Assume the following transfer rates: 

Disk drive 800 '<Bytes's 
Magnetic tape drive 200 KBylesis 

6.6 '<Bytes's Line printer 
Card reader 1.2 KBytesis 
VDT 1 I<Bylesis 

Estimate the maximum aggregate I70 transfer rate in this system. 
13 A computer consists of a processor and an 110 device D connected to main MI 

ory M via a shared bus with a data bus width of one word. The processor can ex& 
cute ki maximum of 10' instructions per second. An average instruction requirofive 
machine cycles, three of which use the memory bus. A memory read or write oper-
ation uses one machine cycle. Suppose that the processor is continuously execunn3 
"background -  programs that require 95% of its instruction execution rate but not 
any instructions. Assume that one processor cycle equals one bus cycle. Now • 

• suppose the. device is to be used to transfer very large blocks of data betwan 
M and D, 
a. if programmed is used and each one-word I'D transfer requires the promsw 

to execute two instructions. estimate the maximum I/O data-transfer rate, in wort 
per second, possible through D. 

b. Estimate the same rate if DMA is used. 
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7.8 A data source produces 7-bit IRA characters, to each of which is appended a parity 
bit. Derive an expression feet the maximum effective data rale (rate of IRA data hits) 
over an k-bps line for the following: 
a. Asynchronous transmission, with u I.5 - unit stop bit 

b. Bit-synchronous transmission, with a frame consisting of 48 control hits and 128 
information hits 
Same as (b), with a 1024—bit information field 

d. Character synchronous. with 9 control characters per fraMe and I information 
character' 

e. Same as (d), with 12 information characters 
7.9 The following problem is based on a suggested illustration of 110 mechanisms in 

E CKE 90] (Figure 7.22): 
Two boys are playing on either side of a high fence, One of the boys, named Apple-
server. has a beautiful apple tree loaded with delicious apples growing on his side of 
the fence; he is happy to supply apples to the other boy whenever needed. The other 
boy, named Apple-eater, loves to ez1( apples but has none. In Fact. he must eat his 
apples at a fixed rate (an apple a da• k vups the doctor away). If he eats them faster 
than that rate. he will get sick. If he eats them slower, he will suffer malnutrition. Nei-
ther boy can talk. and so the problem i4 to get apples from Apple-server to Apples-
eater at the comet. rate. 
u. Assume that there is an alarm clock sitting on lop of the fence and that the clock 

can have multiple alarm settings. How can the clock he used to solve the problem? 
Draw a timing diagram to illustrate the solution. 

b. Now assume that there is no alarm clock. Instead Apple-cater has a flag that he 
can wave whenever he needs an apple, Suggest a new solution. Would it he help-
ful for Apple-server also to have a flag? if so. incorporate this into the solution, 
Discuss the drawhacks of this approach. 

e. Now lake away the flag and a'—unie the existence of a long piece of string. Suggest 
a solution that is superior to that of (. 1-9 using the string. 

Apple-eater Apple-server 

Figure 7.22 An Apple Problem 
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7.10 As:.4tinic that one 16-hit and two 8-bit microprocessors M to he interfaucci to a 
te i bus. The following details are given: 
1. Ail microprocessors havc the hardware features necessary for any type of a 

transfer; prugraninied PC, interrupt-driven 110. and DrvIA. 
2. Ail microprocessors bave 16-bit addrns bus. 
1 'iwo memory boards, each of 64- KByt Qapacity. are interfaced with ilk': hus. 

designer wishes to use a shared mcmcir... that is as large as possible. 
4. The system. bus supports a maximum of four interrupt lines And one Dlie1A 

Make .kiny other assumptions nt...cessary, and 
i ye the. Systrm bus specifications atems of number and types of lines. 

b. Describe possible protocol for communicating on tha ns. i.e., read:vent 
intcrrupt, and DMA sequences. 

c. Explain how the aforerrictitioned devices k tr interfaccd Lo the s!..rste m bus. 
SourcT; IA1.EX93] 
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KEN POINTS 

♦ The operating system ((:).S) is the software that controls the execution of pro-
grams on a prOcussor and that manages the processor's resources. A number 
of the functions performed by the OS, including process scheduling anti mem-
ory management, can only he perfOrmed efficiently and rapidly if the proce - - 
sor hardware includes capabilities to support the OS. Virtually all processors 
include such elipa bilities to a greater or lesser extent. including virtual mem-
ory management hardware and process management hardware. The hardware 
includes special-purpose registers and buffers, as well as circuitry to perform, 
basic resource management tasks. 

• One of the most important functions of the OS is the scheduling of processes, 
or tasks. The. OS determines which process should run at any given time. Typ-
ically, the hardware will interrupt a running process tone time to time to 
enable the OS to make a new scheduling decision so as to share processor time 
fairly among a number of processes. 

♦ Another important 
OS 

 function is Memory management. Most contemporary 
operating systems include a virtual memory capability, which has two bene-
fits: {1) A process can run in main memory without all of the instructions and 
data for that program being present. in main memory at one lime, and (2) the 
total memory space available to a program may far exceed the actual main 
memory on the system, Although memory immagemern is performed in soft-
ware-, the OS relies on hardware support in the processor, including paging 
and segmentation hardware. 

-  . lthough the focus of this text is computer hardware, there is one area ofsoft- A  
,,,,, :ncagoenslpt uhetecro'smoppuetreartsintges:rt ee ensl :  pTihoe.. 

. . . : \01  t re  a tt  ihnagi  systems  !so  ahper oagdrdarme s si he da i:  
vides services Ion programmers, and schedules the execution of other programs. 
Some understanding of operating systems is essential to appreciate the mechanisms 
by which the CPU controls the computer system. In particular, explanations of 
the effect of interrupts and of the management of the memory hierarchy are hest 
explained in this context. 

The chapter begins with an overview and brief history of operating systems. 
The hulk of the chapter looks al the Iwo operating system functions that are most 
relevant to the study of computer organization and architecture: scheduling and 
memory management. 

8.1 OPERATING SYSTEM OVERVIEW 

Operating System Objectives and Functions 

An operating system is a program that controls the execution of application pro-
grams and acts as an interface between the user of a computer and the computer 
hardware. It can he thought of as having two objectives: 



/— 
Progilirugoet 

L'ud 
user 

re re .  4'4 

Application programs 

Utilities 

4)perritil;\ 
s7.le stern 

desilgrieLir 

0i:waiting system 

Computer hardware 

8.1  opErp.,,A LING sysThm ovERviErw 239 

Figure S.1  I ,aver.3 and Views of Li Corripatcl -  System 

• Convenience: An operating system makes a computer more convenient to use. 
• Efficiency: An operating system allows the computer qystem resources to be 

used in an efficient manner. 

Let us s examine these two aspects of an operating system in turn. 

The Operating System us u UseriCtimputer Interface 

The hardware and software used in providing applications to a user can he 
viewed in a layered or hierarchical Cashion, as depicted in Figure 8.1, The user or 
those applieal ions. the end user, generally is not concerned with the computer's 
3relnieeture. Thus the end user views a computer system in Lerms of an application. 
That application can be expressed in a programming ianguage and is developed by 
an application programmer. IC one were to develop an application program as a set 
or T iToce,sor instructions that is completely responsible for writrolling the computer 
hardware, one would be faced with an overwhelmingly complex task. To ease this 
task, a set of sysiems pre gnim:s is provided. Some of these programs are recrrod to 
as utilities. 1 hesu implement frequently used func t ions that :mist in program cre-
ation, the management of files. and the control or 1. 10 devices. A programmer will 
make use of these facilities in developing an application, and the application, while 
it is running, will invoke L he utilities to perform certain functions. The most impor-
tant system program is the operating system. The op erating system masks the details 
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of the hardware from the programmer and provides the programmer with a conve-
nient interface For using the system. It acts as mediator, making it easier for Ihe pro• 
grammer and for application programs to access ancl  I hose facilities and surviees. 

Briefly, the operatic g system typically pr4 F'.' i dCh SCTVI CCS in the following areas: 

• Program creation: The operating system provides a variety of facilities and 
services. such as editors and debuggers, to assist the programmer in creating 
programs. Typically, these services are in the form of utility programs that ar e  
not actually part of the operating system but are acccssible through the uper-
ating system. 

a Program execution: A number of tasks need to be performed to execute ¢F pro. 
gram. Instructions and data must be loaded ink) main memory,  devices 
and files must be initialized, and other resources must be prepared. The oper• 
acting system handles all of this for the user. 

• Access in 1.10 devices, kach I O device requires its own peculiar set of instrue• 
tions or control signals for operation. The operating system takes care of the. 
details so that the programmer can think in terms. of simple- reads and writes. 

g Controlled access to files! In the case of files, control must include an under-
standing of not only the nature of the 1/0 device (disk drive. tape drive) 
but also the file format on Ihe storage medium. Again, the operating system 
worries about Ihe details. Farther, in the a system with multiple simul- 
taneous users, the operating system can provide protection mechanisms to 
control access to the files. 

• System access: In the case of a shared or public system, the operating system 
controls access to the system as a whole and to specific system resources, The 
access function must provide protection of resources and data from unautho-
ri•.cd users and roust resolve conflicts •or resource contention. 

• Error detection and response: A variety of errors can occur while a computer 
system is running, These include internal and external hardware errors, such 
as a memory error, or a device failure or malfunction; and various software 
errors, such as arithmetic overflow, attempt to access forbidden memory loca• 
Lion, and inability of the operating system to grant the request or an applic,a• 
tion. In each cwic, the operating system must make the response that clears the 
error condition with the least impact on running applications. The response 
may range from ending the program that caused the error, co retrying the 
operation. to simply reporting the error to the application, 

■ Accounting: A good operating system will collect usage statistics for various 
resources and monitor performance parameters such as response time. On anp 
system, this information is useful in anticipating the need for future enhance-
ments and in tuning the system to improve performance. On a multiuser sys-
tem. the information can be used for billing purposes. 

The Operating System! as Resource Manager 
A wmputer is a set of resources for the movement, storage, and processing of 

data and for the control of these functions. The operating system is responsible for 
managing these resources. 
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Can we say that it is the operating system that controls the movement, storage. 
and processing of data? From one point of view, the answer is yes: Hy managing the 
computer's resources, the operating system is in control of the computer's basic. 
functions. But this control is exercised in a curious way. Normally, we think of a con-
trol mechanism as something external to that which is controlled, or at least as some-
thing that is a distinct and separate part of that which is controlled. (For example, a 
residential heating system is controlled by a thermostat. which is completely distinct 
from the heat-generation and heat-distribution apparatus.) This is not the case with 
the operating system. which as a control mechanism is unusual in two respects; 

• The operating system functions in the same way as ordinary computer soft-
ware; that is. it is a program executed by the processor. 

• The operating system frequently relinquishes control and must depend on the 
processor to allow it to regain control. 

The operating system is, in Iaet, nothing more than a computer program. Like 
other computer programs, it provides instructions for the processor. The key differ-
ence is in the intent of the program. The operating system directs the processor in the 
use of the other system resourees'and in the timing of its execution of other programs. 
But in order for the processor to do any of these things, it must cease executing the 
operating system program and execute other programs. Thus, the operating system 
relinquishes control for the processor to do some "useful" work and then resumes 
control long enough to prepare the processor to do the next piece of work. The mech-
anisms involved in all this should become clear as the chapter proceeds. 

Figure 8,2 suggests the main resources that are managed by the operating sys-
tem. A portion of the operating system is in main memory. This includes the kernel, 
or nucleus, which contains the most frequently used functions in the operating sys-
tem and, at a given time, other portions of the operating system currently in use. 
The remainder of main memory contains other user programs and data. The allo-
cation of this resource (main memory) is controlled jointly by the operating system 
and memory-management hardware in the processor. as we shall see. The operat-
ing system decides when an 110 device can be used by a program in execution. and 
controls access to and use of files. The processor itself is a resource, and the oper-
ating system must determine how much processor time is to be devoted to the exe-
cution of a particular user program. In the case of a multiple-processor system, this 
decision must span all of the processors. 

Types of Operating Systems 
Certain key characteristics serve to differentiate various types of operating systems. 
The characteristics fall along two independent dimensions, The first dimension 
specifies whether the system is batch or interactive, In an interactive system, the 
useeprogrammer interacts directly with the computer, usually through a key-
boardidisplay terminal, to request the execution of a job or to perform a transac-
tion. Furthermore, the user may, depending on the nature of the application, 
communicate with the computer during the execution of the job. A batch system is 
the opposite of interactive. The user's program is batched together with programs 
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Figure K2 The Operating System as Resource Manager 

from other users and submitted by a computer operator. After the program is com-
pleted, results are printed out for the user. Pure batch systems are rare today. How-
ever, it will be useful to the description of contemporary operating systems to 
examine batch systems briefly. 

An independent dimension specifies whether the system employs miA-
programming or not. With multiprogrammina, the attempt is made to keep the 
processor as busy as possible, bv having it work on more than one program at a time. 
Several programs are loaded into memory, and the processor switches rapidly 
among them. The alternative is a uniprogramming system that works only one pro-
gram at a time. 

Early Systems 
With the earliest computers, from the late 1940s to the mid-1950s. the pro-

grammer interacted directly with the computer hardware; there was no operating 
system. These processors were run from a console, consisting of display lights, toggle 
switches, some form of input device, and i printer. Programs in pt ocessor code were  
loaded via the input device (e.g., a card reader). If an error halted the program ;  the 
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error condition was indicated by the lights. I he program In r could proceed to exam-
ine registers and main memory to determine the cause of the error. If he program 
proceeded to a normal completion, the output appeared on the printer. 

These early systems presented Iwo main problems: 

• Scheduling: Most installations used a sign-up sheet to reserve processor lirric. 
Typically, a user could 'sign up for a Nock of time in multiples of a half hour 
or so. A user might sign up for an hour and finish in 45 minutes, this would 
result in wasted computer idle time. On I he other hand, the user might run into 
problems, not finish in the allotted time, and be forced to stop before resolv-
ing the probtem. 

• Setup time: A single program, celled a job, could involve loading the compiler 
plus the. high-level language program (source program) into memory. saving 
the compiled program (object program). and then loading and linking together 
the object program and common functions. Each of these steps could involve 
mounting or dismounting tapes, or setting up card decks_ lf an error occurred, 
the hapless user typically had to go back to the beginning of the setup se-
quence. Thus a considerable amouni of time was spent just in setting up the 
program to run. 

This mode of operation could he termed serial processing, refleding the fact 
that users have access to the computer in series. Over time, various system software 
tools were developed to attempt 10 make serial processing more efficient. These 
include libraries of common functions :  tinkers, loaders, debuggers, and  44river 
routines that were available as common software for alt users. 

Simple Butch Systems 

Early processors were very expensive, and therefore it was important to max-
imize processor utilization. The wasted time due to scheduling and setup time was 
unacceptable. 

To improve utilization, simple batch operating systems were developed. With 
such a system, also called a mi.pnimr, the user no longer hAs direct access to the 
processor. Rather, the user submits the job on cards or tape to a computer opera-
tor, who benches the jobs together sequentially and places the entire batch on an 
input device, for use by the monitor. 

To understand how this scheme works, ]et us look al it from Iwo poiniw of 
view: that of the monilor and that of the processor. From the point of view of the 
monitor. it is the monitor that conlrols the sequence of events. For this to he so, 
much or the monitor must always be in main memory and avui lable for execution 
(Figure 83). That portion is referred to as the resident monitor. The rest of the mon-
itor consists of utilities Lind common functions that are loaded as subroutines to the 
user program at the beginning of any job that requires them. The monitor reads in 
jobs one at a time from the input device (typically a card reader or magnetic tape 
drive). As it is read in, the eurren1 job is placed in the user program area, and con-
trol is passed to this job. When the lob is completed, it rei urns control to the moni-
to•, which immediately reads in the next job. The results of each job arc printed out 
for delivery to the user, 
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Now consider this sequence from the. point Of view of the processor, At a c.a. 
Lain poini in time, the processor k executing instructions from the portion of main 
memory containing the monitor. '1 hose instructions cause the next job to be mid m 
to another portion of main mentor/. Once a job has been read in, the proce;ssor 
encounter in the monitor a branch instruciion that instructs the processor to co. 
tin= execution 4it the start of the user pr(4,,,ram.'Vhe processor will then executt:. the 
instruction in the user's program until it encounters an ending or error conditioo, 
Eil hcr event causes the processor to fetch its next instruction from the monitor' 
program. Thus the phrase "control is passed to a job" simply means that ihe proccs• 
sor rs now fetching and execuling instructions in a user program. and "control is 
returned to the monitor" mcins thus the processor is now retching and executing 
instructions from he monitor program, 

It should bu clear that the monitor handle 4 the scheduling problem. A batch 
of jobs is queued up. tine] jobs are executed as rapidly as possible, with Ito inlerven-
ing idle time. 

How about the job setup tune? The monilor handles this as welt With each 
job, instructions zkre included in a job control language (JCL). Phis is a specW txpe 
01 programming language used to provide instructions to the monitor, A simply 

exam* is  or a user submitting a program written in FOR'PRAN plus some 
data to be used by the program. Each FORTRAN instruction and each item of data 
is on a sep4irate punched card or a separate record on tape. in addition lo FOR. 
"I RAN and data lines. the job includes job control instructions. which are denc.iie 
by the beginning  The overaii format of the job looks Like this: 
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$FTN  
• 
• FORTRAN instructions 

$LOAD 
5 RUN 

• Data 
• 

To execute this job, the monitor reads the $1 ,TN line and loads the appropri-
ate compiler from its mass storage (usually tape). The compiler translates the user's 
program into object code, which is stored in memory or mass storage. If it is stored 
in memory, the operation is referred to as "compile, load, and go." If it is stored on 
tape: then the $LOAD instruction is required. This instruction is read by the mon-
itor, which regains control after the compile operation. The monitor invokes the 
loader, which loads the object program into memory in place of the compiler and 
transfers control to it. In this manner, a large segment of main memory can be 
shared among different subsystems. although only one such subsystem could be res-
ident and executing at a time. 

We see that the monitor, or batch operating system. is simply a compujter pro-
gram. It relies on the ability of the processor to fetch instructions from various por-
tions of main memory in order to seize and relinquish control alternately. Certain 
other hardware features are also desirable: 

• Memory protection: While the user program is executing, it must not alter the 
memory area containing the monitor. If such an attempt is made, the pruccssOr 
hardware should detect an error and transfer control to the monitor. The moni-
tor would then abort the job, print out an error message, and load in the next job. 

■ Timer A timer is used to prevent a single job from monopolizing the system. 
The timer is set at the beginning of each job. If the timer expires. an  interrupt 
occurs, and control returns to the monitor. 

• Privileged instructions: Certain instructions are designated privileged and can he 
executed only by the monitor. If the processor encounters such an instruction 
while executing a user program, an error interrupt occurs_ Among the privileged 
instructions are instructions. so  that the monitor retains control of all I/O 
devices. This prevents, for example, a user program from accidentally readin2 job 
control instructions from the next job_ If a user program wishes to perform I/O. it 
must request that the monitor perform the operation for it. If a privileged instruc-
tion is encountered by the processor while it is executin2 a user program, the 
processor hardware considers this an error and transfers control to the monitor. 

• Interrupts: Early computer models did not have this capability. This feature 
gives the operating system more flexibility in relinquishing control to and 
regaining control from user programs. 

http://instructions.so
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Processor time alternates between execution of user programs and execution 
Of the monitor. There have been two sacrifices: Some main memory is now gisien 
over to the monitor and some processor time is consumed by the monitor. Both of 
these are forms of overhead. Even with this overhead, the simple .  batch system 
improves utilization of the computer. 

Multiprogrammed Batch Systems 

Even with the automatic job sequencing provided by ,9 simple batch operating 
system. the processor is often idle. The problem is that  devices. are slow com-
pared to the processor. Figure 8.4 details a representative calculation. The calcula-
tion concerns a program that processes a File of records and performs. on average. 
100 processor instructions per record. In this example the computer spends over 
96% of its time waiting for I/O devices to finish transferring data! Figure 8.5a illus-
trates this situation. The processor spends a certain amount of time executing, until 
it reaches an I/O instruction. it must then wait until that 1/0 instruction concludes 
before proceeding. 

This inefficiency is not necessary. We know that there must he enough mem-
ory to hold the operating system (resident monitor) and one user program. Suppose 
that there is room for the operating system and two user programs. Now. when on 
job needs to wait for I/O. the processor can switch to the other job, which likely is 
not waiting for I/O (Figure 8.5b). Furthermore. we might expand memory to hok 
three., four, or more programs and switch among all of them (Figure 8.5c). The 
process is known as multiprograttuning, or multitasking. -  It is the central theme o!.  
modern operating systems. 

To illustiate the benefit of multiprogramming, let us take an example. Con-
sider a computer with 256K words of available memory (not used by the operating 
system), a disk, a terminal, and a printer. Three programs, JOB1, JOB2, and JO1 .. 
are submitted for execution at the same time. with the attributes listed in Table 8.1. 
We assume minimal processor requirements for JOB2 and .1 0B3 and continuous 
disk and printer use by JOB3. For a simple batch environment, these jobs will Ft 
executed in sequence. Thus. .10131 completes in 5 minutes. 3092 must wail until the 
5 minutes is over, and then completes 15 minutes after that_ ,1 0B3 begins after 211 
minutes and completes at 30 minutes from the time it was initially submitted, The 

The term +rrrrltitaskiio is sometimes reserved to mean multiple tasks within the same program that - 1 ..:0; 
be handled concurrently by the operating system, in contrast to niniiiiprughworung, which would rci;: 
multiple processes (rum multiple programs, However, it is more common to equaic t he terms ruati-
tasking and ennhiprograninung, as is dune in most standards dictionaries (e,g., IEEE Sid 100-1992, To 
New IEEE Standard Dientoktry of Pereira:al and Electroines Tema), 
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Table 8.1 Samplc. Program E..Necut.ion Attriboas 

.1 0111 ;IOW 910113 

Type of job E kavy compute Heavy 1;0 Heavy 1;0 
thiratiou 5 E'sin 15 min LO min 
Memory ri.quired 51)1< 11.)0K. KIK 

Ne ,ed ditili.? Ni, Eft} 9'4'S 

Need lerminal? No Y4.‘.4 No 

Need printer? Nfl No Y..:.s 

i heir input and output operations active). 10131 will still require 5 minutes to com-
plete her Lit the end of that time, .10B2 will he one-third finished, ?I nd J0133 half 
finished. All three jobs will have finished within 15 minutes, .l tic improvement is 
evident when examining the multiprogramming column of 'l able 8,2, obtained from 
the histogram shown in Figure X.nh. 

As with a simple batch system. a muitiprogramming batch system mull rely On 
certain comptiler hardware. features. Thc most notable additional feature that is use-
ful for mull iprogramming is the hardware thai supports I/O interrupts and DMA. 
With interrupt-driven I/O or DMA, the processor can issue an I/O curnmanc.1 for one. 
joh and proceed with the excention of.another job while the I/O is carried out by 
the device controller. When the 1/0 operation is compicle, the processor is inter-
roptal and control k passed to an interrupi-handling program in the operating sys-
tem. The operas ink, system will then pass control to another job. 

Multiprogramming operating systems are fairly sophisticated compared to sin-
gle-prog,rmn, or uniprogramming.f.,ysiems. 'Vo have several jobs ready to run, the 
jobs must be kept in math mcmtiry %  requiring some form of memory management, 
In addition, if several jobs arc ready to run, the processor must decide which one to 
run, which requires some algorithm for scheduling, Thu& euncepn.4. Lire discussed 
later in this chapter. 

Time -Sharing Systems 

With the use of mulliprogvarnming, hatch processing can he quite efficient. 
However, for many jobs. ii is dcsirabie to provide a mode in which the user inter. 

Table 8.2 Mcts cif MulllirFrogramniing ors Resonter... Utilization 

Uniprogrumuning Mulliprogramming 

PICICeSSOr 'me 22% 43% 

Memory we '33 % (7% 

Disk use 33 .:14. (17'X. 

Printer lime 33% 67% 
Elapnd li ME 30 rain 1.5 min 
'1' hroligliput rate johEih 12 y.lbsth 

Mean response OW I }; r1.1111 10 min 
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Table /0 Batch Multiprograainning Time Shtiring 

acts directly with the computer. Indeed, for some jobs, such as i msaction process-
ing. an interactive mode is essential. 

Today, the requirement for an interactive computing facility can be, and (Amn 
is, met by the use of a dedicated microcomputer. That option was not available in the 
1960s, when most computers wcre big and costly. Instead time sharing wa;s develope6. 

Just as multiprozramming allows the prmeMor to handle multiple batch ioby 
at a time. multiprogranuning can be used to handle multiple internaive jobs. En thi5. 
latter case. the technique is referred to as lime sharing, because the processor's time 
is shared among multiple users. In a time-sharing system, multiple Liscrs sinutltawr 
°ashy' access the system through terminals, with the operating sysiem interleaving 
the execution of each user program in a short burst or quantum of computation. 
Thus, if there arc fit users actively requcsting service at one time, each usei will only 
see On the average 1 in o[ the effective uoinputer speed, nut counting operating s!is-
tem overhead. However, riven the relatively slow human reaction time:. the 
response time on a properly desired system should he comparable to that on a ded 
icated computer. 

Both hatch mulliproraniming and time sharing use multiprogramming. Tht 
key differences are listod in Table 8,3. 

KZ SCHEDULING- IF  rrr ,r., 
O.> • 

; .41 
• • ..r.or • re • frer 

efr: 41 .1 
r 

fr'err r.r.r4:00 rir re,r4 
refr 

re 

'Hie key to multiproaramming is scheduling, In Filet. four types of scheduling are typ• 
ically involved (Table. 8,4). We will explore these presently. Buff first, we introduce 
the concept of procm. This lc mi was first used by the designers of the [viultics opei. 
ating system in the I %Os. It is a somewhat more general term than job. Many 4.10fi-
hitions have been given for the term pmcess. including 

Table 8.4 Types of Sc liedulitty 
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Tbe. decisici.n [15 adC3 to gr. pool 01 p rnce.ssos to he ckccu tcd 

T he docidon in add to LIN Tiumbof procvsys Chnt rLre poiliolly lir 

ft.114: it innin ineniuq 

rhe cktt i L9n a!, 1.4r which pvnilable process will t1C c.we-uted hy hc 
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c.E6.;: d by an o};i i ibk 1.0 tii.ivice 
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• A program in execution 

▪ The "animated spirit" of a program 
• Thai entity to which a processor is assigned 

This concept should become clearer as we proceed. 

Long-Term Scheduling 
The long-term scheduler determines which programs are admitted to the system for 
proce5sing. 'Chun, it controls the degree of multiprogramming (number of processes 
in memory), Once admitted, a job or user program becomes a process and is added 
to the queue for the shout-term scheduler. Ii some. systems, a newly created process 
begins in a swapped-out condition, in which case it is added to a queue for the 
medium-term scheduler. 

In a batch system, or for the batch portion of a general-purpose operating 
system, newly Kubmitici jobs arc routed to disk and held in a hutch (ILLI21.1C. The long-
term scheduler creates processes from the queue when it c2lli. There are two deci-
sions involved here. First. the scheduler must decide that the operating system can 
take on one or more additional processes, Second :  the scheduler must decide which 
job or jobs to accept and turn into processes. The criteria used may include prior-
ity, expected execution time, and I/O requirements, 

For interactive programs in a time-sharing system, a process request gener-
ated when a user attempts to connect to the system. Time-sharing users are not sim-
ply queued up and kept waiting until the system can accept them. Rathe.r, the 
operating system will accept 11[1  horized comers until the system is sat tirffied. using 
some predefined measure of saturation. At that point, a connection request is met 
with a message indicating that the system is full and the user should try again later. 

Medium-Term Scheduling 

Medium-1cm scheduling is part of the swapping functiorli described in Section 8,3. 
Typically, the swapping-in decision is based on the need to manage the degree of 
muitiprogramming. On a system dial does not use virtual memory, memory man-
agement is also ;i n issue. Thus, the swapping-in decision will consider the memory 
requirements of the swapped-out processes. 

Short-Term Scheduling 

The high-level seheduier executes relatively infrequently and makes the coarse-
grained decision of whether or not to take on a new process, and which one to take. 
The short-term scheduler, also known as the climwArcht.r, executes frequently and 
makes the floc-grained decision of which job to execute next, 

Proems States 
undc•nitind the operation of the short-term scheduler, we need to consider 

the concept of a process state. During the lifetime of a process, its status will change 
a number of times. Its status at any point in time is referred to as a stare. The term 
state is used because id connotes that certain information exists ',hal defines the sta-
tus at that point. At minimum. there arc five defined states for a process (Figure &Tr 
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* New: A program is admitted by the high-level scheduler but is not yet ready 
to execute. The- operating system will initialize the process. moving it to the 
ready state. 

■ Ready: The prc.}eess is ready to execute and is awaiting access to the processor 

• Runninic The process is being executed by the processor. 
• Waiting: The process is suspended from execution waiting for some system 

resource. such as W. 
• Halted: The process has terminated and will be destroyed by the operating 

system. 

For each process in the system, the operating system must maintain informa-
tion indicating the state of the process and other information necessary for proeesi 
execution. For this purpose, each process is represented in the operating system by 
a process control block (Figure 8.8), which typically contains the following: 

• Identifier: Each current process has a unique identifier. 
• State: The current slate of the process (new. ready, and so on), 
• Priority: Relative priority level. 
• Program counter: The address of the next. instruction in the program to be exe-

cuted. 
• Memory pointers: The starting and ending locations of the process in ineinor.  

• Context data: These are data that are present in registers in the processor 
while the process is executing, and they will be discussed in Part Three. Fat 
now. it is enough to say that these data represent the "context" of the process. 
The. context data plus the program counter are saved when the process leaves 
the ready state. They are retrieved by the processor when it resumes execu• 
Lion of the process. 

• 110 status information:IncludeNoutstanding1/0 requests, 1/0 devices (e.g.. tap 
drives) assigned to this process, a list of files assigned to the process, and soon. 

• Accounting information: May include the amount of processor time and clock. 
ti me used time. limits, account numbers, and so on. 

Admit 
zit 

Figure 8.7 Five-State Process Model 
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Figure 13.1'1  Process Control 131(Kk 

When the scheduler accepts a new job or user request for execution, it creates 
a blank process control block and places the associated process in the new state. 
After the system has properly filled in the process control block, the process is trans-
ferred to the ready .  stale. 

Scheduling Techniques 

To understand how the operating system manages the scheduling of the various 
jobs in memory, let us begin by considering the simple example in Figure S.9. The fig-
ure shows how main memory is partitioned at a given point in time. The kernel of the 
operating system is, of course. always resident. In addition, there are a number of 
active processes. including A and 1 -3, each of which is allocated a portion of memory. 

We begin at a point in time when process A is running. The processor is exe-
cuting instructions from the program contained in A's memory partition. At some 
later point in time. the processor ceases to execute instructions in A and begins 
executing instructions in the operating system area. This will happen for one of 
three reasons: 

1. Process A issues a service call (e.g., an 110 request) to the operating system. 
Execution of A is suspended until this call is satisfied by the operating system, 

2. Process A causes an interrupt. An interrupt is a hardware-generated signal to 
the processor. When this signal is detected, the processor ceases to execute 
A and transfers to the interrupt handler in the operating system. A variety of 



A 
„Rini ," 

13 
"Running' 
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events related to A will cause an interrupt. One example is an error. such 
attempting to execute a privileged instruction. Another example is a timeout: 
to prevent -any onc process from monopolizing the processor. each procc9s is 
only granted the processor fora short period at a time. 

3. Some event unrelated to process A that requires attention causes an interrupt. 
An example is the completion of an I.O operation. 

In any case, the result is the following. The processor saves the current con-
text data and the program counter for A in A - s process control block and then 
begins executing in the operating srstern. The operatinu swum. may perform sow 
work, such as initiating an NO operation. Then the short-term-scheduler portion of 
the operating system decides which process should he executed next. in this exam-
ple, B is chosen. The operating s ,... ,stern instructs the processor to restore 13's context 
data and proceed with the execution of B where it left off. 

This simple example highlights the basic functioning of the short-term sched-
uler. Figure 8.1.0 shows the major elements of the operating system involved in the 
multiprogramming and scheduling of processes. The operating system receivo 
control of the processor at the interrupt handler if an interrupt occurs and at the 
service-call handler if a service call occurs. Once the. interrupt or service call is 
handled, ihe short-ierin scheduier is. invoked to pick a procesf, for execution. 

Operating system 

Isenfice. handier 

Operating system 
In 

;Control 

Service liandler  

1172 .rn.ipt MckLeMhder  

A 
'rleVaiting'  

Operating system 

I.  &Tyke handl7:1r  
I  .5cIt er.  

snrertupt  

A 
lArairing" 

Other partit Ims 

Ready" 
11 
"Rudy"' 

Other partitions Other partitions 

Figure 8.9 Rticduling Exarnpic 
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To do its job, the operating system maintains a number of queues. Each queue 
is si mply a waiting list of processes waiting for some resource. The long, -term queue 
is a list of jobs waiting 1. 0 use the system. As conditions permit. the high-level sched-
uler will allocate memory and create a process rOT 0111U cif the w ii1ing itcrns. 
shori-terrn queue consists of all processes in the ready state. Any one of these 
processes could use the processor next. It is up to the short-term scheduler lo pick 
one. Generally, this is done with 4i round-robin algorithm, giving each process some 
ti me in turn.. Priority Levels may also be used  there is an //U geeveee for each 
I/O device. More [Ion one process may request the. use of the same [10 device. All 
processes waiting to use. each device are lined up in that device`s  

Figure 8.11 suggests how proCC,MS progress through the computer under the 
control of the operating system. Each process request (hatch job, user-defined inter-
Active job) is placed in the long-term queue. As resources become available, a 
process request becomes a rarocvs ,s anti is then placed in the ready state and put in 
the short-term queue. The processor alternates between executing operating system 
instructions and executing user processes. While the operating system is in control, 
it decides which process in the short-term Llueue should be cxceutecl nexl. When the 
operating system has finished its immediate tasks. it turns the processor over to the 
ch.on.n process. 

As w..as mcntiuncd carlicr, a process being executed may he suspended for a 
variety of reasons. If it is suspended becaun: the process i -NuQsis 11(1 then it it 
placed in the appropriate  queue. if it is suspended because of a timeout or 
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Long-ti rrn 
queue 

End Admit 

Figure 8.11 Queuing Diagram Repres;2ritation of Processor Scheduling 
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because the operating system must attend to pressing business, then it is placed in 
the ready f4 aW and put into the short-term queue. 

we. meni ion that the operating system also manages the 1/0 queues, 
a n IIO opermion is compicled, the operating system removes the satisfied 

process from that I/O queLle a nri places iI in the short-lerm queue. It then selects 
another t.441.ing process (if any) and signals for the 1/0 device to satisfy that 
process's request. 

$.3 MEMORY MANAGEMENT 

In uniprogramming sVstem, main memory is divided into two parts: one part for 
I he operating system (resident monitor) and one part for the program currently 
being executed. In a multiprogramming system, the "user" part of memory is sub-
divided to accommodffie multiple processes. The task of subdivision is carried out 
dynamically by the operating system and is known as memory mbrnagemmt, 

Effective memory management is vital in a multiprogramming s!....stain. II only 
a few processes are in mcmorv, then for much of Lhe time all of the processes will 
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be waiting for I.10 and the processor will he idle. Thus, memory needs to be allo-
cated efficiently to pack as processes into memory as possible. 

Swapping 

Referring hack to Fiaire 8.11. we have discussed three types 01' w,.Le.L.Les: the long-
term queue of requests for new processes, the short-1EY1T1 queue of processes ready 
to use the processor, and the various l/O.queues of prouesses that are not ready to 
use t h e processor_ Recall 1h.,r the reason for this elaborate machinery is that 
11 0 activities arc much slower than computation and therefore 1he processor in a 
uniprogramming system is idle most of the time, 

But the arrangement in Figure 8.11 does not entirely solve the problem. It is 
true that, in this case, memory holds multiple processes and that 11 -ic processor can 
move to another process when one process is waiting, But the processor is so 
much faster than 110 that it will be common for all the processes in memory to be 
waiting on I/0. Thus, even with multiprogramming, a processor could be idle mom 
of the lime. 

What to do? Main memory could be expanded, and Ni3 he able to accommo-
date more processes. But there are two flaw4, in this approach. First, main memory 
is expensive, even today. Second, the appetite of programs for memory has grown 
as fast as the cost of memory has dropped. So larger memory results in larger pro-
cesses, not more processes. 

Another solution is swapping., depicted in Figme 8,12. We have a long-germ 
queue of process requests, typically stored on disk. These are broughl in, one al a 
ti me, as space becomes available. As processes are completed. they are moved out 
of main memory. Now the situation will arise that none of the processes in memory 
are in the ready state  all are waiting on an I/O operation .). Rather than remain 
idle, the processor Nwaps one of these processes back out to disk into an iniermedi-
ute queue. This is a queue of existing processes that have been temporarily kicked 
out of memory, The operating sysi cm then brings in another process from the inlet - - 
mediate queue, or it honors a new process request from the long-term queue. Exe-
cution then continues with the newly arrived process. 

Swapping. however, is an 1I0 operation, and therefore there is the potential/ 
for making the problem worse. not better. But because disk I/O is generally the 
fastest 110 on a system (e.g., compared with tape or printer I/O), swapping will 
usually enhance. performance. A more sophisticated scheme, involving virtual mem-
ory. improves performance over simple swapping. This will be discussed shortly. Bill 
first, we must prepare the ground by explaining partitioning and paging, 

Partitioning 

The simplest scheme for partitioning available memory is to use fixed -size porritiom, 
as shown in Figure &]3. Note I hat, although the partitions are of fixed size, they 
need not be of equal sixe. When a process is brought into memory, it is placed in the 
smallest available partition that will hold it. 

Even with the use of unequal fixed-size partitions, there will be wasted mem-
ory. Jo most cases, a process will not require exactly as much memory as provided 
by the partition_ For example, a process that requires 3M bytes of memory would 
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be placed in the 4M partition of Figure 8.13b, wasting 1 M that could he used by 
another process, 

A more efficient approach is to use variable-,sire parritions, When a process is 
brought into memory, is is allocated exactly EIS much memory as it requires and na 
more. An example, using 64 Mbytes of main memory, is shown in Figure 8.14. 

main memory is emply% except for the operating system (a). The. first three. 
processes are itiaded in. startilig where the operating system ends and occupying just 
enough space for each process (b, c, d). This leaves a "hole" at the end of memory 
that is too small for a fourth process. At some point, none of the processes in him-
or is ready. The operating system .iw4ips out process 2 (e), which leaves sufficient 
room to load a new process, process 4 (1). Because process 4 k smaller than proce 
2. another small hole is created. Later, a point is reached at which none o the 
processes in main memory is ready, but process 2% in the Ready-Suspend state, is 
available. Because there is insufficient l'00111 in memory for process 2, the operating 
system swaps process l out (g) and swaps process 2 back in (h)„ ,ks this example 
shows, this method starts out well, but eventually it leads to a situation in which 
there are a lot of small holes in memory. As time goes on. memory becomes more 
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and more. fragmented, and memory utilization declines: One technique for over- 
coining this problem is conspaction: From time to time. the operating system shifts 
the proccnIseF ,; in memory to place alt the lice memory together in one block. This is 

ti me-consuming procedure, wasteful of inocessor time. 
Before we consider ways of dealing with the shortcomings of partitioning, we 

must clear up one loose end. If I he 17i..aLlor considers Figure 8.14 for a moment, it 
should become obvious that a process is not likely to he loaded into the same place 
in main memory each time it is swapped in. Furthermore, if compaction is used, 
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and physical addresses. A logical address is expressed as a location relative to the 
beginning of the program. Instructions in the program contain only logical ad-
dresses. A phyNicall addrvis is an actual iocatien in main memory. When the proces-
sor executes a process, it automatically converts from logical to physical address by 
adding the current starting location of the process, called it base address, to each 
logical addrcs.s..lhis is another exainpte of a processor hardware feature designed 
to meet an tepertrtiit syS.leitl requirement. The exact nature of this hardware feature 
depends on the memory management strategy in use. We will see several ex:In -Epics 
later in this chapter. 

Paging 
Both unequal fixed-size and variable-sire purlilions are inefficient in the use of 
memory. Suppose, however, that memory is partitioned into equal fixed-size chunks 
that are relatively small, and that each process is also divided into small riNed-sive 
chunks of some size. Then the chunks of a program, known as pages, could he 
assigned L0 available chunks of memory. known asframt!s, or page frames. At most. 
then, the wasted space in rnemor,. for that process is a fraction of the last page. 

Figure 8.15 shows an example of the use of pages and frames- At a given point 
in lime, some: of I ht frames in memory are in use and some are INe. The list of free 
frames is miiin tai ined l  the operati[ts s!,.stetn, Process A, stored on disk, consists of 
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four pages. When it comes time to load this process, t H 4  Pe rating system finds four 
free frames and loads the tour pages of the process A into the four frames. 

Now suppose, as in this exampie, that the,re ore nog sufficient unused corn12.u-
ous frames to hold the process. Does this prevent the operating system frorn load-
ing A'? The answer is no, because we can once again use the concept of logiol 
address. A simple base address will no langer suffice. REli her, the operating sri...:11 
rnziiiitailiS a page table for each process. The pogo table shows the frame location for 
each page 61' the process. Within the program, each logicai address consists of 

a 
 page 

number and a relative address within the page. Reeall that in the case of simple par. 
tiiioning, as logical address is the location of a word relative to the beginning u L the 
program; the processor translates ;hat into o physical address. With paging, the 

address translation is still done by processor hardware- The procc. 
sor must know how to .ievess the page table of the current process. Presented wi1h 

logical address (page number, relative address}, the processor uses the pa 
table ;o produce a physical address (frame number, relative address). An exampl .2 
is shown in Figure 8.16, 
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This approach solves the problems raised earlier. Main memory is divided into 
many small equal-size frames- Each process is divided into flume-size pages: Smaller 
processes require fewer pages, larger processes require more. When a process is 
brought in, its pages are loaded into available frames, and a page table is set up. 

Virtual Memory 

Demand Paging 
With the use of paging, truly effective multiprogramming systems came into 

being. Furthermore, the simple tactic of breaking a process up into pages led to the 
development of another important concept; viii Wi I mil -Wiry. 

To understand virtual mcniory, we must add a refinement to the paging 
scheme just discussed. That refinement is demand pix ing. which simply means that 
each page of a process is brought in only when it is needed, that is, on demand. 

Consider a large process, vork .sisLing of a lone; program plus a number of arrays 
of data. Over any short period of time, execution may be confined to a small section 
of the program (e.g., a subroutine), and perhaps only one or 1 WO arrays of data are 
being used. This is I he principle cif Ideality, which we introduced in Appendix 4A. 
/1 would clearly be wasteful to load in dozens of pages for that process when only a 
few pages will be used before the program is suspended, We can make better use of 
memory by loading in just a few pages, '['hen, if the program branches to an instruc-
ti on on a page not in main memory, or if the program references data on a page not 
in memory, a page fault is triggered. This tells the operating system to bring in the 
desired page. 

Thus, at any one time, only a few pages of any given process are in memory, 
and therefore more processes can be maintained in memory. Furthermore, time is 
saved because unused pages are not swapped in and out of memory. I lowever, the 
operating system MUM be clever aboni how u rnanmus this scheme. When it brings 
one pagc in, it must throw another page out. If it throws out a page lust before i1 is 
about to be used, then it will just have to go get that page again a Imost immediately. 
Too much of this leads to a condition known aiti thrashing: The processor spends 
mosr or its time swapping pages rather than executing instructions. The avoidance 
of thrashing was a major research area in the 1970s and led to a variety or complex 
but effective algorithms. In essence, the operating system tries Lu guess, based on 
recent history', which pagc.s are least likely to be used in the near future. 

With demand paging, it is not necessary to load an entire process into main 
memory. This fact has a remarkable consequence: lir Es pos.vihie fw IF prmess try be 
larger than all of main memory-  One o1 the most fundamental restrictions in pro-
gramming has been lifted. Without demand pagin g . a programmer must be acutely 
aware of how much memory is available. If the program being wri I l en is too large, 
the programmer must devise ways lo structure t he program into pieces that can be 
loaded onc at a time. With demand paging, that job is left to the operating system 
and the hardware. As far as the programmer is concerned, he or she is dealing with 
a huge memory, the size associated with disk storage_ 

Because a pawXSN L.NE:„Culi,!;; only in miin memory, that memory is referred to 
as real memory. But a programmer or user perceives a much larger memory—I hat 
v.rhich is allocated on the disk. This latter is therefore referred to as virtual memory. 
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Virtual memory allows for very effective multiprogramming and relieves the user of 
the unnecessarily tight constraints of main memory. 

Page Table Structure 

The basic mechanism for reading a word from memory involves the transla-
tion of a virtual, or logical, address. consisting of page number and offset, into a 
physical address, consisting of frame number and of fs;et, using a page table.. Because 
the page table is of variable length, depending on the size of the process, we cannot 
expect to hold it in registers. Instead, it must be in main memory to be accessed. Fig-
ure 8.16 suggests a hardware implementation of this scheme. When a particular 
process is running, a register holds the starting address of the page table for that 
process. The page number of a virtual address is used to index that table and look 
up the corresponding frame number. This is combined with the offset portion of the 
virtual address to produce the desired real address. 

In most systems, there is one page table per process. But each process can 
occupy huge amounts of virtual memory. For example, in the VAX architecture. 
each process can have up to 2 31  = 2 GBytes of virtual memory. Using 29. = 512-byte 
pages, that means that as many as  page table entries are required per VOLp 
Clearly, the amount of memory devoted to page tables alone could be unacceptably 
high. To overcome this problem. most virtual memory schemes store page tables in 
virtual memory rather than real memory This means that page tables are subject 
to paging just as other pages are. When a process is running, at least a part of its 
page table must be in main memory, including the page table entry of the currently 
executing page. Some processors make use of a two-level scheme to organize large 
page tables. In this scheme, there is a page directory. in which each entry points to 
a page table. Thus, if the length of the page directory is X, and if the maximum 
length of a page table is Y, then a process can consist of up to X X Y pages. Typi 
cally, the maximum length of a page table is restricted to be equal to one page. We 
will see an example of this two-level approach when we consider the Pentium El 
later in this chapter. 

An alternative approach to the use of one- or two-level page tables is Ihe usc 
of an inverted page table structure (Figure 8.17). This approach is used on IBM's 
AS141K) and on all of IBM's RISC products, including the PowerPC. 

In this approach. the page number portion of a virtual address is mapped into 
a hash table using a simple hashing function. =  'The hash table contains a pointer to 
the inverted page table, which contains the page table entries. With this structure. 
there is one entry in the hash table and inverted page table for each real memory 
page rather than one per virtual page. Thus. a fixed proportion of real memory is 
required for the tables regardless of the number of processes or virtual pages sup- 

A hash ['unction maps numbers in 1112 range ll through M into number:: in the 74ingc through A', who-6 
> .V. The output of the hash function is used as an index into ihc hash table. Since more thar., 

input maps to the same output, it is passible for art iltpul item In map to a hash in ble entry that is ahvadv: 
occupied. In that case, the new item must merthrw ink} }In ocher hash table location,  1 .yriCtilly. the new 
item is placed in the firsl succeeding empty space. .and a pointer from the original location is provided to 
chain the entries together. Sec [STALL)! J for a more tleiailed discussion or hash tables. 
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ported. Because more than one virtual address may map into the same hash table 
entry, a chaining technique is used for managing the overflow. The hashing. tech• 
nique results in chains that are typically short—either one or two entries, 

Translation Lookaside Buffer 
In principle, then, every virtual memory reference can cause two physical memory 
accesses one to fetch the appropriate page table entry, and one to fetch the cicwinJ 
data, Thus, a straightforward virtual memory scheme would have the effect of dou-
bling the memory access time_ To overcome this problem, most virtual memory 
schemes make use of a special cache for page table entries. usually called a transla• 
lion lookaside buffer (TLB). This cache functions in the same way as a memory 
cache and contains those page table entries that have been most recently used. Fig-
ure 8.18 is a flowchart that shows the use of the TLB. By the principle of locality. 
most virtual memory references will be to locations in recently used pages. There-
fore. most references will involve page •table entries in the cache. Studies of the 
VAX . 11.13 have shown that this scheme can significantly improve perform= 
ICLAR85, SATYSI]. 

Note that the virtual memory mechanism must interact with the cache system 
(not the 'ILE; cache, but the main memory cache). 'Phis is illustrated in Figure 819. 
A virtual address will generally be in the form of a page number, offset. First, Ihe 
memory system consults the TLB to see if the matching page table entry is present, 
If it is. the real (physical) address is generated by combining the frame number with 
the offset. If not, the entry is accessed from a page table. Once the real address is 
generated, which is in the form of a tag and a remainder (see Figure 4.17), the cache 
is consulted to see if the block containing that word is present. If so, it is returned 
to the processor, If not, the word is retrieved from main memory. 

The reader should be able to appreciate the complexity of the processor hard-
ware involved in a single memory reference. The virtual address is translated into a 
real address. This involves reference to a page table. which may be in the TLB, in 
main memory, or on disk. The referenced word may be in cache, in main memory, 
or on disk. In the latter case, the page containing the word must be loaded into main 
memory and its Wick loaded into the cache. In addition, the page table entry for 
that page must be upda I ed. 

Segmentation 
There is another way in which addressable memory can be subdivided, known as 
segmernathm. Whereas paging is invisible to the programmer and serves the purpose 
of providing the programmer with a larger address space, segmentation is usually 
visible to the programmer and is provided as a convenience for organizing programs 
and data, and as a means for associating privilege and protection attributes with 
instructions and data. 

Segmentation allows the programmer to view memory as consisting of multi-
ple address spaces or segments. Segments are of variable, indeed dynamic, size_ Typ-
ically, the programmer or the operating system will assign programs and data to 
clifferent segments, There may he a number of program segments for various types 
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L [I si mplifies the handling of growing data structures- if the programmer tioe.t. 
not know ahead of time how large a particular data structure will becOrnc,it, 
is not necesar!,. ,  to guess- The. data structure can he assigned its own scgalept,:, 
and the operating system will expand or shrink the segment as needed. 

2.. It allows programs to he altered and recompiled independently. without 
requiring that an entire !.51 of program* he relinked and reloaded. Again, this 
is accomplished using multiple segments. 

3, It lends itself to sharing among processes. A programmer can place a utilit:.• 
program or a uscful table of data in a segtnent that can be addressed he 
other processes. 

4. II leads itself I o protection. Reeause a segment can be constructed to contain 
a well-defined set of programs or data, the programmer or a system adminis-
trator can assign ac(xss privileges. in a convcnient fashion. 

These advantages are not available with paging, which is imjiNible to Ilse pro-
grammer, On the other hand, we have seen that paging provides for an efficient 
form of memory management.  combine the advantages of both, some systernh 
are equipped with the hardware and operating system software to provi& both. 

1 
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8.4 PENTIUM II AND POWERPC MEMORY MANAGEMENT 

Pentium II Memory Management Hardware 
Since the introduction of the 32-bit • architecture, microprocessors have evolved 
sophisticated memory management schemes that build on the lessons learned with 
medium- and large-scale systems. In many cases, the microprocessor versions are 
superior to their larger-system antecedents. Because the schemes were developed 
by the microprocessor hardware vendor and may he employed with a variety of 
operating systems, they tend to he quite general purpose. A representative example 
is the scheme used on the Pentium 11. The Pentium 11 memory-management hard-
ware is essentially the same as that used in the Intel 80386 and NO486 processors, 
with some refinements. 

Address Spaces 

The Pentium II includes hardware for both segmentation and paging Both mech-
anisms can be disabled, allowing the user to choose from four distinct views of memory: 

• Unsegmented unpaged memory: In this ease, the virtual address is the same as 
the physical address. This is useful, for example, in low-complexity, high-per-
formance controller applications. 

■ Unsegmented paged memory: Here memory is viewed as a paged linear 
address space. Protection and management of memory is done via paging. Thi, 
is favored by some operating systems (e.g., Berkeley. UNIX). 

• Segmented unpaged memory: Here memory is viewed as a collection of logi-
cal address spaces. The advantage of this view over a paged approach is that 
it affords protection down to the level of a single byte. if necessary. Further-
more, unlike paging, it guarantees that the translation table needed (the seg-
ment table) is on-chip when the segment is in memory. Hence, segmented 
unpaged memory results in predictable access ti mes. 

• Segmented paged memory: Segmentation is used lo define logical memory 
partitiOns subject to access control, and paging is used to manage the alloca-
tion of memory within the partitions. Operating systems such as UNIX Sys-
tern V favor this view. 

Segmentation 

When segmentation is used, each virtual address (called a logical address in 
the Pentium II documentation) consists of a 6-bit segment reference and a 32-bit 
offset. Two hits of the segment reference deal with the protection mechanism, leav-
ing 14 bits for specifying a particular segment. Thus, with unsegmented memory, the 
user's virtual memory is 2 32  = 4 GBytes. With segmented memory, the total virtual 
memory Taco as seen by a user is 2'' = 64 terabytes (TBytes). The physical address 
space employs a 32-bit address for a maximum of 4 Bytes. 

The amount of virtual memory can actually be larger than the 6 ,4 - Myles. This 
is because. the processor's interpretation of a virtual address depends on which 
process is currently active. Virtual address space is divided into two parts. One-half 
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of the virtual address space (8K segments , X 4 CiBytes) is global. shared by all pro- 
cesses; the remainder is local and is distinct for each process. 

Associated with each segment are two forms of protection: privilege level and 
access attribute. There are four privilege levels from most protected (level 0) to least 
protected (level 3), The privilege level associated with a data segment is its "classi-
fication"; the privilege level associated with a program segment is its "clearance." 
An executing program may only access data segments for which its clearance level 
is lower than (more privileged) or equal to (same privilege) the privilege level of the 
data segment. 

The hardware does not dictate how these privilege levels are to he used; this 
depends on the operating system design and implementation, II was intended that 
privilege level I would be used for most of the operating system, and level (I would 
he used for that small portion of the operating system devoted to memory man-
agement, protection, and access control. This leaves two levels for applications. In 
many systems, applications will reside at level 3, with level 2 being unused. Special-
ized application subsystems that must be protected because they implement their 
own security mechanisms are good candidates for level 2. Some examples are data• 
base management systems, office automation systems, and software engineering 
environments. 

In addition to regulating access to data segments, the privilege mechanism lim-
its the use of certain instructions. Some instructions_ such as those dealing with 
memory-management registers, can only be executed in level O. 1/C) instructions can 
only be executed up to a certain level that is designated by the operating system: 
typically. this will be level 1. 

The access attribute of a data segment specifies whether read—write or read-
only accesses are permitted. For program segments. the access attribute specifies 
readlexecute or read-only access. 

The address translation mechanism for segmentation involves mapping a vir-
tual address into what is referred to as a linear address (Figure 8.20b). A virtual 
address consists of the 32-hit offset and a 16-hit segment selector (Figure 8,20a). The 
segment selector consists of the following fields: 

• Table Indicator (Ti): Indicates whether the global segment table or a local seg-
ment table should be used for translation. 

• Segment Number; The number of the segment. This serves as an index into 
the segment table. 

■ Requested Privilege Level (RPL): The privilege level requested for this access. 

Each entry in a segment table consists of t54 bits, as shown in Figure 8.20c. The 
fields are defined in Table 8.5. 

Paging 

Segmentation is an optional feature and may be disabled. When segmentation 
is in use, addresses used in programs are virtual addresses and are converted into 
linear addresses, as just described. When segmentation is not in use, linear addresses 
are used in programs. In either case, the following step is to convert that linear 
address into a real 32-bit address. 
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To understand the structure of the linear address, you need to know that the 
Pentium II paging mechanism is actually a 1 ,N4P-level table lookup operation. The 
first level is a page directory, which contains up to 1024 entries. This splits the 4- 
(i13!,,te linear memory space into 1024 page groups, each with its own page table. 
and each 4 MBytes in length, Each page table contains up to 1024 entries; each entry 
corresponds to a single 4-kByteyage. Memory management has the option of using 
one page directory for all processes, one page directory for each process, or some 
combination of the two. The page directory for the current task is always in main 
memory. Page tables may be in virtual memory. 

Figure 8.20 shows the formats of entries in page directories and page tables, 
and the fields arc defined in Table 8.5. Note that access control mechanisms can be 
provided on a page or page group basis. 

The Pentium H also makes use of a translation lookaside buffer. The buffer 
can hold 32 page table entries. Each time that the page directory is changed. the 
buffer is cleared. 

Figure 8.21. illustrates the combination of segmentation and paging mecha-
nisms. For clarity, the translation lookaside buffer and memory cache mechanisms 
are not shown. 

Finally. the Pentium 11 includes a new extension not found on the 80386 or 
80486. the provision for two page sizes. If the PSE (page size extension) bit in con-
trol register 4 is set 10 1, then the paging unit permits the operating system pro-
grammer to define a page as either 4 kByte or 4 MByte in size. 

When 4-MByte pages are used, there is only one level of table lookup for pages. 
When the hardware accesses the page directory, the page directory entry (Figure-8,200 
has the PS bit set to 1. In this case, bits 9 through 21 are ignored and hits 22 through 31 
define the base address for a 4-MByte page in memory. Thus, there is a single page table. 

The use of 4-MByte pages reduces the memory-management storage require-
ments for large main memories. With 4-KByte pages, a full 4-GByte main memory 
requires about 4 MBytes of memory just for the page tables. With 4-M Byte pages, 
a single table, 4  Bytes in length, is sufficient for page memory management. 

PowerPC Memory-Management Hardware 
The. PowerPC provides a comprehensive set of .addressing mechanisms. For 32-bit 
i mplementations of the architecture, a paging scheme with a simple segmentation 
mechanism is implemented. For 64-bit implementations, paging and a more power-
ful segmentation mechanism are supported. In addition, for both 32-bit and 64-hit 
processors there is an alternative hardware mechanism, known as block address 
translation. Briefly, the block addressing scheme is designed to address one draw-
back of paging mechanisms. With paging, a large number of pages may be fre-
quently referenced by a program. For example, programs that use OS tables or 
graphics frame buffers may exhibit this behavior. The result may he that frequently .  
used pages are constantly paged in and out. Block addressing enables the processor 
to map lour large blocks of instruction memory and four large blocks of data me.m-
ory in a way that bypasses the paging mechanism. 

A discussion of block addressing is beyond the scope of this chapter. In this 
subsection_ we concentrate on the paging and segmentation mechanisms of the 32-
bit PowerPC. The 64-bit scheme is similar, 
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Figure 8.22 liovr.cr PC 32-Bit Nle.niory-Ivlarragerns?ht Formats 

The 32-bit PowerP(' makes use of a 32-bii effective address (Figure. 8.22a), 
The address includes a 12-bit byte selector and a 16-bit page identifier. Thus, 
2 12  = 4 KByte pages are used. Up to 2 16  = 64K paes per segment arc allowed. Four 
bits of the address are used to designate one of i 6 seRnient registers. The contents 
of these registers are controlled by the operating sysi ern. Each segment register 
includes access control hits and a 24-bit identifier, so that the 32-bit affective address 
maps into a f32-bit virtual Atiress (Figure 

The PowerPC makes use of a single inverted page table. The virtual address 
is used to index into the page table in the following manner. First, a hash eode. is 
computed as racy's: 

1-t(U , _18)  SiD(5 23) e vpN(t) 

The virtual page number in the virtual address is padded on the is [`t (most sig- 
nificant end) with three binary zeros to form a 19-bit number. Then a bii-by-bi I 
exclusive-or is calculated of that number and the 1.9 right-most bits of the virtual seg- 
ment IL) to form 19-bit hash code. The 'able is organized as rt groups of 8 entries, 
From 10 to 19 hits of the hash code (depending on the size of the page table) arc 
used to select one of the groups in the table. The memory-management hardware 
then scans the eight entries of the group to test for a match with the virtual address. 

.r() do the match, each page table entry includes the virl dal segment TI) and 
the left-most 6 bits of the. virtual page numbcr, called the abbreviated page index 
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(because at least 10 hits of the 6-bit virtual page number 411 w ,HyS participate in the 
hash to select a page iablc.t entry group, only an abbreviated form of the virtual pup 
number need be carried in the page table entry to match the virtual address). If 
here is a match, then the 20-bit real pge number from the addres.5 is concatenated 

with the lower 12 hits of the drective address to form Ihe 32-bit physical address to 
be accessed. 

If there is no match, then the hash codex complemented to produce a new 
page table index that is in the some relative position at the opposite end of the 
table. This group is Ihcn scanned for a match. if no match is found, a page fault 
interrupt occurs. 

Figure 8.23 Pows:rPC 32-Lilt AtitIr Translation 
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Table 84 1.3 43.tvel- PC tyleinory Management Paranimors 
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Iiagi ticcurS. 
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This hit is rL L to I by the prau2ssor when 3 write opratiors is i corrusp.sriding 

( KC 

I M4. spitz 
4G=-si: Usti Iv rice-back use write-Enroll h 
1.1.1: uiching next Ii hibiLed; [::I; cachininhibitcal 
M -  not shared  shard memory. 
O .0: rial guald.r.:4.1 memory; 6=1: gnarlwd 

P ►#i Prolottion. (PP) bits 
AIXIL'NS Ce.slI4t01 hft ILIStN.1 With K Nis Flom ss2gimui y.L.F.3111311t .britrs.,  Ir! 
define access rights. 

fip.ru K.22 shows the !oaic of the addresti Iranslation mechanism. and Figure 
8.23 shows the formats of the effective address, page table entry, and real address. 
Finally. Table S,16 dctine ih pm-an -lea:Is in the page table entry. 

The Memoty management scheme is designed k he dp rardly compat- 
ible vvith the 32-bit implementation. In eStiC Dec, all eficinive. addresses, general reg-
isters, and branch address registers.; are. extended on the left to 64 bits. 

8.5 RECOMMENDED READING !LIND WEB SITES 1: 

1st-Auld covers Lhc. topics <rt this draw ex in cktail.. 

Sta..IIhtp, W. Oppratin8 Systems, InEerntris gad PriLicipks, 4th edition, 
Upper Saddle River, NJ; Prentict. Half. 2Kl. 
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Recommended Web sites: 

• Operating System Project Information: Links to OS projects and research 

• ACM Special 6nerest Group on Operating Systems: Information on SIGOPS publica. 
dons and conferences 

• IF:F.E Technical Committee on Operating Systems and Applications: Includes an online 
newsletter and links to other sites 

• Review of Operating Systems: Comprehensive review of commercial, free. research, 
and hi Fnt'ty Otis 

8.6 KFY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terms 

process state 
real memory 
resident monitor 
segmentation 
short-term scheduling 
swapping 
thrashing 
time-sharing; system 
translation lookaside buffer 

(T LB) 
utility 
v irtual memory 

Review Questions 
8.1  What is an operating system? 

l.ist and briefly define the key services provided by an operating system. 
8.3 List and brielly define the major types of OS scheduling. 
8.4 What is the difference between a process and a program? 
8,5 What is the purpose of swapping? 
8.di  If a process may be dynamically assigned to different locations in main memory, what 

is the implication for the addressing mechanism? 
8.7 Is it necessary for all of the pages of a process to be in main memory while the process 

is executing? 
81 Must the pages of a process in main memory be contiguous? 
8.9 Is it necessary for the page's of a process in main memory to be in sequential order? 

8.10 What is the purpose of a translation lookaside buffer? 
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Problems 

8.1  Suppose that we have a multiprogratinned computer in which each job tiriil idequic.21. 
characteristics. In one iJortipuiaIiott period, T. far a job, half the lime is spent in 1.0 
and the other half in proccy-.01....iclivity. Filch job runs for a total 01N Twiods. Assume 
that a simple round -robin pliolity is used. and that I.10 opermioir, can overlap with 
processor operation. De.figh... We following quantities.; 

■ Tornaoloild ti me - actual time to complete a job 
■ liroughput - average number of jobs completed per time period T 
■ Processor utilization - percentage or time tllat the processor is active (not waiting). 

Compute these quantities for orw, tv,o, and four simultaneous jobs. assuinifig that the 
period T is distributed in each of 1 he following ways; 
A. 1..0 first half. processor second half 
h. 110 first and fourth quarters, proixssur secoild and third quarters 

8.2 An 110.bound program is ow I hai, if run alone, would spend more time waiting for 
I10 than using the prorx..4s1.1. A p3ticessor-bound program is the opposite. Suppose. a 
short-term scheduliri.1 iayon those programs that have used little proces- 
sor time in the reo...ni psi. I why this algorithm favors PO-hound programs 
and yet does nut per denyprocessor ti me 10 processor-bound programs. 

8.3 A program computes the row sums 

C.,  = CI.: 

; I 
of an array A that is ID° by 10th Assume that the computer uses demand paging with 
a page size of Lon° ,vorth, and that the amount of main memory allotted for data is 
five page frames. Is there any difference in the page 'Fri ult rata if A were stored in vir-
tual nu.tmory by rows or columns'? Explain. 

8.4 Suppose the page table. for the process currently executing on the processor look; like 
the following. All numbers are derima], everything is numbered starting from zero, 
and all addresses are memory byte addresses - The page size is 1021 bytes. 

r 
Virtual Pap 

hit 
 

Valid hu Reference hit 
lumber 

[nudity bill 
frame 

number 

0 I I 0 4 

1 I 1 1 1 

a 0 0 

I. b 1) 2 

4 El D 0 — 

5 L I.) I c.I 

a- Describe exactly how. in genera]. a virtual address generated by the CPU is Mins-
lated into a physical main memory address, 

b. What physical address. it .kluy, would each or the following virtual addrows corre-
spond to'? (Du not try 105 handle any page faults, if any.) 
(i) 10.32. 

2.22l 
j41)9 
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Give reasons that the page size in a virtual memory system should be neither very small.. 
nor very large. 

8.6 The following sequence of virtual page numbers is encountered in the course uf axe—
cation on a competes' with virtual memory; 

3 4 2 6 4 7 1 3 2 ri 3 5 L 2 3 

Assume that a least recently used page replacemeni policy is adopted. Plot a graph of 
page hit ratio (fraction of page references in which the page is in math memory) as a • 
function or main•memory page eapacily n ror 1  01  8. Assume that main memory is 
initially empty. 

/4.7  in the VAX compute', lisor riage tables are 'located at virl Lid! addresses in the sys = 
space. 1i.Vhas is the advaniage of having user page tables in virtual rather than main 
memory? IrVfial is the disadvantage? 

8,8 Consider a computer system with both segmentation and paging. When a segment is 
in memory, some words are wasted on the last page. In addition. for a segment sizes. 
and a page size p, there are s/p 

 page 'able entries. The smaller the taupe size, the le s5 .  
waste in the last page of the segment, but the larger the page table. What page Mire 
minimizes the total overhead? 

8.9 A computer has a c.,ache. main memory, and a disk used ror virtual minor.... If a ref-
erenced word is in the cache, 20 ns are required to access ii. l r it is in inain memory 
but not ill the c- Ht - Feu, 60 ns are needed to ltlad it into Ihe Lathe, and then the reference 
i started nain. El the word is not in main memory, 12 ms are required to fetch the 
v,:iird four! ilkL. followed by 60 ns to copy it to the cache, and then the reference 

started again. The cache hit ratio is 0.9 and the main-memory hit ratio is 0.6. What is 
il.K1 average time in ns required to access a referenced word on this system? 

8.10 Assume a task is divided into rout' equal-sized segments, and that the system builds 
an eight-entry page descriptor table ror each segment. Thus, the *sleet has a combi-
nation of segmentation and paging. Assume also that the page ske is 2 Kbytes. 
B. What is the maximum size of each segment? 

b. What is the maximum logical address space for the task? 

e. Assume that an clement in physical location 00021ABC is accessed by this task. 
What is the format of the logical address that the task generates for it? What k the 
Maximum. physical address space for the system? 

8.11 Assume a microprocessor capable oi' accessing up to 2' byi es of physical main mem-
ory. It implements ooe s• :I.: merited logical address space 471 maximum size 2 . ' 1  bytes. 
Each instructiori comairr-. IIre whole two-part addre.1... ,..1 ernal memory management 
units (MMUs) art' krnvi  whose management sehenie assigns contiguous blocks of 
physical memory c31 ked size 2 .' 3  bytes to segments. .i'he starting physical address of a 
segthimt is always it isiltile by 1024. Show the delailed intereonnoction of the ester-
''a1 mapping mechanism that converts logical addresses to physical .  addresses using 

appropriate number of MMUs. and show the detailed internal structure of an 
Mhil (assuming that each MMU contains a 121-entry directly mapped segment 
descriptor cache) and how each Mfy1l... 1  is selected. 

8.12 Consider a paged logical address space (composed of 32 pages of 2 Kbytes each) 
mapped into a 1-MByte physical memory space. 
a, What is the format of the processor's logical address? 
h. What is the length and width of the page table (disregarding the. "access rights" 

e, What is the effect on the page Table it the physical mentors? ,•pac.e is reduced by 
half? 
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Chapter 9 Computer Arithmetic 
Chapter 9 examines the funelinuality of the ALU and focuses on the rort-
sentiltion of num hers and techniques for implementing ,iiriihnictic operations. 
Processors typically support two types of arithmetic: integer, or fixed point, 
and floating point. For both c4isei;, the Chapter first examines the represn-
ualion of numbers and i hen discusses arithmetic openaii -pirs..1.9hc important 
I  754 floating-point standard is examined in clutail. 

Chapter 10 Instruction Sets: Characteristics and Functions 

From a programmer's point of view, the best way to understand the op'] k-
iioa of ti processor is to learn the machine instruction set that it executes. 
The cc..1.1 -npilL.7,; topic of instruc.1.tion set design occupies t'haptcs I() arid U. 
(hairier Eft focuses on the functional aspecisi of inistruction set design. The 
chapter examines the types of flinclions Ow are specified by complier 
instructions, and then lock! ,. Spc. c.ifiLLilly at the types of operands (which spec-
i  data to he ciprated on) and the types of orxtralioll., (Which specify the 
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operations to be perforrned) commonly found in instruction sets. Then the rek:- 
tionship of processor instructions to assembly language is briefly explained. 

Chapter 11 Instruction Sets: Addressing Modes and Formats 

Whereas Chapter 10 can be viewed as dealing with the s,oniantics of instruction 
Chapter 11 is more concerned with the syntax of instruction sets. Specifically. CI: 
ter 11 looks at the way in which rn,mory icictrescoN ,art= srcified and at alp 01_ 
format of computer instructions. 

Chapter 12 CPU Structure and Function 
Chapter .12 is devoted to a discussion of the internal structure and function of thy 
processor. The chapter describes 1.13 C use of registers as the CPU's internal memory. 
and then pulls together all of the material covered so far to provide. an  overview of 
CPU structure and function. The overall organization (AEI:, control unit. register 
file) is reviewed. Then the organi'4ation of the register file is disciised. The rernitig-
der of the chapter describes the functioning of the processor in executing nnichim; 
instructions. The instruction cycle is examined to show the function and inter-
relationship of fetch, indirect, execute. and interrupt cycles. Finally. the use of pilw-
lining to improve performance is explored in depth. 

Chapter 13 Reduced Instruction Set Computers 

The remainder of Pan Three looks in more detail at the key trends in CPU design. 
Chapter 13 describes the approach associated with the concept of a reduced instruc-
tion set computer (RISC), which is one of the most significant innovations in corm 
puler organization and architecture in recent years. RISC architecture is a dramatic 
departure from the historical trend in processor architecture. An analysis of this 
approach brings into focus many of the important issues in computer oq!,aniz.ation 
and architecture. The chapter examines the motivation for the use of RISC design and 
then looks at the details of RISC instruction set design and RISC CPU architecture 
and compares RfSC with the complex instruction set computer (CISC) approach. 

Chapter 14 Instruction -Level Parallelism and Superscalar 
Processors 

Chapter 14 examines an even more recent and equally important design innova-
tion: the superscalar processor. Although supersealar technology can be used on any 
processor, it is especially well suited to a RISC architecture. The chapter also looks 
at the general issue of instruction-level parallelism. 

Chapter IS The IA-64 Architecture 

The IA-64 instruction set architecture is a new approach to providing hardware sup-
port for instruction-level parallelism and is significantly different from the approach 
taken in supersealor architectures. Chapter 1.5 begins with a discussion of the moti-
vating factors for the new architecture. Net , the chapter looks at the general orga-
nization to support the architecture. 'Me chapter then examines in some detail the 
ki ev features of the IA-64 architecture that promote instruction-level parallelism, 
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KEY POINTS 

• The two principal concerns rt.)1' co mputer arithmetic arc. the way in which lium-
bers arc represented (the binary format) and the algorithms used for the basic 
ariihmetie operations (add. subtract. multiply, divide). These two consideril• 

apply both to integer and floating-point arithmetic. 
• Floating-point numbers are expressed as a number (sigoificand) multiplied by 

Li constant (base .) raised to some integer power (exponent). Floating-pnini 
numbers can be used to represent very large and very small numbers. 

* Most processors implement ihe. IEEE 754 standard for floating-point re„Px-
sentation and floating-point arithmetic. lECE. 754 defines, both a 32-11 .11. acid a 
fro-hit format. 

e begin our examination of the processor with an overview of the Faith- 
ie and logic unit (ALLT). The chapter then focuses on the most COM• 

Alex aspect of the ALU, computer arithmetic. The logic functions that iu -c. 
part of the ALLT are described in Chapter 111 , and implementations of simple logic 
and arithmetic furictioro, in digital logic are described in Appendix A of this book. 

Computer arithmetic is commonly performed on two very different types ut 
numbers: integer and floating point, In bg rt h eases, the representation chosen is a e 
ciai design issue and is treated •irst, followed by a discussion of ariihnielic opera:dm. 

This eh:irate,- includes a number of examples, each of which is highlighted in a 
s box. 

9.1 lig, WIWYJET..ic ANA,W .(4,C, UNIT 

The AIM is that part of the computer that actually perrorrns arithmetic and logical 
operations on data. All of the other elements of the computer system•control 
unit, registers, memory, I.10—are there mainly to bring data MI° the AL[; for it 
10 process and then to take the results back out. We have, in a sense. reached the 
eon: or essence of a computer when we consider Ihe AUL 

An ALL) and, indeed, all electronic components in the computer arc based 
on the use Of si mple digital logic deices that can store binary digits and perform 
si mple Boolean logic operations. For the interested reader, Appendix A cm -km 
digital logic implementation. 

Figure 9-1 indicates. in general terms, how the ALU is 411cl -connected with the 
rest of the processor. Data are presented to the AU! in registers, and the results Qf 
an operation are stored in registers, These registers are temporary storage leentiost& 
within the processor that are connected by signal paths to the ALU (e.g., see Figure. 
2.3). The AU; may also set flags as.the result of an operation. For example, an ovcr• 
flow flag is set to 1 if the result of a computation exceeds the length of the registu: 
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Figure 9,1 A LAJ Inputs Lind Outputs 

into which it is lo be stored. The flag values are also stored in registers within the 
processor. Thc control unit provides signals that control the operation of Ilse ALU 
and the movement of the data into and out of the ALL], 

9.2 INTEGER REPRESEN1ATION 

In the binary nurnbcr system,' arbilrary' numbers can he represented with lust the 
digits zero and onc, the minus sign, and the period :  or radix point, 

—1101.0101 2  = —1331?5 0  

For purposes of computer storage and processing, however, we do not have the ben-
efit of minus signs and periods. Onkv binary digits (0 and 1) may be used Lc; repre-
sent numbers. If we are li mited to nonnegative integers, the representation is 
straightforward. 

1 An 8-bit word can represent the numbers from 0 to 255, including 

00000000 0 
(1(1000001 = I 
00101.001 41 
11000111[10 = 128 
1].111111= 255 

In general, if an n-bit sequence of binary digits ta„_, ,  a : , is interpreted 
as an unsigned inte2er A, its value is 

'Sec Appendix B For rI buhic rofnzslm flii m hcr s :..sterns (dclzi mak, bin dry, h.z.x.ackcirnal). 
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A = 

Sign-Magnitude Representation 
There. are several alternative conventions used to represent negative as well at 
positive integers, all of which involve treating the most significant (leftmost} hit in 
the word as a sign bit, If the sign bit is 0, the number is positive: if the sign bit is t, the 
number is negative. 

The simplest form of representation that employs a sign bit is the sign ,  
magnitude representation. In an n-bit word, the rightmost n — 1 bits hold the mag-
nitude of the integer. 

-18— 00010010 
—1S— 1001.0010 (sign magnitude) 

The general case can be expressed as follows: 

E 2 1 a ;  if = 

Sign Magnitude A = 
- E2a. if tri„ _  = 

There are several drawbacks to sign-magnitude representation. One is that 
addition and subtraction require a consideration of both the signs of the numbers 
and their relative magnitudes to carry out the required operation. This should be-
come clear in the discussion in Section 9.3. Another drawback is that there are two 
representations of 0: 

+ 0„, = 000000po 
o t „ = ib0000po (sign magnitude) 

This is inconvenient. because it is slightly more difficult to test for 0 (an operation 
performed frequently on computers) than if there were a single representation. 

Because of these drawbacks, sign-magnitude representation is rarely used in 
implementing the integer portion of the ALU, instead, the most common scheme is 
twos complement representation.' 

Twos Complement Representation 
Like sign magnitude, twos complement representation uses the most significant it 
as a sign bit. making it easy to test whether an integer is positive or negative. It dii- 

In the literature, the terms rwo75 complement or 2'r complement are often used, Here we follow the prac-
isn LiNed in standards documents and omit the apostrophe (e.g., IEEE Std 101}-1 903. The New ?FEE SwF. 

elan! Dictionary of Elearicat and Electronics ferns). 
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9.2  INTDGER REPRESENTATION 2S7 

TatFle 91 CharaCtcriStics . 1wL-5s Complement Representation and Arillintetio. 

fors from the use of the sign-magnitude representation in the way thin the c Fi her hits 
;Ire inlerprel Lit I 411)1e 9.1 highlights key characteristics of two:, compiement repre-
sentation and ti'iLitlietiC, which are elaborated in this section and the next. 

Most treatments of Twos complement representation focus on the rules for 
producing negative Mini bcrs, with no formal proof that the scheme –

wt-nrk.s.. ! ' 

I nstead, our presentation of twos complement integers in this section and in Sectibn 
9.3 is based on [DATT93], which suggests that twos complement representation is 
best understood by defining it in terms of a weighted sum of bits, as we RI pre-
viously for unsiEtned and sign-magnitude representations. The advantage of this 
treatment is that it does not leave any lingering doubt that the rules for arithmetic 
operations in twos complement notation may not work for some special f:Tises. 

Consider ari a-hit integer, A, in twos complement repre71:.eriG)tion.. 1f A is 
positive, then the sign bit,  is zero. The remaining bits tc....precnit the magnitude 
of the. number in the same fashion as tot -  sign magnitude: 

A — 2`a, for A a. 0 

The number zero is identified as positive and therefore has a 0 sign bit and.a mag-
nitride of all OS, WC can see that the range of positive integers that magi be repre-
sented is from 0 (all of the magnitude bits are 0) through 2"  — 1 (a]1 of the 
magnitude bits are I ). Any larger number would require more bits, 

Now, for n 3ievrive. number A (A (1), the sign bit, a, : , is one. The remain- 
ing n — 1 bits wan take on any one of 2' values. 'Fbewfore, the range of negative 
integers that can be represented is from —1 to —2.n -  I. We would Like to assign the bit 
values to negative integers in such 8 way that arithmetic can be handled in a straight-
forward fashion, similar to unsigned integer arithmetic- In unsigned integer repre-
sentation, to compute the value of an integer from the bit representation, the weight 
of the most significant bit is +2: 4  For a representation with a sign hit, it turns out 

Ihe desired arithmetic properties are achieved, as we will see in Section 9.3, if 
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the weight of the most significant hit is -2" I , This is the convention used in twos 
complement representation, yielding the following expression for negative n umbers: 

Two Complement 

In the case of posiiive integers, 0. so the term - 2:"  '0,,  ,= O. Therefore, 
Equation (92) defines the iwos complement representation for both positive and 
negative numbers, 

'Fable Q2 compares the sign-magnitude and twos complement representations 
for 4-hit integers. Although iwos complement is an awkward representation from 
the human point of view, we will see that it facilitates the most important arithmetic 
operations, addition and subtraction, For this reason, it is almost universally used as 
the processor representation for integers, 

A useful illustration of the nature or twos complement representation is a value 
box, in which the value on the far right in the box is 1 (2 u) and each succeeding 
position to the left is double in v;iltie. until the leftmost position, which is nepta. 
As you can see in Figure 4,2a, the most negative twos complement number that 
can be represented is - 2!'  if any of the hits other than the sign bit is one, it adds 
a positive amount to the number. Also, it is clear that a negative number must have a 
1 at its leftmost position and LI positive number must have a 0 in thai position. Thus, 
the largest positive number is a 0 followed by all ls, which equals 2''  1. 

The rest of Figure 9.2 illustrates the use of 1he value box to convert from twos 
complement to decimal and from decimal to Twos complement. 

Table 9.2 Alternative RwreseilLaticros for 4 -Bit Integers 

Decimal Sign-Magnitude '11441014 Complcrnent Biased 
Rovesentation ICepreseniMion Hepresentation RepreRentation 

-FI - - 1111 
-7 0111 0111 11 W 
-Ft) 0110 01.10 1101 
+5 0101 01.01 L Ifx1 
44 0100 0100 1011 
+3 0011 0011 1010 
-2 i.11(.0 0010 1 W1 
-1 ;;o0I 0001 I WO 
+0 r.,i.I0!! WOO 0111 
-4.1. I.:11.1 0 - 

1 I1X11 1111 OLIO 
-2 1010 1110 010.1 
-.• 1011 3101 0100 
-4 1100 1100 0011 
-5 1103 1011 0010 
-6 111.0 1010 I1(301. 
-7 1111 WIJI 1:%101} 
43 - LOW - 



71.2 16 g I • 2 

I t1 0 

—8 
Ei 

9,2 INTEGER REPRESaNTATION 289 

-.1.2 0 64 . .12 16 

     

     

I:I( cil....1n-po3lii.on twos cornpleinU111 Value. box 

--128 64 

1 

32 16 8 4 • 2 1 

0 II I o I !  
128 = — 

(b) Con vc rt binEiry I MO(X) 1 1 to decimal 

: 64 

I r1 

— 120 = 

(c) Correcn dccinvil —120 co binary 

Figure 9,2. of n 'Value Box fur Co unieTSIO hetwcen Twos 
Ci.prrirlinnwli Binary and Decimal 

Converting between Different Bit Lengths 

It is sometimes desirable to Lake an 02-bit integer and store it in m bits, where m > n. 
In sign-magnitude notation, this is easil!,. ,  accomplished; Simply move the sign it to 
the nCvi leftmost position and fill in with zcros. 

          

 

+18 — 00010010 
00.1100f1(0000 1100 I 0 

--
. 1 • .1 001.00 .10 

1000000000010010 

(sign magnil tide, N hits) 
(sign mtignilude. 16 bits) 
(sign magnitude. 8 bits) 
(sign magnitude, 16 bits) 

 

  

          

          

This procedure will not work for twos complement negative integers .. Using the 
same eumple, 

-F tH 
+18 
-• 

--32,658 

0€1010010 
001)111 01101010010 

11.101110 
1000000001101110 

(twos complement., 8 bits) 
(twos complement, 16 bits) 
( I wos complement, 8 hits} 
(twos complement, 16 bits) 

' Me next to last hue is easily seen using, the box of Figure 9-2- The last 
line can be verified using ion (9.2) or a 16-bit value box. 

lnstcad, the rule for twos complement integers is to move the sign hit to the 
new Leftmost position and fill in with copies of the sign For positive numbers, 
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fill in with zeros, and for negative numbers. fill in with ones. This is called sign 
e.xtc:nsion- 

lg 

 

11101110 (t. wm complement, hits) 
lg = 11111U (twos complement, .l6 bits) 

To see why this rule wOrks, let us again consider an fl-bit sequence of binary dig-
its a,, l a r , .  ,a i a interpreted as a twos complement integer A. so that its value is 

A = -2'
i ts , ,  i I E 2

'a, 

HA is a positive number, the rule clearly works. Now, if A is negative and we want 
to construct an nt-bit representation, with ,n >  'Then 

me a 
A = 'a„_ -I-  

; -11 

The two values must he equal: 
— 

I  + = —2" + 2 1
a:  _ 

2 ;a, — 
... 

2''  I I 2'a ., =. 2' 

, m 2 

1  4- E 2'a ; .= i + 2' 
- - 

.. ■ 2 

2' • =. E 2' 
• .9 - I I 

2 — — - 7 =ra r ,  ,  

In going from the first to the second equation, we require that the least signif-
icant n — 1 bits do not change between the two representations. Then we get to the 
next to last equation. which is only true it all of the bits in positions rr --  I through 
fit  2 are 1. Thus the sign-extension rule works. 

Fixed-Point Representation 
Finally, we mention that the representations discussed in this section are. sometimes 
referred to as fixed point. This is because the radix point (binary point) is fixed and 
assumed to be to the right of the rightmost digit. The programmer can use the same 
representation for binary fractions by scaling the numbers so that the binary point 
is implicitly positioned at some other location. 
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9.3 INTEGER ARITHMETI 

This section examines common arithmetic functions on numbers in mos comple-
ment representation. 

Negation 

In sign-magnitude representation, the rule for forming the negation of an integer is 
simple; invert the sign bit. In twos complement notation, the negation of an integer 
can he formed with the following rules: 

1. Take the Boolean complement of each bit of the integer (including the sign 
bit). That is. set each 1 to 0 and each 0 to 1. 

2, Treating the result as an unsigned binary integer, add 1. 

This Iwo-step process is referred to as the twos complement operation, or the taking 
of the twos complement of an integer, 

+.1g =. 00010010 (twos comp iem ent) 
bitwi se complement 11101101 

-1-   

lli01110 —18 

experied, the. negative of the negative of that number is itself: 

1/01110 (twi.3s complE..niv.ni) 
wise COOT[errtent = 00010001 

—  

Gan 0010= +18 

We can demcinstraLe the validiiv ul the operation just ie.scrilied using the def-
inition of the twos complement representation in Equation (9.2). Again, interpret 
an  ;sequence of binary digits a r,  a . a 1 , as a twos-complement integer A, 
so that its value is 

1. 2 

= 2 ) 
I  2`a ;  

i IJ 

Now form the bi1virise cornple,menl. and, treating Ibis is an unsigned 
integer, add 1. Finally, ihterprel the resulting n-hit scquentx of binary digits as a 
twos-complement integer B, so that its value is 

B = —2" 'o,, 1 -F E.2.' a: 
-c: 
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Now, we want A = — B, which means A + B = 0. This is easily shown to he true: 

.! 2 
A B = —(a,,_ , — .702" •  +I -1 (I2V -L a f ) ) 

)

— 

2' I  . 1  1 + (24- 
I

— 1) 

— 4- 2'  = 0 

'1'he prml:..ding derivation assumes that we can first treat the bitwise eomplement 
A as an unsigned integer for the purpose of adding 1, and then treat the result aE 
a twos complement integer. There are two special cases in consider, First. considu 
A 0. In that case, for an 8-bit representation. 

 

004100000 (tvitys complement) 
•IL1111111 

toop00000  o 

bitwise oomplement = 

 

 

  

There is carry out of Ihe most significant bit position, which is ignored. The result is 
that the negation of 0 is 0, as it should be, 

The second special case is more of a problem- If we take the negation of the 
hit pattern of I followed by n — 1 zeros. we get bad the same number. For exam-
ple. for 8-bit words, 

LZS —
bitwise complement 

100000E.10 ( twos. complem en 19 
011111.11 

100000000 —128 

Some such anomaly is unavE_Iithible. The numbcr of different hit patterns in an 
el -bit word is 2', which is an even number, We wish to represent positive and ile.4- 
tivc integers and 0. H an equal number c.if positive and CLCE/iLiVe integers are repr• 
wonted (sign magnitudc): then there are two representations for EL If 'here is only 
one representation of 0 (twos complement), then there must be an unequal number 
or negative and positive numbers represented. In the case of LWOS complement. Cot 
iii n-bit length, there is a representation for —2' but not for +2". 

Addition and Subtraction 

Addition in twos complement is illustrated in Figure 43. The first four examples 
illustrate successful operations, If the result of the operation is positive, we get 8 

positive number in ordinary binary notation. II the result of the operation iE 
negative, we get a negative number in twos complement form. Note that, in soma 
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:021 = -7 
iO.U. 1 .. .=  5  
11L0 = -2 

(a) (-7) + (+5) 

=AIM = -4 
+'..-.:.-1.1.2.1_= 4  
1300C = 0 

al) (-4) 4 0-..1) 

:: 0 I -3 '. 1 r.c..: = .4 
1...; 1•-..' .0.  4 +_11_ = -1 
01=1 = 7 :I: 0'1 - -.) 

(...) H-31 -1- 14-1) I1.1)1-41 I I 1.1 

-.I. :.: 1 = .J 1 .:11)1 . 
+01:20 7  4 -F 101.3_= -:. 
10:1 = Overtiow VO 1: = Ov.e.r,t- 1c)...... 

C..) (-F5 ) + (-P.1.) (1) (-7) + (-6) 

Figure 9.3 Addition or Numbers in Twos Coniplemetil 
Rciprt,sunta Lien 

instances, there is a carry bit beys -nd the end of the word (indicated by shading), 
which is ignored. 

On any addition. the result may be larger than can be held in the word size 
being used, This condition is called overflove, When overflow occurs, the ALU must 
signal this fact so that no attempt is made to use the result. To detect overflow, the 
following. rule is observed: If two numbers are added, and they are hoh poitive or 
bOth negative, then overflow occurs if and only if the result has the opposite sign. 
Figures 13e and I' show examples of overflow, Note that overflow can occur whether 
or not there is a carry. 

Subtraction is also easily handled with the following rule To subtract one 
number (subtrahend .) from another (minuend), take the twos complement (nega-
tion) of the subtrahend and add it to the minuend. Thus, subtraction is achieved 
using addition. as illustrated in Figure 9.4. The last two examples demonstrate that 
the overflow rule still applies. 

Some insight into twos complement addition and subtraction can be gained by 
looking at a geometric depiction [BENI-192]. as shown in Figure 9.5. '11 -u.: circle in 
the upper half of each part of the figure is formed by selecting the appropriate seg-
ment of the number line and joining the endpoints. Note that when the numbers are 
laid out on a circle, the twos complement of any number is horizontally opposi e 
that number (indicated by dashed horizontal lines), Starling at any number on the 
Circle, we can add positive .1( (or subtract negative k) to that number by moving k 
positions clockwise. and we can subtract positive k (or add negative k) from Ihai 
number by moving k positions counterclockwise. If an arithmetic operation results 
in traversal of the point where the endpoints ;ire joined, an incofrect answer is given 
(overflow). 

Ail of the examples of Figures 9.3 and 9.4 are easily traced in the circle of Figure 9.:5. 
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Figure 9.6 suggests the data pais and hardware elements needed to accorn-
piibh  and subtraction. l he central element is a binary adder, which is pre-
sented two numbers for addition and produces a sum and an overflow indication. 
The binary adder ire...Nis the two numbers ais unsigned integers. (A logic implemen-
tation of an adder is given in Appendix A.) For addition, the two numbers arc pre-
se.nli:d to the adder from two 1 - c: Ri!,ters, designated in this case as A and 13 registers. 
The result may be stored in one. of these registers or in a third. '1'he overflow indi-
cation is stored in a 1-bit overflow flag (0 — no overflow; 1 4 overflow). For huh. 
traction, the subtrahend (B register) is passed through a Lwos complemc.nter so that 
its twos complemeni is presented to the adder. 

Multiplication 

Compared with addition and subtraction, mulliplication is a complex operatitm, 
whether performed in hardware or software. A wide variety of algorithms have been 
used in v,Hrious computers. The purpose of this subseciion is to give the reader some 
feel for the type of approach typically taken, We begin with the simpler problem of 
multiplying two unsigned (nonnegative) integers_ and then we look at one of the most 
common iechniques for multiplication of numbers in twos complement representation, 

Unsigned Integers 
Figure 9.7 illustrates the multiplication of unsigned binary integers, a might 

he eta riled out using paper and pencil. Several important observations can be made; 

0.1) If 7  2 = : W = 5 - 010: 
= 7 = :111 - 2 = 001C 
= 100= = 1:12 

.7: 010 = 2 
•120 ... = - 7 

= -5 

1) :01 = 5 
-1:1D = 

101= - 
+111.0_= -2 

=: -7 

Ft =-5 - 10=1 
= 2 COLO 

- 9 = 11/0 

C10= = 5 
- 2 

0:11 = 

.1:  Zt = 5 = 
a =-2 = -.110 

—s = := 010 

:010 = —6 
+2111 = 7 —4 
1110 = ovQrflow = Ov17.7=low 

M = 7= f) N = - 
S = -7 .= 1G: 01 E = = 

- 9 = ( :11 -a = 

Fiore 9.4 Subtraction of Numbers in Twos Complemmt 
Koprc8cmkation S) 



(a) 4-bit numbers 1kp) numbers. 

Subl ruction 

ur positive 
uuukben; .01100 ... I I 

III  __.1 

OI1 1 1  

(1100 110 • • 0 

6101 

Nubtrsortion 

of pOtiiiiVE 

numbers 

1101 

ONO 
1111 .0F1W1 

1110 00111 

1010 

1001 

4111 ► 
2 I

— ]  

.1." — 
 I 

ur positive 

numbers 

il d-111111H1111111[ 1 11 1 

Figure 9.5 Geometric. Depiction of Twos Compliment lntegen 

tai 
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OF L..-- ()willow bit 
SW = Switch t3elect Addition or subtraction) 

Figure 9.l Block Diagram of Hardware for Addition and Subtraction 

1. Multiplication involves t.hc generation of partial products. one for each digit 
in the multiplier. These partial products arc then summed to produce the 
final product. 

2. The partial products arc easily defined. When the multiplier hit is O. the partial 
product is 0. When the multiplier is I, the partial product is the multiplicand. 

3. The total product is produced by summing the partial products. For this oper-
ation, each successive partial product is shifted one position to the left relative 
to the preceding partial product. 

4. The multiplication of two n-bit binary integers results in a product of up to 2, ,z 
bits in length (e.g., 11 X 11 = 1001 }. 

1 01 1 Multiplicand {11) 
1 1 0 1 Multiplier {13) 

1 0 11 

0I 
0 

1 
10 1 1. 

0 
1 

Partial products 

10001111 Product (143) 

Figure 9.7 Multiplication of Unsigned Binary Integers 



r) 1 

1r-Rif 
A{111 

—1-
4—  

Filf---A------,/ 

Shin right   

1 C —11•4‘4_ • • • I  Aip 0n-a A  i • 

''.. ..r•— •—■—d 
Multiplier 
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Compared wilh 11-1 0 pencil-and-paper approach, there are several things we can 
do to make computerized mottiplication more efficient_ First, we can perform a run-
ning addition on the partial products rather than waiting until the end. This eliminates 
the need for storage of all the partial products; fewer registers are needed. Second, we 
can save some time on the generation or partial. products, For each I on the. multiplier, 
an add and a shift operation are required; but for each 0, only a shirt if required. 

Figure 9.a shows a possible implementation emplovin.g these measures. The 
multiplier and multiplicand arc loaded into two registers {Q and MY A third regis-
ter, the A register, is also needed and is initially sit 10 0, .There is also a 1-bit C: rcg-
istcr, initialized to 0, which holds a potential carry bit resulting from addition. 

The operation of the multiplier is.as follows. Control logic reads the bits of 
the multiplier one at a time. if Q,, is 1, thin the multiplicand is added to the A reg- 

Multiplicanal 

ta) Block diagram 

r 

L, On 110. 1011 Initial va;ues 

10 --1 1 -.01 1011 Ada Firs: 
;1:i 1110 10=1 S'nift cycLe 

Second 
1111 10=1 cycle 

101 1111 :011 Ldd Third 
C. 0110 1111 1011 Sh:ft cycle 

1 O:)0_ 11'.L1 101: Ada Forth 
0 1000 11L1 1C.1: Sh .1ft cycle, 

{ht Example la-43 ni Figt.pnr. 9.7 (product in A, Q1 

ngure 9.8 I I ii1-dwa rc I m plcmen latiun of UnNigncd Binary Multiplication 
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111,1 

lquItipk 
Ullut £ I! 

Shirt tight 41'.. A, 
Count <— ("m on - 1 
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Figure 9.9 Flowchart for UnNi.pi<ld BirmrY 

Product 
i!1 A. Q 

ister and the result IS siored iu the A register, with the C hit used for overflow. 
Then al] of the. bits of the C, A, and 0 registers are shifted to the right one hit, so 
Thal t he C bit goes into  A„ goes into  and 0„ is lost. llf 0„ is 0, then no 
addi tion is perCormed, jug the shift, 'this process, is repeated for each bit of the 
original multiplier, The resulting 24z-bit product is contained in the. A and 0 regis-
ters, A flowchart of the operation is shown in Figure 9.9. and an example is given 
in Figure 9.8h, Note that on the second cycle. when the tnultiplier bit is 0, there is 
no add operation. 

Twos Complement Multiplication 

We have seen that 1.cidition and subtraction can he performed on numbers in 
twos complement nOiaLian by tre.4i ling them as unsigned integers. COnSicict 

L a C.1 
— .3 C 

1L.3 

if L. se numbers are considered to be unsigned integers, then we ;ire. adding 9 
(  ) plus 3 .({101.1), to gel 1 .2 (1100)- As twos complement integers, we are adding 
—7 (1001) io 3 (0011) lo get —4 (1100), 



1C.01 1201 (-7) 

x0011 (3) . x00:1 (3) 
O .:0.7.1001 1•20: I : x - 

1:::01 x 2 I' 1 -.0010_ (-.7; x 2 = 1 -141 
OC.0110=1 I 1:: 011 (-21) 

(a)1.1migneil integer.; 1:13) Twos cotapluitiont inieger!, 
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1:.01 

0002.10 -L1 1:1] x 1 
1211> O)42 

0210:1:0 11)11 1 x2 
0101:02, 0 10=1 xl 
102011.11 

Figure 9.10 Multiplication of Two Unsigned 
4•Bit Intugcrs Yielding and 8-Bii 

Unfortunately, this simple scheme will not work for multiplication. To see 

this. consider again Figure 93. We multiplied I I 0011) by 13 (1101) to. get 143 
(10001111). If we inlcrpreL these as twos complement numbers. we have —5 (1011) 
ti mes —3 ( 1101) equals —113 .(10001111). This example demonstrates that straight-
forward multiplication will not work if both the multiplicand and multiplier are neg-
ative. In fact, it will not work if dither the mul1ipliCand or the mulliplier is negative. 
To justify this statcment, we need to go hack to Figure 9.7 an.d explain what is being 
done in Terms of operations with powers of 2. Recall that any unsigned binary num-
bv.r can he expressed as a surn of powers of 2, Thus, 

1101 ] ' +1 22  + 0 x 2 1  + 1 2a  
=  + + 

Further_ the multiplication of a binary number by 2' is accomplished by shifting dial 
number to the left n bits. With this in mind, Figure 9.10 recasts Figure 9.7 io make 
the gcrwration of partial products by multiplication e74plicit. The only difference in 

Figure 9.10 is that it recognizes that the parlia I products should he vie.o.red as 2n-bit 
numbers generated from the  multiplicand. 

Thus, as an unsigned integer, the 4-bit multiplimnd 1011 is stored in an 8-bit 
word as 00001011. Each parlial product (other 1h4in that for 2 1) consists of this num-
ber shifted to the left, with the unoccupied positions on the right filled with zeros 
(e.g., a shift to the left of two places yields 00101100). 

Now we can demonstrate that straightforward multiplication will not work if 
the multiplicand is negative. The problem is that each contribui ion of the nega-
tive multiplicand as a partial producl must be a negative number on a 2n-hil field: 
the sign hits of the partial products must line up. This .k demonstrated in Hgure 9. 

Figure 9.11 ComparKon of Multiplication of 1.:nsignEd and Twos (-...oirpletnent 
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which shows that multiplication of 1001 by 0011. If these are treated as unsigned 
integers. the multiplication of 9 x 3  proceeds simply. However, if 11)01 is 
interpreted as the twos complement value —7, then each partial product must be 
a negative twos complement number of 2n (8) bits. as shown in Figure 9.11b. Note 
that this is accomplished by padding out each partial product to the left with 
binary Is. 

If the multiplier is negative, straightforward multiplication also will not work. 
The reason is that the bits or the multiplier no longer correspond to the shifts or 
multiplications that must take place. For example. the El-bit decimal number —3 is 
written 1101 in twos complement_ II .  we simply took partial products based on each 
hit position, we would have. the following correspondence: 

1101 (I X 2 3  4- 1 X + 0 X 2' + 1 x 2u ) - (2' — — 2' 1 ) 

In fact., what is desired is  (2 1  4-  21j ), So this multiplier cannot be used directly in the 
manner we have been describing. 

There are a number of ways out of this dilemma. One would be to convert 
both multiplier and multiplicand to positive numbers, perform the multiplication, 
and then take the twos complement of the result if and only if the sign of the two 
original numbers differed, Implementers have preferred to use techniques that do 
not require this final transformation step. One of the most common of these is 
Booth's algorithm. This algorithm also has the benefit of speeding up the multipli- 
cation process. relative to a more straightforward approach. 

Booth's algorithm is depicted in Figure 9.12 and can he described as follows. 
As before, the multiplier and multiplicand are placed in the Q and Ni registers, 
respectively. There is also a 1-bit register placed logically to the right of the least sig-
nificant bit (0,,) of the 0 register and designated 0  its use is explained shortly. 
The results of the multiplication will appear in the A and Q registers. A and 0_, are 
initialized to 0. As before. control logic scans the hits of the multiplier one at a time. 
Now, as each hit is examined, the bit to its right is also examined. If the two hits are 
the same (1-1 or (1-0), then all of the hits of the A, Q, and 0 . registers are shifted 
to the right 1 hit. If the Iwo hits differ, then the multiplicand is added to or sub-
tracted from the A register, depending on whether the two hits are 0-1 or 1—). Fol-
lowing the addition or subtraction. the right shift occurs. In either case, the right 
shift is such that the leftmost hit of A. namely A,. ,_ not only is shilled into A 
but also remains in A„ i . 'Ellis is required to preserve the sign of the number in A 
and 0. It is known as an arithmetic shift, because it preserves the sign bit. 

Figure 9.13 shows the sequence of events in Booth's algorithm for the multi-
plication of 7 by 3. More compactly, the same operation is depicted in Figure 9.14a. 
The rest of Figure 9.14 gives other examples of the algorithm. As can he seen, it 
works with any combination of positive and negative numbers. Note also the effi-
ciency of the algorithm. Blocks of Is or Os are skipped over, with an average of only 
one addition or subtraction per block. 

Why does Booth's algorithm work? Consider first the ease of a positive mul-
tiplier. In particular, consider a positive multiplier consisting of one block of is sur-
rounded by Os (for example. 90011 l 10), As we know. multiplication can be achieved 
by adding appropriately shifted copies of the multiplicand; 



- 0. , • 0 
Multiplicand 

Q Multiplier 
Count or 

i I k ali etie. shirt 
itigh if A. Q, Q 1  
Count (— (Aunt — I 

Mx 00011110) (2' — 2 1 ) 
= M x (32 - 2) 
- I X 3U 
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Figure 9,12 Booth's Algorithm lor Twos Complement 
Nioltiplica(ian 

The number of such operations can I-'c reduced to two if w ()Nerve that 
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02'11 0 0:11 r  

12.01 C011 C. C.1=1 A •.— A r•f 1 
11.20 100= 1 :111 Shit 

1110 010r! 1 0=11 Shit: 

0:01 2120 , (.4:1 A - M 1 
0010 1010 0 :111 .c..h .itt 

C0C.1 0:01 0 0:1: Shi f.'T- } 

Figure 9.13 Example of Booth's A[goi- ithrn (7 X 3) 

First 
cycle 

TILrd 
cycl1 

Four:n 

So the product can be generatced by one addition and one subtraction of he multi ,  
plicand. This scheme extends to any number of blocks of ls in a multiplier% includ-
ing the Qaz;••  III which a single 1 is treated as a block. 

M X ((1IL L i010) = Sx (2" - 21  -F. 2 1 ) 
1%.1 X (2 i- } 

Booth's algorithm conforms to this scheme by performing a subtraction when titt 
first F of the block is Qncountered (1-11) and an addition when the end of the Hock 
is encountered ({1-1). 

0:1, CcIll 
x0Ci -I1 ( 0 '.. x1101 (C.) 

1L1116.a1 1-0 111:1001 1-0 
0000002 1-1 0000111 0-1 
.1 0:a1=1 0-1 Ill D.e..: 1 1- .0 
207101 (_ +.2: ) 1. 110:011 1.21:. 

im) (7).x .11)= (2)) 13) 0) X (.-3) = (-21) 

1 021 10:.:1 
X001 -  1:0) x:.101_ .:0) .  

.2 0.00241= 1-.2 0000:111 1 -2. 
2.000020 , _ 11=1001 7-1 
111'.0 C-1 .0 02'11: 1-0 
1 -12.1011 ( -,•-•"_) C0010101 (21) 

(0 (-7) x (31= (-21) (d) (- -n x (-31= (2)1 

Figure 9.14 Examples Using Booth's Algoriihm 
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To show that the .amc scheme works for a negative multiplier. we need to 
observe the following, I.& X be.s negative number in twos complement notation: 

Representation of X = {1x,, 3 • -  .1 l ie f ,' 

Then the value of X can he expressed as follows: 

X = + (x,,  x 2) + x - „ + X 2 1 ) + (x„ x 2') (9.4) 

The reader can verify this by applying the algorithm to the numbers in -rabic 9.2. 
'fhe leftrniast hit of X is 1, because X is neptive. Assume. that I he leftmost 0 is 

in the kth position. Thus. X is of tic form 

Representation of X = I ... 10x, „ (9.5) 

Then the value of X is 

X = I + + h'' -F. x21 .1 ) - 4 X 2') (9.6) 

From 17i,ti uation (93), we can say that 

Rearranging, 

-F + 2'' + ft441  = 
( 9 -7 ) 

Substituting Equation (9.7) into Equation (9.6). we have 

X r' (x A . , X2 ') -F (. ..t n  X 20) 

Al e?in return to Booth's algorithm. Remembering the representation 
of X [Eguntion (9.5)], it is clear that all of the hits from x„ up lu the leftmost 0 arc 
handled properly. because they produce all of the terms. in Eiluation (9,8) but 

I ) and thus are in the proper form. As the algorithm scans over the leftmost 0 
te nd 4;Ticounti2IN the next 1 (2k I ), a 1-0 transiiion occurs and a subtraction takes 
place (-2' • I ). This is the remaining term in Equation (9.6). 

As nn example. consider the multiplication oafsome multiplic-and by (-6). 
In twos complement representation, using an 8-hit word, (- () is represented as 
11111010. By Equation (9.4), we. know that 

- 6 + + 2 4  2 )  + 2' 

which the reader can easily verify. Thus, 

11,1 x 11.010) hi (-2 7  4- 26  f 2 5  -h 24  + 23  + 2') 
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Using Equation (9.7), 

M (11111010) = M x (-2 3 1 2') 

which the reader can verify is still M v ( --(). Finally. following our earlier line 
of reasoning, 

Ni (111.11010 ) x (-2` 4 – 2') 

We can see that Booth's algorithm conforms to this scheme. It performs a subtrac-
tion when the first 1 is encountered (1-0), an addition when (01) is encountered, and 
finally another subtraction when the first 1 of the next block Of is is encountered. 
Thus, Booth's algorithm performs fewer additions and subtractions than a mom 
straightforward algorithm. 

Division 

Division is somewhat more complex than multiplication but is based on the same 
general principles. As before, the basis for the algorithm is the paper-and-pencil 
approach, and the operation involves repetitive shifting and addition or subtraction. 

Figure 9.15 shows an example of the long division of unsigned binary integers. 
It is instructive to describe the process in detail. First, the bits of the dividend 
examined from left to right, until the set of bits examined represents a number 
greater than or equal to the divisor; this is referred to as the divisor being able to 
divide the number. Cintil this event occurs. Os are placed in the quotient from left 
to right. When the event occurs, a 1 is placed in the quotient and the divisor is sub-
tracted from the partial dividend. The result is referred to as a partial remainder. 
From this point on, the division follows a cyclic pattern. At each cycle, additional 
bits from the dividend are appended to the partial remainder until the result is 
greater than or equal to the divisor. As before, the divisor is subtracted from this 
number to produce a new partial remainder. The process continues until all the bits 
of the dividend arc exhausted. 

00001101  4— Quotient 

Divisor 1011/10010011 -4- Dividend 

Partial 
remainders 

10111  
001110 

11 

1011 
001111 

1011 
100 Remainder 

Figure 9.15 Example. of Division of Unsigned Binary Integers 



Quotient in Q 
Remainder in A 

Figure 9.16 Flowchart for Unsigned Binary Divisilin 

A +— 0 „p- 

M i - Divisor 5 

Q 4-- Dividend ...., 
Fount <-• n  

...: 
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Figure 9,16 shows a machine algorithm that corresponds to the long division 
process. The divisor is placed in the M register. the dividend in the register. At 
each step, the. A and 0 registers together are shifted to the left I M is subtracted 
from A to determine whether A divides the partial remainder.' If it does, then 
gets a 1 hit. Otherwise, (...)„ gets a 0 bit and M must be added back to A to restore the 
previous value. The count is then decrernented. and the process continues for it steps. 
At the end, the quotient is in the register and the remainder is in the A register, 

'This is subtraction of unsigned integers. A result I hat requires a borrow out of the most signilicant hit 
is a negative result. 



A Q M=1)011 
02 2 :)1.1: initial value 

0000 1110 shift 
L1 .21 subiract 
co D] L1=0 restore. 

0:01 110: shift 
1110 mibtraLl 
0001 1100 restore. 

102.0 4hi I. 

000.1.9. subtract 
0206 100: awl Q ::  

0001 0210 shift 
:110 su kiwi 
0 001 ;3 0:0 restore 
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This process can, with some difficulty, be extended to nepiive numbers. Vi41 
give here out.  approach for twos core plement numbers. Several examples of Up 
approku:th are shown in Figure 9.17. 'The algorithm can be summarized as folEo95:' 

1. Load lhe divisor into the M register and the dividend into the A. Q registers: 
The. dividend mist  expressed as a 2n-his iwos complement number. Thui, 
ror example, the 4-bit 0111 becomes 000001E1, and 1.001 becomes 11111001. 

2, Shift A, Q left 1 bit position. 

A Q M=110] 

00120 0111 1ri al vuluc 

2000 1110 hi ll  
1101 add 
0000 1112. rolore 

00..01 1100 shift 
1 1I0 add 
2001 11 c.. (': restore 

2.. 01: 1202 shift 
0700 

1001 LieLQ) =1. 

..7 0::.1 '..: 0 1 Ci' shill 

.110 add 
000: 0 :1..': res lore 

(a )17 VP) OM 1711{ —3) 

A Q M=001L A 

11=1 10:1 Initial value :111 100:. Initial value 

111= 2010 .shift 1L11 0212i shift 
0: 1 -': add 001t7 810131 MCI 
1111 0 .2.1 r..' rc.sr.orc 11:1 00=0 .N.store 

11L0 0100 Nhi 1, 2100 shift 
20 C.1 add CiC 0: subtraci 
1112 :14 0 restore 1112. C. re.strare 

1 1 0C' 1 ,J0 shift. 11:0 1.000 shift 
1111 add 1 1:i subtract 
11:1 1001 set Q0 = 1 L111 =0 01 seEQ.--1 

111: 2010 shill 
0012 add 
1111 021: re.store 

111: 0:1:: shill 
0212 solltract 
1111 0010 restore 

{cu (-7]+'(3) 

Figure 9.17 Examples of Twos Complement Division 

] d} (-7)4-1) 
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3. if M and A have the same Sips. perform A A rsv1; otherwise, A  A 1 M. 
4. The preceding operation is successful if the sign of A is the same before and 

oparmion, 
a. If the operation is successful or.A = Cl, then set Q„ I. 
b. I f Ihe operation is unsuccessful and A # 0, then set 0„ (— 0 and restore the 

previous value of A. 
5. Repeat steps 2 ihrough 4 as many times as there are. hit positions in Q. 
6. The remainder is in A. If the signs of the divisor and dividend were !he same, 

then the quotient is in  otherwise. the correct quotient is the twos compie-
men1 of Q. 

The reader will note from Figure 9.17 Lhal ( - 7) and ( - 3) produce 
different remainders. This is because the remaindei i.w defined. by 

D =extfl R 

where 

D = dividend 
Q = quotient 
V = divisor 
R runain.dur 

The rcmilts of Figure 9.17 are consistent with this formula. 
s: 

g+.1 
lac 

Principles 

With a fixed-point notation (e.g., twos complement) it is possible Lo represent a 
range of positive and negative integers centered on 0. By assuming a fixed binary or 
radix pain C , 1h is formal allows the representation of numbers with a fractional com-
ponent as welt. 

This approach has limitations. Very large numbers cannot he represented, nor 
cat vin' s mall fractions. Furthermore. the fractional pan of the quotient in a divi-
sion of two large numbers could he lust, 

For decimal numbers, one gets around this limitation icy using scientific 
notation. Thus. 976.000,000,000,000 can be represented as 9.Th  10 14, and 
0.0000tIi0000000976 can be represented as 9.76  10 What we have done. in 
effect. is dynamically to slide the decimal point Lo ri c.onvenien1 location Li nd usc the 
exponent of .E0 to keep track of that decimal point. This allows a range of very large 
and very small numbers to be represented with only a few digits. 

This same approCh can be taken with binary numbers, We can represent a 
number in the form 

; 

=S x 
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Sign cif 
significund 

— 11 .31s .  —ph-d  23 ails_ 

i Lim2d 43XpOrLent Signirecand 

la) Format 

2 1c- '3  a 2 10017,01•_ 1 ..7 10C0.1.COM)0200:-..00C.02;7.0 1.C38L25 x 222 

1.1D10.7,01 N 2 1-1" = 1 100100:1 = -1.639125 x 
1. .Loicoo= x 2 :7 100  = 0 01:•12 -0. 10:0.7.17.10.COON•JC.0200E.00C. = ..635125 x 2 -2? 

-1,1010K1 x 2 -111.3171 
 7  1 0 '1 101011 12 .10:;01:..:00CCPDV)::00::00 'L. C1  = -1.636125 x 

1b) Hun ipIts 

Figurc. tkig Typical 32-13it Floating-Point hon-tat 

'['his number can be stored in a binary word with three fields: 

■ Sign: plus or minus 
• Significand S 

• Exponent E 

The base B is implicit and need not be stored because it is the same for all nurribeis. 
Typically, it is assumed that the radix point is to the right of the leftmost, or most 
significan1, hit of the signifieand. That is, there is one hit to the left of the radix point. 

The: principles used in representing binary floating-point numbers are bes'. 
explained with an example.. Figure. 9,I 8a shows a typical 32-bit floating-point fur-
mat. The leftmost hit stores ihe sign or the number (0 — positive, 1 = negative). The 
exponent value is stored in the next 8 bits. The representation used is known as 
biased representation, A fixed value, called the bias, is subtracted from the field 
gel the true exponent value, Typically. the bias equals (2' 1 — 1), where k is the. 
number of bits in the binary exponent, in this case. the $.-bit field yid& the num• 
hers 0 thrortEh 2:5!5, With a is of 127, [he Lillie exponent values rare in Lk range 
—127 to + 128. in this example, the base is assumed to be 2. 

Table 9.2 shows the biased representation for 4-bit integers. Note that whert: 
the bits of a biased representation arc treated as unsigned integers.lhe relative mak 
°nudes of the number!) do nor change. For example, in both biased and unsigned 
representations. the Largest number is 1111 and the smallest number is (1000. This ix 

not true of sign-magnitude= or twos complement representation, An advantage of 
biased represeniation is that nonnegative floating-point numbers eon be treated 4 
integers for comparison intrpoKcc. 

The final porlitin of the word (21 hits in this case) is the significan d, also [A]led 
the mantissa. 

Any floating-point number can be expressed in many ways, 

C . 

http://710C0.1.COM
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The fo[lowing are equivatent.where the significand isc:xpressed in binary' form.: 

0.110 c 2 
1.10 X 2=  
0,0110 x 

'Fo simplify operations on floating-point numbers. it is iypica I Iy required that they 
be normalized. A normalized number is one in which the most significant digit of 
the significand is nonzero. For base 2 representation, a normalized number is there-
fore one in which the most significant bit of the significant! is one. As was men-
tioned. the typical convention is that there is one bit to the kit of the radix point. 
Thus, a normalized nonzero number is one in the form 

± I .bbh b X 2-LE 

where b is either binary digit (0 or l). Because the most significant hit is always one, 
it is unnecessary to store this hit; rather, it is implicit Thus. the 23-bit field is used 
to store a 24-bit significand with a value in kite half open interval 11, 2). Given a num-
ber that is not normalized, the number may 1w normalized by shifting the radix point 
to the right of the leftmost bit and adjusting the exponent accordingly. 

Figure 9,1XiD gives some examples of numbers stored in this format Note the 
following features 

* The sign is stored in the first bit of the word, 
• The first hit of the true significand is always 1 and need not be stored in the 

signilluind field. 

• The value 127 is added to the true exponent to be stored in the exponent field. 

• The base is 2. 

With this representation, Figure Q19 indicates the range of numbers [hal can 
be represented in a 32-hit word. tising twos complement integer representation, all 
of the integers from -2 31  to 2 11  - 1 can be represented, for a total of 2 71  different 
numbers. With the example floating-point format of Figure 9.1S, the following ranges 
of numbers are possible: 

▪ Negative numbers between • ( 7  - 2 .2?) X 2 12A  and -2 -127  

• Positive numbers between 2 . and (7  - 2 ') X 2 28  

Five regions on the number line are not included in these ranges: 

* Negative numbers less than (2 - 2 23) X 2 12 ', called negative overflow 

• Negaiive numbers greater than 2 • ', called negative underflow 
• Zero 
• Positive numbers less than 2 7

. called positive uWdetilow 

• Positive numbers greater than (2  2 23 ) x 2 12", called positive overflow 



3.:%pressible negative 
fit111113,ers 

Negative 
overflov+ 

Expressible possitive 
numbers 

- 127 2 -1— 

(13.1 Posting-point cumbers 
— (2 — 

wither 
1a» 

Positive 
r ilOW 

Zero 

Ex p reSSi We integers 
jr-----_-11/4.-----Th 

L____  I i _11.  Nem.  iber 
1113e _1. 3. 1 

ti el _  

ia .I Twos maple M ent integers 

Negative Positive 
untlerilow ti nticrllow 

Rpm 9.19EN]) ressi Mc. Num hers in T @x132 r rin ats 
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wri II .2” 4" 

Figure 9.241 Density c.).1 I 1.5;:iling-Poini Numbers 

'[ hi representation as presented will not accommodate a value of 0. However, 
as we shall see, actual tloatinE-point represern al ions include a special bit pattern 10 
designate zero. Overflow occurs when an arithmetic operation result in a magni-
tude greater Ilian can be expressed with an exponent of 128 (e.g., 2 -2n  X 2"' = 
UnLicrilow occurs when the fractional magnitude is. Loo small (e.g., 2" ""  2 :2".). 
Underflow is a less serious problem because the result can generally be satisfai:;- 
torily approximaled by 

It is i mportant to note that we are not representing more individual values with 
floating-point notation. The maximum number of different values that can he rep-
resented with 32. bits is still 2 32 . What we have clone is to spread I.hose numbers out 
in two ranyxs, one positive and one negative. 

Alsi.), note that the numbers represenled in floating-point notation are noL 
spaced evenly along the number line, as arc fixed-point numbers, The possible val-
ues get closer together near the origin and farther apart ass~ you move ;.iway, as shown 
in Figure 9.20. This is one of the trade-offs of noai ing-point math: Many calculations' 
produce results that are not exact and have to be rounded to the nearesi value that 
the notation can represent. 

In the type of format depicted in Figure 9.18, there is a trade-off between 
range and precision. The example shows 8 bits devoted to the exponent and 23 to 
the significand. If we increase the number of bits in the exponent, we expand the 
range of expressible numbers. But because only a fixed number of different values 
can be expressed, we have reduced the density of those numbers and therefore the 
precision. The only way to increase both range and precision is lo use more Hts. 
Thus. mos1 compilers offer, at least, single-precision numbers and double-precision 
numbers. For example. a single-precision formal might be 32 bits, and a double-
precision format 64 bits. 

So there is a trade-off between the number of bits in the exponent and the 
number of bits in the significand. But it is even more complicated than that. The 
i mplied base of the exponent need not be 2. '1 .he IBM S/390 architecture, for exam-
plc, uses a base or 16 rAN DI.:67b I. The format consists of a 7-bil exponent and a 24-
bit signific,7111(1, 

In Qv: 1131v1 forEnat, 

0. 11.01(k001 X 2 — 0.111040001 x 16" 

and the exponent is stored to represent 5. rather than 20. 

L  

2 
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The advantage of using a larger exponent is that a greater range can be achieved 
for the same number of exponent hits. But remember, we have not increased the 
number of different values that Ca n be represented. Thus. for a fixed format, a larger 
exponent base gives a greater range at the expense of less precision_ 

IEEE Standard for Binary Floating-Point Representation 

The most important floating-point representation is defined in IEEE Standard 754 
PEEE851. This standard was developed to facilitate the portability of programs 
from one processor to another and to encourage the development of sophisticated, 
numerically oriented programs. The standard has been widely adopted and is used 
on virtually all contemporary processors and arithmetic coprocessors. 

The IEEE standard defines both a 32-bit single and a 64-bit double format 
(Figure 9.21), with g-hit and H -bit exponents, respectively. The implied base is 2. L. 
addition, the standard defines two extended Formats, single and double, whose exact 
format is implementation dependent. The extended formats include. additional hits 
in the exponent (extended range) and in the significand (extended precision). The 
extended formats arc to be used for intermediate calculations. With their greater 
precision, the extended formats lessen the chance of a final result that has been con-
taminated by excessive roundoff error; with their greater range, they also lessen the 
chance of an intermediate overflow aborting a computation whose result would 
have been representable in a basic format. An additional motivation for the single 
extended formal is that it affords some of the benefits of a double format without 
incurring the time penalty usually associated with higher precision. 'Fable 9.3 stun-
marizes the characteristics of the four formats. 

Not all bit patterns in the IEEE Formats are interpreted in the usual way: 
instead, some hit patterns are used to represent special values. Table 9,4 indicates 
the values assigned to various bit patterns..l'he extreme exponent values of all zeros 
(0) and all ones (2515 in single format, 2047 in double format) define special values. 
The following classes of numbers are represented: 

Sign 
hi[ 

Blase t 
exponent 

1.4o Snilk: It rnui 

.I I gr   

exponeni 

tbi L)oul-5[1: format 

Figure 9.21 IEEE. 754 Fo rmat 

Sign 
hi[ ti ' Bile. 
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Table 9.3 IEEE 754 Forma( 

Parameter 

['Ammeters 
ormat 

Single Single Extended Doable Doable Extended 

WORI. WI di Fli 4. 1.)i Ls) 32 z-743 e.)-1 -.-1.7. 14 

Exponent width, (bits) .‘A 7-.1 i t t =- 15 

Ex ponc. n1 bloc 127 1..:Dspe6fiL.d 1023 Unspc..cifi.ed 

l'1Q;5ximun exponunt 127 023 102 .2. ;.,-- 163.83 

Min:EMIR') exponent -12{-1 - -102..2 -L.02.2 -.- -16382 

Number Ent ge (bon 10) t0 "',. 10' 1 ' Lin p.c:fiucl. l eg .  lo•..1- t.Insiwci.lic.il  

Sii.milicand width. (hits)* '2 1. •E...31 5 7  7- fi.3 

7 unthur of eN:polienEs .2.C4 Lilts pet iri...,..cl 2346 11.i nspi .24:i lied 

N1111113.21" (3f fractioas 2.3.1 Urn peci liod 2 Cnspcciricl.1 

Numhcr of volui... I,..:..1[# x 2.'' t :3 .0..peci Lied 1.49 x 2 5. Unspeciik. d 

bil 

• For cAponcrit vaiues in the range oft through 254 kw singie format and 1 
through 2046 for double formm, normalized nonzero floating-point numbers 
arc represented, The exponent is biased, r;o that the range, of exponents is 
— L26 through -F127 for single torn it and —1022 through  1023. A nortnal-
ized number requires a 1 bit to the left of the binary point; this bit is implied, 
giving an effective or 51-bit significand (called fraction in the st,andni -dj. 

• An exponent of zero together with ;.1 fraction of zero represents positive or 
negative. zero, depending 0E1 the sign bit. As was mention it is useful to have 
an exact value of 0 represented. 

• An exponent of all ones together with a friAlet ion of zero represents positive 
or negative infinity, depending on the sign bit. It is also useful to have a rep-
resentation of infinity. This icinves it up to the user to decide. whether to treat 
overflow as an error condi I ion or to carry the value 05 and proceed with what-
ever program is being executed. 

• An exponent of zero together with s nonzero fraction represents a (knot -mak 
ized number. In this c,rise, the bit to the left of [he binary .  point is zero ;Ind the 
true expoucnt is —126 or —1022. The.nunther is positive tw negative depend-
ing on the sign bit. 

• An expon.,:iii all ones together with ti nonzero fraction is given the value NaN, 
which means Not a Number, and is used to signal variom exception conditions. 

The significance of denorinaliz ,ed numbers and NaNs is discussed in Section 9,5. 

9.5 FLOATING-POINT ARITHMETIC 

'11 . 4i Mc 9.3 summarizes the batie operotions for floating-point arithmetic, For addi- 
titart subtraction, it is necessary to ensure that biitii operands have the same 

http://t.Insiwci.lic.il


Sign 

U 

0 

Value 

{.) 

1. 

or 1 

CC 

NaN 0 or 1 

255 (all Is) 

25ff• (all 19 

0 or 1 255 i. a31 * 0 Nafq .0 or 1 

< c < 755 1 2 c ( 1.f)  U 

255 2 117 (1.1) 

U 

0 

f  0 

f *0 

t—  .12 15(0 .
0  

Fraction 
Biased 

exponent 

0 

f 

0 

2047 (a111.si 

2047 (41 13) 

2047 1211 1 s 

7.047 (all 1s) 

e c < 2047 

(I <12 <2047 

0 

Double Precision (64 bits) 

U 

0 

Single Precision (32 bit&) 

Biased 
exponent 

CI  

25f. (ail 1 

Fraction Sign 

0 
ZC111 

Ne20.1.ivc 
zero 

Plus 

MiLlU5 
i1)ardty 

Ouici 
NaN 

PosiLive 
Ill 

normeso 

NeAauve 
normalized 
noazero 

}SitiV{! 
cicnon-naliyd 

NeatiVC 
&rICiTmNFL4.1 

Value 

0 

—0 

NN 

2 

'NaN 

l • • ' 7(.1.0 

2r 1.17 (0.11 

''''(01) 

'table 9.4 Interpretation of HEEL 754 Floating- PI , 
 ill 
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orlon nt value. This may 1 -cquirr .  shining ihe radix point on °nu of the operands to 
achieve alignment. Multiplicaiion arid division are na -rre straightforward. 

A floating-point operation may produce One of these conditions: 

▪ Exponent overflow: A pogiLivc: exponent exceeds the maximum possible expo- 
nent value. In some systems, this may be designated as I.  or 

• Exponent underflow: A negative exponent is less than the minimum possible 
exponent value (e.g. . -200 is less than -in. This means that IN number is 
too small to he represented. and it may be reported as 0, 

• Signifleand underflow: Iii the process of aligning sio.nificands, digits may flow 
off the right end of the signiticand. As We shall discuss. some. form of round-
ing is required. 

• Signifleand overflow: The addition of two significands of the same sign may 
result in a carry out of the most significant bit, This can he fixcLI rcalign- 

4is cxplain_ 

Addition and Subtraction 

In flo.ting-voint arinunctic, addilion ,rind subtraction are more complex than mul-
tiplication and division. This is because of the need for alignment. There are four 
basic phases of the algorithm for addition and subtraction; 

1. Check for zeros. 
2, Align the 6ignil9cands. 
3. Add or subtract the significands. 
4. Norrimlize the result- 

a" 
 

A typical flowchart isshown in Figure 9-22. A step - by-step narrative highlights 
[he main functions  [or Hoaling-point addition and subtraction. We assume 
a format similar to those of Figure 9.21. For the addition or subtraction operation, 
the two operands must be transferred to registers that will be used by the Al,(.1 If 

Table 9.5 Floating-Point Numbers and ArithnwLicOperatioias 

A i ! 1;1' • II.") 1 0 • 11. • 11; 

11.2. :1% 
X I •:11.3./.,:.2 .1 x Ill : " _ • 1:1 i.111111 
X :•••• ft: 7 : ..5:. I 

a 
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the floating-point format includes an implicit significant' hit. that bit must be made 
explicit for the operation. 

Phase 1: Zero check. Because addition and subtraction are identical except 
for a sign change, the process begins by changing the sign of the subtrahend if it is 
a subtract operation. Next, if either operand is O. the other is reported as the result. 

Phase 2: Significand alignment. fhe.next phase is to manipulate the numbers 
so that the two exponents are equal. 

.4. 

L 

tk 

A 

To see the need for aligning exponents, consider the following decimal addition: 

123 x 1(Y1 ) -I- (456 x 10 2) 

Clearly, we cannot just add the significant's. The digits must first he set into 
equivalent positions, that is. the 4 of the second number must be aligned with the 
lof the first. Under these conditions, the two exponents wilt be equal, which is 
the mathematical condition under which rwo numbers in this form can be added. 
Th us. 

(123 x 10") — (456 X 10 (123 X It") (4.56. 0") 127.56 x 10' 

Alignment may he achieved by shifting either the smaller number to the right 
(increasing its exponent) or shifting the larger number to the left. Bccau.sc either 
operation may result in the loss of digits, it is the smaller number that is shill ed; any 
digits that arc lost are therefore of relatively small significance. The alignment is 
achieved by repeatedly shifting the magnitude portion of the significand right t digit 
and incrementing the exponent until the Iwo exponents are equal. (Note that it the 
implied base is 16, a shift of 1 digit is a shift of 4 bits.) If this process results in ;1 0 
value for the significand, then the other number is reported as the result. Thus. if 
two numbers have exponents that differ significantly, the lesser number is lost. 

Phase 3: Addition. Next. the two significands are added together. Li king int o  
account their signs_ Because the signs may differ, the result may be 0. There is also 
the possibility of significant] overflow by I digit. II' so. the significand of the result is 
shifted right and the exponent is incremented. An exponent overflow could occur 
as a result: this would be reported and the operation halted. 

Phase 4: Normalization. The final phase normalizes the result. Normalization 
consists of shifting significand digits left until the most significant digit (bit, or 4 bits 
for base-16 exponent) is nonzero. Loch shift causes a decrement of the exponent 
and thus could cause an exponent underfloor_ Finally, the result must be rounded off 
and then reported. We defer a discussion of rounding until after a discussion of mul-
tiplication and division. 

Multiplication and Division 

Floating-pain t multiplication and division are much simpler processes than addition 
and subtraction, as the following discussion indicates. 

We first consider multiplication, illustrated in Figure 9.23. First. if either 
operand is (I, 0 is reported as the result. The next step is to add the exponents. It 
the exponents are stored in biased form. the exponent sum would have doubled 
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Figure 9.23 Flciating ,Peint Nluldrylicailen (Z 4— X X 

the is l'hus, the bias value must liesubtracted from the sum, The result could he 
either an exponent overflow or underflow. which would bc reported, ending  the 
algorithm. 

If rh,: exponent of the product iswithin the proper range, thenext step is to 
mulliply the significands, la.king into account theft SiQ,J3 Themultiplication is Nr. 
any in the same way as for integers. In this case, we are dealing.with a sign- 
magnitude repres.entation, but lite dEtails are similar lo those for twm.complerneal 
representation, The produet. will !De double the length of the multiplier and multi-
plicand. The extra bitx will be lost during rounding. 
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.After the product is calculated, the result is then normalized and rounded, as 
was done for addition and subtraction. Note that normalization could tcwit in expo-
iw,n1 undcrflow. 

FiIdly, l a 0s cormicricr rinwehm-1 Eor divihion depicted in Figure 9.24. 
Again, the first step is testing for 0. 1E the divisor is 0, an error report is issued, or 
the result is set to infinity, depending on the implementation. A dividend of I) Tenths 
in O. Next, IIi divisor eNponcni i.s NubLracted Iron, the dividend exponent. This 
removes the bias, which Tntiz.,1 hu added back in Tests are then made for exponent 
underfiow or overflow. 

Figure 9.24 Floating-Point Division (Z<- XIY) 
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The next Kier) is to divide the significands. This is followed with the usual nor. 
ma]ization and rounding. 

Precision Considerations 

Guard Bits 
We mentioned that, prior to a floating-point operation, the exponent and sip,- 

nificzind of each operand are Loaded into AU! registers, In the ease of flit' 
the length of the register is almost always greater than the length 01 the 

significand plus an implied register contains additional bits, called guard 
which are used to pad out the right end of the significand pith 

The reason for the use of guard hits is illustrated iEt Figure 9,2.5. Consider 
numbers in the IEEE 10 -rnat, which has a 24-bit significand, including an implied 
I hit Co the left of Lhe binary point. 'Iwo numbers ihat are ii. m.. close in value. are 
N , 1,00 . . . 00 X 2) and Y 1,11 . . . 11 X r, If the smaller number is to be suh-
iracted from the larger. it must he shiftcd right i hit wi align the exponents, This 
is shown in Figure 9.25.a, In the process, V low..., 1 bit ofsigni [mance.; the re:ii.dt k 
2 .2 -', The same open li011 is rileateci in part 1:i with inc. miclition of guard bils. 
Now the least significant hit is not lost doe to alignment, and the result is 2 ', a 
difference or a factor or 2 from the previous answer, When the radix is Its, the [ 
loss of precision can he greater. As l:'i gutes 9.25c and d show, the differtmce can 
be a factor of 16. 

Rounding 
Another detail that affects the precision of the result is the rounding policy. 

The result of any operation on the signiticands is generally stored in a Longer regis-
ter. When the result is pui hack into the floating-point format, the extra bits must 
be disposed of. 

x = 1 . '!.00 ......... CAO .. x .. 2 1  x - .101000 x 16 1  

0.111 ........  1: .. x 2 1  - y = . OFFFFF x 15 1  
.7. 0.030 ........ 01 .. K 2 1  z = .0:0001 X le l  

= 1 . O H  ..7. C. .. x ..2 -22  - .10.0.7!0; X 16 -1  

( m Binary exanipk., wilhout guard bits tci) Plexadecirualuxouplc, wichmo guard hits 

x - 1.0n ........  (.).: .. 0000 'x 2 1  x - .1C00:!•0 00 x 1E: 

- -yr  - 0 A:1 . „ —11 :000 x 2 • -2 = ,OFFFFF 2.7, x =6 - 
 

z  ::.' . 000  '' 0  1010  x ;- 2 =  . COO R  10 x 16' 

1.'106  CO  0000  x 2 -2-5  =  .10 ,1000 1.'..0 x 1.5 -  

(13) Binary example, with guatd hits; (di Hcmad(x.iirial exam*, vvith. guard bin. 

kigure 9.25 . I'he USE: of Guard Hits 
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A number of lechniq LICS have been explored for performing roundinz In fact. 
the slandard lists four alternative approaches -

, 

■ Round to nearest: The result is rounded to the nearest representable number. 

• Hound tfilikalLd M: The result is rounded up toward plus infinity. 

■ Round toward The result is rounded flown toward negative 

• hound toward 0: The result is rounded toward zero. 

Let us consider each of these policies in turn. Round to nearest is the default 
rounding mode limed in the standard and is defined as follows: The representable 
value nearest to the infinitely precise result shall be delivered! if the two nearest 
representable values are equally near, 1he orN12 With its least significant bit 0 shall 
be delivered. 

If the extra bits, beyond the 23 bits that can be steered, are 10010, then the 
extra bits amount to more than.one-half of the last representable bit posil ion. in 
this case, the correct answer is to add hinat:;. ,  10 the last representable  round-
ing. up RP the neut representable number. Now consider that the extra bits are 
01111. In this ease :  the extra bits amouni to less than one-half of the last repre-
sentable bit position. TN'. correct ;.inswer is simply to drop the extra bits (LT uneate), 
which has the effect of rounding down to the next representable number. 

The standard also addresses the :peciai ease of extra bits of the form 
[ WOO Here the resull is exaetly halfway between the two possible representable 
valiws. One possible technique here would be to always fruneate, as this would be 
the simpiest operation. However, the difficulty with this simple approach is that it 
introduces a small but cumulative bias into a sequence of compu [a I ions. What is 
required is an unbiased method of rounding. One possible approach would be. to 
round up or down on the basis of a random number so that, on average, the result 
would be unbiased. The argument agai nst I his approach is that it does not produce 
predictable, deterministic results.  rim-melt taken by the IEEE standard is to 
force the result to be even .: If the result of a computation is exactly midway between 
iwo representabie numbers, the value i5 rounded up if the last representable bit is 
currently 1 and not rounded up if it is currently O. 

The next two options, rounding to plus mid minus infinity, are useful in imple-
menting a technique known as interval arithmetic. InitLi-va I arithmetic provides an 
efficient method for monitoring and eoffiroiling err°, s in floating-point compui 
tons by producing. two values for each result. The two values correspond to the 
lower and upper endpoints of an interval that contains the true result,. The width of 
the interval, which is the difference between the upper and lower endpoints, indi-
cates the accuracy of the result. if the erldpiru,  of an interval are not represeniable, 
then the intemil endpoink are rounded down and up, respectively. Although the 
width of the interval may ,...ary according to implementation. many algorithms have 
been desNned to produce narrow intervals. if the range between the upper and 
lower bounds i suffieienily narrow :  then a sufficiently accurate result has been 
obwined. It' not. at least we know this and can perform additional analysis, 
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The final technique specified in the standard is round toward 'LIMP. This is. ir, 
fact, simple. irunealion: The extra bits; are ignored. This is certainly the simplest tbt-
nique. I iowever, the result is that the niagnitudc of the truncated value is alwaydw 
than or equal to the more precise original value, introducing a consistent bias tom! 
zero in the operation. This is a more serious bias than was discussed earlier, becatil 
this bias affixts every operation for which there are Dormer() extra bits. 

IEEE Standard for Binary Floating-Point Arithmetic 

IEEE 754 goes beyond the simple definition of a format to lay down specific prat. 
tices and procedures so that floating-point arithmetic produces uniform, predichibl

... 
results independent of the hardware platform. One aspect of this has already 1.26n 
discussed, namely rounding. This subsection looks at three oilier topics: 
MiNs. and denormalized numbers. 

Infinity 

Infinity arithmetic is treated as the limiting ease of real arithmetic, with th4 
infinity values given the following interprciation: 

-% < (every finite number) < -F 

exception of the special cases discussed.subsecluently. any aritlun 
operation involving infinity yields the obvious result- 

Fur example, 

5 + (--.K) .4. w. 5 (. -c..3) = +0 
5 -- (..rte;) = ( ±x) (-- ) .}-•A 

5 -F (-3.2) = -x. (-') - ( ..) ' -,x 

3 - (-x .) = +x ('-  ') - (-') ' -Q.:. 

5 X ( -i-•;) •F.:‘,c ( f c': ) — (—m) -I-rk 

Quiet and Signaling NaNs 

A NaN is a symbolic entity encoded in floating-point formal. of which dim. 
arc two lypcs: ,:.i gnaling and quiet. A signaling NaN signals an invalid operation 
cxcepticm whenever it appears as an operand. Signaling NaNs afford values for 
uninitialized variables and arithmetic-like enhancements that are nul the subject 
of the standard, A quiet NaN propagates through almost every arithmetic opera-
tion without signaling an exception. Table 9.6 indicates operations that will pro. 
duce a quiet NaN. 

Note that both types of NaNs have the same genera] formal (Table 9.4): an 
exponent of all tines and a nonzero fraction. The actual hit Rattern of the nonzero 
fraction is implementation dependent: the fraction values can be used to distinguish 
quiet NaNs from signaling NaNs and to specify particular exception conditium. 

Denormalized Numbers 

Denorrnalized numbers are included in TEF:h 754 to handle cases of exponent 
underflow. When the exponent of the result Faccornes too small {a negative. evo- 
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Table 9.6 Operationblhal Prodoce a Quiet NaN 

ni,:n1 with Re kirge a magnitude), the result is denormalized by right shifting the 
fraction and inc . ; ernenting the exponent tor nch !Ihifl, until the exponent k wilhin 
a representable range. 

Figure 916 illustnics the erfuet c)1 thu addition ofd  northalized nurnbevi.. The 
TuprmIntable numbers can he grouped irito inten . als of the form 1.2!', 2'1. Within 
each such interval, the exponent portion of l  nurnber remains constant while the 
fraction varies, producing zi uniform spncing of representable. numbers; within 

—( 

2 .2'. 2 121 -
1  ee 

32-13;•it icFrinat » LESOUL deaorinalized mambas 

IL:nifom 
spac g 

; 

A-126 2 - L25 1 - 20L 2. - 123 

• .; formt wish (k.normalizccInuniber...; 

Figure 9.26 The Effect of I EEE 754 Denorrnalized Numbels 
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interval. As we get closer to zero, each successive interval is half the width of the. 
preceding interval but contains the same number of representable numbers. Hence 
the dunsity aJr reraresuniable numbers increases as we approach nett). liowevur. if 
only normalized numbers are used, shire is a gap hetwccn the smallest nornializd 
number and f). In the case of the 32-bit IEEE 754 format, there are representnhk 
numbers in each interval, and the smallesl representable positive number is 
With the Adition of .  dcnorrna i n Hdditional -22?  numbers unifotmly 
added between. 0 and 2 - I  

The use of denornialized numbers is referred to as gradual underflow [COONO. 

Without denormaiized numbers, i he gap between I he snialles1 representable 
nonzero number arid zero is rhua wider than the gap between the smollest repre-
sentable nonzero number and the next larger number. Gradual underflow fills in 
lhal, gap and reduces the impact of exponent underflow to a level comparable with 
roundolf among the normalized numbers. 

9.6 RECOMMENDED READING AND WEB SITES 

[PARHOOf is an excelicnt ireatment of computer a ri 1111111 giC, covering all of the topics in this .  
chapter in detail. 'FINN:it I is a useful discussion thnt focuses um practical design ;Ind 
mentatinn issues- For the serious student ofuomputer arithmetic, a very useful reference is 
the two-volume. I SWA R901. Volume I MIS originally. published in I 9R0 and provider- key 
papers (some very difficult to obtairi fltherwis.)4,11 wriputer arithmetic iundanrctak. 
Li me f I contains more recent papers. covering theoretical, design, and implementation aspects 
of computer arithmetic. 

For floating-point arithmetic. riOLD91 .1 is well named; "What Every Computer Scr ,  
enlist Should Know About Floating-Point Arithmetic." Another excellent treatment of the 
topic is CCPnlakined in I .KNUT981, which also covers integer computer arithmetic. The follow-
ing more in-depth treatments arc also worthwhile; [OVER01. EVENDO, OBER97u, 
OBee.R`)71i. SOD[96]. 

1:5.1.11 1*,141describts the first IBM Si'39ltirrucemor too integrale radix-16 and IEEE 754 
arithmetic in the same floating-point unii. 

EVEN00 and. '• 011 ot I complinnt Flouiing•Puiiit 
Units." 1 1=Lfs S rrN (}11 COehlphkrigOW, May 2000. 

FLYNN Flynn, M. and Oberman, S. A iliviayri Derip. -  New 
York; Wiley. 2001. 

GOLD9 .1 Goldberg, D. "What Every Computer Scientist Should Knew Abaut 
Flitial tug-Point Arithmetic." ACM Cop.,puithg Surveys. March 1.(191, do..ailutall; 

p ;.:Nyxkx4,validgh.corn. 

IKKU198 Kutti It, I.). The.  Arr einem,  Prograrorming, Voiron re 2: Srminzertwrii- fei 
Rinclim;, MA; Addison-Wt.-ley, 199S, 

1H3ER974 Oberman. S and l'Iyun, M. - Design Issile3 Di .... 0ion acid Other Floating- 
Point Operations.' farm Er CO,refingrri, I eI itch y 

OBER97b Oberman, aodFlyrin. \r-l. "Division Algirritlinis and 1mplcinenta Lions." IEEE 
Transacsioni Compuree.v, 19 1.7.7. 

C1 `E Ovizmpu, M. Alf oenprkiri CeJhriArliej .c With 1 E1 .;. 6 NurilioR P49b11 ArithfnCii 

Philadelphtk PA: Sociu. tv for and Appkod Mathe.rilatics,:lrm1. 
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PARI100 Parl - runi 5  B. Comp,. Arilirnrcric.:  r  via ?en:,  nti  a rdivim , Oxford! 
Oxford University Press, 20(X); 

SCHWO9 Schwarz, E., and Krygowski, C. "The ,fiThir foriir- 
wd f Rcsearch err DeL:4oprnem, Septc.mbizr.iNcricrinheT 1999. (www.) 

SODE.% sod,2r-quisi,  ri nd Leeser. M. "Area 4111d Performanez Tradeoffs in Floativ 
Point Divide and Square-Root Irripkinentations." ACM Computing Sti rye ys. Sep-
tember 1996. 

SWAR91) Swartzlande.r. E.., ed. IC (iv-  rirr4rrrLC lir,  1/rohen,r.s I (Mid 11..1..os Alamitos. CA; 
IF.F.F, Computer Saciery Press:199G. 

RCCOMITiell<led Web Si k..; 

■ IEEE 754: The IEEE 754 documents. related pLiblications and papers. and a useful sot 
of links rekited computer . arithmerie 

9.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key 'Terms 

Hritlintetic and logic unit 
( ALU) 

arithmelie 
ha5e. 
biased representation 
denormalized number 
dividend 
divisor 
.Exponent 
ci.poners OA:L.2 0km 
xpoincnt underrlow 

fixed-point rep reSC ntaii011 
ra;prws4I11 .1tii1rt 

Review Questions 

9,1 Briefly explain. the following reptesait sign-rag ivi..os complement. biased. 
41.2  Explain how lo determine if a number is Hui ralowing representations.: 

sign-rnquitukile.14tr.os uomplorunt., 
93 what is Itie sign-extensil  rifle cur twos !:outpE'.inent numbers'? 
9.4 I low L.iin you form the negation or an iriler:1 iii two.; colTLplkfient Npreseniation'? 

In geoural lcrnik, when docis the twos compleirte at operation on an B-bit integer pro.. 
duet; ;Ill....Q. -C.' 

9 .6 What i8 1lie difkiE i*o..,5corn pitmen( representation of a numher and 
the. twos complemi..E1[ 
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9.7 IC we. great 2 twos 00mph:int.:Ail numbers as unsigned integers 143r purposes of addition, 
the result is correct if interprels.A.1 as a twos complement number. This is nol true for 
nrlti1 iplication- Why? 
'Whal arc the four essential elements of a number in floating-point notation? 

9.9 What is the benc.fil of using biased represent al ion for the exponent portion of a 
flouting-point number? 

9.10 What arc the differences among positive overflow, exponent overflow, and signih-
cund overflow? 

9.11 Whai are the basic eluments of Flom ing-point addition ...I nd subtraction'? 

9.12 C.3.iva a reason for the use of guard bits. 
9.13 List four alternative methods of rounding Itn: re4tilt of a floating-point operation. 

Problems 
9.1  Another representation of integers lhat is sometimes encouni is ones com• 

plcmwnr. Posiiiw integers arc represcriled in the some wav  tide. A lug-
alive integer is represented by taking the 'Boolean complenion ilt k:;Icli hit of she; 
corresponding positive number. 
a, provide a definition of Ones coinpiernent numbers u5fialg a Wi2ighted sum Of hill.. 

similar to Equations (9.1) and (9.2)- 
b. What is the range of numbers that call be represented in ones vomplement? 

c. Define an algorithm for performing addition in ones complement aril 
9.2 Add columns 10 •  Fable 9.1 for sign magnitude and ones eompleineill. 
9.3 Considt:r ;lie following operation on a binary word. Start with the least signifieant. 

Copy all bits ihat are until the first hit is reached and cops: thrill [iii. too. Then IA: 
the complement of each bit therctifler. What is the result'?  

9.4 1.11 SQction 9.3, the tWON4..oitiplernent operation is defined as follows. To find the tiwos 
complement of K. take Ow Boolean complement of each hit of X. and Olen add 1. 
a. Show that the folli ming is an equivalent definit ion. For an n-hit integer X. the torus 

complement of k rimmed by treating X as an unsigned integer and ealculatin ::: 
(2n - Xi. 

b.. D4.2nsonstrate..1h.nt Figure 9.2 can be used lir support graphically the claim in pan a. 
by showing how a clockwise movernent is used to achieve subtraction. 

9.5 Find the following differences using ivvos complement arithmetic! 

&- b.:11021_0D c. 1111:.0C.O.L_11 d. 11 Ou011 
- 12.1110 -1_12201.1110::11 -11:01000  

9.6 Is the following a Valid alternative definition of overflow in twos complement arith-
metic? 

If the exclusive-OR of the carry bits into and oul of the leftmost column 
is 1, then there is an 41 ,,er11ow.  condition. Otherwise, there is not. 

9.7 Compare Figures 9.9 and 9.12.Vali. is the bit not used in the latter? 
9.8 Given ; - ti 101 and v - 1010 in 14.k.osi-ornplement notation (Le_ x  4, v - - 6), env 

putt. the product p - x Xy with Booill's algorithm. 
9.9 prrive that the multiplication of two n-digit numbers in base B gives a product of no 

more than 2n digits. 
9.10 Verify the validity of the unsigned binary division algorithm of Figure 9.16 by 

showing the steps involved in calculating the division depicted in Figure 9.15. Us: 
presentalion similar to alai of Figure. 

9.11 The twos complelne.itt integer division algorithirt described in Section 9.3 is kno*rt 
as the restoring method because the value in the A register must be restored fa- 
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lowing unsuccessful subtraction. A slightly more complex approach. known as no n-
restoring. avoids the unnecessary subtraction and addition. Propose an algorithm for 
1his latter approach. 

9.12 Under computer integer arithmetic, the quotient .11K of two integers and K is less 
than or equal to the usual quotient. True or false'? 

9.13 Divide -145 [ix 13 in binary twos c .ornpientent riotalion, using 12-hit words. Use the. 
algorithm described in Sect iiIn 

9.14 Assume that ihc c.pi went c is constrainod tci lie: in the range 0 s e X. with a bias 
or I.?, rhat thv base is b. and thai 1.1w sign ilicarld is p kligits 

a. What are the largest and smallesi positive value.s that can be written' 
h. What are the largest and smallest positive values that can he written as normaLed 

floating-point numbers'? 
9.15 Express the following numbers in 1 FEE .32-bit Floating-poini format: 

a, -5 ie..  1)16 
h, -6 d. 384 f.  - 

9.16 Express the Ibllowing numbers in IBM's 32.bit floating-point format, which uses u7 
bit exponent with an implied base of 16: 

111.. 1.0 i. 1164 e. -15,0 g. 7.2 X L C 
h. 0.5 d. 0.0 F. 5.4 X 1:0 

9.17 1114' tat would he the bias value for 
a. A base 2 exponent (R. - 2) in a 6.bi1 field? 
h. A 1 -sale- t exponent (11 - 8) in a 7-bit field? 

9,1H Draw a Ii irlF tkr hole io that in Figure 9.19k for the. float in ig-point format of 
9..7.111. 

9,19 Consider a floating-point formai with 8 hits for die. biased 1...,x.porkini and 2:1 hits for 
signilicand. tibinw the hit pattern for the following numbers in Ihis format: 

a.  720 
h. 0.645 

9.20 V'hen people speak about inaccuracy in ihmtirig-point arithmetic. they often ascribe 
errors to cancellation that occurs during the subtraction of nearly equal quantities. 
Rut when X and Y are approximately equal. I he difference X Y is obtained exactly. 
with no error. What do these people really mean'? 

9.21 Any ftonling-poii;1 represent@ lion used in ...sent only certain real 
nuinhers %I:sac-ilk..., all oille.rs rnml appi4ixiimiteal. the stored value approxi- 
mating the real value .4,11scn he !illative error. 0., is eNpi I as 

/1 A' 

A 

Represent the decimal quantity I 0.4 in the following floating-point format: base - 2; 
exponent.: biased, 4 bits; significant]. 7 bits. What is the relative error? 

9.22 Numerical k. t.dus A and Beare stored in the computer as approximations A' raid 
N4Jglecting any further truncation or.  rOundoff errors, show that the relative error of 
the product is approximately t he sum of [Eh'. TdatiV4. struts in the laciors. 

9,23 If A = 1.427, find di relative error if A Mrtincatod io 1.42 and if it is rounded to t.43- 

9.24 One if the most serious errors in computer calculations occurs when two nearly equal 
numbers are subtracted. Consider A  0.222M and  0.22211. The cilinputer trun-
caLes all values to four decimal digits. Thus A: - 0.2228 and 8' - 0.2221. 

Wi nd are the rolalive errors kir A' and 
h. Vaal is the relaliye error for C = -•  fr? 
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9.15 Show how the folli -r..ving floaiiim -point additions are performed [where signifizaA 
are truncated 1. 0 4 decimal digits)'. 
a. 0.5566 X 111' .1- 0.7777 x 10' b. 03344 — 0.8877 x ]0 

9.21+  Show hoW the following floAtingrpoirit stibtractions to performed (where significa 
are truncmed to 4 decimal digits). 

a. 0.7144 10 = — 11.(.60 X 10 h. 0.8844 X 10 2  - 0.2233 X LAY' 

9.27 Show how the 10110W irig 11 ( tting-point calculations arc POr(ormc (".here 
 significatith 

arc. truncated to 4 decimal digits}_ 
a. (0.2255 x 102 ) x (0.1234- 10 . ) b. (0.8833 : 10 5 ) 

9.28 Expross the octal numbers in htlxade.cimill notation: 
a. 12 11),  5655 e. 25502145 d. :1726755 

9.29 Prove that %wary r4A number with a terminating binary representation (finite ruun• 
ber .uf Lligits to the righ1tir the binar:L. point) also hits j terminating decimal reresea• 
tation (finite number of cligits to the right of the Llueimrdpoiru). 
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KEY POINTS 

• I he c:47;.ciiiial elements of a computer instruction are the opcodc, which spu...- 
ifies the operation to be performed; the. source kind destination operand ref-
erences, which specify the input and output locations for the operation: and a 
next instruction reference. which is usually implicit. 

• Op-codes specify operations in one of the following general categories: arith-
metic and logic operations: movement of data between two registers, register 
and memory, or two memory locations: 110; and control. 

• Operand references speci t)... a veRister or memory location of operand data. 
The type of data may be addresses, numbers.: characters. or logical data. 

• A common architectural feature in processors is the use of a slack, which may 
or may not be visible. to the programmer. Stacks are used to manage proce-
dure calls and returns and may be provided as an alternative form of address-
ing memory. The basic stack operations are PUSH. POP, and operations on 
the top one or iwo slack local ions. Stacks typically are implemented to grow 
from higher addresses to lower addresses, 

• Processors may he categorized as big-endian, little-endian, or bi-radian. A 
multibyte numerical value. stored with the most significant byte in the lowest 
numerical address is stored in big-endian lash i4 in; if it is stored With the most 
significant byte in the highest numerical address, that is little-endian fashion, 
A bi-endian processor can handlL both styles. 

m.  Lich of what is discussed in this book is riot readily apparent to the user or 
programmer of a computer. If a programmer is using a high-level lan-
guage, such as Pascal or Ada, very little of the architecture of the under. 

lying machine is visible, 
One boundary where the comput  designer er Lcs.gner and the computer programmer 

can view the same machine is the machine instruction set. From the designer's point. 
of view. the machine instruction set provides the functional requirements for the 
(11:: Implementing the CPU is a task that in large part involves implementing 
the machine instruction set. From the user's side, the user who chooses to program. 
in machine language (actually, in assembly language; sec Section 10.6) becomes 
awire of the register and memory structure, the types of data directly supported by 
the machine, and the functioning of the AUL 

A description of a computer's machine instruction set goes a long way toward 
explaining the computer's CPU. Accordingly, we focu, on machine instructions it 
this chapter and the next. 

10.1 MACHINE INSTRUCTION CHARACTERISTICS 

The operation of the determined by the instructions it executes, referred to 
as machine instructions or computer insmalions_ The collection of different instruc- 
tions that the CPU can execute is referred to as the CPU's thstractirm set. 
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Figure UL Instrildion Cycle. Si nile I )iagrarri 

Elements of a Machine Instruction 

Each instruction must contain the information required by 1he CPU for execution.  
Figure 1111, which repeats Figure. 3.6. shows II h,;2. !%.1.cpm in volved in instruction exe- -1' 

.. d 

elation and. by implication, Llefines the elements of a machine. instruction. These ele- -: ... 
rnerlt:5. are aix roillows: 1•I  

• Operation code: Specifies the operation to be performed (e.g„ ADD, 110). The 
operation is specified by a binary code, known as. the operation code :  or opcode. 

• Source operand reference: The operation may i vc one or mere source 
operands. that is, operands that are inputs for 1hs opuratit)11. 

• Result operand reference: The operation mily produix a result. 

• Next ki4ruction reference: This tells the CPU where to fetch Ihe I1L'XI instruc-
tion after the execution of this instruedim i cOropleLe. 

The next instruction to be fetched is loo:- t(31 in main Memory or, in the case of 
a virtual memory !.3ys1i,:.m. in either main inemory or secondary memory (Ask), in 
most casi2s, the next instruction to be fetched immediately f.c.1.1lows the current 
instruction. In those cases, there is no explicit reference to the next instruction, 
When an explicit referenc• ix neetki, 1tien the Mill memory or virtual rilentory 

address mus;  I ti e foi ILL in which that address is supplied is cliseusscd III 
Chapter 11. 

Source and result clperands. can bc in erne or 1 hri2c areas:. 

• kfitin or virtual memory: As with net instrUCtiOn roferences. the main or vir-
ILL W rnetriOrsi address must be supplied. 

• CPU register.: With rare excei:.ptioris, a CPU contains one or more registers that 
E MIN be referenced by machine instructions. If only one register exists, refer- 

VI 

yl 

• 
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enee lo it may he iTnplicii. If more than one register exists, then each Tel -Lista 
is assigned a unique number, and the instruction must contain the number of 
the desired register. 

• 110 device: The instruction roust specify the I/0 module and device for the 
operation. If memory-mapped I/0 is used, this is just another main or virtual 
memory address. 

Instruction Representation 

Within the computer, each instruction is represented by a sequence of bits. The  
instruction is divided into fields, corresponding to the constituent elements of the 
instruction. A simple example of an instruction format is shown in Figure 10.2. As 
another example. the lAS instruction format is shown in Figure 2.1 With most instruy-
tion sets, more than one format is used. During instruction execution. an  instructia 
is read into ain in:A ruction register (IR) in the. CPU, The CPU must be able to extract 
[tic data from the various instruction fields in perform the required operation. 

it is difficult for boih the prt Fgr am Mel' and the reader of textbooks to deal with 
binary representations of machine instructions. Thus., it has become common prat• 
lice Lo use a .symbolk. represengaiion or machine instructions, An example or this was 
used for the 'AS instruction set, in 'I'ablc 2.1. 

Opcodes are represented by abbreviations, called ne n on/Ls, that indicate the 
operation, Common examples include. 

ADD  Add 
SUB Subtract 
Nun' Multiply 

DIV Divide 
LOAD Load data rrom memory 
STOR Store data to memory 

Operands are also represented symbolica/ly. For example. the instruction 

AD R, 

may mean add the value contained in data location Y to the contents of regisier R, 
In 1 his example- Y refers to the address of a location in memory, and R Terors to a 
particular register. Note that the operation is performed on the contents of a loca• 
lion, not on its address. 

'Elms, it is possible to write a machine-language program in symbolic form. 
Each symbolic opcode has a fixed binary representation. and the programmer spec- 

4 Bit% 6 MN Bib, 

I  Opcode op.stimilf.11=1.14E.rencu 

4 16 Bits 

Figure 10,2 A Simple InsLirticl ion Format 

operand refimellor 
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ifies the location of each symbolic operand. For example. the programmer might 
begin with a list of definitions; 

X - 513 
Y 514 

and so on. A simple program would accep11his symbolic input, convert opcodes and 
operand references to binary form, and construct binary machine instructions. 

Machine-language programmers are rare to the point of nonexistence. host 
programs today are written in a high-level language or, failing that, assembly lan-
guage, which is disens;. ,.ed ;11 the end of this chapter. However, symbolic machine 
language remains a useful tool for describing machine instructions, and we will use 
it for that purpose.. 

Instruction Types 

Consider a high-level language instruction that could be expressed in a language 
such as BASIC or FORTRAN. Fur uxamill4,. 

x IlY 

This statement instructs the computer to add the value stored in Y to the value 
stcired in X and pm the result in X.  might this be accomplished with machine 
instructions'? Let us assume that the variables X and Y correspond to locations 513 
and 514. If we assume a simple set of machine instructions, this operal ion et iuld be 
accomplished with three instructions: 

1. Load a register With the contents of memory location 
2. Add the contents of memory .  Location 514 to the register. 

3. Store the contents of the register in memory !mailer' 51i. 

As can be seen. the single BASIC instruction may require three machine 
instructions- This is typical of I he relationship heiwern a high-level language and a 
machine ianguage. A high-level language expresses operations in a concise algebraic 
form, using variables. A machine language expresses operations in a basic form 
involving the movement of data to or from registers, 

With 1h is. si mple example to guide us, let us consider the types of instructions 
that must be included in a practical computer. A computer should have a set of 
instructions that allows the user to formulate any date processing task. Another way 
to view it is to consider the capabili tics of a high-level programming language. Any 
program written in a high-level language must be translated into machine Language 
to be executed. Thus, the set of machine instructions musA  stillieient to express 
any of the instructions from a high-level language. With this in mind we can cate-
gorize nislraelliOn types as fellows; 

• Data iiroceming.. Arithmeiic and logic instructions 
• Data storage.: !vtemory in!,IrLieLions 
• Data movement I/O in.drucLioris 
• C'untrol: ' lest and 13nind-i instructions 
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Arithmetic instructions provide computational capabilities for processing 
numeric data, Logic (Boolean) instructions operate on the bits of a word as bits 
rather than as numbers; thus, they provide capabilities for processing, any other type 
of data the. user may wish to employ. 'These operations are performed primarily on 
data in CPU registers. Therefore, there must be memory instructions for moving 
data between memory and the registers. I/O instructions are needed to transfer pro-
grams and data into memory and the results of computations hack out to the user. 
Test instructions are used to test the value of a data word or the status of a compu-
tation. Branch instructions are then used to branch to a different set of instructions 
depending on the decision made. 

We will examine the various types of instructions in greater detail later in 
this chapter, 

Number of Addresses 
One of the traditional realys of describing processor architecture is in terms of the 
number of addresses contained in each instruction. This dimension has become less 
significant with the increasing complexity of CPU design. Nevertheless. it is useful 
at this point to draw and analyze this distinction. 

What is the maximum number of addresses one might need in an instruction? 
Evidently, arithmetic and logic instructions will require the roost operands. Virtually 
all arithmetic and logic operations are either unary (one operand) or binary (two 
operands). Thus, we would need a maximum of two addresses to reference operands. 
The result of an operation must be stored, suggesting a third address- Finally, after com-
pletion or an instruction. the next instruction must be fetched, and its address is needed. 

This line of reasoning suggests that an instruction could plausibly be required 
to contain four address references: two operands, one result. and the address of the 
next instruction. In practice, four-address instructions are extremely rare. Most 
instructions have one, two, or three operand addresses, with the address of the next 
instruction being implicit (obtained from the program counter). 

Figure .10.3 compares typical one-, two-, and three-address instructions that 
could he used to compute Y = (A - 1-1)  (C + D x E), With three addresses, each 
instruction specifies two operand locations and a result location. Because we would 
like to not alter the value of any of the operand locations, a temporary location, T, 
is used to store some intermediate results. Note that there are lour instructions and 
that the original expression had five operands. 

Three-address instruction formats are not common. because they require a rel-
atively long instruction format to hold the three address references. With two-
address instructions, and for binary operations, one address must do double duty as 
both an operand and a result. Thus, the instruction St .'13 Y, B carries out the calcu-
lation Y  B and stores the result in Y. The two-address format reduces the space 
requirement but also introduces some awkwardness. To avoid altering the value of 
an operand, a MOVE instruction is used to move one of the values to a result or 
temporary location before performing the operation. Our sample program expands 
to six instructions. 

Simpler yet is the one-address instruction. For this to work, a second address 
must be implicit. This was common in earlier machines, with the implied address 
being a CPU register known as the accumulator, or AC. The accumulator contains 
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Instruction Comment  Instruct i1l11 

SUB • A 4  B Y.— A - B 1-DAD I) 
MPY 1, D. E T D x E MPY l 
ADD T, T•(—T+ C ADD C 

DIV Y, Y, Y < TOR Y 

Figure 111.3 Progrnms to Execute 117  — (A •- 131 ( C + D. 

one of the operands and is used to store the result. In our canipIc, eight instruc-
tions arc needed to accomplish the task, 

It is, in fact, possible tiP rriai,:e do with /elm addresses for some instructions. 
e.roLaddress instruet ions an applicable to a special memory organization, called a 

sifrc:k. A stack is a last-in-first-out set of locations. The stack is in a known locatton 
and. often, at least the top two elements are in CPI) reyislers. Thus, zero-address 
instruction* would Eac.rcnue the top two stack elements. Stacks are deseribcd in 

Appendix ltIA. Their use is explored further later in this chapter and in Ch4ipter I L 
Table 1(3.1 summarizes the interprctalions to be placed on instructions with 

zero. one, two, or three addremcs• In each ease in the table, it is assumed that the 
midresN or the nest instruction is i mplicit, and that one operation with two source 
operands and one result operand is to be performed. 

The number of addresses per instruction is a basic design. decision. Fewer 
addresses per insirticlion result in n -14 PPE' primitive instructions, which requires t1 ]ess 
complex, CPU, It z.ilso resuits in instructions of shorter length. On the Whey hand: 

. 1 .411)1‘1. 10.1 or Instrueii.ori Addresses (Nonbranehing Instructioa6) 

Number of Addresses Symbolic preieuiatkn Interpretation 

3 OP A :  B. C A •(— B 0.k' C 
1 OP A. B A •(— A OE ki 

1 OP A AC t AC Or A 

3 OP T q-• (T •- I) OP T 

▪ = 1:1 CL:JITJU.U014  

I Hr .41;..0; 

▪ II. I . rr rip! rry UT C:.:111StOT 0.11)17% 

r j - I s II Li uid111;: fit L: I S'HiCk 

.111 LI (I Lela 

Al. 
AC E 

•(— + C 
Y AC 

LOAD .2\ AC: c• A (zE) Thico-;1411.3p.rs.s. ill %till 
4E:13 13 AC •• AC . B 
DIV  V AC (— AC 

Instruction Comme nt STOR  Y Y  AC 
MOVE V. A Y <•-• A 
SUB Y. B Y B 

(c) Orie-addrei...s instmetions 
Y •   

MOVE T. D T •(— D 
MPY' T. E T•(—TxE 
ADD T. C T T C 
DIV Y, '[ Y -

F T 

lb) i Ii!.; 
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programs contain more total instructions, which in general results in longer neap 
tion times and longer, more complex programs. Also, there is an important thresh-
old between one-address and multiple-address instructions_ With one-address 
instructions, the programmer generally has available only one general-purpose reg-
ister. the accumulator. With multiple-address instructions, it is common to have 
multiple general-purpose registers, This allows some operations to he performcd 
solely on registers. Because register references are faster than memory references, 
this speeds up execution. For reasons of flexibility and ability to use multiple rogi,- 
ters, most contemporary machines employ a mixture oE two- and three-add TL:N ,  

instructions. 
The design trade-offs involved in choosing the number of addresses per instruc-

tion are complicated by other factors. There is the issue or whether an address ref-
erences a memory location or a register. Because there are fewer registers, fewer 
hits are needed for a register reference. Also, as we shall see in the next chapter, a 
machine may offer a variety of addressing modes, and the specification of mode 
takes one or more bits. The result is that most CPU designs involve a variety of in-
struction formats. 

Instruction Set Design 

One of the most interesting, and most analyzed, aspects of computer design is 
instruction set design. The design of an instruction set is very complex, because it 
affects so many aspects of the computer system. The instruction set defines many of 
the functions performed by the CPI I and thus has a significant effect on the implc-
mentation of the CPU. The instruction set is the programmer's means of control-
ling the CPU. Thus, programmer requirements must be considered in desiti.ning the 
instruction set.. 

It may surprise you to know that some of the most fundamental issues Mat-
ing to the design of instruction sets remain in dispute. Indeed, in recent years, the 
level of disagreement concerning these fundamentals has actually grown. The nio!A 
important of these fundamental design issues include the following: 

• Operation repertoire: !low many and which operations to provide, and how 
complex operations should be 

• Data types; ' l'he various types of data upon which operations are performed 

• Instruction format: Instruction length (in bits), number of addresses, size of 
various fields, and so on 

• Registers: Number of CPI.1 registers that can be referenced by instructions, 
and their use 

• Addressing: The mode or modes by which the address of an operand is 
specified 

These issues are highly interrelated and must be considered together in design-
ing an instruction set. This hook, of course. must consider them in some sequence, 
but an attempt is ma& to show the interrelationships. 

Because of the importance of this topic, much of Part Three is devoted to 
instruction set design. Following this overview section, this chapter examines data 
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types and op.eration reperioire. Chapter 11 examines addressing modes (which 
includes a consideration of regiMers) and instruction formats, Chapter 13 examines 
the reduced instruction set computer (RISC). RISC archilcciurc calls into question 
many of the instruction sel design decisions made in many conti2inporary commer-
cial computers. 

10.2 TYPES OF OPERANDS 

Machirs12.instructicins oncrate on data. The most important general categories of data arc 

• Addresses 

* Numbers 

▪ Characterg 

• Logical data 

We will see, in discussing addressing modes in Chapter 1.1, ihat addrusscs arc. 
in fact, a form of data. In many cases, some ea lculal ion must he performed on the 
orwrand reference: in an instruction to determine the main or virtual memory 
address. In this context, addresses can be considered to be unsigned integers. 

Other common data types are numbers. characters, and logical 61a, and each 
of these is briefly examined in this section. Beyond [hal. Nome machines define spe-
cialiw:ed daia types or data strueitire:i. For example. there may be machine operators 
that operate directly in a list or a string of characters. 

Numbers 

All machine Languages include numeric data types. Even in nonnumeric data pro-
cessing, there is a need for numbers to act as counters, field widths, and so forth. 
An important distinction between numbers used in ordinary ni4,Lhcmaties ink] num-
bers stored in a computer is that the latter  lirnittd. This is true in two senses. 
First, there is a li mit to the magnitude of numbers representable on a machine and 
second, in the case of floating-point numbers. a Limit to their preds.ion. 't nos, the 
programmer is faced with understanding the consequences of roundin, overflow, 
and undcrflow. 

Three types of numerical data are common in computers:. 

* Integer or fixed point 

• Floaling point 

■ Decimal 

We examined the first two in some detail in Chapter 9. It remains Id say a few words 
about decimal numbers. 

Although all internal compuier opera[ions Lire binary in nature, the human 
users of the system deal with decimal numbers. Thus, there is a necessity lo converl 
from decimal to binary on input and from binary to decimal on output. For appli-
cations in which there is a great deal of 1/0 and comparatively little, comparatively 



338 CHAPTER 10 1 INSTRUCTION SETS: CHARACTERISTICS AND FUNCIIONS 

simple computation. it is preferable to store and operate on the numbers in decimal 
form. The most common representation fear this purpose is packed decimal. 

With packed decimal, with decimal digit is represented by a 4-bit code, in the 
obvious way. Thus, (1 — 0000, 1 — 0001,  S = 1000, and 9 = 1001. Note that this 
is a rather inefficient code because. only 10 of 16 possible 4-bit values arc used. To 
form numbers. 4-bit codes are strung together, usually in multiples of 8 bits. Thus, 
the code for 24f is 0000001001000110 This code is clearly less compact than a 
straight binary representation. but it avoids the conversion overhead. Negative num-
bers can be represented by including a 4-hit sign digit at either the left or right end 
of a string of packed decimal digits. For example. the code 1.111 might stand for the 
minus sign. 

Many machines provide arithmetic instructions for performing operations 
directly on packed decimal numbers. The algorithms are quite similar to those 
described in Section 9.3 but must take into account the decimal carry operation. 

Characters 
A common form of data is text or character strings. While textual data are most core 
venient for human beings. they cannot, in character form, he easily stored or trans-
mitted by data processing and communications systems. Such systems are designed 
for binary data. Thus, a number of codes have been devised by which characters are 
represented by a sequence of bits. Perhaps the earliest common example of this is 
the Morse code. Today, the most commonly used character code in the International 
Reference Alphabet (IRA), referred to in the United Slates as the American Stan-
dard Code for Information Interchange (ASCII; see Table 7.1). IRA is also widely 
used outside the United States. Each character in this code is represented by a 
unique 7-bit pattern: thus, 128 different characters can be represented. This is a 
larger number than is necessary 10 represent printable characters, and some of the 
patterns represent control characters. Some of these control characters have to do 
with controlling the printing of characters on a page. Others are concerned with 
communications procedures. IRA-encoded characters are almost always stored and 
transmitted using 8 bits per character. The eighth bit may be set too or used as a par. 
itv bit for error detection. In the latter case, the bit is set such that the total number 
of binary ls in each octet is always.odd (odd parity) or always even (even parity). 

Note in Table 7.1 that for the IRA bit pattern 011XXXX. the digits ft  through 
9 are represented by their binary equivalents, 0000 through 1001, in the rightmost 
4 hits. This is the sante code as packed decimal, '['his facilitates conversion between 
7-hit IRA and 4-bit packed decimal representation. 

Another code used to encode characters is the Extended Binary Coded Dec-
imal Interchange Code (EBCDIC). EBCDIC is used on 1BM 5/390 machines, It is 
an 8-bit code. As with IRA, EBCDIC is compatible with pocked decimal. In the case 
of EBCDIC. the codes 11110000 through 11111001 represent the digits 0 through 9. 

Logical Data 
Normally, each word or other addressable unit (byte, hal fword, and so on) is treated 
as a single unit of data. It is sometimes useful, however, to consider an n-hit unit as 
consisting of n L-hit items of data, each item having the value 11  or 1. When data are 
viewed this way, they arc considered to be logical data. 
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There are two advantages to the bit-oriented view. First, we may sometimes 
wish to store an array of Boolean or binary data items. in which each item can take 
on only the values 1 (true) and 0 (false). With logical data, memory can be used most 
efficiently for this storage.. Second, there are .  civeasions when we wish to manipulate 
the bits or a data item. Forexample, if floatin g-point operations are implemented in 
software, we need to be able to shift significant bits in some operations. Another 
example: To convert from IRA to packed decimal, we need to extract the rightmost 
4 hits of each byte. 

Note that, in the preceding examples, the same data are treated sometimes as 
logical and other times as numerical or text. The "type" of a unit of data is deter-
mined by the operation being performed on it. While this is not normally the case 
in high-level languages, it is almost always the case with machine language. 

10.3 PENTIUM AND POWERPC DATA TYPES 

Pentium Data Types 

The Pentium can deal with data types of 8 (byte). 16 (word), 32 (doubleword). and 
64 (quadword) bits in length. To allow maximum flexibility in data structures and 
efficient memory utilization, words need not he aligned at even- numbered  addresses; 
doublewords need not be aligned at addresses evenly divisible by 4; and quadwords 
need not be aligned at addresses evenly divisible by 8. However, when data are 
accessed across a -32-bit bus, data transfers take place in units of doublewords, begin-
ning at addresses divisible by 4. The processor ameris the request for misaligned 

Table 111.2 Pentium Data Types 

Data Type 1.1eNcripticin 

CiuncrRI 13. 1.e, word (16 bits), doulik.w4ird.t.12 hits). and quadvigird (#.1 ,1 bits) 
locations with arbitrary binary contents. 

Integer A signed binary value contained in a byte, word. or douhle•ord, 
using twos complement representation. 

Ordinal An unsigned integer contained in a byte, word, or doubleword. 

Unpacked binary coded A representation (rf a BCD digit in the range it Ihroueji 9, with one 

decimal fEl.CD1 digit in each byte.. 

Packed 13C0 Packed byte representation of two liC1) digits: value in the range 
to 99. 

Near pointer A 32-hit effective aditivss that represents the oFfsct within a segment. 
Used lug all pointers in Al nonsegmented memory' and [car rofercnees 
within a set:mein in :3 segmented memory, 

Elit field A contiguous sequence of hits in which the position 01 each hit is 
considered as an independent unit, A hit. string can hL Cin at arty hit 
position of an' byte and can contain up to - 1 hi k. 

Byte strive A oontiguous sequence of bytes, words. or doublewords, on -11,111ring 
form zero to 2" - / bytes. 

Floating point See Figure 10.1. 

4 1' 
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values into a sequence of requests for the has transfer. As with all of the Intel 807e.-. ,6 
machines, I he Pentium users the little-endian styie [kit is, the least significant byte iii 
stored in the lowest ,a ddress (see A opc.ndix 1013 for a discussion of enclianness). 

The Iwle, word. doubleword, and quadword are referred to as general datd 
types. In addi lion. the Pentium supports an impressive:array of specific data rypts 
that are recognized anal operated on by particular instructions. Table 10;2 stoma-
Finis these types. 

Figure KO 'illustrates the: Pentium nurnericat data types. The signed integers 
are in twos complement representation and may be RI. 32. or 04 bits ionR. The floating- 

BvIe unsigned in•ge.1 

Word unsinc:clinreg.e.r 

  

I '•'-' nf.. 0.111! ,  Word ..:i gued [mega- 

Doult-dxwooi :•iitzued inIeger 

Quadword Signed inrugcr 

   

 

rwos 

....N i l I 
1. 

11 L:. 

 

 floating point 

[ cxrg  

51 

sign hir ifiLETel' 

... ) 0EFo.fit' 
, •  

64 6•2  

Double 
naming !,[li ra  

:  •:  DeRiblx prvci4:51) 
50.L9. !":,41T

:c1.'  • flodring paint 

Figure WA Pentium Numeric Data HicruaLs 
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point type actually reIcrs Lo a st.!t of types that are used by the floating-point unit 
and operated on by floating-point instructions. The three floating-point representa-
tions conform to the IEEE. 754 standard. 

PowerPC Data Types 

'The PowerPC' can deal with data types of g (byte). 16 (ha I fword), 32 (word), and 
fib (doubleword) bits in length. Some instructions require that memory operands 
be aligned on a 32-bit boundary, In general, however, alignment is not required. 
One interesting feature of the PowerPC is that it can use either little-endian or big-
cndian style: that is, the least significant byte is stored in the lowest or highest 
address (see Appendix 11111 for a discussion of endianness). 

The byte, halfword,  prd, and dOLINCward arc general data types. The proces-
sor interprets the contents of a given item of data cleNntling on the instruction. The 
fixed-point processor recognizes the following data types: 

• Unsigned byte: Can he used for logical or intcgcr ariihmetic oper a tions- 11 is 
loaded from memory into a general register by zero extending on the ]eft to 
the full register size. 

• Unsigned halfword: As for unsigned byte, heal rot 16-bil quantities- 
* Signed halfword: Used for arithmetic operations: Eoaded into memory by sign 

extending on the left to full register size (i.e., the sign bit is ref iicated in al] 
vacant posi lion6). 

* Unsigned word: for logical operations and as an address pointer. 
■ Signed word: Used for arithmetic ()pew ions. 
• Unsigned doubleword: Used as an address pointer. 
• Byte string: From 0 to 128 bytes in length. 

In addition. the PowerPC supports the single- and double-precision floating-
point dati types defined in IEEE 754. 

firti.S -
;rerrri,w-5,-"Ar%x 

The number of different opeodes varies widely from machine to machine, 1Iowever, 
the same general type's or operations are found on all machines. A useful and typi-
cal categorization is the following: 

▪ Data transfer 
• Arithmetic 
• Logical 
■ Conversion 
* 
■ System control 
• Transfer of control 

Table 10.3 (based on II l Asr.' HMI) lists common instruct ion types in each 
category. This section provides a brief survey of these various types of operations, 
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Table 10.3 Common, l nstructiou Set OpratioirliF. 

Operation Name. Dem....610 .50n 

Data sransfer 

MOVE ft NI 11 Sf LI) 

Su }re 

1.oad 
•xchim .1412 

'Cie rr (rOSCE) 

&i!. 

Push 
Pop 

Transfer wont or hi SICk Horn SOW-CC 1.0 cichtination 

TranSfer Want from processor LL.) memory 
Trausfer 1  wort. .rmiL (Nr.nor!.. to proccsor 

cup Le n LP% of source and destma ti on 
Transfer wort] of Os to dcsl inH ri{ 

'1 runr442.] .  word of Is. t4 d esti ii i I is i n 

1 ran2...f121 word from souro2 1 c1 lop of :Ltack 
TTH nNtu r 9eOic.1 from top iii slack to destination 

A1laure1ie. 

Add 
Surrirad. 
Multiply 
Divide 
A 5osolute 
Ne.ga Le 

(:o m po le 'Loin Of LINO operand:, 
Caril riaLc di nre31C.0 of two operands 

pu e ptr.Fduct of rwo operHnds 
5111 pulC quaitlit cir two 4pervinOs 

,pperaliLt by its 911S{ 51 IA IL valL1C5 

Ch nge Or operand 
[ucre iilenl  

Decrcinera 
Add t to cppetarid. 
Sohttact ] from opernmi 

AND 
OR 
NOT Perform the specified lo6iica1 ripe ratio!' hitwisc 

( Complement) 
E)Zel usive-OR 

Logical Test Test specified condition% sei ) !lased on outcome 
Compare Make or a rntrn;-...I ic ea nsoi L of two Or more. opel . m.d5! 

NCI Ila.p..(s1 based on (uncoil -it! 
Set control Claris inA ructions to Kl controls fol.  prokeetspit purpose& 
vuriabl es InlCirupL ti mer  con e Le. 

Shift (rig{ 11 shift op.:mild, inLr{)d1C.1114 ODLiStanLS at end 
Rotate 0) .1.) stuit ilpernnci, with wraparound end 

Transfer 
ryf control 

Jun Lp flwari.ekt) 
unip con dir.iona I 

Jump Lo subroutinc 

F..x1 .2ci.11.12 

Skip 
Skip condi knurl 

'ciirir iL 

.opt ration 

UncondiLiciloil 11'i:11131'er! LODA1 PC' %%II h !Teel fled address 
'I em. condi Llo n: either load PC' tvitkt specified addre..sg ar 
do no bins, In1s4 cm condition 
Place curl-42111 propdui control mf grind Li on in known location; 
lump to specir led add rC%S 
Re Waco conwn Ls of PC and other register front known 1oca Lion 
Fes ch. operlind from specified local ion Hn d wcectl Le as insl ruetign: 
di I not nincliry PC' 

1 ncremcni PC Lo hkits next instruction 
feet pr2ci condition! etcher skip or d0 nothin44 based Du 
condition 
Slop program cAocution 

rop pr igraul execution:. test specified 42....)n dition. repc 
re.stime execution when condition k satisfied 
fin opuru tic in is performed, but program execution is cOntirruiLd 

In puLlous pu1 

Input (mod) 

()ION!! (wrilc} 

St;iri 1:4.) 

'If aris Cor data fri5111 SpLci 'Jed 1..'0 Nil or rieviee 1.0 destinati.311 
main memory 15r proCeMol.' register .) 

Transfer d al a from hpccifid source to port or 1.1 6.01C42: 

T ransfer ins! tucl ir m s to 1.:0 processor I n inil in Le 170 operation 
' I 'ra sk.r claim i n LcFrrllutit7ll 110111 110 N'yStcrn Lci speuir3ed de:30111.MM 

f;onveryi1 f1I 

T r;1111111.1.12 T'ra nsiate. values in H {A memory based cl n a Lable.of 
corresipondences 
Convert 41.1c conients of kl word CrOn1 011e. RIM L o nni.)Lhe.i 
{e.g., packed decimaf to  n u ry} 
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Table 104 CPU Actions for Vat. jou: I 'ypes of Operations 

Data transfer 

Transfer dal. n.c.trrl one location ICI am,' her 

1. 1 memory  is ink.olved: 

Determine memory.address 
Perform virtual-In-aclual-memor:, address trawdorination 
(Meek (melte. 
Initiate memory 

May involve dam irxmr.sr, hcf Ore •andlor alter 
Arithmcite Ferfurat function in All) 

Si4..:  condition code: and flaFs 

Logical Sainc. as arithm:21EC 

Conversion Similar In ,;irithiii;•ifc r.irLd logical. May involve. special logic In 1et - 1(1TM conversion 

Transfer of control 
Updritc program ciminer_ Fur stihruntine callrreIurn, manap:. FirCIrricWT posing and 
linkage 

Issue command to I/O module. 

If memory-mapped 1.'0, determine inentu3 y-rnapped kI ddrum 

together with a brief discussion of the actions taken by the CPI I to execute a par-
ticular type of operation (summarized in Table l0.4). The lattei topic is examined 

in more detail in Chapter 12.  • 

Data Transfer 
The most fundamental type of machine instruction is the data transfer instruction. 
The data transfer instruction roust specify several things. First, the location of the 
source and destination operands must hu specified. Each location could be memory. 
a register. or the top of the stack. Second, the length of data to be transferred must 
be indicated, Third, as with all instructions with operands, the mode of addressing 
for each operand must be specified. This latter point is discussed in Chapter I t. 

The choice of data transfer instructions to include in an instruction set exem-
plifies the kinds of trade-offs the designer must make. For example, the general 
location (memory or register) of an operand can he indicated in either the specifi-
cation of the opcode or the operand. Table If15 shows examples of the most com-
mon IBM Si390 data transfer instructions. Note that there arc variants to indicate 
the amount of data to be transferred (8. 16,32, or 64 bits). Also, there are different 
instructions for register to register. register to memory. and memory to register 
transfers. In contrast, the VAX has a move (MOV) instruction with variants for dif-
ferent amounts of data to be moved. but it specifics whether an operand is register 
or memory as part of the operand. The VAX approach is somewhat easier for the 
programmer, who has fewer mnemonics to deal with. However, it is also somewhat 
less compact than the IBM S/390 approach, because the location (register versus 
memory) of each operand must be specified separately in the instruction. We will 
return to this distinction when we discuss instruction formats, in the next chapter, 

In terms of CPU action, data transfer operations arc perhaps the simplest type. 
If both source and destination are registers, then the CPU simply causes data to be 
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l'oble 10.5 Eitaittpla:s of IBM SI391) Data Transf.2: Operation ,: 

Operatil P n 

Mnemonic Name 
Nitwit:er of Rib 

Transferred Description 

J Load 3 7  1 . 11111:.,1..‘1" i'morn murrLary in i-Lgistu 

I-I! Loin] hall-word L6 Trail4fer :1.11m iise.irlors.. to 1 . c4......sLee 
I..R I ..oad 32 TraLlS1 .01' Jrcini rEliSICT 1.0 Eckister 

LER Lor.id (5110s1) 32 Traw.:11.n .  Isom. floathig-poirst se.gisker io flo;ring-
point R-...gisic r 

LE Lokiil (short .' 32. Tr.:Ansi:Qs Imin memory ;a) nou[ing•poiuti Tc..6.i.F.Lei 

LDR Load (long) 64 Transk.r l'i-orri flouting-point ft:lilt:La 10 fliiiiiii1F-
point•rceisftr 

[.. n. f..oad (toric) 4.'4 Trall.510r From rnornory Ill 11i5;11....rol poln1 rqisr.er 

ST SIorl 32 Traitcfc I 1'41111 1.2.0 Cl C i i n incurcH . .., 

NTH S1CITE hall:word 1G Tun...;I'ff l'r oriS reAisl.ci .  10 rrienwry 

STC %Skil-12 chari:i.....tc r g Transt.c-r rrilis, ii.. i..s1......r 1c1 niumory 
STE Sufri: 1:€.1tort) 32 TrEmsfur from Lloalini-poinI. ropm...1.--  1.0 memory 

STD Su:Av. (long} il..1 Tur1il)21' from Elry.iiirip-point reg1hi4.-r hi merao....y 

translernal from one register to another: this is an cpperatiOn inlernal lo the CPU. If 
one or both operands are in memory, then the CPU must perform some (Pr all of the 
roliowing actions! 

'L. Calculate the memory address, based on the addre: ,:s mode (discussed in 
Chapter 11), 

1 If the addre.s:s. refers to viri ual memory, trail:date from virtual to actual mem-
ory address- 

3, Determine whci her the addressed item is in cache. 

4. If not, issue. I command hr the memory module, 

Arithmetic 

Most n1;ichilieS provide. the basic arithmetic opermitions of lidd, subtraei, 
anti divide. Thesc..,  zlre invariably provided for signed integer (fixed-point) numbers. 
Often they are ]so provided for floating-point and packed deciirral numbers. 

Other possible operations include a variQly Cif single-operand instructions: 
for example. 

• AbwInte: Take 1.11 ,2 absolute value of the operand, 

• Negate; Negate the operand. 

■ Increment: Add L hr the operkuld- 
• Decrement; Subtract L from the operand. 

The execution of an arithmetic instruction may involve data Irtii rer opera-
ions to position operands for input to the ALL, and to deliver the output of the 

ALL'. Figure :4.5 illustratcs the movcmenis involved in both (Lila transfer and arith-
metic operations. In addition, of course, the ALI! portion of the CPU performs thc 
desired operation. 
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Logical 

Most machines also provide a variety of operations for manipulating individual bits 
of a word or other addressable units, often referred lo as "bit twiddling." They are 
based upon Boolean operations (see Appendix A). 

Some of the basic logical operations that can be performed on Boolean or 
binary data are shown in 'Table 1011. The NtlY1 .  operation inverts a bit. AND, OR. and 
Exclusive-OR (XOR) are the most common logical functions with two operands. 
EQUAL is a useful binary test. 

These logical operations can be applied bitwise to n-hit logical data units. 
Thus, if two registers contain the data 

(R1) 10100101 

(R2) 00001111 

then 

( RI) AND (R2) — 00000101 

where the notation (X) means the contents of location X. Thus. the AND operation 
can be used as a mask that selects certain bits in a word and -zeros out the remain-
ing bits. As another example., if two registers contain 

t111) = 10100101 

( R2)= 11111Ill 

then 

(RI) XOR (R2) = 01011010 

With one word set to all 1s. I he XOR operation inverts all of the bits in the other 
word (ones complement). 

In addition to bitwise logical operations, most machines provide a variety of 
shifting and relating functions. The most basic operations are illustrated in Figure 
10.5. With a logical shift, the bits of a word are shifted left or right. On one end. the 
bit shifted out is lost. On the. other end, a 0 is shifted in. Logical shifts arc useful pri-
marily for isolating fields within a word. The Os that are shifted into a word displace 
unwanted information that is shifted off the other end. 

Table 10.6 Basic Logical Operations 

P Q NOT P P AND 0 P OR Q P XOR Q NO 

0 ] 0 0 0 1 

IF 1 1 0 I I 0 

I 0 0 0 I I 0 

I 1 0 1 I 0 1 
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0 

:t1.1. 1A3.g .k!al left shill. 

I L .  I A ri t hi:11 ,211.c. right shin 

MOM • 

(1) Left rotaic 

'Vire 10.5. Shill and Rotait. Operadoos 

Af.„ art example, suppose we wish to transmit charvictcr.1
,. of data to an 110 

device 1. characier at a (irnc. &emsh memory word is; [6 hits in length and contains 
two characters, wi2 mum wzpack the characters tic lore they can he. &M-To send the 
two chuirneten; ill  word. 

I. I Amd the word into a registi:r. 
2. ANL) with the value [ 11[ 1.1 ! I (C)N COO. This masks ()unite character on the riht. 

3. Shift to thenght eight kiines. This shifts the rem:lining character to thc right 
half of the rcgistur, 

4. Pei-Corm 110. The 110. module reads the lower-order 8 hih, from the data bus. 

The preceding steps result in sending the left-hand character. To scrid the.right- 
hand eh ll'acter. 



Input 

10100110 

10100110 

10)001 ID 
10100110 
101001 lit 

1 
 l0l00110 

Operation 

Logical right shift (3 lit) 
Logical tell shift (3 bits) 
Arithmetic right slidt (3 bits) 

Arithrhoic left shill (3 bits) 
Right rotate (3 hits) 
Left rotate (3 hits) 

00(1111100 

001 10000 

1I1.1011X) 

101 moon 

j 01(11) 

Resoll 

00110101 
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1. Load the word again into the register. 
Z. AND with 0000000011111111. 

Perform I/O. 

The arithmetic shirt operation treats the data as a signed integer and does not 
shift the sign bit. On a right arithmetic shift, the sign hit is replicated into the bit 
position to its right. On a left arithmetic shift, a logical left shift is performed on all 
bits but the sign bit, which is retained. 'these operations can speed up certain arith-
metic operations. With numbers in twos complement notation, a right arithmetic 
shift corresponds to a division by 2, with truncation for odd numbers. Bolt' an arith-
metic left shift and a logical left shift correspond to a multiplication by 2 when there 
is no overflow- If overflow occurs, arithmetic and logical left shift operations pro-
duce different results, but the arithmetic left shift retains the sign of the number. 
Because of the potential for overflow. many processors do not include this instruc-
tion, including PowerPC and Itanium. Others, such .as the IBM S/390, do offer the 
instruction. Curiously, the Pentium architecture includes an arithmetic left shift but 
defines it to be identical to a logical left shift. 

Rotate, or cyclic shift, operations preserve all of the bits being operated on 
One possible use of a rotate is to bring each fiit successively into the leftmost bit, 
where it can be identified by testing the sign of the data (treated as a number). 

As with arithmetic operations. logical operations involve AI.0 activity and 
may involve data transfer operations. Table 1(1.7 gives examples of all of the shift 
and rotate operations discussed in this subsection. 

Conversion 

Conversion instructions are those that change the formal or operate on the format 
of data. An example is converting from decimal to binary. An example of a more 
complex editing instruction is the S/390 Translate (TR) instruction. This instruction 
can be used to convert from one 8-bit code to another, and it takes three operands: 

TR RI, R2, L 

he operand R2 contains the address of the start of a table of 8-bit codes. The. I.. 
bytes starting, at the address specified in RI are lranslated. each byte being replaced 

Table 10.7 F...XaMpli:s of Shift and Rotate. Operations 
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by the contents of a table entry indexed by that 117. . ,.1e. 1;or example, to translate from 
EBCDIC to IRA, we first create a 256-byte table in storage locations, say, 1000-WET 
hexadecimal. ' Hie table contains the characters of the IRA code in the sequence of 
the binary representation of the EBCDIC' code: that is, the IRA code is placed in 
the table at the relative location equal to the binary value of the HI3CDIC code of 
the same character. Thus. locations IWO through 10F9 will contain the value ;  

30 through 39, because FO is the kBCDIC code for the digit 0. and 30 is the IRA 
code fot the digit 0, and so on through digit 9, Now suppose we have the EBCDIC 
for the digits 1984 starting at location 2100 and we wish to translate to IRA, Assume 
the followinw 

• Locations 21.00 .2103 contain Fl F9 1- ,8 
• R1 contains 2100. 
• R2 contains 1000: 

Then, if we execute 

TR R1, R2, 4 

locations 210(1-2103 will contain 31 39 3S 34. 

Input/Output 

Input/output instructions were discussed in some detail in Chapter 7. As we 
saw. there are a variety of approaches taken, including isolated programmed 110. 
memory-mapped programmed 110, DMA, and the use of an 110 processor. Many 
implementations provide only a few 110 instructions, with the specific actions spec-
ified by parameters. codes, or command words. 

System Control 

System control instructions are those that can he executed only while the proces-
sor is in a certain privileged state or is executing a program in a special privileged 
area of memory. rypically, these instructions are reserved for the use of the oper-
ating system. 

Some examples of systetn control operations are as follows, A system control 
instruction may read or alter a control register; we discuss control registers in Chap-
ter 12. Another example is an instruction to read or modify a storage protection key, 
such as is used in the S/390 memory system. Another example is access to process 
control blocks in a multiprogramming system. 

Transfer of Control 

For all of the operation types discussed so far, the next instruction to be performed 
is the one that immediately follows, in memory, the current instruction, However, a 
significant fraction of the instructions ill any program have as their funelion chang-
ing the sequence of instruction execution. For those instructions, the operation per-
formed by the ('Nt.' is to update the program counter to contain the address of some 
instruction ill memory. 
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There are a number of reasons why transfer-of-control operations are re-
quired, Among the most important are the following.: 

1. In the practical use of computers, it is essential Lo be able to execute, each 
instruction more than once and perhaps many thousands of times. It may 
require thousands or perhaps millions of instructions to implement an appli-
cation. This would be unthinkable if each instruction had so he, written out sep-
arately. Fla table or a list of items is to be prt -locssed, a prowarn loop is needed. 
One sequence of instructions is executed repeatedly to process a]] the data. 

2. Virtually all programs involvc some &vision making. We would like the com-
puter Io do one thing if one condition holds, and another thing if another con-
dition For example, a sequence of instructions computes the square root 
of a number. At the suiri of the sequence. the sign of the number is tested. If 
the number is negative, the cornpuiation is not performed. tru1 art error con-
dition is reported. 

3. To compose correctly tl 11.1 rgC or even niedim-n - ize computer program is an 
exceedingly difficult task. It helps if there are mechanisms for breaking the . . 
task up into smaller pieces that can be worked on one at a time. 

We now turn to a discussion of the most common transfer-of-control opera-
tions found in instruction sets: branch, skip, and procedure call. 

linuich Instructions 

A branch instruction. also called a jump instruction. has as one or its.operands 
the address. of the nexl instruction to be executed. Most often, the instruction is a 
condirlondi t,Franch instruction. '1'hat is, the brandh is made {update program counter 
to equal address specified in operand) only if a certain condition k met. 01herwise, 
the next instruction in sequence is executed (increment program counter as usual). 

There are two common ways of generating the condition to be tested in a condi-
tional branch instruction. First, most machines provide a l-bit or multiple-bit con-
dition code that is set as the result.of some operations. This code can be I hough" of 
as a short user-visible register. As an example, an arithmetic operation (ADD, SUB-
TRACT, and so on) could set a 2-hit condition code with one of the following four 
values: 0, positive, negative, overflow. On such a machine, there could be lour dif-
ferenI conditional branch instructions: 

BR? X Branch to location X if result is positive. 
BRN X Branch to location X if result is negative. 
I-3 R/. X Branch to location X if result is zero. 
BO X Branch 10 location X if overflow occurs. 

In all of Ihese cases, 1he result . referred to is the result of the most recent oper-
ation that set the Ci HILliti on code. 

Another approach that can be used with a threc-addressinstruction formal is 
to perform a comparison and specify a branch in the same instruction. For example, 

1.314  R I, R2. X Branch to X if contents of Rl = contents of R2. 



200 
201 

• 202 SUB X, Y 
203 BRZ 211  
• • 

• 

210 BR 202 
211 • 
• • 

Unconditional 
hranCES 
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Figure 10.6 shows examples of these operations. Note that a branch can he 
either forward (an instruction with a higher address) or backward { lower address). 
The example shows how an unconditional and a conditional branch can he used to 
create a repeating loop of instructions. The instructions in locations 202 through 21i) 
will he executed repeatedly until the result of subtracting Y from X is 0. 

Skip Instructions 
Another common form of transfer-of-control instruction is the skip inSITLIC,  

tion. The skip instruction includes an implied address. Typically, the skip implies 
that one instruction be. skipped, thus, the implied address equals the address of the 
next instruction plus one instruction-length. 

Because the skip instruction does not require ai destination address field, it is 
free to do other things. A typical example is the increment-and-skip-if-zero (ISZ) 
instruction. Consider the following program fragment: 

3 C 1 

• 
3011  r.sa R1 
31C RR 3C.1 
311 

In this fragment, the two transfer-of-control instructions are used to implement an 
iterative loop, Rl is set with the negative of the number of iterations to be per-
formed. At the end of the loop, RI is incremented. If it is not 0, the program 
branches back to the beginning of the loop. Otherwise, the branch is skipped. and 
the program continues with the next instruction after the end of the loop. 

Mcrnory. 
address Tnstruction 

• • 
• • 

22.5 BRE R1, P.2 2.15 
• 

• • 
• • 

235 • 

figure 10.6 Branch Instructions 

Conditional 
('.ranch 

Conditional 
branch 
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Procedure eaIt Instructions 

Perhaps the most important innovation in the development of programming 
ianguages is the procedure. A procedure is a self-contained computer program that 
is incorporated into a larger program. At any point in the program the procedure 
may be invoked, or coffed. The processor is instructed lo go and execute the entire 
procedure and then return to the point from which the call took place, 

The two principal reasons for the use of procedures are economy and modu-
larity. A procedure allows the same piece of code to be used many times. This is 
important for economy in programming effortand for making the most efficient use 
of storage space in the system (the program must he stored). Procedures also allow 
large programming tasks to be subdivided into smaller units. This use of nu-gdular-
iry greatly eases the programming task. 

The procedure mechanism involves two basic instructions: a call instruction 
that branches from the present location to the procedure. and a velum instruction 
that returns from the procedure to the place from which it was called. Both of these 
are forms of branching instructions. 

Pigure 10,7a illustrates the use of procedures to construct a program- In this 
example, there is a main program starting al location 400(1. This program includes a 
call to procedure P ROC71, starting at location 4500. When this ca]] instruction is 
encountered, the CPI: suspends execution of the main program and begins ex-
ecucion of PROC1 by fetching the next instruction from location 4500. Within 
PROC1, there are two calls to PROC2 at location 4800. In each case, the execution 
of PROC I is suspended and PROC2 is executed. The RE11.:RN statement causes 
the CPU to go back to the calling program and continue execution at the in:t1ruc-
[ion after the corresponding CAUL instruction. This behavior is iilustrated in 
Figure 10.7b. 

Several points are worth noting: 

I. A procedure can be called from more than one location. 
2. A procedure call can appear in a procedure. This allows the ne.viiig of proce-

dures 10 an arbitrary depth. 
3. l ath procedure ca]] is matched by a return in the called program. 

Because we would like Lo he able to cal] a procedure from a variety of points. 
the CI-1 U must somehow save the return address so that the return can take place 
appropriately. There are three common places for storing the return address: 

• Register 
• Start of called procedure 
■ Top of stack 

consider a machine-language instruction CALL X, which stands for COB procedure 

ut lOctifiw2 If the register approach is used, CALL X causes the following actions: 

L 

RN 4•  PC -F 
PC 



CALL Proc2 

CALL Proc2 

RETCHN 

Addresses 
4000 

 

Main rnernory 

  

     

      

      

4100 
4101 

 

CALL Prod 

 

Main 
]irrigrain 

    

      

      

110MON.I.M.■ Procedure 
Proc2 

Procedure 
Prod 

4500 

4600 
4601. 

450 
4651 
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(a) Culls and returns ml Execution sequence 

Figure 10,7 ."s'e.cied Proccdur..2.s 

irvhere RN is a register that is kilways used for this purpose. PC is the program' 
counter, and A is the instruction length. The called procedure can ntjw skive Ile con-
Lents of RN to be used for lite later return. 

A second possibility is to store the return address at the start of the proceduru. 
In this case, CALL X causes 

X PC — A 
PC, t— X —1 

This is quite bandy. I -  he return address h;is keen stored safely away. 
Both if the preceding approaches work and have 1 -icen used. The only I imi iation 

of these approaches is that they prevent the use of reentrant procedures, A reentrant 
procedure is one in whieh it is pOssible 10 lmeive several calls open to it 6 1 U same the. 
A recursive procedure (one that calls 'Bell) is an example. or the: use of ibis feuture. 

A more enerail and powtirfui approach is to use a stack (see Appendili 1,0A 
for a definition of the stack). When the CE(..) executes a call, il places the return 
address on !tic stack, When it executes return, it use!, the address on the slack. 
Figure ma illustrates the use of .the stack. 



               

            

            

            

        

4601 

 

4651 

 

    

4101 

   

4101 

 

4101 

 

            

            

            

                

la qtat-1. I I)} Atter (e) IA} After (e) After tt) At a Atter 
leuntenis CALL Prue! CALL Fre.c2. RETURN CALL Prue2 RETURN RETURN 

Figure 10-S Ike of Stock to lEnplernunE Nestcd. Subroutines of Figuit 10.7 
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In addition to providing a return address, it is also often necessary to pass 
parameters with a procedure call. These tan he passed in registers. Another possi-
bility is to store the parameters in memory  atter the CALL instruction. In this 
case., the return must he to the location following the. parameters. Again, both of 
these approaches have drawbacks, If registers are used, the called program mid the 
calling program must be written to assure that the registers are used properly. The 
storing of parameters in memory makes it difficult to exchange a variable number 
of parameters. Roth approaches prevent the use of reentrant procedures. 

A more flexible. approach to parameter passing is the stack. When the proces-
sor executes a call. it not only stacks the return address, it stacks parameters to be 
passed to the called procedure. The called procedure can access the parameters 
[torn the slack. Upon return, return parameter's can also be placed on the stack. The 
entire set of parameters, including return address, that is stored for a procedure 
invocation is referred to as a stack frame. 

An example is provided in Figure 10.9. The example refers to procedure P in 
which the local variables .1. - 1 and x2 are declared, and procedure 0. which can be 
called by P and in which the local variables vi and y2 are declared. In this figure, 
the return point for each procedure is the Iirsi item stored in the corresponding 
stack frame. Next is stored a pointer to the beginning of the previous frame. This is 
needed if the number or length of parameters to be slacked is variable. 

Stack 
pointer 

Frame 

Stack 
pointer 

Frame 

V I 

OW frame pointer 
pointer 

Return point 

x2 x2 

ri xl 

Old frame pointer Old frame pointer 
pointer 

3. Return point Return point 

fa) P is active tbt Phi called 0 

Figure 10.9 Stock Frame Growth Using Sample Procedures P and 
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10.5 PENTIUM AND POWERPC OPERATION TYPES 

Pentium Operation Types 

The Pentium provides a complex array of operation types, including a n umber of spe-
cialized instructions. The intent was to provide tools for the. compiler writer to pro-
duce optimind machine language translation of high-level language programs. Table 
10.8 lists the types and gives examples of each. Most of these arc the conventional 
instructions found in most machine instruction sets, but several types of instructions 
arc tailored lo the 80x86/Pentium architecture and are of particular interest. 

CA/Return Instructions 
The Pentium provides four instructions to support procedure callireturn: 

CALL, ENTER. LEAVE, RETURN. It will he instructive to look at the support 
provided by these instructions. Recall from Figure 10.9 that a common means of 
implementing the procedure callireturn mechanism is via the use of stack frames. 
When a new procedure is called, the following must be performed upon entry to the 
new procedure: 

• Push the return point on the stack. 
• Push the current frame pointer on the stack. 
• Copy the stack pointer as the new value of the frame pointer. 
• Adjust the slack pointer to allocate a frame. 

The CALL. instruction pushes the current instruction pointer value onto the stack 
and causes a jump lo the entry point of the procedure by placing the address of the 
entry point in the instruction pointer. In the 8O  and 81-J86 machines, the typical 
procedure began with the sequence 

?USA Ear,  
MOV EEP 
,,1T71P ESP, space, fox_loca= 

where EBP is the frame pointer and ESP is the stack pointer. In the 80286 and later 
machines, the ENTER instruction performs all the aforementioned operations in a 
single instruction, 

The ENTER instruction was added to the instruction set to provide direct sup-
port for the compiler. The instruction also includes a feature for support of what are 
called nested procedures in languages such as Pascal, C01-301., and Ada (not found 
in C or FORTRAN). It turns out that there are better ways of handling nested pro-
cedure calls for these languages, Furthermore, although the ENTER instruction 
saves a few bytes of memory compared with the PUSH, MOV, SUB sequence (4 
bytes versus 6 bytes), it actually takes longer to execute (10 clock cycles versus ti  
clOck cycles). Thus, although it may have seemed a good idea to the instruction set 
designers to add this feature, it complicates the implementation of the processor 
while providing little or no benefit. We will see that, in contrast. a RISC approach 



AN L) AND operistids. 
KIN Iii! t.s:..s I. and set. Operistin on D hit CD.31.ci cspernn a. The inssrucl3on copie.s th42 current 

va I tic clt a bit in flug CF and h u LS. the orkgi MI I Ion 10 I. 

13SF Bil m:201 Corward. Scans n word cll. do ti bleword sot.  a 1 -b it And ...toms the nunsber ot' the 

l'iro. I -bit into kl reOster. 
SF31_,...S HR Shill logipol lull ur righ.1. 
SAUSAR. Shin. arithmetic It or sight. 
RODTZ OR Rotate loCI. ( IT Tight. 
SEIce Sets a bytes to 1...e.ro ci f ono 11.12puii di sig t i n a 1.113.. of L1112 16 c.ondiLions cic.fir.566 by 5th bas flag 

Control Transfer 

J it 1..incood [lion u I .i.0111 
CALL Trans [el control to al:v1111C' 14...c3tso n.  elbro Insnt.fgr• the: aiLdiess o I she i  L 

followirT Ihe CALL k placed nn lhe 
JE1.11 Juitip ii equLil!zern. 

L - O OPE'LOOPZ- Loops if L'c1unlizer1 1. ' I17i iE ;1 cclndi4iOfLxh lu n ip using El val.41d litarud in rvgisIur ECX. 

Thu instrucLion First ducl.rernenir. ECX 1. -.4fore E CX for the branch condailm. 

1n1crrupt!InteryupL it ovef Row. Traus fcr cc rol to an iL1 rup L c uLi Re. 

String ()perallions 

MOVS Movr2 word, dwuid This inR1ruction. Opc:TakeS 6L1 10E11.7:111 of a String. 

indc-xed reguilus ES1 and EDI. Amer each strine uperation. I he registers  isre 

u toms' Incrum e n ted nr de.ere trse n ed to poml La El k: ricx.i clancin of the string. 

CODS Loud byte, word, Liwurd ni iLiir1 
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Table 10.8 Pentium Operation Types (with EXarrip[CS Of Typical OpernitionS) 

lostruclion Descriplion 

Data Movement 

MO's/ Move opernrid, bciwecn r<.i.ster5 cm-  beLwe.an rugistC1: 

13 (.1 51-1 +Sh7 ,.•1)12 ra ad onto -.tack. 
pii.!!.-.1 I A Push n11 rep.iste.is  on muck. 
MC 10,/!..i X hyte. word. dw.:5rd, sian extt.rided. Movi...s:  1 1 'y I C LL word Dr a vs.o.rd It 

4.1 01.1.h1C . Wil WIth iwoh-compleinent E[En 42xL1231SirM. 

I . EA Lo.:Id CifoLtitiC a cldrexa. Loads 1.1112 01:1E1 of (FLO, 30 u m; operand. rather 1han its +Jahn iii 
the demination operand. 

XI-AT Tahle Replaces a byu.. in AL with al-11,W Ivorn riser-uodod 

irarodirLion. When XLAT is exc.coLed. AL thould have Etn unsignctl index to the 

XLA•I• uhkui .Os the ccm[ents o( AL Crom I h.: table index Lo the nble 

1 N. 91.11' fnput. ouspul crrkrisnd From 1)0 spacc- 

Arithmetic 

..61.1.11 D Add operands. 
I 51.:il Su btract ornands. 
I Mill, unsigned ini.cgwr multiplica.sion. with byte.. wo3d. or doublc or ap4m .ands, and won.l. 
il 
1 

doolik.mnrd, of co..svd.Word YE:1.1S I L . 

1 1 )1 V Signed 12ivide, 

Logical 

High-Level. Language SuPPrirt 

    

     

     

ENTER Creates Li iiiack realm dull edit be. used Lu. the. rules DI a block-SIS LI eturEd 
highlo•rd hkngua 

LEAVE Roverses the aeition ot .  t he Ilrevious ENTER. 
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-WA 10.8 cantinued 

   

      

   

High-Level Language Support conumeed 

  

BOUND Chuck army holinds Vertlies ttt3l the value in clitand 1 is within, lower and Upper 
Thu limits nru in Iwo asliact:nt memory locations referenced by opet and 2. AR interrupt 
occurs if 1.1u2 visiu.:2 is cl ue hounds. This instruction is used to check an array index. 

  

Flag Control 

  

     

     

STC Set Carty flag. 
LAHF Load A teOster from klgS- C4 Ti CS SE, 7F, AF, PF. find Cl bits into A register, 

    

 

Segment Register 

  

    

LDS Load pointer into D sc ncnt ru.eir41411- . 

SySE ern .00(51.1 
TILT Holt. 
LOCK Asserts a hold on Shared rne.rilory Su thrdL Lhv Pentium hHs c.xclusi V2 I he. 

instruction that immediately Inflows the LOCK. 
ESC PIDCUNSCU C:!}(1 enNiall escape. An escape code that indicates the suuxedins inNtructions 

arc to ht uatcuotcd by a numeric coprocessor that sUpperts hij2h-pruciiiiun hiLL!gur rind 
IlcFatin poen i caICSO I.  

WAIT Vir' nit until 1-11..:SYli negArt:d. kluspends PCULSi.LAM progam execution the proce:.:scir 
detect:, that the. 'RI :Ny pin is inmctivc, indicating that the nunicric 4oproce5;sor has 
linished eN.ceu Lion . 

Protection 

Stort. global dt.scriptar t 
Load sepnwra li mit. nit. LCPLEIS a MUT-ST142C1110.4i Ngistcr with a .s.2gment limit. 
Vcri ry segincat fnr rue dinsiw ri Ling. 

Cache Management 

INVE) Flushet.; the internal cache. memory. 
*BENVD V1u511eS the internal cache ineinury aitur WI i Li Il i.  dirt!: limn Ina mcmory. 
ItCVLPC, invalidates s translation lookaside buffer ( TLEI:112nlry. 

to processor design would:avoid complex instructions such as ENTER and might 
prtxluoe a more efficient implementation with ;I Noqucncu elf simpler instructions. 

Meinury NIanagetruent 

Another set of specialized instructions deals with rricriitiry segnieniiition, 

These are privileged instructions that can only be executed from the opt:x..3111Th sp... 
tem. They allow loch and global segment tables (called descriptor tables) to be 
loaded and read. and for the privilege level or  lo he checked and altered. 

The special instructions for dealing v ilII the on-chip troche were dibous6cd in 
Chapter 4. 

Condition Caries 
We have trientiotte.ci thal. condition E.xules are bits in special registers that may 

be sct by certain operations and used in cOrniitional branch instructions. These con-
ditions arc  by arithmetic and compare operations. The compare operation in 
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most languages subtracts two operands, as does a subtract operation, The difference 
is that a compare operation only sets condition codes, whereas a subtract operation 
also stores the result of the subtraction in the destination operand. 

Table 10.9 lists the condition codes used on the Pentium. Each condition, or 
combinations of these conditions, can be tested for a conditional jump. Table 10.10 
shows the combinations of conditions for which conditional jump opcodes have 
been defined. 

Several interesting observations can be made about this list, First, we may wish 
to test two operands to determine if one number is bigger than another. But this will 
depend on whether the numbers are signed or unsigned. For example. the 8-hit 
number 1111 Elll is bigger than 00000000 if the two numbers are interpreted as 
unsigned integers 1255 >  but is less if they are considered as  twos comple- 
ment numbers ( -- 1  0). Many assembly languages therefore introduce two s ets 
of terms to distinguish the two cases: If we are comparing two numbers as signed 
integers, we use the terms Ic.iry than and greater than: if we are comparing them as 
unsigned integers, we use the terms beloiv and above. 

A second observation concerns the complexity of comparing signed integers. 
A signed result is greater than or equal to zero if (1) the sign bit is zero and there is 
no overflow (S = 0 AND 0 = 0). or (2) the sign hit is one and there is an overt'oe, 
A study of Figure 9.41 should convince you that the conditions tested for the various 
signed operations are appropriate (see Problem 10.14 

Pentium MMX Instructions 

In 1996, Intel introduced MMX technology int() its Pentium product line 
MMX is set of highly optimized instructions for multimedia tasks..l'here are 57 new 
instructions that treat data in a SIM D (single-instruction. multiple-data) fashion, 
which makes it possible to perform the same operation, such as addition or multi-
plication. on multiple data elements at once. hitch instruction typically takes a sin-
gle clock cycle to execute. For the proper application. these fast parallel operations 
can yield a speedup of two to eight times over comparable algorithms that do not 
use the MMX instructions [AlK [961. 

Table 10.9 Pcmium Condition Codes 

Status Bit Name Description 

Carry Indicates carrying or borrow mg into the leftinost hit posiiion 
Iollowtrig an ki nthrnetic operation, Also modified hr some of 
the shift and rotate oplobiets. 

P Parity Parity or the result Or an aril h !TIE VIC Or lope opr'raIiuin. t ininalLeS 
even parity: Oindicatem othi parity. 

A Auxiliary carry Represents carrying or hurrow•inti between half-bytes of an 8 , hit 
arithmetic or logic operation using the Al. register. 

7./.115 l ndicaics ihat the result of an arithmetic or logic operation is. O. 

S Sign Indicate the sign of the result of 'elfi nrithmgpc or logic operatton 

0 Overflow indicates ine y, ariih tic owerflo alter ;In addition or subtraction, 



A. (7 1 AND 
All:, NB. NC 

C .1 
C-1 OR Z-1 

1.{ S.1 AND 0.1) OR (SCI 
AND 0-0)3 AND 1 .7,=01 

(S-J AND 0 I)  OR 
(S-l} AND 0 • 0) 

(S=1 AND 0 (1 .) OR 
(S=I AN]) (1=1) 

(S-L AND 0=01 OR (5=U 
AND 0.:.1) OR (Z-1, 

Z.=0 
0=0 

S-0 

P=1) 

0=1 
P=L 

S-1 

N(.) 

ICY. PO 

0 

P 

B. NAE. C 

DE NA 
L. Z 
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Table. 10.10 Pentium Condhlitmq for C'ormlitional Jump and Insrructions. 

Symbol 

 

Copridition Tested Comment 

    

Abcrye; not below or equal (greater than, tirsined) 

Above or equal; not below (pea tel than or equ I. 
unsigni.•:(1): not carry 
ItcIiw; not rl bOVE {ir equal (less than. unsi!ned): car ry 

1312]{1.41. uI CLIL1a1; 110L Fl Ur equal, LlnyirtEd) 

Equal: taro piped or unsigned) 
trcatcr than; not Jc4s titnn or .•,:. (31.131 (signet) 

ClreaLur ! hall (IT L'ClUal: not ICriki than (signal) 

Less than.; :sot gf  Ls2:1 than or equal (signed) 

9101r1 clr IAILLHI; nol greNiET than Nig•rwc•11. 

Not quall riot 2eto (sisne:ct or unsip.ned) 
N n ( WC rilow 
Vol Rigel (nco 

Not parity ., parity odd 

OVe alms: 

Pnrityl parity cViall 
Sign i. nr2 .12a Live) 

The focus of rkil MN is mithimedia programming, Video 4i nd audio data arc 1 yp-
ically composed of large arrays of small data typcs. such as 8 or lib hits. whereas.  con-

ventional instructions are tailored to operate on 32- or (,4-bit data. liere are some 
examples: In graphics. and video, a single scene consists of an array of pixels, -  and 
there arc 8 bits for e?ich pixel or 8 hill for each pixel color component (red, green, 
blue). Typical audio samples are quantized using 1•6 hits. Por some 3f) graphics aEgo-
rithms. 32 bits are common for basic data types. 'PL) provide for parallel operation 
on these data 1E10 hs, three new data types are defined in MMX. Each gala type is 
454 bits in [mall and consists of multiple srriller  each of which holds a 
fixed-point integer. The types are as follows: 

• Packet byte: Eight bytes packed into one 64-bit quantity 
• Packed word: Four 16-bit words packed ink) 64 hits 
• Packed doubtewordi Two 32-hit di -aublewords packed into M hits 

Table 10.11 lists the MMX instruclion set- Mosi of the instructions involve par-
allel operation on bytes, words, or douhiewords. I.LaT ox;irriple, I he P.SLI.Av 

A pi r4I. or picture elennist, is the smallest element or a digital image lisac can he assigned a Li iry level. 
Equiykilently, u pixy] is an individual dpi in 1k (34)r - rT)Hirj .K NpTcsCrrta 



Category 111%truetiou 

Arithmetic 

OD [IS. W. DI Parallel add Cif packed four tC.hlt wort's, 
cit. t wo 32-hit douhlewords, with wiiip2TLY:111d 

Add with sritura Lion 

Add tinNigned with Kit Lira tics!' 

Subtract will, wrapround 

51.31-iiracl with 2..aLtiration 

Stibtraei unNiglied w:th saturabon 

Pai.0c1 multiply cif lour 1 6-bit ...0.5:ds. with 
hi0-oriler 16 hits of -2-hit chosen 

PAL) D5 Ig, WI 

DDCS 

PSUB [FL W. DI 

PSI.II3S \VJ 

WJ 

13101.J1..HW 

Parallel mull 15e riiur t i pied 1.6..hiE words, with 
low-L5eder 1 h bits of 32 hit rgwult choser. 

PMULLW 

D: QI Parallel loeical left shift DI packed words, doublewords. 
Or <I Li ildword by amount spixi.L'ikW in NIX ri3g.,:ister ar 

Shift Panillel logical right Nhifi of packed 4.,..ords, 
dmillie word R., or quadword 

Parallel arithu,ci.it right shift of packed wordr, 
dou.hlewords. quadword 

1-,S.R.L [W. D, Q] 

PSRA 1W, 

Data Transfer  

Slate Mgt 

Nei() [D, Qi 

Fmms 
N4:1e: L.: an ins-Main:1. Apr; I 1..111..1 0o daca Lyixs [byte (15 in (WI, di:.11b1C:word ILL I. d I 

itidi.mod in h rackets. 

Movc closibleword or cll.i dword L<I ?Frosrr hDetX rcgistc.t 

Empty Nal X slate (ernrty FP rogisiors tag hi's.' 
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Table 1.0,1. I  MMX I ristr action Set 

• 

.11 

DDWD 1111.1.1 Li ply of ft n itgncd 16-hit rd:: adtl 
iouctlicr p;i1TS .41 . 32-bit result.; 

(.43111r011.!.4 45n 

PCMPEQ W, f)] ... oriip,rk: for ocfu LS] res'.311 is ID , INk CH .  I S ir 

L BW (11- 1-1S. if FaL 

licriAPC.T [FL W, DI Parallel 4_40inpare. For 1- t:: aser thou: re24111 is mask or is iC 

Lz Lk! Or 1.1,i false 

Conversion 

PACKL-SW13 Pack. wordhi into bytLs. inisign.ed 

PACKSS [W13, IDWI Pack wordE into hyln...11:6 doubloNords into words. with 
signed. saLu rat i 0E1 

I) I....I N:Pt -I< I T I B W, Wiz. DQ ] Pantile! unpack t. inwrIcawed mem.e.) hi 17 ordcr 
Or d(111blewords from ItINIX rofLisi.c. r 

PUNFCKL [IRV, WD, Dol Parallcl unpark tinLerlealeed inergc) low-Di-din- bytes. 
words. (II ordk rro.rn TO8.iSter 

Logical 

PA N D hi misu lagifial AND 

PNION 6a - hi i bihkisci logical AND NOT 

Pnk biiwise: logical OP 

PXOR CR 
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performs a left logical shift separately on catch the four words in the packed word 
operand; the PA.1)01-linsIstiction Lakes packed byte operands as input and performs 
parallel additions on each byte position independently to produce a packed byte 
output. 

One 41111YILLU I ft: MLin: or the new instruction set is the introduction of satura-
tion arithnietic. With ordinar,. ,  unsigned arithmetic, when am operation overflows 
(i.e., a carry out of the most significant bit). the extra bit is truncated. This is referred 
lo aS wraparound, hezotin ibe effect of the truncation can be. for example, to pro-
duce an addition result that is smaller than the two input operands. Considcr the 
addition of the two words, in hexadecimal, F000h and 300(1h. '1 . he sum would be 
expressed as 

F000h = 1111 0003 OHO OCOO 

+3000h =  0.011 0',:i00 000 0000  

10310 •3C0 00C3 '0000 = 2000h 

If the two numbers represented image intensity. then I he resell of the addition is to 
make ihe combination of Iwo dark shades turn out to be lighter. 'This is typically not 
what is intended. With satunition arithmetic, if addition results in overflow or sub-
traction results in underf[ow. the result is set to the largest or smallest value repre-
sentable. For the preceding example, with saturation arithmetic, we have 

FM.]Oh - =111 0303 000 000 

+30C h - 0311 0303 00 0000  

1'0310 030 000 0000 

1 111 =111 :111 =111 = FFIPM 

To provide. a feel for the use of MMX instructions, we look at an example, 
taken from ITELE971. A common video application is the fade-out. fade-in effect, 
in which one scene gradually dissolves into anol hc.r. Two images are combined with 
a weighlcd average: 

Result_pixel — fade + B_pixel x (1 — fade) 

This calcul;ition is performed on each pixel position in A and B. If a series of video 
frames is produced while gradually changing the fade value from 1 lo U (scded 
appropriately for an g-hit integer), the result is lo inde from image A to image B. 

Figure 10,10 shows the sequence of stop, required for one set of pixels. The 
g-bit pixel components arc converted to 16-bit elements to accommodale the 
MMX 16-bit multiply capability. If these images use 640  480 resolution, and 
the dissolve technique uses all 255 possible value.; of the fade value, then the 
total number of instructions executed using M NIX is 535 million. The same calcu-
lation, performed without the IvIMX instructions. requires 1.4 billion instructions 
IINTE98]. 
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Linage A 
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' 

1.1-adcxr.3 1adtxr2 rradeXrliadcx1 . 0  

-F -F 

4. Add image F3 pixels 1313  I 13r2 I Br I I 13c0  

   

   

=El pewc2 ncwr l  new r0 

5. Pads' new coinpOSiii pixels 
hack to bytes 

MMXcrtcle serquence verforining this operation: 

pmn i1kr(1.7, I mri7 : m•ci ow 1111117 
mo.srq t' ad wal ;l oad Caclu .k. altie repii.... oxI 4 iiincin 
mcryl rnm41, L MaleA :I i.rad 4 red pixelconsrxiaciiss i magi: . A 
inovd intu], itrut&c.a Tut plxct czancxynerns rrorn. image. B 
punp.:khhx. MEW), (01117 lunpadi. 4 riv:im 10 i6 hits 

pun pckhlw mot', min? :unpack 4 pixels hiss 
Emullw mmo, rnm I :sul-rtracE i mi4e E Crum IJii igi A 

mn)(5, ;multiply the 7.ubtracL re ull by radr 
padddw r um(, nim t !Add requIL lo image B 
puckumwb m int). mni7 ;pack resulti [xick 1r, by tem 

Figure 111.10 Image Corop-usihng on (:7olor Plane Represmiarion [PELI3V7 I 
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Table 10.12 PowOCPC Operation TypOsitwitli ExamplQs of Typical Operations) 

Instruction Description 

Bronch Oriented 

h Line° udisionai branch. 

hl Branch lo iHrgcl address and place effective addrc.srt of imtructicia Col lovvin2 the branch into 
the Link Reuiiiter 

bc Branch conditional on Count Register a adi'or on bit in Condalion Register 

st System calkto invoke an ope:raring system si;:rviee 

trap Compare two operands F►nd invoke system trap handler if siwitiecl conditions are met 

I otuii.Slure 

  

   

Load word and zero extend to ]eft: update source register 

Id doublcworci 

Inve: Load multiple word; load consecutive words into contiguous registers from the targei 
rup.istl2r through general-pin pose fCt i3ter 31. 

Load a string of bytes into registers beginning with target reiziaer:.4 hytn: per register: wrap 
around from register .31 so regisler 

Integer Arithmetic 

add Add unelLtrItS 011w1..1 tegisbLES Eldtt phLee register 

;ubf SlullYLI'Lla contents c.ir two registers and place in third register 

Multiply low-order contents 351:.  I WO regiSLCTS a nd place 64-hit product ill. third register 

diva Divide 64-bit contents of L .wcr rop.istvrs kith] 1}IaCC Erl tiLEOLieut in third register • 

Logical and Shift 

crap C:ornpnrc two oFicrands and sc:t Vour condildcm hits in the spetifiea LOndiLi{n register field. 

crk:Ind CondiLiDn register AND: t wo bits of the Condition Register are ANDc:d and I he re.still 
placed in one C}r Ihe two hit positions 

and AND contents of two regislers and plea: in third register 

canal COunt number of consecutive II hits starting ni bii ,eTi, in sl.}1.11TE register aJicl c(Fura ilt 

declination register 

Rot ale Icri double WOTC I re AND wilh mark, and storc itt d s tinatiun register 

sly Shift left hits in source register and store in destination register 

Routing Point 

114 1.ciad nurnbur from memory, LC:divert (L 64- format, and SLOTO in 
flonLing-pciint rqirdcl- 

add Add L'132)1.2.111.3 ts.vo registers and place lit third register 

fmadd Multiply contents of two registers. add thG ecintenis of a third, and plow result ill fourth 
register 

f.c:nirn (:cinipare twee Flogging -paint i5perHnds and set cortdirion hits 

Csiehe 

  

   

dcbf Darn cache block flush; p-erfOrErflOOkUp in cache on spedficd target acklress perform 
flushing operation 

ichi Imo-mum cache block invalidate 
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PowerPC Operation Types  

The PowcrE)C provides a large collection of operation types. Table 10.12 lists the 
t!,,pcs and gives exampLes of each. Several features are. worth noting. 

Iiranch-Oriented inwtruction 

The PosscrPC supports the usual unconditional and conditional branch cup. 
bilities. Conditional branch instructions test a single bi I of the condition register for 
true. false. or don't care and the con Len Is of the count register for zero, nonzero, or 
don't care. Thu:s, there are nine separate conditions that can be defined for the con• 
ditional branch instruction. if the count register is tested for zero or nonz ..ero,lhen it 
is decremented by 1 prior to the test. This is convenient far Kciting up iteration loops. 

Branch instructions can also indicate that the address of the location follow-
ing thi branch is to be placed in the [ink register, described in Chapter 14. This fad• 
itates call/return processing. 

Load/Store Insiructions 
rt 

hi the PowerPC architecture, only load and store instructions 4.1.=:wdi mcrnor, 
locations: arithmetic and logical instructions are performed only on registers. This 
is characteristic of RISC design, and i1 is explored further in Chapter 13. 

There arc two features that characterize the different ]oadistore instructium 

■ DIIIR size: Data can be transferred in units of byte, hal fword, word, or dm.- 
bleword, Instruction xrc aim) [able for loading or storing a string of bytes 
into or from multiple registers. 

■ Sign extension; For haliwnri and word loads, the unused bits to the left in the 
64-hit destination register are either filled with zeros or with the sign bit of the 
loaded quantity. 

10.6 ASSEMBLY LANGUAGE 

A CPI:: can understand and execute machine instructions. Such instructions arc sim-
ply binary numbers stored in the computer, If a progrimmer wished to program 
directly in machine language. then it would be necessar y to enter the program as 
binary daia. 

Consider the simple BASIC statement 

N=1-h,1-1( 

Suppose we wished to program this statement in machine language and to initialize 
1. J, and K to 2, 3, and 4, respectively, This is shown in Figure 10,11.3. The program 
starts in Location 101 (hexadecimal). Memory is reserved for the four variables dart-
ing at location 201. The program consists of four instructions: 
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1. Load the conteras or location 201 into the AC. 
2. Add the contents of location 202 to the AC. 
3. Add the contents of location 203 to the AC. 
4. Store the contents of the AC in location 204. 

This is clearly a tedious and very error-prone process. 
A slight improvement is to write the program in hexadecimal rather than 

binary notation (Figure 10.111)- We could write the program as a series of lines. 
Each line contains the address of a memory location and the hexadecimal code or 
the binary value to he stored in that location. 'Then we need a program that will 
accept this input, Iranslate each line ink) binary number, and store it in the speci-
fied Location. 

For more improvement, we can make use of the symbolic name or inncmonic 
of each insiruction. This results in the Nymbofic proKreon shoves. in Figure 10.11c. 
24ieh line of input still reprcNents one mentory location. Each tine consists of three 
fields. separated by spaces. The first field contains the address of a Location. For an 
instruction, the second field contains Ihe three-letter symbol for the opcode. It' it is. 
a memory-refcrencing instruction, then a third field contains the address. To store 
arbitrary data in a iocation. we invent a pseudoinsrraction with the symbol .0/kiT. 
This is merely an indication that the third field on the line von[ains hexadecimai 
number to be stored in the location specified in Llie fivsL field. 

Add res ,, CO titC/IN Address Instruction 
101 01.3 10 0010 0000 0001 101 LDA 2(11 
102 0001 (10] (1 0000 0010 102 ADD 202 
103 0001 (1010 0000 01111 103 ADD 203 
104 0011 0010 000(1 0100 1 04 4'I -A 204 

201 0[100 0000 0000 00 LO 201 DAT 2 
202 0000 0000 0000 001.] 2(12 L)A1' 3 
203 0000 ocom. noon 01(10 203 DAT 4 
204 0000 0000 0000 0000 2(14 D Al-  (1 

(al Binary nrnaram (1].). Symbolic program 

Andros Contenis; i .k.thel Operation Operand 
1(11 22111 1- 01041IL LDA  
102 1202 ADD .1 
103 1203 ADD K 
104 32{14 STA  

2(11 0002 1 DATA 2 
202 0003 1 DATA 3 
201 (1004 K DATA 4- 
204 0000 N DATA (I 

(C) flexadoc im al progiun Id) A3 Aenibl y program 

Figure 10.11 Collimation of the rorrnuia N = I + 3 + 



366 CHAPTER '141 1 INSTRUCTION SETS: CHARACTERISTICS AND FUNCTIONS 

I-or this type of input wC need a slightly more complex program, The program .  
accepts each line of input. generalcs a binary number based on the second and third 
(if present) fields, and stores it in the location specified by the first field. 

The use of a symbolic program makes life much easier but is still awkward. 
In particular, we must give an absolute address l'ur each word. ihis means [hut the. 
program and data can be loaded into only one place in nicmury'. and we must 
know that place ahead of time. Worse, suppose we wish to change the program 
some day by adding or deleting a line, 'Ibis will change I he addresses 01 all subse-
quent words. 

A much better system, and one commonly used, is to use symbolic addresses. 
[his iw illusmiled in Figure 10.11d. Each line still consists of three fields. The fir5t 
field is still fur the address, bin a symbol is used in ,,l ead or an ab7;...olute numerical 
address. Some lines have no address, implying that the address of that line is one .  
more than the address of the previous line. For memory-reference instructions, the 
third field also contains a symbolic address. 

With this last refinement, we have. an  a.ssembly hinguive, Programs written in 
assembly language (assembly programs) are translated into machine language by ao 
ca.s.embkr. This program mum not only do tl- e symbolic ironslaiion discussed ear. 
lier, but also assign some form of memory addresses to symbolic addresses. 

The development of assembly language was a major milestone in the evolu-
tion of computer technology. It was the first step to the high-level languages in use 
today. Although few programmers use 4s:se•mbl:,..y language, virtually t,11 machine 
provide one.. They are used, if at all, for systems programs such as compilers and 
110 routines. 

10.7 RECOMMENDED READING. -03-WAtIrr".:''''*;(1.-Ar?' 
err er 

A ittirobr.lr of ttmbooks provide good coverage of machine language and instruction •;i 
Lltsign. including [PATT98], [TAN EN], and [HAYE98]. The Pentium instructicin silt is 
covtrtd by [1311-ENOIA. The PowtrPC. instruction seL is covered iti 11.13M)41 and IWEIS941. 

RRF,Y00 Bre.y. B. The. Imel ,144-roprour•veryt.y: Ai186..M. 06, 10118641188, 802S6, 7ffk? f7, 
80486, Porgithol, NetiMnt Po.o Peeii 2.1. h.] Proccsx.

00.8..  4-rpal . Rivt.I.T, NJ: 
Prentice 1-Tall, .2000. 

HAYE98 lin yes. J. ComparoT Airbil•requre road Organi7'.060.1, 5c.00.17.4 LefithYPJ, Ntiv York! 
MeOraw-Hil I. I .998. 

ll` M+ International Business Machines, Inc. The. PowarP(.7 ArOrifec .  tam-  A Sfn.c.ifieer- 
thhq for a New Parnifi DJ .  RISC Pare -,slaty, San Francisco, CA; Morgan Kalifrnarkti. 
19 1)4, 

PATTI/8 Patterson. D., and Hennessy :  .1. Comp i.divr CJr ertaiErtrirrt, ae,id Desivl: The I-lard ,  
ware/Sofrware Intryffer.e. San Mato. ) :  CA: Morgan Kaufmann, 1998. 

TANE99 Tannbiliton, A. Sfrffi'M ri'd C(.1.tnpreiCr FlIOCIV{3431.1 C[i(fS, 

PrEntice Hill. 1 1)99. 
Wiz-1594 Weiss, +.1.110 Smitk. J. PO. 11411#40 Power  IC, trancisco: NIDtpn15..0 .1.kt- 

mann, 1994,  " 
• 
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aectimulator 
addreNs 

.arithinetie shift 
hi-endian 
frig endian 
branch 
conditional branch 
instmetion set 

jump 
Unit: aldian 
logical shill 
machine instruction 
operaoil 
ri..er.iitioi 

packed decimal 
pop 
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LOA KEY TERMS, REVIEW QUESTIONS, AND PIZOBLENI arreArA:", FArle,
rdja,  

:rgrP:e7.7P:1": 

Key Terms 

 

procedure call 
procedure return 
push 
reentrant procedure 
reverse Polish notatima 
.1.148lq= 
skip 
stack  

Review Questions 

10.1 What are the typical elements of a machine instruction? 
10.2 What types of Locations can hold source and destination operands? 
10.3 if an instruction contains four addresses, what might be the purpose of each address? 
10.4 List and briefly explain five important instruction set design issues. 
10.5 What types of operands arc typical in machine instruction sets? 
10.6 What is the relationship between the IRA character code and i[W packed decimal rep-

resentation? 
10,7 What is the difference between au it li med ie shifi it logical shift? .  
1.0,X Why are traiisfer of cont fell i11s1ria114111N Jlvt!111,!1,1? 

10.9 List and briefly explain two conunon ways of generating the condition to be tested in 
a conditional branch instruction. 

10.10 W hat  is meant by the term nesting of procethries1 
10.11 List three possible places for staring the return address Err a procedure return. 
10.12 What is a reentrant procedure? 
10.13 What is the difference between amerribly language and machine language? 
10.14 IN hat is reverse Polish notation'? 
1015 What is the difference between big endian and little endian? 

Problems 
10.1  Madly (TIN provide logic for performing arithmetic on packed decimal numbers. 

Although the rules for decimal arithmetic are similar to those for binary operations. 
the decimal results may require some corrections to the individual digits if binary 
Logic is used. 
Consider the decimal addition of two unsigned numbers. If each number consists of 
N digits, then there are 4N bits in each number. The two numbers .tire to he added 
using a binar:i.. adder. Suggest a simple rule for correcting the resull. Perform addition 
in this fashion on the numbers 1698 and 1786. 

10.2 The tens complement of the decimal number .5( is defined to he 10 %  X. whore N is 
the number of decimal digits in the number. Describe the use of ten's complement 
representation to perform decimal subtraction, illustrate the procedure by subtract-
ing (0326) 1 , :  from (0736)L. 
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10.3 Compare zero-, one-. two-, and three-address machines by wri ring programs to compute 

X — (A — B X CND - E 
for each of [lee four machines. The instructions available for use are as follows! 

0 Address 1 Address 2 Address 3 Address 

PUSH M 
POP M 
ADD 
SI..18 
m 1 : I 
Div 

LOAD M 
STORE. M 
ADD M 
SOB M 
m 4 : i m 
Div rs1 

MOVE (X e•  Y) 
ADD IX e— X .1  Y) 

kIB IX <— X V) 
Nen .L (X i= X x Y) 
D1V (X t— XI) 

MOVE (X t— V) 
ADD 0.<— Y + 7) 
SUB (X t— Y -- 7.1 
Ml IT, Pc (— V \ 7.) 
Dry (.5,:: .— VIZ) 

10,4 Consider a hypoinefical computer with an instruction '3 e1 of only two or - hit in. 
suructions..rk first hit specifies the opcode, and [Ile remaining It sl-PeCifY 

 one 
 of  the 

— 1 D-bil words of main memory. The twci insiructions are 

SUBS X Subtract the ountents•of location X from the accumulator, and store 
the result in location X and ace umttlator. 

JUMP X Place address X in die program counter. 
A word in main mentor!, may Liint either an instruction or a binary 111.1 mher in two 
complerneni notation. Demonsiniie that this i 1Sauefloii repertoire is reasonably COrm 
pieta by specifying how the following operations can be programmed: 
u. Data transfer: Location X to accumulator. accumulator to location X 
b. Addition: Add contents of location X lo accumulator 
e. Conditional branch 
d. Logical OR 
e. 110 Operations 

10.5 Many instruction sets contain the instruction NOOP. meaning. no ON rat ion, which 
has no effect 4.31.1 the CPU state other than increinenlingihe program counter. Fuggesr 
some uses of this instruction, 

10.6 In Section 10.4, it was stated I hat bolt an arithmetic [eft shift and a logical led shift 
correspond to a multiplication by 2 when there is no overflow, and if overflow occurs. 
arithmetic and logical left shift operations produce different resulES, but the arithmetic 
left shift retains the sign of the numl -rer. Demonstrate that these statements arc true 
for 5 bit twos complement integers. 

10.7 In what way are numbers rounded using an Ihrnelic right shift (c.g., round lowarcl +co, 
round toward — cc., toward zero. away from Or 

10.8 Suppose a stack is to be used by lite CPU lo manage procedure calls and returns. Can 
the program counter he eliminated by using the top of the stack as a program counter? 

10.9 Appendix 10A points not that there are no stack-oriented instruclions in an instruc-
tion set if the stack is to be used only by the CPU for such purposes as procedure 
handling. How can the CPU use a slack for any purpose without stack-oriented 
instructions? 

10.10 Convert the following formulas from reverse Polish to infix_ 
a. AB — C D x 
b. AR; CD.: I 
C. ABCDE + X X 
d. ABCDE +  + — X -F 

10.11 Convert the following formulas from infix to reverse Polish: 
a. rl BIC D•E 
h. {A - B) 

>c 
 (C I D) •I• 

• 
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c. ( A x 13) + (C x D} — E 
d. ( A — B) x ((fC: — 13 x 12:).:1)/(;) H 

10.12 Convert the ex[ resskin A — B C to postfix notation using Dijkstra's algorithm. 
Show the 81.0pS I LIWIM2d. is the result equivalent to (A I B) - C or A + — Cr? 
Doe% it matter? 

10.13 The Pentium architecture includes an instruction called Decimal Adjust after Addi-
tion .(DAA ). DAA performs the following 5u(iiience of instructiorm 

if HAL AND CFH) > OF( then 
AL c AL 1 Er 
AF l! 

AF I- 
 C: 

andif.r. 
if = l) then 

AL 4-- AL 6 1.7)1. 
CF t- 1; 

AP' 

enaif- 

H"' indicates hexadecimal. AL is an S-hit register that holds the result of addition of 
two unsigned 8•bit integers. AF is a flag lict if there is a carry fp c oil hit 3 io hit 4 in the 
result of an addition. CF is a flag set if there is a earry front bit 7 Et1 hi! ti. F,xplain the 
function performed by the DAA instruction. 

10.14 The Pentium Compare instruction (CMV) subiracisilui 41]urci nperand from the des- 
tination operand; it updates the sta1us flags (C. A. 7., 5, 05 but does not alter either 
of the operands. The CNN instruction. may 10110w...ill by a conditional Jump (,Ice) 
or Set Condition (SETec) instruction. where cc vefersio one of the 1.6 conditions listed 
in Table M. I . Dertionstrale that the conditions toted for a signed number compk -- 
ison are correct. 

10,15 Nlipsi microprocessor instruction sets include an instruction that a condition and 
sets destination operand if the condition is true. Examples includi! 1111 5.( 00 the 
Pentium, the Sec on the Motorola Ma8000. and the Sound 4111 !Fit! NHI ikPIIH I:\  

a. There are a few differences among these instructions; 
• SETce and Sec operate only on a byte. whereas Scond operates on byte. word. 

and doubleword operands. 
• SETce and Scond set the operand hi integer one if true and to zero if false. Sec 

sets the byte to all binary ones if 1cue and all nips if false. 
What are the rela1i've advaniages and disadvantages of these differences'? 
h. None of these instructions set any of the condition code flags. and thus an explicit 

test of the result of the instruction is required to determine its value. Discuss 
whether condition codes should be .sei rstili of this instruction. 

e. A simple IF stalcmcnt suit, ci II  a I I i r.N can he implemented using a numer- 
ical reprc.sentation inethoil. I hat k, 1 1n: 1:i li g the Boolean value manifest, as opposed 
LO rt flow viconrioiniL , 111 ,  1.I, W1114'11 1 L!'1) roen ts the valUe.of a Boolcan expression by 
a point reached in t17e 31 0171 ; mi. A iamipiler inight implement IF a > b TI LEN with 
the following g0X861 Lilt P: 

SUB CZ, ! to 
A2, 2 ccnLcri, Of 1:DCariDn T! to register LK 

C.Cd A2_, A c.cltpare con:*3a1;8 :eoister AX and location A 
.TL.E T=5;7 j::urp if A 
=NC ; add = to corten of re7Later CX 

TEST J) OUT ; -iJwc Lf con-e=lse  of CX ecual 
THEN 

OCT 
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The result of (A B) is a Boolean value held in a register and 'available later 
on, ovtside the context of the flow of code just shown. IL is convenient to use Pg. 

CX this, because many of the branch and loop cipcodes have a built-in test 
for C. 

Show an alternative implementation using jnsi ruction that saves 
memory and execution time. (Him; No additional new :%8n instructions arc 
needed. other than the SE.Teti.) 

d. Now consider the high -level language statement! 

(13.  C) OR (D — F) 
A compiler might generate the following code: 

MOV TAX, ri ; Tr,ve 2on7.ents of l•catLon E 
CAp TAX, r  ;cmpEra ronterta of regis=er EAX 3nd lOCSI7irM. 
MOV eJ ; 0 represemts false 
ME Fl ;j1:mp if 2 
MW 1 ;J. represents false 

NI  E.  C 

CMr EA, 

bH, J 
JNE F  
ECV EH, 

N2  OR EL, EH 

Show an alternative impleniuntaLon using the SF IL instruction that saves 111M17.17 
and execution Lime. 

10.16 Using the algorithm for converting iufix to past ix defined in Appendix 10A, shove it k 
steps involved in converting the expression of Figure 10.15 into postilx. Use a pre-
sentation similar to Figure 10-L7- 

1.0.17 show the calcu[at ion of the expression in Figure 10.17 :  using a presentation sim[Ear to 
Figuiv [(-5. 

10..111  Redraw the little-endian layout in Figure 10,18 so that the bytes appear as numbered 
in the big-endian layout. That is, show memory in 64-bit rows, with the bytes listed 
left to right. top to bottom. 

10.19 For the following data structures, draw the big-endian and little-endian layouts, using 
the Lortnat of Figure 11.i. 8, Ind comment on the results. 

a. strucz 
doub --E {10x1=1213=41515171 8  

sL; 
b. struct. 

; /./Oxl:1213:4 
int j Zi0x]..161 71.8 

s2 
9tx ...)E7t. 

short- L; .r./Cx=112 
short 7::; 
short k; 
shark: L; ./.12x171a 

111.20 The PowerPC architecture specification does not dictate: now a processor should 
implement little.cndian mode. It specifies only the view of memory a processor must 
have when operating in little-endian mode. When converting a data structure from 
big endian to little endian, processors are free to implement a true byte-swapping 
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Little-endian address mapping 

11 0 . 01 02 ... . 1) .... 

111 

04 

12.  

LL ... 

13 
c 

14 
417 

21 22 23 24 25 26 21 28 

cis () O.A (8 OC CI D 0.1.: 01 2  

'D" 'C' , 1 111,' ;"A' 31 32 33 34 

z1) LI  12 ; I.  L4 ]  1(2 l'. , 
51 52 ,,,G , : T r i , E . 

:•..s 19 1..3 W IC !Di .I.F.. : 1 F 

61 62 6,3 64 

20 21 22 23 24 25 21-1 27 

Figure; 1111,12  }'o Fort'[' Lit 
Structure s in Memory 

mucliunisni crc to use lornc sort of an address rrtudilleation mechanism, Current Plyomrt 3 C. 
pruccbsurs arc al] ddatilt big-endian niatthincs and tisk.' #Iddre ,is  in 'hi 1rcza 
data as little-endiall. 

CI:Pnsidcr the slru lurt s dcinicd in Figure W.18. Thu layout in 11110 lower-right por-
HI ilk LA 1  flw lig.tire shows are structure: s suesi by Cho prock:ssor. In fact, it si meture. s 

1111  little -Lmlian its in memory is she in Figure 10.12. 
1-:.% pialir [kw mapping chat is involvd. 1.11.scriln.iir1 easy way LL implement the map-

k•ind discuss Ow elfcciivkInG..SS of this aprprnah, 
10.21 Write a small program to determine the endianness °I:machine and report the results. 

Run the program on a comput...:x available to you and turn in the outpul. 

APPENDIX 10A STACKS : 

 

for' . .refer;,rereerr. 
..reek- +far .er 

Stacks 

A ,stack is an ordered set of vic .nwnts, only onc. of which can be accessed at a ti me. 
The point of access is called the top of the stack. The number of elements in the 
stack. or ire.ngth of the stack, is variable., items may only be El dded to or deleted from 
tlic is  or the stack - 14.or this re..i.ison, a stack is also known as a petvhchnvn Esq.  or a 
!am-in-lint-out (LIFO) 

Figure 10.13 shows the basic stack operations. We begin at some point in time 
when the stack contains some number of elements. A PUSH operation append., i pric 
new item to Lhc 1op or the stack. A Pop operal ion removes thu top item from the 
stack. In both cases, the top of the stack moves accordingly. Binary operations. 
which require two operands (e.g., multiply, divide. iLdd, subtract), is L1 top two 
stack items as operands, pop bath items, ;ind i1n.,11 the resuEt hack onto the stack. 
Unary operations, which require only one operand (e.g., logical NOT), use the item 
on the lop of the stack. All of these operations are summarized in Table l. 13, 

r.c. 
: Rid 

1S 
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Figure 10.13 Basic Stack Operation 

Stack Implementation 

The stack is a useful structure to provide as part of a CPU implementation, One use, 
discussed in Section 10,4, is to manage procedure calls and returns. Stacks may also 
he useful to the programmer. An example of this is expression evaluation, discussed 
later in this section. 

The implementation of a slack depends in part on its potential uses. if it is 
desired co make black operalions available to the programmer, then the instructiotl 
set will include stack -oriented operations, including PUSH, POP, and operations 
that use the top one or two stack elements as operands. Because all of these opera-
tions refer to a unique location, namely the top of the stack, the address of the 
operand or operands is implicit and need not he included in the instruction. HICSe 
are the zero-address instructions referred to in Section i0.1.. 

If the stack mechanism is to be used only by the CPU, for such purposes as 
procedure handling, then there will not he explicit stack-oriented insirmliOns in the 

Table 10.13 Stack -Oriented Operations 

PUSH Appetitt a new u142mtnt in [he top of Ekle' Staek, 

POP Delete the top el on en! iif [11 

Unary operation Perform operation on Lop elurnenL of ,auck. 
Rr..place Sep element with result. 

13iliar1 operation Perform operation on limp two ctrrseral.; of stack. 
I ]cle[4:. Lop two elements uF slid, Place result or 
cip riaLicln on top of tack. 
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instruction set. In either case, the implementation of a stack requires that there he 
some sat of locations used - to store the stack elements. A typical approach k illus-
trated in Figure 10.14a. A contiguous. block of locations is nerved in main mem-
Ory (or virtual memory) for the stack. Niost of the time the block is partially filled 
with stack elements and the remainder is available for stack growth. 

Three addresses are needed for proper operation. and these are often stored 
in CPU registers: 

• Stuck pointer; Contains the address of thc top or the stack. If an item is 
appended to or deleted from the stack, the pointer is incremented or decre-
mented to contain the address of the new top of the stack. 

• Stack base: Contains the address of the hoLtom locaiion in the reserved Nock. 
If an attempt is made to POP when the stack is empty, an error is reported. 

• Stack limit: Contains the address of the other end of the reserved block. 
alternpI is made to PUSH when 1hc block ix fully utili?..ed for the stack, an error 
is reported. 

Troditionally, and on most machines today. the base of the stack is at the high-
address end of the. reserved stack block, and the li mit is at the low-address end. 
Thus, the stack grows from higher addresses to lower addresses. 

(41 All 41C s.tmek in memory (11.11 TWO tap clemellix in registur6 

Figure 10,14 Typical Stack Organizations 
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To speed up stack operations, the top two stack elements are often stored in 
registers, at shown in Figure 10.14b. in this case, the stuck pointer contains the 
address of the third element of the stack. 

Expression Evaluation 

Niallic;..rnalieal formulas are usually expressed in what is known as infix notation. hi 
this Corm, a binary operation appears between the operands (e.g., a  h). - or NM. 
plea expressions, parentheses are used to determine the order or evaluation of 
expressions. For example, a — (h x c) will yield a different result than (a  b) c. 
To minimize the use of parentheses, operations have an implied precedence- Gen. 
erally, multiplication takes precedence over addition, so that a L. bxe is eiluiva• 
lent to a -I. (h x c). 

An alternative technique is known as reverse Pofi,ii, or postfix, notation, In 
this notation, the operator follows its Iwo operands. For example, 

a+ h becomes a b — 
a -F (h .x becomes abcx 
(a +b)x c becomes a b.— 

Note that, regardless of lhc complexity of an expression, no parentheses are 
required when using reverse Polish. 

The advantage of postfix notation is that an expression in this form is easiiy 
evaluated using a stack. An expression in postfix notation is scanned from left to 
right. For each elemern of the expression, the following rules. arc 

L If the element is a variable or constant, push it onto the stack. 

2. if the element is an operator, pop the top two items of the stack, perform the 
operation, and push the restili. 

After the entire expression has been scanned, the result is on the top of the slack. 
The simplicity of this algorithm mikes it a convenient one for evaluating 

expressions. Accordingly, nviny compilers will take an expression in a high-Level lan-
guage. convert it to postfix notation. and then generi Le the machine instructions 
Crum that notation. Figure 10,15 shows the sequence of machine instruction s for 
evaluating f =  b)? (e -F d  c) using stack-oriented instructions. The figure also 
shows the use of one-address and two-address instructions. Note that, even though 
the .stack-oriented rules were not used in the [ass two cases. the postfix notation 
served as a guide for generating the machine instructions. The sequence of events 
for the stack program is shown. in Figure 10.16, 

The process of converting an infix expression to a postfix expression is itself 
most easily accomplished using a stack. The following algorithm is due.to Dijkstra 
[DIJK63]. The infix expression is scanned from left to right, and the post fix expres-
sion is developed and output during the scan. The slops are as follows: 

L Examine the next element in. the input. 
/ If it is an operand, output it. 
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Figure 10.15 Comparison of Three P`rogranis to Calculate f = b) ( c • d 

3. If it is an opening parenthesis, push it onto the stack. 
4. tf it is an op.E.:ni tor, awn 

• If the top of the stack is an opening parenthesis, then push the operator. 

• If 4 has higher priority than the top i..)C thc stack (multiply .and diviii2 have 
higher priority than add :.)rd $. ubtract)_ then push the operator. 

• Else, pop operation from stack to output, and repeat Eltep 4. 

(a - b)/ 
dxe+c 

Figure 16.16 Use or sloe': to Compute f = (a • 13); (d e c). 
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Stack 
(top on right) 

A+BxC+ (D -  x F empty empty 
+ C ( D - E) A empty 

x  + (I) - E) X F A 
x h)xF AR 

C I (D-E)x.17 An +x 
•I  (D -t-  E) x F ABC  + 

(D + E) x F AB(. 
D + E) x F A C x I + 

+ X F7 A C x D 4. ( 

E) X F A li C x -D 
) xF ABCx - DE - 

x A I-3 (7 x - D E + 
ABC/ +DE- 

empty A BC + F. + F x 
empty ABCx+DF+F x empty. 

Figure 10.17 Conversion of an Exprcinion from Infix to Post rix Notation 

5. If it is a closing parenthesis, pop operators to the output until an opening 
parenthesis is encountered. Pop and discard the opening parenthesis. 

6. If there is more input, go to step 1. 
7. If there is no more input, unstack the remaining operands. 

Figure 10.17 illustrates the use of this algorithm. This example should give the 
reader some feel for the power of stack-based algorithms. 

APPENDIX 10B LITTLE-, BIG- AND BI-ENDIAN 

An annoying and curious phenomenon relates to how the byk.s within a word and 
the bits within a byte are both referenced and represented. We 14.)ok first at the prob-
lem of byte ordering, and Then consider that of hits. 

Byte Ordering 

The concept of endianness was first discussed in the literature by Cohen [COHE811, 
With respect to bytes, endianness has to do with the byte ordering of multibyte 
scalar values. The issue is best introduced with an example. Suppose we have the 
32-bit hexadecimal value 173419678 and that it is stored in a 32 -bit word in byte-
addressable memory at b!, ,te location 1.84. 'nu value consists of four bytes, with the 
least significant byte containing the value 78 and the most significant byte contain-
ing the value l2. There are two ways to store this value: 

Input . Output 
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AtItiros.; 
• 

Value Address.  Value_ 

12 

185 34 1.85 56 

E86 _56 186 34 

t;`.4 7  187 12 

The mapping on the left stores the most significant byte in ihe lowest numerical byte 
addre ss; this is known as big endian and is equivalen1 Lo Ihe left-to-righttprder of writ-
ing in Western culture languages. The mapping on the right stores the least signifi-
cant byte in the lowest numerical byte address; this is known as little endian and is 
reminiscent of the right-to-left order of arithmetic operations in arithmetic  Por 
a given multibyte scalar value, big endian and little 4,: ndion are byte-reversed map-
pings of each other. 

The concept of endianness arises when it is necessary to treat a multiple-bylc 
en Lily as a sins k data item with a single address, even though it is composed of 
smaller addressable units. Some machines, such as the. Intel 80x86, Pentium, VAX. 
and Alpha. are tittle-endian machines, whereas others, such as the IBM System 
3701340, thi.. Motorola 680x0, Sun SPARC, and most RISC machines, are big endian. 
This prestitui iwobleins when data are transferred from a machine of one endian 
type to the mile!, and when a programmer attempts to manipulate individual bytes 
or bits within a muitibvie scalar. 

'File property of endionness does not c.xicnd beyond Li n individual data unit. In 
any machine, aggregates such as files, data structures. and arrays are cornpoted of 
multiple data units, each with endianness. Thus, conversion of a block of memory 
from onc style or uicthihricss to the other rquires knowledge of the data structure. 

figure 10.18 iliustrates how eadianness determines addressing and byte order, 
The C structure at the top contains a number of data types. The memory layoul in 
the lower left results from compilation of Ihat structure: fora big-endian machine, and 
that in the lower right lot a little-endian mach  in each case, memory is depicted 
as a series of 64-bit rows. For the big endian case, memory typically is laid out left to 
right. top to bottom. whereas for the little-endian case. memory typically is laid out 
right to Left. topic bottom, Note alai these layouts are arbilrary_ sehenie could 
use either Lit to right or right to left within a row; this is a matter of depiction, not mem-
ory assignment. In fact, in looking at programmer manuals for a variety  rriiehines, 
a bewildering collection of depictions is to be found, even within the same manual. 

We can make several iihservations about this data structure: 

■ Each data item has the same address in both schemes_ Poi-  example, the 
address of the doubleworLi with hexadecimal value 2122232425262728 is 08. 

▪ Within any given multibyte scalar value, the ordering of bytivs in the le- 
endian structure is the reverse of that for the big-erldimi structure. 

'TELE terms 132' i. endian and endicrrr come' tram Part T, Chap ILr 4 of a StiwilCi Te7 • 
di. They rofer (43 a religious WAY between. two Aro ups. one that hmaks ergs et the big end and the other 
that Frre4ts ego HI I IN' Litt I  end, 
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Figure 10.18 Example C Data Structurc and Its Encliffli Maps 

■ Endianness does not affect the ordering of data item* within a structure. Thus. 
the four-character word c exhibits byte reversal. but the seven-character byte 
array d does not. Hence, the address of each individual element of d is the 
same in both structures. 

The effect of endianhess i perfiaTis more dcnionstra1cd whigt we vive .  
memory as a vertical array of bytes, as shown in Figure 10,19. 

There is no general consensus as to which is the superior style of endianness.' 
The following points favor the big-endian style: 

• Character-string sorting: A big-endian processor is faster in.comparing inte-
gcraligncd character strings; the integer ALLT can compare multiple bytes in 

• fleeirnal/IRA diurrapi; All values can be printed left to right withou1 causing 
confusion. 

• Consistent order: Big-endian processors store their integers and character 
strings in the same order (most significant byte conies first}, 

The f011owing points favor the little-endian style: 

* A big-endian processor has to perrorm addil ion when it convurts a 32-fait irate• 
ger ziddress to a 1h-bit integer address, to use the least significant bytes. 

- Ehe prophet revered by both groups in Clic- Endisn Wars 45C ( Mr Ay r's .T11 Iv er lead Lhis La ray. '' All LYU 
Fl.411CVC.IN 4halt break their Eggs at the convenieriL Not much help! 
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0 It is easier to perform higher-precision arithmetic with the little-endian style; 
you don't have to find the least-significant byte and move backward_ 

The differences are minor and the choke of endian style is often more a mat-
ter of accommodating previous machines. than ;.inytiling else. 

The PowerPC is a biacintli;in processor that supports both big -ebdin and 
little-endian modes_ 'f'hu bi-endian architecture enables software developers to 
choose either mode when migrating operating sy'sl.cros and applications from other 
machines. The operating system cst4iblishes the endian mode in which processes 
execute. °nee a mode is selected, all subsequent memory loads arid stores are 
determined by the memory-addressing model (Cf that mode. To support this hard-
ware feature, 2 bits arc maintained in the machine state register (MSR) maintained 
by the operating system as part of the process state. Ono bit specifies the endian 
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mode in which the kernel runs; the other specifies the processor's current operating„ :.  
mode. Thus. mode can he changed on a per-process basis. 

Bit Ordering 

In ordering the bits within a byte, we are immediately faced with two quemions: 

1. Do you count the Cirst bit as bit zero or as bit one? 
2.. Do you assign the lowest bit number to the byie's. Last significant bit Oink 

endian) or lea the bytes most significant bit (big endian)? 

These questions are not answered in the same way on all machines. Indeed, on 
some machines, the answers are differen1 in different circumstances. Furthermore. 
the choice or big- or little-endian bit ordering within a byte is not always consistunt 
with big- or little-endian ordering of bytes within a rnultibyie scalar, The program-
mer needs to be concerned with these issues when miniraliaOng individual bits. 

Another area of concern is when data are transmitted over a bit-serial Line. 
When an individual byte is transmitted. does the system transmit the must signifi-
cant bit first or the least significant bit first? The designer must Tnake certain that 
incoming bits Arc handled properly- For a discussion of this issue, see 1JAME901. 
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• An operand reference in n instruction either contains the actual value of the 
operand (irrurnedia re) or fl N.:fereEtce to the address of the operand. A wide 
variety of addressing modes is used in various instruction sets. These include. 
direct (operand address is in ad(1reti% field), indirect {address field points lo 

that con tAinq the (ye nd address), tegister, register indirect, .irid Var -

ious forms of displacement, in which a register value is added to an address 
value to produce the operand address. 

• instruction formai defines the layout fields in the instruction. Insmiction 
(01 - t-rO1 design is complex undertaking, including such ecuv.iderili ions as 
instruction length, fixed or variable length, 131A mbel - ;issillned to opcode 
and each operand reference, and how undressing mode is determined. 
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KEY POINTS 

E 
r 

C 
g : 
L. 
C  

n Clapter 10, we focused on whar an instruction set does. Specifically, we exam- 
ined the types of operands and operations shall n-L;iy be specified by machine 
instructions, This chapter kurris to the. question of how to specify the operands .  

11141 operations of instruel ions. Two issues arise. First, how is the address of an 
operand specified, and second, how are the bits of an instruction organized toddle 
the operand addresses and operation of Thal instruction? 

11.1 ADDRESSING 

The address field or fields in a typical instruction format are relatively small, Wr.. 
would  to he Able to reference a large range of locations in main memory or. for 
some systems, virtual memory. To achieve this objective, a variety of addressim 
techniques has been emploved, They all involve 53ome trade-off between address 
range andlor addressing flexibility, on the one hand, and the number of memory rd. 
L.renccs and/or the complexity of address calculation, on the other. In this section, we 
examine the most common addressing techniques: 

• I mmediate 
■ Direct 
* Indirect 
■ Resister 
* Register indirect 
■ Displacement 
* Stack 

These modes are illustrated in Figure 11.1. In this section, we use the following 
notation: 
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Figure 11..1  Ad d riLssing Moth:1i 

A = contents of an address field in the instruction 
R = contents of an address field in the instruction that rcfc.rs to a register 

EA — Eictual (cfrcutive) nidrcss of thc location containing the referenced operand 
( X) = contents of memory location X or register X 

Table 11.1 indicates the address calculation performed for each addressing mode. 
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Table 11.1 Basic Addressing Mocks 

Mt do Algnrit Ii In Principal Advantage Principal Disathantage 

Itnraediace Operand , A No memory ref..,=Nricc: LimitEci opera rid magrkitude 

Dirt = A Simplc LindEEd address space 

Indirect EA -: (A) Laise address space Lapie noemory rcfGrc Rcc5 

Register EA = R No .munory rcANnec: ruitIrtss space 

Rovistcr indirect = ( R) 84,1113-esh sprtee. Urea raernoty reference 

Dip aCerat n L EA =A+ (R) Flu xibi lity Complexity 
Stack EA top of stack No memory reference Lintiitd applicahili ty 

Before beginning this discussion, two comments need to he made. First, virtu, 
ally all computer architectures provide more than one of these addressing modes. 
The question arises 4$. to how the control unit Can determine which address mode is 
being used in a particular instruction. Several approaches are taken. Often, dif-
ferent opcodes will use different addressing modes. Also, one or more his in the 
instruction formal um tis.ud i1 a mode field. The valuo of the mode field deter-
niincs which addreissi li g mode is Lo he used. 

The. second continent concerns the interpretation of the effective address 
(EA). In a system without virtual memory, the effective address will he either a main 
memory address or a register, In a virtual memory S'y'Siern., the effective address is a 
virtual address or a rLgister. The actual mapping to a physical address is a function 
of the paging mechanism and is invisible to the programmer, 

Immediate Addressing 
The simplest form of addressing is immediate addressing, in which the operand is 
actually present in the instruction: 

OPERAND = A 

This mode can be used to define and use constants or set initial values of variables_ 
Typically. the number will be stored in twos complement form; the leftmost hit of 
the operand Field is used as a sign bil. When the operand is loaded into a data reg-
ister, the sign bit is extended to the left to the full data word size. 

The advantage of immediate addressing is [hal no memory reference other 
Limn the instruction fetch is required Lu obtain the operand, thus saving one niern-
ory of cache cycle in the instruction cycle, The disadvantage is that the size of the 
number is restricted to the size of the address field, which, in most instruction scts, 
is small compared with the word length. 

Direct A ddressing 
A very simple form of c.iclresising  cu red .idiressing_ in which the address field con-
tains the effective address of the operand: 

EA = A 
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The technique was common in earlier generations or computers bul is not common 
on contemporary architectures..lt requires only one memory reference 4i nd no spe- 
cial calculation. The obvious, limitation is that it provides only a limited address space. 

Indirect Addressing 

With direct addressing. the length of the address. field is usually less than the word 
length, thus Hi -rifling the address range. One solution is to have lht 4.Kiducss field 
refer to the address of a word in memory, which in turn contains a full-length 
address of the operand. This is hnown as indirect addressing: 

EA = (A) 

As defined earlier, the parentheses are to he interpreted as meaning contents of 
The obvious advantage or this approach is that for a word length of N. an address 
spice of  is now available. The disadvantage is Thal instruction execution requires 
two memory references to fetch the operand= one to geL its address and a second to 
2et its value. 

Although the number oi' words that can he addressed is now equal to the 
number of different effective addresses that may be referenced at any one time is 
limited to  where. K is the length of the address field. Typically, this is not a bur-
densome .1 CS triction, and it can be an asset. In a virtual memory environment, all the 
effective address locations can be confined to page 0 of any process. Because the 
address field of an instruction is sinali. it wilt naturally produce low-numbered direct 
addresses, which would appear in page 0. (The only restriction is that the page size 
must be greater than or equal to 2k,) When a process is active, there wi]l be repeated 
references to page O. causing it to remain in real memory. Thus, an indirect mem-
ory reference will involve, at most. one page faith rather than two. 

A rarely used variant of indirect addressing is multilevel or cascaded indirect 
addressing; 

EA — ( ... (A) ... ) 

In this caliC, one bit of a full-word address is an indirect [lag (I). if the I bit is 0, then 
the word contains the EA. IF the I bit is 1, then another level of indirection is 
invoked. There does not appear to he any particular advantage to this approach, and 
its disadvantage is that three or more memory references could be required to fetch 
an operand. 

Register Addressing 

Register addressing is similar to direct addressing. The only difference is that the 
address field refers to a register rather than a main memory address: 

EA=R 

Typically, an address field that references registers wi]l have from 3 to 5 bits, so that 
a total of from S to 32 general-purpose registers can he referenced. 
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The advantages of register addressing are that (1) only a small address field is 
needed in the instruction. and (2) no memory' references are required. As was dis-
cussed in Chapter 4, the memory access time for a register internal to the CPU is 
much less than that for a main memory address, The .disadvantage of register 
addressing is that the address space is very limited. 

If register addressing is heavily used in an instruction set. this implies that the 
CPU registers will he heavily used. Because of the severely limited number of rep 
isters (compared with main memory locations), their use in this fashion makes sense 
only if they are employed efficiently. If every operand is brought into a register from 
main memory. operated on once, and then returned to main memory, then a waste• 
ful intermediate step has been added. If, instead, the operand in a register remains 
in use for multiple operations, then a real savings is achieved. An example is the 
intermediate result in a calculation. In particular. suppose that the algorithm for 
twos complement multiplication were to he implemented in son ware. The location 
labeled A in the flowchart (Figure 9.12) is referenced many times and should he 
implemented in a register rather than . a main memory location. 

It is up to the programmer to decide which values should remain in registers 
and which should he stored in main memory. Most modern CPUs employ multiple 
general-purpose registers. placing a burden for efficient execution on the assembly-
language programmer (e.g., compiler writer). 

Register Indirect Addressing 
Just as register addressing is analogous to direct addressing, register indirect ad-
dressing is analogous to indirect addressing. In both cases, the only difference is 
whether the address field refers to a memory location tar a register. Thus, for register 
indirect address, 

EA = (R) 

The advantages and limitations of register indirect addressing are basically the same 
as for indirect addressing. In both cases, the address space limitation (limited range 
of addresses).of the address field is overcome by having that field refer to a word-
length location containing an address. In addition, register indirect addressing uses 
one less memory reference than indirect addressing. 

Displacement Addressing 
A very powerful mode of addressing combines the capabilities of direct addressing 
and register indirect addressing. It is known by a variety of names depending on the 
context of its use. but the basic mechanism is the same. We will refer to this as dip 
placement addressing: 

EA = A + (R) 

Displacement addressing requires that the instruction have two address fields. at 
least one of which is explicit. The value contained in one address field (value = A) 
is used directly. The other address field, or an implicit reference based on opcode, 
refers to a register whose contents are added to A to produce the effective address. 
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We will describe three of the most common uses of displacement addressing: 

• Relative addressing 
▪ Base-register addressing 
■ Indexing 

Relative Addressing 

I;or relative addressing, the implicitly referenced register is the program counter 
(PC). That is. the current instruction address is added to the address field to pro-
duce the EA. Typically, the address field is treated as a twos complement number 
for this operation. Thus. the effective address is a displacement relative to the ad-
dress of the instruction. 

Relative addressing exploits the concept of locality that was discussed in Chap-
ters 4 and 8. If most memory references arc relatively near to the instruction being 
executed, then the use of relative addressing saves address hits in the instruction. 

Base-Register Addreming 

For base-register addressing, the interpretation is the following: The refer-
enced register contains a memory address, and the address field contains a dis-
placement (usually an unsigned integer representation) from that address. The 
register reference may be explicit or implicit. 

Base-register addressing also exploits the locality of memory references. It is 
a convenient means of implementing segmentation, which was discussed in Chapter 
8. In some implementations, a single segment-base register is employed and is used 
i mplicitly. In others. the programmer may choose a register to hold the base address 
of a segment, and the instruction must reference it explicitly. In this latter case, if 
the length of the address field is K and the number of possible registers is N, then 
one instruction can reference any one of N areas of 2' words. 

Indexing 

For indexing, the interpretation is typically the following: The address field 
references a main memory address, and the referenced register contains a positive 
displacement from that address. Note that this usage is just the opposite of the inter-
pretation for base-register addressing. Of course, it is more than just a matter of user 
interpretation. Because the address field k considered to be a memory address in 
indexing. it generally contains more bits than an address field in a comparable base-
register instruction. Also, we shall see that there are some refinements to indexing 
that would not be as useful in Ihe base-register context, Nevertheless, the method 
of calculating the EA is the same for both base-register addressing and indexing, 
and in both cases the register reference is sometimes explicit and sometimes implicit 
(for different CPU I ypes). 

An important use of indexing is to provide an efficient mechanism for per-
forming iterative operations. Consider, for example. a list or numbers stored start-
ing at location A. Suppose that we would like to add I to each element on the list. 
We need to fetch each value. add I to it, and store it back. The sequence of effec-
tive addresses that we need is A, A -h 1. A + 2,  up to the last location on the 
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list. With indexing, this is easily done. The value A is stored in the instruction's 
address field. and the chosen register, called an index register. is initialind to 0. 
After each operation. the index register is incremented by I. 

Because index registers are commonly used for such iterative !asks, it is typi-
cal that there is a need to increment or decrement the index register after each 
reference to it. Because this is such a common operation, some systems will auto-
matically do this as part of the same instruction cycle. This is known as auroindo-
lug. if certain registers are devoted exclusively to indexing, then autoindexing can 
be invoked implicitly and automatically. if general-purpose registers are used, the 
autoindex operation may need to be signaled by a hit in the instruction. Autoin-
dexing using increment can be depicted as follows: 

EA A + (R) 
(R) ( R) 1 

In some machines, both indirect addressing and indexing are provided, and it 
is possible to employ both in the same instruction. There are two possibilities: The 
indexing is performed either before or after the indirection. 

If indexing is performed after the. indirection, it is termed postindexing: 

EA = (A) I (R) 

First, the contents of the address field are used to access a memory location con-
taining a direct address. This address is then indexed by the register value. This tech-
nique is useful for accessing one of a number of blocks of data of a fixed format. For 
example, it was described in Chapter S that the operating system needs to employ a 
process control block for each process. The operations performed are the same 
regardless of which block is being manipulated. Thus, the addresses in the instruc• 
lions that reference the block could point to a location (value — A) containing a 
variable pointer to the start of a process control block, The index register contains 
the displacement within the block. 

With preindexing the indexing is performed before the indirection: 

EA = (A .( R)) 

An address is calculated as with simple indexing. In this ease, however, the calcu-
lated address contains not the operand, but the address of the operand. An ex-
ample of the use of this technique- is to construct a multiway branch table. At a 
particular point in a program. there may be a branch to one of a number of loca-
tions depending on conditions, A table of addresses can be set up starting at location 
A. By indexing into this table, the required location can be found. 

Typically, an instruction set will not include both preindexing and postindexing. 

Stack Addressing 
The final addressing mode that we consider is stack addressing. As defined in 
Appendix 9A, a stack is a linear array of locations, It is sometimes referred to as 
a pushdown list or lust-in-first-our queue. The stack is a reserved block of locations. 
Items are appended to the top of the stack so that, at any given time, the block is 
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partially filled-  Associated with the stack is a pointer whose value the address 
of the top of the slack. Alternatively, the top two elements of the stack may he in 
CPU registers, in which case the stack pointer references the third element of the 
stack (Figure 10.14b). The stack pointer is maintained in a register, Thus. references 
to stack locations in memory are in fact registei indirect addresses. 

The stack mode of 4iddrusr;ing is a form of implied addressing. The machine 
instructions need not include a me.mory referenec but implicitly operate on the top 
of the stack, 
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Pentium Addressing Modes 

Recall from Figure 8.21 that the Pentium address translation mechanism produces 
an address, called a virtual or effective addrem„ 1114,4 is an offset into a segment. The 
sum of the starting address of the segment and the effective address produces a lin-
ear address. If paging is being used, this linear address must pass through a page-
translation mechanism to produce 4i. physical address. in what follows, we ignore this 
last seep, because it is transparent to the instruction set and to the programmer, 

The Pentium is equipped with a variety of addressing modes intended to a]-
low the efficient execution of high-level languages. Figure 1.1,2 indicates the logic 
involved. The segment register determines the segment that is the subject of the 
reference. There are six segment registers; the one being used fora particular ref-
erence depends on the context of execution and the instruction. Each segment 12g-
isIer holds the starting address of the corresponding segment. Associated with each 
user-visible segment register is a segment descriptor register (not programmer 
visible), which records the access rights for the segment as well as the starting ad-
dress and limit (Length) of the segment. In addition, there are two registers that may 
be used in constructing an address: the base register and the index register. 

'Fable 11,2 lists the 12 Pentium addressing modes. Lei us consider each of 
these in turn. 

For the immediate mode. the operand is included in the instruction. The 
operand can be a byte, word. or doubleword of data, 

For register operand mode, the operand is located in a register. For gencra I 
instructions, such as data transfer, arithmetic, and logical instructions, the operand 
can be one of the 32-bit general registers (14AX, 17113X. E(-:X, EDX, ESI. EDI. ESP, 
ERP), one of the 16-bit general registers AX, BX, CX, DX. SI In SEJ. HP), or one 
of the 8-bit general registers (AH, BH, CH, DH, AL., BL. CL, DL). For floating-
point operations, 64 - hit operands are formed by using two 32-bit registers as a pair. 
There are also some instructions that reference the segment registers (CS. DS, ES. 
SS :  FS, GS). 

The remaining addressing modes reference locations in memory. The memory 
location must be specified in terms of the segrneni containing the location and 
the offset from the beginning of the segment. In some cases, a segment is specified 
explicitly in others, the segment is specified by simple rules that assign a segment 
by default.  
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Mode 0 perwid  A.  !withal 

RelOsler c•ixerand LA — R 
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In the displacement triode, the 4..Pperand .  off et (the effective address of Fig-
ure 11.2) is contained as part of the instruction as an  16-, or n-bit displacement. 
With segmenlation• all addresses in instructions refer merely to an offset in a 
segment. The displacement addressing mode is found on few machines because, 
as mentioned earlier, it leads to long instructions. In the case of the Pentium, the 
disptaeernen I value can be as long as 32 bits, making for a 6-byte instruction. Dis-
placement addressing can he useful for referencing global variables. 

The remaining addressing modes are indirect, in the sense 1 h.i t the address por-
tion of the instruction tells the processor where to Look to find the address. The base 
amide specifies that one of the 8-, 16-, or 32-bit registers contains the effective address. 
This is equivalent to whAll. we have referred to as register indirect addressing. 

In the base with displacement mode, the instruction includes a displacement 
l  he added to a base register, which may be any of the general-purpose registers. 
Examples of uses of this mode include. the following; 

• l. hled by a compiler to point to the start of a local variable area. For example, 
the base register could point to the beginning of a stack frame, which contains 
the local variables for the corresponding procedure. 

■ Used lo index into an array when the element size is not 1, 2, 4, or 8 bytes 
and which therefore cannot be indexed using an index register, in this case, 
the displacement points to the beginning of the array, and the base register 
holds the results of a calculation to determine the offset to a specific element 
within the array. 

a Used to access a field of a record. The base register points to the beginning of 
the record. while the displacement is an offset to the field. 

I: ' 
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In the scaled index with displacement mode, the instruction includes a 
displacement to he added to a register, in this case called an index register. The 
index register may he any of the general-purpose registers except the one called 
ESP, which is generally used for stack processing. In calculating the effective 
address, the contents of the index register are multiplied by a scaling factor of 
2, 4. or 8. and then added to a displacement. This mode is very convenient for 
indexing arrays. A scaling factor of 2 can he used for an array of to-hit integers. 
A scaling factor of 4 can he used for 32-bit integers or floating-point numbers. 
Finally, a scaling factor of 8 can be used for an array of double-precision floating-
point numbers. 

The base with index and displacement mode sums the contents of the base reg-
ister, the index register, and a displacement to form the effective address. Again. the 
base register can he any

, 
 general-purpose register and the index register can be any 

general-purpose.register except PSP. As an example, this addressing mode could be 
used for accessing a local array on a stack frame. This mode can also he used to sup-
port a two-dimensional array; in this case, the displacement points to the beginning 
of the array, and each register handles one dimension of the array. 

The based scaled index with displacement mode sums the contents of the 
index register multiplied by a scaling factor. the contents of the base register, and 
the displacement. This is useful if an array is stored in a stack frame in this case, the 
array elements would be 2, 4, or 8 bytes each in length, This mode also provides 
efficient indexing of a two-dimensional array when the array elements are 2, 4. or 
8 bytes in length. 

Finally. relative addressing can be used in transfer-of-control instructions. 
A displacement is added to the value of the program counter, which points to the 
next instruction. In this case, the displacement is treated as a signed byte, word :  or 
doubleword value, and that value either increases or decreases the address in the 
rifogram counter. 

PowerPC Addressing Modes 

In common with most RISC machines, and unlike the Pentium and most CISC 
machines, the PowerPC uses a simple and relatively straightforward set of address-
ing modes: As Table 11.1 indicates, these modes are conveniently classified with 
respect to the type of instruction. 

Load/Store Architecture 

The PowerPC provides two alternative addressing modes for load/store 
instructions (Figure 11.3). With indirect addressing. the instruction includes a 16-bit 
displacement to be added to a base register, which may be. any of the general-
purpose registers. In addition, the instruction may specify that the newly computed 
effective address is to he fed back to the base register, updating the current contents. 
The update option is useful for progressive indexing of arrays in loops, 

The other addressing technique for loadistore instructions is indirect indexed 
addressing. In this case, the instruction references a base register and an index reg-
ister, both of which may be any of the general-purpose registers.  effective 
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Table 11.3 PowerPC' AdLiti.ssing Modes 

Mode Algorithm 

LoudiStore Addressing 

Intli mct EA - i$R) - D 

Indirect indexed =11114.1.- (IR) 

Brandt Addresing 

Absolute EA = I 

Relative P.A = I Pt.') - I 

Indirect EA - 

Fixed-Point Computation 
Reg ter = Grit 

I mmediate Operand = I 

ilomting-Point Computation 

Reeister CA = FPR 
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t X1 = Lonients of X 
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= Floating-point i'clUslat 

= diVlseemen1 
I - immediatowitie 
I't ' program ctiouthr 

address is the sum of the contents of these two registers. Again, the update option 
causes the base register to be updated to the new effective address. 

Branch Addressing 

Three branch addressing modes are provided. When absolute addressing is 
used with unconditional branch instructions, the effective address of the next 
instruction is derived from a 24-hit immediate value within the instruction. The 
24-hit value is extended to a 32-bit value by adding two zeros 10 its least significant 
end (this is permissible because all instructions must occur on 32-bit boundaries) 
and sign extending. For conditional branch instructions, the effective address of 
the next instruction is derived from a 1 6-hit immediate value within the instruction. 
The 16-bit value is extended to a 32-hit value by adding two zeros to its least signif-
icant end and sign extending. 

With relative addressing. the 24-bit immediate value (unconditional branch 
instructions) or 14-bit immediate value (conditional branch instructions) is extended 
as before.  resulting value is then added to the program counter to define a loca-
tion relative to the current instruction. The other conditional branch addressing 
mode is indirect addressing. This mode obtains the effective address of the next 
instruction from either the link register or the count register. Note that in this case 
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the count register is used to hold the address for a branch instruction. This register 
may also be used to hold's count for tooping, as explained earlier. 

Arithmetic I nstri 'dims 

For integer arithmetic, al] operands must he contained either in regisicrs or as 
part of the instruction. With register addressing, a source or destination operand 
is specified as one of the general-purpose registers, With immediate addressing, a 
source operand appears as a I6-bit signed quantity in the instruction. 

For floating-point arithmetic, all operands are in floating-point registers that 
is, only register aidie:y,higrw taxed, 

3 INSTRUCTION FORMATS - ...-...   
.54 • ar,ro. 

21T,..lrelfcr e
;!ef W4' %S1  

An instruction format defines the la taut of the bits of an instruction, in terms of its 
constituent parts. An instruction format must include an opeode and, implicitly or 
explicitly. zero or more operands. Each explicit operand is referenced using one 
cif 1he addressing modes described in Section  The format must. implicitly or 
explicitly, indicate1he addressing mode for each operand. IC)1' CLAtME insiruerion sets, 
more than one instruction Format is used. 

The design of an instruction format is a complex art. and an amazing variety 
or designs have been implemented. We examine the key design issues, looking 
briefly at souse designs lo illustrate points, and then we examine the Pentium and 
PowerPC solutions in &Li i I. 

Instruction Length 

The most basic design issue to be faced is the instruction format length. This deci-
sion affects, and is affected by, InCinrilry wire, memory organization. bus structure. 
CPC complexity, and CPU speed. This decision determines the richness and flexi-
bility of the machine as seen by the assembly-language programmer. 

The most obvious trade -oft here is between the desire for a powerful instruc-
tion repertoire and a need to save space. Programmers want more opeodes, more 
operands, mdre addressing modes, and greater address raluze. More opeodcs and 
more operands make life Casier for I he programmer, because shorter programs can 
he written to accomplish given [asks. Similarly. more addressing modes give the 
programrru greater flexibility in implementing certain funclions, such as [able 
manipulations and multiple-way branching. And, of course. with the increase in 
main memory size and the increasing use of virtual memory. programmers want to 
he able to address larger memory ranges. All of these things (oprodes, operands. 
addressing modes. address range) require bits and push in the direclion or longer 
instruction lengths. But longer irril ruction length may be wasteful. A 64-bit instruc-
li on occupies twice the space of a 32-bit instruction but is probably Jess than twice 
as useful. 

Beyond this basic trade-off, there are other considerations. Either the instruc-
lion length should be equal to the memory-transfer length (in a bus system. data- 
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bus length) or one should he a multiple of the other. Otherwise, we will not get an 
integral number Of instructions during a letch . cvele. A related consideration is the 
memory transfer rate. This null.; has not kept up with increases in processor speed. 
Accordingly, memory can become a bottleneck if the processor can execute instruc-
ti ons faster than it can fetch them. One solution to this problem is to use cache meal. 
ory (see Section 4,3): another is Lo use shorter instructions. Thus, 16-bit instructions 
CM' be fetched at twice the rate of 32-bit instructions hul probably can be executed 
less than twice as fast. 

A seemingly mundane but nevertheless important feature is that ihe instruc-
tion length should he 21 Mal Liple of the. character length, which is usually S bits, and 
of the length of fixed-point numbers, To see this, we need to make use of that un-
fortunately ill-defined word, woe/ [FRA183]..rhe weird length of memory is. in some 
Sense, the "natural -  unit of organiiiition. The size of a word usually del ermines the 
size of fixed-point numbers (usually the two are equal). Word site is also typically 
equal to, or at least integrally related lo. the memory transfer size. Because a com-
mon form of data is character data. we would like a word to store an integral 11LI M-
her 01' characters, Otherwise, there are wasted bits in each word when storing 
multiple characters, or a character will have to straddle a word boundary. The impor-
tance of this point is such thuti 1.1-1M, when it introduced the Systern1360 and wanted 
to employ S-bit rharactors, made the wreaching decision to move from the 345-bit 
architect Lire of the scientific members of the 70017000 series Lo a 32-bit architecture. 

Allocation of Bits 

We've looked r.I some of the factors that go into deciding t he length of the instruc-
tion format. An equally difficult issue is how to allocate the bits in that format. The 
trade-offs here are complex. 

For a given instruction length, there is clearly a trade-off between the number 
of °Nodes and the pt -awer of the addressing capability. More opcodes obviously 
mean more bits in the opcode field. For >in instruct ion format of a given length, this 
reduces the number of hits available for addressing, There is one interesting re-
finement 10 this trade-off, and that is the use of variable-lengih opeodes. In this 
approach, there ig a minimum opcode length hut, for some opcodes additional 
operations may be specified by using addii ional hits in the instruction.. For a fixed. 
length instruction. his leaves fewer bits for addressing. Thus. ads feature is used for 
those insiructions that require fewer operands andior les!, powerful addressing. 

The following interrelated factors go into determining the use of the ad-
dressing bits: 

■ Number of addressing modes; Sometimes an addressing mode can be indicated 
i mplicitly. For example, certain opctide might always call for inile:';ing. In other 
cases, the addressing modes must be explicit. and one or more mode.bits will 
he needed. 

• Number of operands: We have seen dial fewer addresses can make for longer, 
more awkward programs (e.g., Figure 103). Typical instruct ions on today's 
machines provide for two operands. Each operand address in the instruction 
might require its own mode indicator, or the use of a mode indicator could he 
limited to lust one of tfic addrcsg fields. 
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• Register versus memory: A machine must have registers so that data can be 
brought into the CPU for processing. With a single user-visible register (usu-
ally called the accumulator), one operand address is implicit and consumes 
no instruction bits. However, single-register programming is awkward and 
requires many instructions. Even with multiple registers, only a few bits are 
needed to specify the register. The more that registers can he used for operand 
references. the fewer bits are needed. A number of studies indicate that a total 
of 8 to 32 user-visible registers is desirable [LUND77, HUCK83]. Most con-
temporary architectures have at least 12 registers. 

• Number of register sets: Most contemporary machines have one set of 
general-purpose registers, with typically 32 or more registers in the set. These 
registers can he used to store data and can be used to store addresses for 
displacement addressing. Some architectures, including that of the Pentium. 
have a collection of two or more specialized sets (such as data and displace-
ment).. one advantage of this latter approach is that, for a fixed number of 
registers, a functional split requires fewer bits to be used in the instruction, 
For example, with two sets of eight registers, only 3 bits are required to 
identify a register: the opcode implicitly will determine which set of registers 
is being referenced. 

• Address range: For addresses that reference memory, the range of addresses 
that can be referenced is related to the number of address hits. Because this 
imposes a severe limitation, direct addressing is rarely used. With displacement 
addressing, the range is opened up to the length of the address register. Even so, 
it is still convenient to allow rather large displacements from the resistel -  address, 
which requires a relatively large number of address hits in the instruction. 

• Address granularity; For addresses that reference memory rather than reg-
isters, another factor is the granularity of addressing. In a system with 16- or 
32-bit words, an address can reference a word or a byte at the designer's 
choice. Byte addressing is convenient for character manipulation but requires, 
for a fiXed-size memory, more address bits. 

Thus. the designer is faced with a host of factors to consider and balance. 
Hoy,. critical the various choices are is not clear. As an example, we cite one study 
[CRAG79] that compared various instruction format approaches, including the use 
of a stack, general-purpose registers, an accumulator, and only memory-to-register 
approaches. Using a consistent set of assumptions, no significant difference in code 
space or execution time was observed. 

Let us briefly look at how two historical machine designs balance these vari-
ous factors. 

PDP-S 
One of the simplest instruction designs for a general-purpose computer was 

for the PDP-8 [BELL78b]. The PUP-8 uses 12-bit instructions and operates on 12-
hit words. There is a single general-purpose register, the accumulator. 

Despite the limitations of this design, the addressing is quite flexible. Each 
memory reference consists of 7 hits plus two 1-bit modifiers_ 'The memory is divided 
into fixed-length pages of 2 7  =, J.28 words each. Address calculation is based on 
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references to pager 0 or the current page (page containing this instruction) as deter-
mined by the page bit. The second modifier bit indicates whether direct or indirect 
addressing is to be used. These two modes can be used in combinaiion, so ihrrt an 
indirect address is a 12-hil kiddrcss contained in a word of page 0 or the current page. 
In addition, S dedicated words on page 0 are atiloindes "registers.' When an indi-
rect reference is made to one of these lomtions, preindexing occurs. 

Figure 11,4 shows the PDP-8 instruction format. There M- V. a 3-bil opcode and 
three types ,,r instructions. For opcodes 0 through 5. the format is a single-address 
memory reference instruction including a page bit and an indirect hit. Thus, there 
are only six basic operations. 'I'o enlarge the group of operations. opcode 7 defines 
a register reference or in ic roikul ruction . in this format, the remaining bits are used 
lo encode additional operations. In general, each hit (lanes a specific operation 
(e.g.. clear accumulator), and thew oils can be combined in a single instruci ion. The 
microinstruction strategy was used as far back as the PDF-I by 1)1.. .C' and is. in a 
SQ:11.SC, a forerunner of today's rnicroprogrammed machines, to be discussed in Part 
Four. Opcode 0 is the 110 operation; 6 bits are used to select one of 64 devices, and 
3 bits specify a particular PO command. 
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The FDP-8 instruction format is remarkably efficient, 11 supports indirect 
addressing, displacement addressing, and indexing. With the use of the uprotiC ex-
tension, it supports a total of approximately 35 instructions. Given the constraints 
of a 12-bit instruction length, the designers could hardly have done better. 

PDP-111 

A sharp contrast to the instruction set of the PDP -S is that of the PDP-10. 
The PUP-10 was designed to be a large-scale time-shared system, with an empha-
sis on making the system easy to program, even if additional hardware expense 
was involved. 

Among the design principles that were employed in designing the instruction 
set were [BELL784 

• Orthogonality: Orthogonality is a principle by which two variables are inde-
pendent of each other. In the context of an instruction set, the term indicates 
that other elements of an instruction are independent of (not determined by) 
the opcode. The PUP-l0 designers use the term to describe the fact that an 
address is always computed in the same way, independent of the opcode. This 
is in contrast to many machines, where the address mode sometimes depends 
implicitly on the operator being used. 

• Completeness: Each arithmetic data type (integer, fixed-point, real) should 
have a complete and identical set of operations. 

• Direct addressing: Rase plus displacement addressing, which places a memory 
organization burden on the programmer, was avoided in Favor of direct 
addressing. 

Each of these principles advances the main goal of ease of programming. 
The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixed 

instruction format is shown in Figure 11.5. The opcode occupies 9 bits. allowing up 
to 512 operations. In fact, a total of 365 different instructions are defined, Most 
instructions have two addresses, one of which is one of 1.6 general-purpose registers. 
Thus. this operand reference occupies 4 bits. The other operand reference starts 
with an 18-bit memory address field. This can be used as an immediate operand or 
a memory address. In the latter usage, both indexing and indirect addressing are 
allowed. The sanie general-purpose registers are also used as index registers. 

A 36-bit instruction length is true luxury, There is no need to do clever things 
to get more opcodes; a 9-bit opcode field is more than adequate. Addressing is also 
straightforward. An 18-bit address Field makes direct addruSMTIg desirable, For 
memory sizes greater than 2 18. indirection is provided. For the ease of the pro- 

1 
Opuixt? Regkivi -  1 1 1 indr.n ! 

0 x II 12 1.4 17 18 

1= 
 

indirect hit 

Figure 11.5 Pl)P-1O instruction Format 

Menary address 
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grammer, indexing is provided for table manipulation and iterative programs. Also. 
with an 18-bit operand field, immediate addressing becomes attractive.. 

The PDP-10 instruction set design does accomplish the objectives listed ear-
lier TLL1ND711. The PDP-1O instruction set cases the task of the programmer or 
compiler at the expense of an inefficient utilization of space. This was a conscious 
choice made by the designers and therefore cannot be faulted as poor design. 

Variable-Length Instructions 

The examples we have looked at so far have used a single fixed instruction length. 
and we have implicitly discussed trade-offs in that context. But the designer rtm 
choose instead to provide a variety of instruction formats of different lengths. This 
tactic makes it easy to provide a large repertoire of opcodes, with different opcode 
lengths. Addressing can be more flexible. with various combinations of register and 
memory references plus addressing modes. With variable-length instructions, these 
many variations can be provided efficiently and compactly. 

The principal price to pay for variable-length instructions is an increase in the 
complexity of the CPU, Falling hardware prices, the use of microprogramming (dis-
cussed in Part Four), and a general increase in understanding the principles of CPU 
design have all contributed to making this a small price to pay_ However. we will see 
that RISC and superscalar machines can exploit the use of fixed-length instructions 
to provide improved performance. 

The use of variable-length instructions does not remove the desirability of 
making all of the instruction lengths integrally related to the word length. Because 
the CPU does not know the length of the next instruction to be fetched. a typical 
strategy is to fetch a number of bytes or words equal to at least the longest possible 
instruction. This means that sometimes multiple instructions arc fetched. However, 
as we shall see in Chapter 12, this is a good strategy to follow in any case. 

PDP-11 

The PDP-I I was designed to provide a powerful and flexible instruction set 
within the constraints of a 16-bit minicomputer [BEU_701. 

The PDP-11 employs a set of eight 16-bit general-purpose registers. Two 
of these registers have additional significance: One is used as a stack pointer for 
special-purpose stack operations, and one is used as the program counter, which 
contains the address of the next instruction. 

Figure HA shows the PLOP-11 instruction formats. Thirteen different formats 
are used. encompassing zero-, one-, and two-address instruction types. The opcode 
can vary from 4 to 16 bits in length. Register references are 6 hits in length. Three 
bits identify the register, and the remaining 3 bits identify the addressing mode, The 
PDP-11 is endowed with a rich set of addressing modes. One advantage of linking 
the addressing mode to the operand rather than the opcode, as is sometimes done. 
is that any addressing mode can be used with any opcode, As was mentioned. this 
independence is referred to as orthogonality. 

PDP-1 1 instructions are usually one word (16 hits) long. For some instructions, 
one or two memory addresses are appended, so that 32-hit and 48-bit instructions 
are, part of the repertoire. This provides for further flexibility in addressing. 
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The PI)1 -1.1 instruction set and addressing capability are complex. Thi' in-
creases both hardware cost and programming cotnplexitv. The advantage is that 
more efficient or compact programs can be developed. 

VAX 
Most architectures provide a relatively small number of fixed instruction for-

mats. This can came two problems for the progrannner. First_ addressing mode . and 
opoode are not orthogonal_ for example_ for a given operation, one operand mug 
come from a register and another from memory, or both from registers, 2j11t1 so on. 
Second. only a limited number of operands can be viccommodated: typically up to 
two or I hux.  WM some c.pperations inherently require more operands, various 
NM' Legies MUSE be used to achieve the desired result using two or more insi ructions. 

To avoid these problems, two criteria were used in designing the VAX instruc-
tion format iSTRE781: 

1. All instructions should have the "natural" number of operands, 
2. All operands should have the same generality in specification. 

The result is a biddy 'variable instruel ion format. An instruction consists of a 1- or 
2-byte opeodc followed by from zero to six operand specifiers, depending on the 
°Node. The minimal instruction length is 1. byte, and instructions op.to 37 bytes can 
be constructed. Figure 11.7 gives a few examples. 

The VAX instruction begins with a I -byte opeode.'fhis suffices to handle most 
VAX instructions. However, as there are over 3l  different instructions, t bits arc 
not enough. The hexadecimal codes FD and FF indicate an extended opcode, with 
the actual opcode being specified in the second byte. 

The remainder of the instruction consists of up to six operand specifiers. An 
operand specifier is, at minimum, a 1-byte format in which the leftmost 4 hits are 
the address mode specifier. The only exception to this rifle is i he literal mode, which 
is signaled by the pattern 00 in the leftmost 2 hits, lvaving space for a 6-bit literal. 
Becmiz..e of this exception, a total of 12 different addressing modes can be specified. 

An operand specifier often consists of just one byte, with the righirno!si 4 hits 
specifying one of 16 general-purpose registers- The length or I he operand specifier 
can he extended in one Of two ways. First, a constant value of one or more bytes 
may immediately follow the first byte. of the operand specifier. An example of this 
is the displacement mode, in which an 8-, Is-, or 3240 displacement is used. Sec-
ond, an index mode of addressing may he used. I n this case. the first byte of the 
operand specifier consists of the 4-hit addressing mode code of 0100 and a 4-bit 
index register identifier. The remainder of the operand specifier consists of I he base 
address specifier, which may itself be one or more bytes in 'evil. 

.rhe. reader T11 viy be wondering. ns t he author did, what kind of instruction requires 
six operands. Surprisingly. the VAX has a number of such instructions. Consider 

ADDP6 OP1, OP2, OP3, OP4, OP5, OPfi 

This instruction adds two packed decimal numbers. OP1 and 0P2 specify the length 
and starting address of one decimal string; 0P3 and OP4 spc.teify a second string. 
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Hexadecimal Explanation Assembler Notation 
FOrrnat and Description 

8 bits   • 
mrTi Opcode for RSB RSI3 

Return from subroutine 

01Kock. for CLRL 

Register R9 

Cl,R I_ R9 

Clear register R9 

Opeode for MOV W 
Vyrortl clisptacmenl modc, 
Regime': R4 

356 in he illecintal 

Byth displace meat mode, 
Regis.' ET R I I 
25 in hexadecimal 

MOV Vs( 356(R4), 25 . R I ) 

Mow a word from ad d 
'hat is 356 rl uw CI 5111.e.rils 

of R4 Li7 andrexs that 'IN 
25 plus ciyntenis R11 

• 

C 1  
0   
5  0  
4   

F 

Opcode for ADDL3 

Short literal 5 

Register mnt1i RO 

Index 111-r:Eix R2 
l alireci word relative 
(clii,placement from PC) 

Arnoutu of displacement from 
PC mlniivc to Ideation A 

ADD[..? 45, RO, 

Add 5 R.I. a 32-bit integer in 
RO and store the result in 
loc:ItiDn whose ERItlicss is 

s.uin of A And 4 i Mu.% HIE 

conient3 of R2 

  

Pi gime 1.13 1: ;iiiilrlc. of VAX Instructions 

These Iwo strings are added and the result is stored in the deri s [ring whcnn2 
length and Marting location are specified by 0P5 and OPti, 

The VAX instruction !4(.1.1 provides for a wide variety of operationf; kind ad-
dressing modes. This gives a programinur_ suuh au a compiler writer, a very power-
ful and Clexible iool for developing proarams. In theory, this should Lead to efficient 
machine-laziguage conipili Lions or nigh-Level language programs and, in general, 
to effective and efficient use of CP1..: re.Nources. The penalty to he l r,itl for 
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benefits is the increased complexity of the C PL.t compared with a processor with a 
simpler instruction set and format. 

We return to these matters in Chapter 13. where we examine t he case for very 
simple instruction sets. 

11.4 PENTIUM AND POWERPC INSTRUCTION FORMATS 

Pentium. Instruction Formats 

The Pentium is equipped with a variety of instruction formats. Of the elements 
described in this subsection, only the opcode field is always present_ Pigure 11.8 
illustrates the general instruction format. Instructions are made up of from zero to 
four optional instruction prefixes, a 1- or 2-byte opcode. an optional address sped. 
Fier (which consists or the. ModFUm byte and the Scale Index byte), an optional dis-
placement, and an optional immediate field. 

Let us first consider the prefix bytes: 

• Instruction prefixes: The instruction prefix. if present, consists of the LOCK 
5 

prefix or one of the repeat prefixes. The LOCK prefix is used to ensure exclu-
sive use of shared memory in multiprocessor environments. The repeal prefixes 
specify repeated operation of a string. which enables the Pentium to process 
strings much faster than with a regular software loop. There are five different 
repeat prefixes: REP. R1!PE, REPZ, REPN F., and RUPNZ. When the absolute 
RF.P prefix is present, the operation specified in the instruction is executed 
repeatedly on successive elements of the string; the number of repetitions is 
specified in register CX. The conditional R.EP prefix causes the instruction to 
repeat until the count in CX goes to zero or until the condition is met. 

• Segment override: Hxplicitly specifies which segment register an instruction 
should use, overriding the default segment-register selection venerated by the 
Pentium for that instruction. 

• Address size: The processor can address memory using either 16- or 32-bit 
addresses. The address size determines the displacement size in instructions 
and the size 01 address offsets generated during effective address calculation. 
One of these wires is designated as default, and the address si4e prefix switches 
between 32-bit and 16-bit address generation. 

• Operand size: An instruction has a default operand size of 16 or 32 bits, and 
the operand prefix switches between 32-bit and 16-bit operands. 

The instruction itself includes the following fields: 

• Opcode: One- or two-byte opcode. The opcode may also include hits that 
specify it data are byte- or full-size (16 or 32 bits depending on context), diree• 
lion of data operation (to or from memory). and whether an immediate data 
field must be sign extended. 

• ModRim: This byte, and the next, provide addressing information. The mod Wm 
byte specifics whether an operand is in a register or in memory; if it is in 
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memory, then fields within the byte specify the addressing mode to he used. 
The ModRim byte consists of three fields: The Is.lod field (2 bits) combines 
with the rim field to form 32 possible values: 8 registers and 24 indexing modes; 
the RegiOpcode field (3 bits) specifies either a register number or three more 
bits of opcode inftnination; the rim field (3 hits) can specify a register as the 
location of an operand, or it can form part of the addressing-mode encoding 
in combination with the Mod field. 

• SIB: Certain encoding of the Mod Rim byte specifies the inclusion of the SIB 
byte to specify fully the addressing mode. The SIB byte consists of three fields: 
The Scale field (2 bits) specifies the scale factor for scaled indexing; the Index 
field (3 bits) specifies the index register: the Base field (3 bits) specifies the 
base register. 

s Displacement: When the addressing-mode specifier indicates that a displace- 
ment is used, an 8-. 16-, or 32-bit signed integer displacement field is added, 

• Immediate: Provides the value of an 8-, 16-, or 32-bit operand. 

Several comparisons may be useful hero. In the Pentium format. the addressing 
mode is provided as part of the opeode sequence rather than with each operand, 
Because only one operand can have address-mode information, only one memory 
operand can be referenced in an instruction. In contrast, the VAX.carries the address-
mode information with each operand, allowing memory-to-memory operations, The 
Pentium instructions are therefore more compact. However, if a memory-to-memory 
operation is required, the VAX can accomplish this in a single instruction. 

The Pentium format allows the use of not oniv I-byte, but also 2-byte and 
4-byte offsets for indexing. Although the use of the larger index offsets results in 
longer instructions, this feature provides needed flexibility. For example, it is useful 
in addressing large arrays or large stack frames. In contrast, the IBM 5.670 instruc-
tion format allows offsets no greater than 4K bytes (12 hits or offset information), 
and the offset must be positive. When a location is not in reach of this offset. the 
compiler must generate extra code to generate 11-ie needed address. This problem is 
especially apparent in dealing with stack frames that have local variables occupying 
in excess of 4K bytes. As [ MN/AM puts it. "generating code for the 370 is so 
painful as a result of that restriction that there have even been compilers for the 370 
that simply chose to limit the size of the stack frame to 4K bytes." 

As can be seen. the encoding or the Pentium instruction set is very complex. 
This has to do partly with the need to be backward compatible with the 8086 
machine and partly with a desire on the part of the designers to provide cvc.ly pos-
sible assistance to the compiler writer in producing efficient code. It is a matter of 
some debate whether an instruction set as complex as this is preferable to the oppo-
site extreme of the RISC instruction sets. 

PowerPC Instruction Formats 
All instructions in the PowerPC are 32 bits long and follow a regular format. 'l'hc 
first 6 hits of an instruction specify the operation to be performed. In some cases. 
there is an extension to the opcode elsewhere in the instruction that specifies a par-
ticular subcase of an operation, In Figure 11.9, opcode hits are represented by the 
shaded portion of each format. 
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Note the, regular structure or the formats, which eascb the job of the instruc-
tion decode units. For ,H II l oadistore, arithmetic, and logical instructions, the opcode 
is followed by two 5-bit register references, cnabling 32 general-purpose registers 
to be used. 

The branch instructions include. a link (Ll bit That indicates that the effeetiw 
addrcyi of the instruction following the branch instruction is to be placed in the link 
register. Two forms of the instruction also include a bit (A) that indicates whether 
the addressing mode is absolute or PC' relative. For.the conditional branch instruc. 
licon he CR bit field specifies the bit to tic [cm ed in the condition register. The 
option!, ficld specifies the conditions under which the branch is to bc Liken - The fol-
lowing conditions may be specified: 

• Branch always. 

• Branch if count 0 and condition is false. 

• Branch if count ,L 0 and condition is true. 

• Branch if count = 0 and condition is false, 

• Branch if count = 0 and condition is true. 
• Branch if count 7:- 0. 

• Branch if count — 0. 
• Branch if condition is false- 

• Branch if condition is Intic, 

o  i. Most instructions that result in a 0..irnpulaltion (arithmetic. floating-point arith.- 
;1' inetic, logical) include a bit that indicates whether the result oft he operation should 

he rccorded in the condition reaister. As will be shown, this feature is useful for 
branch prediction processing. 

Floating-point instructions have fields for three source registers, In many 
cases. only two source regisicrs ato used. A few instructions involve multiplication 
of two source regisi Lis and then addition or subtraction of a third source reuistar. 
]'here composite instructions are included because of the frequency of their use. For 
example, the inner product that is pan of inan!, . ,  matrix operations can be imple-
mented using multiply-adds. 

11.5 RECOMMENDED READING 

Thu 1•43 Rio cliiipter 10 arc equally applicable io the material of this Thal ter. 
[BLAA971 0.5111;111N ai 1.13d discussiun Or instructicm formats and addressinF modes, In 
adcJi(ion, the Nader may wish to consult EFLYNK5j for >L discussion and anairiis cif instroc-
tinn soi design issues, particularly ihusu relating to rod -rants. 

BLAA97 0., ;old Brooks, F. Corn pencr Aiviriwelare; Concepts Yazd Evofugueo. 
Re.adiftL MA_ Addison•Weslev, 1997. 

FLYNS5 Flynn, M.7 Johnson. J.; and Wakefield. S. "On Instruction sets and Their For: 
mats." 1EEE Trior.vacti(ins on Compwc:r.s ., March 1985- 
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11.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terre 

Review Questions 

IL] 131 . i<!fly define immedkito addressina. 
11.2 Brick define dirct addressing, 

;nil; is2ci 
11.4 Brikily kfin. register addressing. 

11,5 Briefly define ti2gister indirect addressing. 
11.6 Briefly define displacement addressing. 
11.7 Briar define relative addressing. 
11.8 What is the advantage of autoindexing3 
11.9 What is the difference beiween postindexing and preindexing? 

11.10 NA.'hat facts go into determining the use of thc addressing bits of an instruction? 
11.11 What are the aclvantages and disadvantages of using a variable-length instruction 

formal? 

Problems 

11.1 Justify the assertion that a 32•bit instruction is probably much less than twiciz k1S 
Jul as a t6-bit instruction. 

112 Given the following memory vaihues (11141 as oiw-addre ss machine with an accumuLator. 
w hat values do the following instructions load into the accumulator? 
■ Word 20 contains 40. 
• Word 30 contains 50. 
■ Word 40 contains 
■ Word 50 contains 70. 
a. LOAD IMMEDIATE 20 
b. LOAD DIRECT 20 
c. LOAD INDIRECT 20 
d. LOAD IMMEDIATE 30 

e. LOAD DIRECT 30 
C.  LOAD INDOZ.HCT .30 

11.3 La the address stored in thc program counter be designated by the symbol x 1. Mc. 
instruction stored in XI has an addross part (operand reference} V. The operand 
nftded to execute. the instructic.5n is stored in the memory word Wii 11 address X3. An 
index register contains the v;ilite X4. What is the relationship between these various 
quantitie4 if the  ilicide of the instruction is (a) direct; (b) indirect: (c) PC 
relative; (d) inelexei I? 
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114 An address field in an instruction contains decimal value 14. Where is the corre-
sponding operand located for: 
a, immediate addressing? 
h. direct addressine3 
it. indirect addressirml 
d. register addressing? 

e. regiskr indirect addressing? 

1 15 A PC-relative inode branch instruction is stored in memory at address 620 1 , : , The 
branch is made to location 510„ : . The address field in the instruction is 10 bits long. 

k the binary value in the instruction? 

11.6 How many times does the CPU need to refer to memory when it fetches nerd execures 
an indirect-address-mode instruction if the-instruction is (a) a computation requiring 
a single operand; (b) a branch'? 

11.7 The IE1M 37(1 does nor provide indirect addressing. Assume that the address of ao 
operand is in main memory. How would you access the operand? 

118 Why was IBM's decision to move from 36 bits to 32 hits per word wrenching, and to 
w horn? 

11,9 to he author proposes that the PC-relative addressing modes be climi• 
nated in favor of other modes, such as the use of a stack. What is the disadvantaee of 
this proposal? 

 

11.10 Assume an instruction set that uses a fixed 16-hit instruction length. Operand spec-- 
fiers are 6 bits in length. There arc K two-operand instructions and L zero-operand 
instructions. What is the maximum number of orit-operand instructions that can be 

• support ed? 

11.11 Design a variable-length opcode to allow all of the following to be encoded in a 36-bit 

r, instruction: 
r ? ■ ingtrUClions with Iwo 15-bit a ddrc.ssis Ind one 3-bit register number 

• instructions with one 15-hit address and uric 3-bit register number 
■ instructions with no addresses or registers 

11.12 Consider the results of Problem 10.3. Assume that NI is a 16-bit memory address and 
that X, Y. and Z arc either 16-bit addresses or 4-hit register numbers. The one-adthes,i 
machine uses an accumulator, and the two- and three-address machines have 16 reg-
isters and instructions operating on all combinations of memory locations and reeis• 
ters. Assuming s-hit opcodes and instruction lengths that are multiples of 4 bits, how 
many bits does each machine need to compute X? 

11.13 Is there any possible justification for an instruction with two opcodes? 

11.14 The Pentium includes the following instruction; 

ibEJL =1, op2, immediate 

This instruction multiplies opt, which may he either register Or memory, by the imme-
diate operand value. and places the result in op I , which must be. a register, There is 
no other three-operand instruction of this sort in the instruetion. set. What is the pos-
sible use of such an instruction? Hine: Consider indexing. 
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KEY POINTS 

• A processor includes both user-visible registers and controltstatus reOsters. 
The former may be referenced, implicitly or explicit Iv, in machine instruction's. 
User-visible registeu; may be general pin -pose or have a special u-se. such as 
fixed-point or flooi ing-point numbers, addresses. indexes, Fi nd segment point-
ers. Control and status registers are used to control the operaiion of the CP U, 
One obvious example is the program ccatnter. Another important example is 
a program status word {J-SW} thait contains a variety of status and condition 
bits. I hest: include hits to reflect the result of the most recent arithmetic -  oper-
ation, interrupt enable bits, and an indicator of whin her the. CPU is execuling 
in supervisor or user Mode, 

• Processors make use of instruction pipelining to speed i.Lp execution. In 
essence, pipelining involves bre.nking up the instruction cycle into a n umhyr • 
of si,-..purate stages that occur in sequence. such as fetch instruction, decode 
inst ruction, ruction, deterniine operand addresses, fetch operands, uxueute iiistruction. 
and write operand result. Instructions move through these stages, a.s on an 
assembly tine. so that in principle, each stage can be working on a difl:crent 
instruction zii the _same. time. The occurrence of branches and dependencies 
between iw.tructions compiicates the design and use of pipelines. 

T his chapter discusses aspects of the processor riot vet covered in Part Thrce 
and ,..el.s. the stage for the discussion of RISC and superscalar architecture in 
('halters i3 and 14. 

We begin with a summary of processor organization. Resisters, which form the 
internal memory of the processor, are then analyzed. We are then in a position to 
return lo the discussion (begun in Section 3.2) of the instruction cycle.. A doserip• 
tion of the instruction cycle and a common technique known kL:i instruction pipelin-
ing complete our description. The chapter concludes with an examination of sonie 
additional aspects. of the Pentium and PowerPC organizations. 

12.1 PROCESSOR. ORGANTIZATIO.N 

To understand the organizalion of the CPU, Let us consider the requirements placed 
on the CPU, the things that it must do: 

• Fetch instruction: '1 . 11(.2. (1:)1.. 1  reads an instruction from memory. 
• Interpret instructiiin: The instruction is decoded to determine what action k 

required. 
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• F'etch data The execution of an instruction may require reading elate from 
memory or an I/O module. 

• Process data: The execution of an instruction may require. performing sc.inie 
arithmetic or logical operation on data. 

• iNrite data: The results of an execution may require writing data Lo. nul.rtiory 
or an 110 module. 

To do these things, it should be clear that the CPU needs to store some '111[1 
temporarily. It must remember the location of the last instruction so [hat it in know 
where to get the next instruction. II needs to store instructions and data temporar-
ily while an imtruetion is being executed- In other words. the CPU needs a small 
internal memory. 

Figure12.1. is a simplified view of a CPU, indicating its conncetitan in the rest 
of the system via the symcmllii:i. A similar interface would be needed for any of Ihe 
interconnection structures described in Chapter 3. The reader will recall IhaL t he 

major components of the CPU are an arithmetic (mil fogie;  (AM) and a corgi-of 
taxi?' (CU), Thu ALIJ does 01,2 actual wmputation or processing of data. The con-
trol unit controls the movement of data and instructions into and out of the CFU 
and controls the operation of the ALU. In addition. the figure show7:1 si minimal 
internal memory, consisting of a sel of storage loe4itions, Sul led regiNgers. 

Figure L2.2 is a slightly more detailed view of the CPU. The data transfer 
and logic contrt31 paths are indicated, including an element labeled internal CPU 
bus. This element is needed to transfer data between the various registers and the 
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Figure 122 lRtursoaI Strnliire of kilt! cm.' 

AU.;, because the ALU in fact operates only on data in the internal CPU mem-
ory. The figure also shows typical basic elements of the A UL Note the similarity 
between the internal structure of the computer as a whole and the internal struc-
ture of 1he. CPU, In both ca C  there is a small collection of major elements 
(computer: CPU, 

1/0.  memory; CPU: control unit, ALU. registers) connected hy 
data paths. 

12.2 REGISTER ORGANIZATION 

As we discussed in Chapter 4, a computer system employs a memory hierarchy. At 
higher levels of the hierarch y.mernory is fasta, s (nailer, and more expensive (per bit). 
Wiihin Llic CPU, there is ti set of registers that function as a level of memory ahtrvk:. 
main memory and cache in the hierarchy. The registers in the CPU perform two roles: 

■ User-visible registers: These enable the machine- or assembly-language pro-
grammer to minimize main memory references by optirnizin2 use of registers. 

• Control ;:k Rd maths regigers:'Fhese are used by the control unit to control the 
operation of the. CPU and by privileged. operating system programs to controi 
the execution of programs. 
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There is not a clean separation of registers into these two categories. For 
example. on some machines the program counter is user visible (e.g., Pentium), but 
on many it is not (e.g.. PowerPC). For purposes of the following discussion, how-
ever, we will use these categories, 

User—Visible Registers 

A user-visible register is one that may be referenced by means of the machine lan- 
guage that the CPU executes. We can characterize these in the following categories: 

• General purpose 
• Data 
• Address 
• Condition codes 

General-purpose registers can be assigned to a variety of functions by the pro-
grammer, Sometimes their use within the instruction set is orthogonal to the opera-
tion. That is, any general-purpose register can contain the operand for any opcode. 
This provides true general-purpose register use. Often, however, there are restric-
dons. For example. there may he dedicated registers for floating-point and stack 
operations, 

In some cases, general-purpose registers can be used for addressing functions 
(e.g:, register indirect, displacement). In other cases, there is a partial or clean sep-
aration between data registers and address registers. Data registers may be used 
only to hold data and cannot be employed in the calculation of an operand address. 
Address registers may themselves be somewhat general purpose. or they may be 
devoted to a particular addressing mode. Examples include the following: 

• Segment pointers: In a machine with segmented addressing (see Section 8.3), 
a segment register holds the address of the base of the segment. There may be 
multiple registers: for example. one for the operating system and one for the 
current process. 

• Index registers: These are used for indexed addressing and may be autoindexed, 
• Stack pointer: if there is user-visible stack addressing, then typically the stack 

is in memory and there is a dedicated register that points to the top of the 
stack. This allows implicit addressing; that is, push, pop, and other stack in-
structions need not contain an explicit stack operand. 

There are several design issues to be addressed here. An important issue is 
whether to use completely general-purpose registers or to specialize their use. We 
have already touched on this issue in the preceding chapter. because it affects 
instruction set design, With the use of specialized registers, it can generally be im-
plicit in the opcode which type of register a certain operand specifier refers to The 
operand specifier must only identify one of a set of specialized registers rather than 
one out of all the registers, thus saving bits. On the other hand, this specialization 
limits the programmer's flexibility. 
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Another design issue isihe number of registers, either general purpose or data 
plus address, to be provided. Again, this affects instruction set design because more 
registers require more operand specifier hits. As we previously discussed, some-
where between 8 and 32 registers appears optimum I LUND77], Fewer registers 
result in more memory references; more registers do not noticeably reduce memory 
references (e.g„ see I WILL90]). However, a new approach, which finds advantage 
in the use of hundreds of registers, is exhibited in some RISC systems and is dis-
cussed in Chapter 13. 

Finally. there is the issue of register length. Registers that must hold addresses 
obviously must be at least long enough to hold the largest address. Data registers 
should he able to hold values of most data types. Some machines allow two con-
tiguous registers to be used as one for holding double-length values. 

A final category of registers, which is at least partially visible to the user, holds 
condition cedes (also referred to as,flags). Condition codes are bits set by the CPU 
hardware as the result of operations. For example, an arithmetic operation may pro-
duce a positive, negative, zero, or overflow result. In addition to the result itself 
being stored in a register or memory, a condition code is also set. The code may sub-
sequently he tested as part of a conditional branch operation, 

Condition code bits are collected into one or more registers. Usually, they 
form part of a control register. Generally, machine instructions allow these bits to 
be read by implicit reference, but the programmer cannot alter them. 

In some machines, a subroutine call will result in the automatic saving of all 
user-visible registers, to be restored on return. The CPU performs the saving and 
restoring as part of the execution of call and return instructions. This allows each 
subroutine to use the user-visible registers independently. On other machines, it is 
the responsibility of the programmer to save the contents of the relevant user-
visible registers prior to a subroutine call, by including instructions for this purpose 
in the program_ 

Control and Status Registers 
There are a variety of CPU registers that arc employed to control the operation of the 
CPU. Most of these. on most machines, are not visible to the user - Some of them may 
be visible to machine instructions executed in a control or operating system mode- 

Of course, different machines will have different register organizations and use 
different terminology. We list here a reasonably complete list of register types. with 
a brief deseription. 

Four registers are essential to instruction execution: 

• Program counter (PC): Contains the address of an instruction to be fetched, 
• Instruction register (1R): Contains the instruction most recently fetched, 
• Memory address register (MAR); Contains the address of a location in memory. 
• Memory buffer register (AMR): Contains a word of data to be written to mem-

ory or the word most recently read. 

Typically, the CPU updates the PC after each instruction fetch so that the PC 
always points to the next instruction to he executed. A branch or skip instruction 
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will also inodif!,. ,  the contents of the PC. The fetched instruction is loaded into an 
F R, where the opcode and operand specifiers are analyzed. Lehi are exchanged with 
memory using the ".viAR and MBR. In 41 bu -urganixed System :  the MAR connects 
directly to the 4i ddress bux, a nc3 the MRR connects direct]to the data bus. User- 
visible registers, in turn, exchange data with the MBR. 

The four registers just mentioned are used for he movcrnent of data between 
the CPU and mcmory. Within lite CPU, data must be presented to the ALU for pro-
cessing. 'Ffie ALAI may have direct access to the NIBR and user-visible registers. 
Alternatively, there may be additional buffering registers kit !he boundary to the 
ALU: these registers serve as input and outpui registers for the ALL: and exchange 
data with the 7v111 El and user-visible registers. 

Alt CPU designs include a register or set of registers, often known as the 
program surgo es word (PSW), that contain status information, 'De PSW typically con-
tains condition codes plus other stitus in rorrnation. Common fields or flags include 
the following: 

• Sign: Contains the sign bit of the result of the last arithmetic operation. 

■ Zero: Set when the result is O. 

• Carry; Set if an °petal ion resulted in a carry (addition) into or borrow (sub- 
traei ion) Out of a high-order bit. Used for multiword arithmetic operations, 

■ Equal:Set if a Logical compare result is equality, 

• Overflow: Used to indicate 4irithmoik overflow. 

* Interrupt enable/disable: Used to enable or disable interrupts. 

* Supervisor; Indicates whohcr the. CPU is L.xectiting in supervisor or user 
mock Certain privileged instructions can be executed only in supervisor mode, 
and certain areas of memory can be accessed only in supervisor mode. 

A number of other registers related to status and control might be Cound in a 
particular CPU design. In addition to the NW. there may be a pointer to a block of 
memory containing additional status information (e.g., process control blocks). In 
machines using vectored interrupts, an interrupt vector register may be provided. I 
a stack is used to implement certain functions (e.g., subroutine call). then a system 
stack pointer is needed. A page table pointer k uz,ed with a virtual memory system. 
Finally, registers. may be used in the control of I/O operations. 

A number of factors go into the design of the control iind status register orga-
nization. One key issue is operating system support, Certain Iypes or control infor-
mation are of specific utility to the operi Li ng system. If the CPU designer has a 
functional understanding of the operating system to he used, then the register orga-
nizatit-an can to some extent be tailored to the operating system, 

Another key design decision is the alloeation of control information between 
registers and memorv, II is common to dedicate the first (lowest) few hundred or 
thousand words of memory for control purposes. The designer must decide how 
much control in formai ion Nh(alki be in registers and how much in memory. The 
usual trade-Of I of cosi  speed arises. 
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Example Microprocessor Register Organizations 

It is instructive to examine and compare the register organization of comparable sys-
tems. In this section, we look at two 16-bit microprocessors that were designed at 
about the same time: the Motorola [v1058000 ISTRI79] and the Intel 8086 1MORS781. 
Figures 12.3a and b depict the register organization of each; purely internal regis-
ters, such as a memory address register, are not shown. 

The MC6S(1) partitions its 32-bit registers into eight data registers and nine 
address registers. The eight data registers are used primarily for data manipulation 
and are also used in addressing as index registers. The width of the registers allows 
8-, 16-, and 32-bit data operations, determined by opcode, 'I he address registers con. 
lain 32-bit (no segmentation) addresses; two of these registers are also used as stack 
pointers, one for users and one for the operating system, depending on the current ex-
ecution mode. Both registers are numbered 7, because only one can be used at a 
time. The MC68000 also includes a 32-bit program counter and a 16-bit status register. 

The Motorola team wanted a very re gular instruction set. with no special-
purpose registers, A concern for code efficiency led them to divide the registers 
into two functional components, saving one bit on each register specifier. This seems 
a reasonable compromise between complete generality and code compaction. 

The Intel 8086 takes a different approach to register organization, Every reg-
ister is special purpose, although some registers are also usable as general purpose. 
The 8086 contains four 16-bit data registers that are addressable on a byte or 16-bit 
basis. and four 16-bit pointer and index registers. The data registers can be used as 
general purpose in some instructions. In others, the registers are used implicitly. For 
example, a multiply instruction always uses the accumulator. The four pointer reg. 
isters are also used implicitly in a number of operations; each contains a segment 
offset. There are also four 16-bit segment registers, ' l'hree of the four segment reg-
isters are used in a dedicated. implicit fashion, to point to the segment of the cur-
rent instruction (useful for branch instructions), a segment containing data, and a 
segment containing a stack. respectively. These dedicated and implicit uses provide 
for compact encoding at the cost of reduced flexibility, The 8086 also includes an 
instruction pointer and a set of 1-bit status and control flags. 

T'he point of this comparison should be clear. There is, as yet, no universally 
accepted philosophy concerning the best way to organizc.CPU registers [TOON811. 
As with overall instruction set design and so many other CPU design issues. it is still 
a matter of judgment and taste. 

A second instructive point concerning register organization design is illus-
trated in Figure 12.3c. This figure shows the user-visible register organization for the 
Intel 803K6 ELAYS.51, which is a 32-bit microprocessor designed as an extension of 
the 8086.' The 80386 uses 32-bit registers. However. to provide upward compatibil• 
ity for programs written on the earlier machine, the S0386 retains the .original reg-
ister organization embedded in the new organization. Given this design constraint, 
the architects of the 32-hit processors had limited flexibility in designing the regis-
ter organization. 

I  BC,7.3 We the MC650(K) already uses 32•hit registers. the MCMO20 [ IACCI&4]. which is H lull 32-hit arch-
texture. use's the Ski me register organization. 
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In Section 3.2, we described the CPUs instruction cycle (Figure 3,9), To recall, an 
instruction cycle includes the following suhcycles: 

• Fetch: Read the next instruction from memory into the CPU, 
• Executer Interpret the opcode and perform the indicated operation. 
• Interrupt: If' inierrupi,s4.ire enabled and an interrupt has occurred, save the cur-

rent process state and service the interrupt. 

We are now in a position to elaborate somewhat on the instruction cycle. First, 
we mint introduce one ,ridditional subcycie, known as the indirect eycic, 

The Indirect Cycle 

We have seen, in Chapter 11, that the execution of an insLruction may involve one 
ter more operands in memory, each of which requires a memory access. Further, if 
indirect addressing is used, [hen additional memory accesses are required, 

We can think or the fetching of indirect addresses as one more insiruci ion sub. 
cycle. The result is shown in Figure 12,4. The main line of activity consists of alter-
nating instruction fetch and instruction execution activiii.e. After an instruction is 
fetched, it is examined to determine if' any indirect addressing is involved. If so, the 
required operands are fetched using indirect addressing. Following execution, an 
interrupt may he processed before the next instruction fetch. 

Another way to view this process is shown in Figure 12.5, which is a revised 
version of Figure 3.12, 'Ibis illustrates more correctly the nature of ihe instruction 
cycle. Once an instruction is fetched, its operand specifiers rriusi, be identified. Each 

Figure 12.4 The Instruction Cycle 
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input operand in memory is then fetched. and this process may require indirect 
kg addressing. Register-based operands need not he fetched. Once the oprode is exe- tp 

cuted, a similar process maybe. needed to store the result in main memory. 

Data Flow 

The exact sequence of events during an instruction cycle depends on the design 
of the CPU. Wu can, however, indicate in general terms what must happen. Lei us 
assume that a CPU that employs a memory address register (MAR), a merruiry 
buffer register {rvIBR}. a program counter (PC), and an instruction register (IR). 

During the filch cycle, an instruction is read from memory. Figure 12,6 shows 
the flow of data during this cycle. The PC coniiiiris the address of the next instruc-
tion to be fetched. This address is moved to the MAR and placed on the address 
bus. The control unit requests a memory read, and the resell is piaced on the data 
bus and copied into the MBR and then moved to the 1R. Meanwhile, the PC is 
inuCtricn Led by 1, preparatory for the next retch, 

Once the fetch cycle is over, the control unit examines the contents of the IR 
to determine if it contains an operand specifier using indirect addressing. If so, an 
indire'c't cycle is performed. As shown. in Figure 117, this is a si mple cycle. The righl-
mosi NI  hits of the MBR, which contain the address reference, are transferred to the 
M.R. Then the control unit requests a memory read, to get the desired address of 
the operand into,  the MBR. 

The fetch and indirect cycles are simple and predictable, The execure cycle 
takes many forms; the form depends on which of the various machine instructions 
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is in the IR. This cycle may involve transferring data among registers_ rcad or write 
from memory or I/O, and/or I hi: invocation or the All!. 

Like the fetch and indirect cycles, the inierrapt cycle is simple and predictable 
(Figure 12.8). The current contents of the PC must be saved so that ihc CPC eAn 
resnrw normal activity all L=r .  the interrupt_ Thus, the contents of the PC.' arc trans-
ferred to the MRR to lie written into memory. The special memory location reserved 
for this purpose is loaded into the MAR from the control unit, it might, for 'examplc, 
be a stack pointer. The PC is loaded with the atldro.s of the interrupt routine. As 2) 
result, the next instruction cycle  bcgin by fetching the appropriate instruction. 
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Figure 12.8 Data Flow, Interrupt Cycle 
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12.4 INSTRUCTION PIPELINING 

As computer systems evolve, greater performance can be achieved by taking advan-
tage of improvements in technology, such as faster circuitry. In addition, organiza-
tional enhancements to the CPU can improve performance, We have already seen 
some examples of this, such as the use of multiple registers rather than a single ac-
cumulator, and the use of a cache memory. Another organizational approach, which 
is quite common, is instruction pipelining, 

Pipelining Strategy 

Instruction pipelining is similar to the use of an assembly line in a manufacturing 
plant. An assembly line takes advantage of the fact that a product goes through var-
ious stages of production. By laying the production process out in an assembly line. 
products at various stages can be worked on simultaneously. This process is also 
referred to as pipelining, because, as in a pipeline, new inputs are accepted at one 
end before previously accepted inputs appear as outputs at the other end. 

To apply this concept to instruction execution, we must recognize that, in fact, 
an instruction has a number of stages. Figure 12.5, for example, breaks the instruc-
tion cycle up into 10 tasks, which occur in sequence. Clearly, there should be some 
opportunity for pipelining, 

As a simple approach, consider subdividing instruction processing into two 
stages; fetch instruction and execute instruction, 'Fficre are times during the execu-
tion of an instruction when main memory is not being accessed. This time could he 
used to fetch the next instruction in parallel with the execution of the current one, 
Figure 12,9a depicts this approach. The pipeline has two independent stages. The 
first stage fetches an instruction and buffers it. When the second stage is free, the 
first stage passes it the buffered instruction. While the second stage is executing 
the instruction. the first stage takes advantage of any unused memory cycles to fetch 
and buffer the next instruction. This. is called imtruction prefeich or fetch (Pverifirp. 

It should he clear that this process will speed up instruction•execution. If the 
fetch and execute stages were of equal duration, the instruction cycle time would be 
halved. However, if we look more, closely at this pipeline (Figure 12.9b), we will see 
that this doubling of execution rate is unlikely for two reasons: 

1. The execution time will generally be longer than the fetch time. Execution 
will involve reading and storing operands and the performance of some oper-
ation. Thus, the fetch stage may have to wait for some lime before it can 
empty its buffer. 

2. A conditional branch instruction makes the address of the next instruction to 
be fetched unknown. Thus, the fetch stage must wait until it receives the next 
instruction address from the execute stage. The Qxecute stage may then have 
to wait while the next instruction is fetched. 

Guessing can reduce the time loss from the second reason. A simple rule is the fol- 
lowing; When a conditional branch instruction is passed on from the fetch to the 
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execute stage, the fetch stage fctches the next instruction in memor!,.. after the 
branch instruction. Then, if the branch is not taken, no time k lost. If the branch is 
taken. the fetched instruction room be discarded and a new instruction retched, 

While these factors reduce the potential effectiveness of the two-stage piNline, 
some speedup oc.curs. ' l'o gain further speedup. the pipeline must have more stages. 
Let us consider the following decomposition of the instruction processing. 

• Fetch instruction (FI): Read the nem. Opeeled instruction into a buffer. 

• Decode instruction ow Determine the opcode arid the operand specifiers. 

• Calculate operands (COO Calculate the effective address of each source 
operand. This may involve displacement. register indirect, indirect, or other 
forms of address Liileula Lion. 

• Fetch operands (FO); Fetch each operand from memory. Operands in regis-
ters need riot be fetched. 

• Execute instruction (ED: Perform the indicated operation and store the result, 
if any, in the specified destination operand loction. 

• Write operand (WO): Store the result in memory. 

With this decomposition, the various stages will be of more nearly equal dura-
tion. For the sake of ilhistration, let us assume equal duration. Using lhis assump-
ti on. Figure 12.10 shows that a six-stage pipeline can reduce the execution time for 
9 instructions from 54 time units to 14 time units. 

Several comments are in order: The diagram assumes that each instruction 
goes through al] six stages of the pipeline. This will not always be the case. [or 
examIlle. a load instruction does not need the WO stage, However, to simplify the 
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Time 
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Instruction 1 

Instruction 2 

Instruction 3 

Instruction 4 

Instruction 5 

instruction 6 

Instruction 7 

Instruction 

Instruction 9 

Figure 12,10 Tirninsz Diagram for Instruction Pipeline Opclatioti 

pipeline. hardware, the timing is set up assuming that each insiruction requires all 
six stages. Also, the diagram assumes that all of the. stages can be performed in par-
allel. In particular, it is assumed that there are no memory conflicts. For cxamplu, 
the F1, FO, and WO stages involve a memory access. The diagram implies that all 
these accesses can occur simultaneously, Most memory systems will not permit that. 
However, the desired value may he in c,:iche, or the FO or It/V0 stage may be null. 
Thus, much of the lime., memory conflicts will not slow down the pipeline. 

Sevtaa I odicr factors serve to limit the performance enhancement, if the six 
stages are not of equal duration, there will be some waiting involved at various 
pipeline stages, as discussed before for the two-stage pipeline. Another difficulty is 
the conditional branch instruction, which can invalidate several instruction retches. 
A similar unpredictable event is an interrupt. Figure 12,11. illustrates the effects of 
the. conditional branch. using the same program as Figure 12..10. Assume that 
instruction : is a conditional branch to instruction 15. Until the instruction is exe-
cuted, there is no way of knowing which instruction will come next. The pipeline, in 
this example, simply loads the next instruction in sequence (instruction 4) and pro- 

peline stages, as discussed before for the two-stage pipeline. Another difficulty is 
the conditional branch instruction, which can invalidate several instruction retches. 
A similar unpredictable event is an interrupt. Figure 12,11. illustrates the effects of 
the. conditional branch. using the same program as Figure 12..10. Assume that 
instruction : is a conditional branch to instruction 15. Until the instruction is exe-
cuted, there is no way of knowing which instruction will come next. The pipeline, in 
this example, simply loads the next instruction in sequence (instruction 4) and pro- 
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seeds. In Figure 12..10, the branch is not taken, and we get the full performance ben- 
efit of the enhancement. In.Fig.ure 1.2.11, the. branch is taken. This is not determined 
until the end of time unit 7, Al this point, the pipdiaw. must be cleared of instrue- 

Lhat arc. not useful- During  unit 8, insiruction l5 enters the pipeline. No 
instructions complete during time units 9 through 12.; this is the performance penalty 
incurred because. we could not anticipate the branch. Figure 12.12 indicates the lOgiC 
needed for pipc,lining to acuount l'orbmnulies and interrupts. 

Other problems arise that did not appear in our simple two-stage organiza-
tion. The CO stage may depend on the contents of a register that could be altered 
by a previous instruction that is still in the pipeline. Other such rcgisier and mem-
ory eunilicts could occur- The. Nys.11 cm must con Li fl logic to account for this type 
or conflict. 

To clarify pipeline operation, it might be useful to look at an alternative depic-
tion. Figures 1.2.111 and 12,11 show the progression of time horfc.orua I ly across the 
figures. with each row 1.,howing [hi: progress of Lin individual instruction. Figure 12.13 
shows same sequence of events, with time progressing vertically down the figure. 

Time Branch l'enaltv 
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Figure 12.11 The Effoct of a CondiLional Branch on Instruclion Fiparic Operation 
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and ciich row showing Lhc stoic of the pipeline at a given point in time. In Figure 
3a (which corresponds to Figure 2,10). the pipeline is full at time 6. with 6 dif- 

ferent instructions in various stages of execution. and remains full through time 9; 
we assume that instruction 1' is the Iasi instruction to he executed. I n Figure 12.13n. 
(which corresponds lo Figure 12.11), the pipeline is full at times 6 and 7. At time 7, 

1 1 1  DI 11'0 [1 .0 1 1,1 wo 

12 II 

4 [4 13 E2 n 14 1.3 : 12 I U  

77. 15 '4 13 I 12 I II  15 I 14 1 13 il2 I 11 

ta1 No brunches 

Figure 12.13 An Alternative Pipeline Depiction 

1,1 ) W.1 Ii t as11411141.BoI 1 1.1' a 11i In 
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instruction 3 is in the execute stage and executes a branch to instruction 15. At this 
point, instructions 14 through 17 are flushed from the pipeline, so that at time 8, only 
two instructions are in the pipeline, 13 and 115. 

From the preceding discussion, it might appear that the greater the number 
of stages in the pipeline, the faster the execution rate. Some of the IBM &MO 
designers pointed out two factors that frustrate this seemingly simple pattern for 
high-performance design [ANDE67a], and they remain elements that designer 
must still consider: 

1. At each stage of the pipeline., there is some overhead involved in moving data 
from buffer to buffer and in performing various preparation and delivery func• 
tions. This overhead can appreciably lengthen the total execution time of a sin-
gle instruction. This is significant when sequential instructions are logically 
dependent, either through heavy use of branching or through memor!, ,  access 
dependencies. 

2. The. amount of control logic required to handle memory and register depen-
dencies and to optimize the use of the pipeline increases enormously with the 
number of stages.. This can lead toy situation where the logic controlling the 
gating between stages is more complex than the stages being controlled. 

Instruction pipelining is a powerful technique for enhancing performance but 
requires careful design to achieve optimum results with reasonable complexity. 

Pipeline Performance 
In this subsection, we develop sonic simple measures of pipeline performance and 
relative speedup (based on a discussion in IHWAN931). The cycle time -r of an 
instruction pipeline is the time needed to advance a set of instructions one stage 
through the pipeline; each column in Figures 12.10 and 12.11 represents one cycle 
time. The cycle time can he determined as 

= mitx[rd + d = d l ei k 

where 

T„, = maximum stage delay (delay through stage 
which experiences the largest delay) 

k = number of stages in the instruction pipeline 
ri 

	

	ti me. delay of a latch, needed to advance signals 
and data from one stage to the next 

In general, the time delay d is equivalent to a clock pulse and -r„, >> d. Now 
suppose that n instructions arc processed, with no branches. The total time required 

to execute all n instructions is 

Te. = [k  (n — 1)] T 02.0 
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A total of k cycles are required to complete the execution of the first insiruc-
tion, and the remaining n I instructions require n — 1 cvelus- 2  This equation k 

verified from Figure 12.1[1- The ninth instruct ion completes at time cycle ]4: 

14 = [6 — (9 — l)j 

The speedup factor for the instruction pipeline compared to execution with-
oul the pipeline is defined as 

/tiro- lik 

T.( [k + fro 1)]'r  

▪ 

k -  I) 
(12.2) 

Figure 12.14a plots the speedup factor as a function of the number of instruc-
tions that are executed withou1 a branch. As might be expected, at the limit  x), 
wc have a k-fold speedup. Figure 12,14h shows the speedup factor as a function of 
the number of sta.:4es in the instruction pipeline.` Iii this ease, the speedup factor 
approaches the number of instructions that can be fed into the pipeline without 
branches. Thus, Ihe Larger the number of pipeline stages. the greater the potential 
for speedup. I Iowever. as a practical matter, the potential gains of additional 
pipeline, stages are aninIered by increases in cost, dc.]ays between stages, and the 
fact that branches will be encountered requiring the flushing of the pipeline, 

Dealing with Branches 

One of the major problems in designing an instruction pipeline is assuring a steady 
flow of instructions to the initial stages of the pipeline. The primary impediment, as 
we have seen, is the conditional branch instruction. Until the instruction is actuall!,. 
executed, it is impossible to determine whether the branch will he takes or 1101, 

A variety of approaches have been taken for dealing with condition;i1 branches: 

• Multiple streams 
• Prefetch branch target 
• Loop buffer 
• Branch predictic.in 
• Delayed branch 

Multiple Streams 

A simple pipeline suffers a penalty for a branch instruction because it must 
choose one of two instructions to feCeh next and may make the wrong choice. A 
brute-force approach is to replicate the initial portions of the pipeline and allow the 

' We are being ki hie slopm: hem. The eyc10 circle only equal Ebc maximum vulva it 7 when all thd 
stuger. FITE Full. At Etc bLprining, cycle Li mL inHy hex JeSS Ear 1.1.1...1. first Fri  1)1: lcw CyCl.eS. 

'Note that 1.11.e x-axis is logarithmic .  in Figurc 12.14a and linear in Figure 12.341'. 
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pipeline to fetch both insmictions, making use of two streams. There are two prob-
lems with this approach.: 

• With multiple pipelines there are contention delays for access to the registers 
and to memory. 

• Additional branch instructions may enter the pipeline (either stream) before 
the original branch decision is resolved. Each such instruction needs an addi-
tional stream. 

Despite these drawbacks, this strategy can improve performance, Examples of ma-
chines with two or more pipeline streams are the IBM 370/168 and the IBM 3033. 

Prefetch Branch Target 
When a conditional branch is recognized. the target of the branch is pre-

fetched, in addition to the instruction following the branch. This target is then saved 
until the branch instruction is executed. If the branch is taken, the target has already 
been prefetched. 

The IBM 360191 uses this approach, 

Loop Buffer 
A loop buffer is a small, very-high-speed memory maintained by the instruc-

tion fetch stage of the pipeline and containing the n most recently fetched instruc-
tions, in sequence. If a branch is to be taken, the hardware first checks whether the 
branch tarRet is within the buffer. If so, the next instruction is fetched from the 
buffer. The loop buffer has three benefits; 

1. With the use of prefetching, the loop buffer will contain some instruction 
sequentially ahead of the current instruction fetch address. Thus, instructions 
fetched in sequence will be available without the usual memory access time. 

2. If a branch occurs to a target just a few locations ahead of the address of the 
branch instruction, the target will already be in the buffer, This is useful for 
the rather common. occurrence of IF—THEN and IF—THEN—ELSE. sequences. 

3. This strategy is particularly well suited to dealing with loops. or iterations; 
hence the name loop bffer. If the loop buffer is large enough to contain all 
the instructions in a loop, then those instructions need to be fetched from 
memory only once, for the first iteration. For subsequent iterations, all the 
needed instructions are already in the buffer. 

The loop buffer is similar in principle to a cache dedicated to instructions. The 
differences are that the loop buffer only retains instructions in sequence and is much 
smaller in size and hence lower in cost. 

Figure 12.l5 gives an example. of 41 loop buffer. If the buffer contains 256 bytes, 
and byte addressing is used, then the least significant. 8 bits are used to index the 
buffer. The remaining most significant bits are checked to determine if the branch 
target lies within the environment captured by the buffer. 
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Among the machines using a loop huller are some or the CDC machines (Star-
100, 6600, 7600) and the CRAY-1_ A specialized form or loop buffer is available on 
the Motorola 68010, for executing a three-instruction loop involving the DBcc 
(decrement and branch on condition) instruction (see Problem 12.6). A three-word 
buffer is maintained, and the processor executes these instructions repeatedly until 
the loop condition is satisfied. 

Branch Prediction 

Various techniques can be used to predict whether a branch will be taken. 
Among the more common are the following: 

• Predict never taken 
• Predict always taken 
• Predict by opcode 
• Taken/not taken switch 
• Branch history able 

The first three approaches are static: They do not depend on the execution his-
tory up to the time of the conditional branch instruction. The latter two approachcs 
are dynamic: They depend on the execution history. 

The first two approaches arc the simplest. These either always assume that the 
branch will not be taken and continue to fetch instructions in sequence, or they 
always.assume that the branch will be taken and always fetch from the branch tar. 
get. The 68020 and the VAX 11/780 use the predict-never-taken approach. The 
VAX 111780 also includes a feature to minimize the effect of a wrong decision. If 
the fetch of the instruction after the branch will cause a page fault or protection vio-
lation, the proceswr halts its prefetching until it is sure that the instruction should 
be fetched. 

Branch address 

Figure 12.15 Loop Buffer 
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Studies analyzing program behavior have shown that conditional branches are 
taken more than 50% of the time [LILJ88], and so if the cost of prefetching from 
either path is the same, then always prefetching from the branch target address 
should give better performance than always prefetching from the sequential path. 
However, in a paged machine. prefetching the branch target is more likely to cause 
a page fault than prefetching the next instruction in sequence, and so this perfor-
mance penalty should be taken into account, An avoidance mechanism may he 
employed to reduce this penally. 

The final static approach makes the decision based on the opcode of the 
branch instruction. The processor assumes that the branch will be. taken for certain 
branch opcodes and not for others. fl,11-PiK1 reports success rates of greater than 
75% with this strategy. 

Dynamic branch strategies attempt to improve the accuracy of prediction by 
recording the history of conditional branch instructions in a program. For example, 
one or more bits can be associated with each conditional branch instruction that 
reflect the recent history of the instruction. These bits arc referred to as a taken/not 
taken switch that directs the processor to make a particular decision the next time 
the instruction is encountered. Typically. these history bits are not associated with 
the instruction in main memory. Rather, they are kept in temporary high-speed 
storage. One possibility is to associate these bits with any conditional branch 
instruction that is in a cache. When the instruction is replaced in the cache. its his-
tory is lost. Another possibility is to maintain a small table for recently executed 
branch instructions with one or more bits in each entry. The processor could access 
the table associatively, like a cache, or by using the low-order hits of the branch 
instruction's address. 

With a single hit, all that can be recorded is whether the last execution of this 
instruction resulted in a branch or not. A shortcoming of using a single bit appears 
in the case of a conditional branch instruction that is almost always taken, such as a 
loop instruction. With only one bit of history, an error in prediction will occur twice 
for each use of the.loop: once on entering the loop, and once on exiting. 

If two bits are used, they can be used to record the result of the last two 
instances of the execution of the associated instruction. or to record a state in some 
other fashion. Figure 12.16 shows a typical approach (see Problem 12.5 for other 
possibilities). Assume that the algorithm starts at the upper left-hand corner of the 
flowchart. As long as each succeeding conditional branch instruction that is encoun-
tered is taken, the decision process predicts that the next branch will be taken. If a 
single prediction is wrong, the algorithm continues to predict that the next branch 
is taken. Only if two successive branches are not taken does the algorithm shift to 
the right-hand side of the flowchart, Subsequently, the algorithm will predict that 
branches arc not taken until two branches in a row are taken. Thus, the algorithm 
requires two consecutive wrong predictions to change the prediction decision. 

The decision process can be represented more compactly by a finite-state 
machine, shown in Figure 12.17. The finite-state machine representation is com-
monly used in the literature. 

The use of history bits, as just described, has one drawback: if the decision is 
made to take the branch, the target instruction cannot be fetched until the target 
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address, which is an operand in the conditional branch instruction. is decoded. 
Greater efficiency could be achieved if the instruction fetch could he initiated as 
soon as the branch decision is made. For this purpose. more information must be 
saved, in what is known as a branch target buffer, or a branch history table. 

The branch history table is a small cache memory associated with the in-
struction fetch stage of the pipeline. Each entry in the table consists of three ele-
ments: the address of a branch instruction, some number of hist ory bits that record 
the state of use of that instruction, and information about the target instruction. In 
most proposals and implementations, this third field contains the address of the tar-
get instruction. Another possibility is for the third field to actually contain the. tar-
get instruction. The trade-off is clear: Storing the target address yields a smaller 
table but a greater instruction fetch time compared with storing the target instruc-
tion IRECH981. 

Figure 12.16 Branch Prediction Flowchart 



12,4 / INSTRUCTION PIPELINING 437 

Taken 

Not taken 

Figure 12.17 Branch Prediction State Diagram 

Figure 12.18 contrasts this scheme with a predict-never-taken strategy. with 
the former strategy, the instruction fetch stage always fetches the next sequential 
address. If a branch is taken. some logic in the processor detects this and instructs 
that the next instruction he fetched from the target address (in addition to flushing 
the pipeline). The branch history table is treated as a cache. Each prefetch to  
a lookup in the branch history table. If no match is found, the next sequential 
address is used for the fetch. if a match is found, a prediction is made based on the 
state of the instruction: Hither the next sequential address or the branch target 
address is fed to the select logic. 

When the branch instruction is executed, the execute stage signals the branch 
history table logic with he result. The state of the instruction is updated to reflect 
a correct or incorrect prediction. lithe prediction is incorrect, the select logic is redi-
rected to the correct address for the next fetch. When a conditional branch instruc-
tion is encountered that is not in the table, it is added lo the table and one of the 
existing entries is discarded, using one of the cache repl;icernent algorithms dis-
cussed in Chapter 4. 

One example of an implementation of a branch history table is the Advanced 
Micro Device AMD,2 1)0911 microprocessor. 

Delayed Branch 
It is possible to improve pipeline performance by automatically rearranging 

instructions within a program, so that branch instructions occur later than actually 
desired. This intriguing approach is examined in Chapter 13. 
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Intel 80486 Pipelining 

The 80486 implements a five-stage pipeline: 

• Fetch: Instructions are fciched from the cache or from external memory and 
placed into one of the two 16-byte prefetch buffers- l'he objective of the fetch 
stage is to fill the prefetch buffers with new data as soon as the old data have 
been consumed by the instruction decoder. Because instructions are of variable 
length (from 1 to 11 bytes not counting prefixes). the status of the prefetoher 
relative to the other pipeline stages varies from instruction to instruction. On 
average, about five instructions are fetched with each 16-byte load [CRAW-)01. 
The fetch stage operates independently of the other stages to keep the pre-
fetch buffers full. 

• Decode stage 1: All c.)pcbde and addressing-mode information is decoded in 
the D I stage. The required in formation, as well as instruction-length informa-
tion, is included in at most the first 3 bytes of the instruction. Hence. 3 bytes 
are passed to the DI stage from the prefetch buffers. The D1 decoder can then 
direct the D2 stage to capture the rest of the instruction (displacement and 
i mmediate data), which is not involved in the 1)1 decoding. 

• Decode stage 2: 'File D2 stage expands each opcode into control signals for the 
It also controls the computation of the more complex addressing modes. 

• Execute: This stage includes ALU operations. cache access, and register update. 

• Write back: This stage, if needed, updates registers and status flags modified 
during the preceding execute stage. If the current instruction updates memory, 
the computed value is sent to the cache and to the bus-interface Write hurlers 
at the same time. 

With the use of two decode stages, the pipeline can sustain a throughput of 
close to one instruction per clock cycle. Complex instructions and conditional 
branches can slow down this rate. 

Figure 12.19 shows examples of the operation of the pipeline. Part a shows that 
there is no delay introduced into the pipeline when a memory access is required. 
However, as part h shows. there can be a delay for values used to compute memory 
addresses. That is, if a value is loaded from memory into a register and that register 
is then used as a base register in the next instruction, the processor will stall for one 
cycle. In this example. the processor accesses the cache in the EX stage of the first 
instruction and stores the value retrieved in the register during the WB stage. How-
ever, the next instruction needs this register in its D2 stage. When the D2 stage lines 
up with the WB stage of the previous instruction. bypass signal paths allow the D2 
stage to have access to the same data being used by the WB stage for writing, sav-
ing one pipeline stage. 

Figure 12,19c illustrates the timing of a branch instruction, assuming that the 
branch is taken. The compare instruction updates condition codes in the WB stage, 
and bypass paths make this available to the EX stage of the jump instruction at the 
same time. In parallel. the processor runs a speculative fetch cycle to the target of 
the jump during the EX stage of the jump instruction. If the processor determines 
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'Figure 12,19 8C)486 Instruction Pipeline Examples; 

a false branch condition, it discards this prefeteh and continues execution with the 
next sequential instruction (already fetched arid decoded). 

12.5 THE PENTIUM PROCESSOR 

An uliervim ur the Pentium 4 proi..,.:N...;or organization is depicted in Figure 4.13. In 

this section, we. examine some or Lift details. 

Regist er Organization 
The register organization includes the k.1I':)wing types of registers (Table 12.1): 

■ General: There arc eight 11.2-bit general-purpose registers (see Figure 2.30. 
Thew rnity be used for all types or Penli urn instructions they can also hold 
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operands for address calculations- In addition, some of these registers also 
serve special purposes:For example, string instructions use the contents of the. 
ECX, ESL and EDI registers as operands without having to reference theoe 
registers explicitly in the instruction, As a result, a number of instructions can 
be encoded more compactly. 

• Segment: The six ](-bit segment registers contain segment selectors, which 
index into segment tables, as discussed in Chapter 8. The code segment (CS) 
register references the segment containing the instruction being executed. 'OK 
stack segment (SS) register references the segment containing a user-visible 
stack, The remaining segment registers (DS. ES . FS, GS) enable the user to 
reference up to four separate data segments at as time, 

• rings: The EFLAGS register contains condition codes and various mode 
bits. 

• Instruction pointer! C.'onlairff the address of the cuiTent instruction. 

There are also registers specifically devoted to the floating-point unit: 

• Numeric: Each register holds an extended-precision 80-bit lioating-point 
number..J'here are eight registers that function as a stack, with push and pop 
op-erations in the instruction set. 

• Controi: The 16-bit ennirol register contains bits that control the operation of 
the floating-point unit, including 1he type of rounding control, single, double, or 

extended precisiow and bits to enkil-plc or disable various exception conditions. 

'able 12.1  Pe.ratiurn. Processor gegiskers 
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Flap, 32 Si Hlus and contra!  bitr 

Instruction poin ryr 3. poixitcr 

(b) Floating-Point Unit 

Type Iti^rrn her 

S 

1 

1 

Length (bitsi PUtp tilsic 

 

Numeric 

Control 
Status 

'rag wort] 
Ins 111121 i on pointer 

D LI U [Join i 

 

16 

16 
ti 

48 

Hold flokitin-point numbers 

Cond ea! bits 
Slaws hits 
sKcificts contuyis )f mune ill: rcui)..tcr).. 

Fob ts to LEIS traction in tcrrup hV exception 

Vpirst5 to operand iilLel rup Lud by 12x.12c.pitiort 
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• Status: The 1.6-bit status register contains bits that reflect the current stale of 
the floating-point unit, including a 3-hit pointer to the top of the stack; condi-
tion codes reporting the outcome of the last operation: and exception flags, 

• Tag word: This I6-bit register contains a 2-bit tag for each floating-point 
numeric register, which indicates the nature of the contents of the corre-
sponding register. The four possible values are valid, zero, special (NaN, 

dcnormalized), and empty. These tags enable programs to check the 
contents of a numeric register without performing complex decoding of 
the actual data in the register. For example, when a context switch is made.. 
the processor need not save any floating-point registers that are empty. 

The use of most of the aforementioned registers is easily understood. Let us 
elaborate briefly on several of the registers. 

EFLAGS Register 

The EFLAGS register (Figure .12.20) indicates the condition of the processor 
and helps to control its operation. It includes the six condition codes defined in 
Table 10.8 (carry. parity, auxiliary, zero, sign. overflow), which report the results of 
an integer operation. In addition, there are bits in the register that may he referred 
to as control bits: 

• Trap flag (TF): When set, causes an interrupt after the execution of each 
instruction. This is used for debugging. 

• Interrupt enable flag (IF): When set. the processor will recognize external 
interrupts. 

• Direction flag (DF): Determines whether string processing instructions incre-
ment or decrement the 16-bit half-registers SI and DI (for 16-bit operations) 
or the 32-hit registers CSI and EDI (for 32-bit operations). 

• 1/0 privilege flag (IOPL): When set, causes the processor to generate an 
exception on all accesses to I/O devices during protected-mode operation. 

• Resume flag (0 1 ): Allows the programmer to disable debug exceptions so that 
the instruction can be restarted after a debug exception without immediately 
causing another debug exception. 

• Alignment cheek (AC): Activates if a word or douhleword is addressed on a 
nonword i r nondoubleword boundary_ 

• Identification flag (ID): If this bit can be set and cleared. then this processor 
supports the (PhD instniet ion. This instruction provides information about 
the vendor, family, and model. 

In addition, there are 4 bits that relate to operatin2. mode. The nested task 
(NT) flag indicates that the current task is nested within another task in protected-
mode operation. The. virtual mode (VIA) hit allows the programmer to enable or 
disable 'virtual 8086 mode, which determines whether the processor runs as an 8086 
machine. The virtual interrupt flag (VIF) and virtual interrupt pending (VIP) flag 
are used in a multitasking environment. 
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ID fiag DF — Direction flag 
Virrual interrupi pending iF = interrupt enable. flag 

VIE Viri.tral interrupt flag TV — Trap flag 
AC Alignment check SF = SiQm 
VM Vinual 8086 mode Zy — Zero flag 

= Resume flag AF — AuNil any flag 
NT — Nested task flag 
10PL 

 PF = Parity flag 
—17n privilege level CF — Cary flag 

OP Overflow flag 

Figure 12.20 Peatitan II EFLAGS RyQc 
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Control Registers 

The Pentium employs four 32-hit control registers (register CR1 is unused) to 
control various aspects of processor operation (Figure 12.21). The CR0 register con-
tains system control flags,.which control modes or indicate states thAt apply gener-
ally to the processor rather than to the execution of an individual task. The flags are 
as follows: 

• Protection enable (PE): Enableidisable protected mode of Operation. 

• rvlonitor coprocessor (MP): Only of inlerest when running programs from ear-
lier machines on the ['curium:, it relates to the presence of an arithmetic co-
processor. 

• Emulation (EM): Set when the processor does not have a floating-point unit, 
and causes an interrupt when an attempt is made to execute floating-point 
instructions. 

• Task switched (TS): Indicates that the processor has switched tasks. 
• Extension type (ET): Not used on the Pentium; used to indicate supporta 

math coprocessor instructions on earlier machines. 
• Numeric error (NE): Enables the standard mechanism for reporting floating-

point errors on external bus lines. 
• Write protect (WP): When this bit is clear. read-only user level pages can be 

written by a supervisor process. This feature is useful for supporting process 
creation in some operating systems. 

• Alignment mask (AM): Enables/disables alignment checking. 
• Not Write through (NW): Selects mode of operation of the data cache. When 

this bit is set, the data cache is inhibited from cache write-through operations, 
• Cache disable (CD): Enablesidisables the internal cache fill mechanism. 
• Paging (PG): EnablesidiSables paging. 

When paging is enabled, the CR2 and CR3 registers are valid. The CR2 reg-
ister holds the 12-bit linear address of the Iasi page accessed before a page fault 
interrupt. The leftmost 20 bits of CR3 hold the 20 most significant bits of the base 
address of the page directory; the remainder of the address contains zeros. 'Two 
bits of CR3 are used to drive pins that control the operation of an external cache. 
The page-level cache disable (PC,D) enables or disables the external cache, and 
the page-level writes transparent (PWT) bit controls write through in the exter-
nal cache. 

Nine additional control bits are defined in CR4: 

• Virtual-8M mode extension (VME): Enables support for the virtual interrupt 
flag in virtual-8086 mode, 

• protected-mode virtual Interrupts (PVI): Priables support for the virtual inter-
rupt flag in protected mode. 

• Time stamp disable (TSD): Disables the read from lime stamp counter 
( RDTSC) instruction, which is used for debugging purposes. 
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PCE — Performance counter enable 
PUE = Page global enable 
MCE — Machine check enable 
PALE = Physical address extension 
PSE — Page size extensions 
DE — Debug extensions 
TSD = Time stamp disable. 
PVT — Pageetctl mode virtual interrupt 
VN1L = Virtual 8086 mode extensions 
PCT) — gc-level cache disable 
PWT = Page-level writes transparent 

Figure 12.21 Pentium II Control Registers 

PO = Paging 
CD — Cache disable 
NW — Not write through 
AM — Alignment mask 
WP Write protect 
NE Numeric error 
ET Extension type 
TS = Task switched 
FM — Emulation 
NIP = Monitor coprocessor 
PE — Protection enable 
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■ Debugging extensions (DE): Enables 110 breakpoirn s; This allows the proces-
sor to interrupt on 110 reads and writes. 

■ Page size extensions (PSE); Enables the use of 4-Mbyte pages when set in the 
Pentium or 2M-byte pages when set in the Pentium Pro and Pentium, 

■ Physical address extension (PAC): EnabIcs address lines A35 through A32 
whenever a special new addressing mode, controlled by the PSE, is enabled 
for the Pentium Pro and subsequenl Pentium architectures (Pentium ii 
through Pentium 4). 

• Machine check enable (NICE): Enables the machine check interrupt, which 
occurs when a data parity error occurs during a read bus cycle or when a bus 
cycle is not successfully completed. 

■ Page global enable (PG E); Enables the use of global pages. When POE =1 
and x task switch is performed. all of the. TLB entries are flushed with the 
exception of those marked global. 

• Performance cannier enable (PCE)i Enables the execution of the RD.PMC 
(read performance counter) instruction at any privilege level. Two perfor- 

. ;e  manee counters are used to measure the duration of a specific event type and 
the number of occurrences of a specific event wpe. 

MMX Registers 

K! 

R.c.E.:4] I I from Section 10,3 Lhai the Pentium MMX capability makes use of sev-
eral 64-bit data types. The MMX instructions make use of 3-bit register address 
fields, so that eight MMX registers are supported, In fact, the processor does not 
include specific WAX registers. Rather, the processor uses an aliasing technique 
(Figure 12.22). The existing floating-point registers are used to store MMX vmuss, 
Specifically, the low-order 64 bits (mantissa) a each floating-point register are used 
to form the eight MMX registers. Th115. the existing Pentium a rchitecture is easily 
extended to support the MMX eapabiliiy. Sonic key characteristics of the MMX use 
of these registers are as follows! 

a Recall that the floating-point registers are treated as a stack for floating-
point operations. For MMX operations, these same registers are accessed 
directly. 

• The first time that an MMX instruction is cNeeuted after any floating-point 
operations. the FP tag word k marked vaiid. This reflects the change from 
stack operation to direct register addressing. 

■ The LMMS MMX State) instruction sets bits of the FP Lag word to 
indicate that till registers are empty. It is importanl that I be programmer insert 
this instruction al the end of an IvINIX code block so that subsequent floating-
point operations function properly. 

▪ When a value is written to an MMX register, bits [79:64] of the correspond- 
ing FP register (sign and exponent bits) are set to al] ones. This sets the 
value in the FP register to NaN (not a number) or infinity when viewed as 8 
fl oating-point value. This ensures that an MMX data value will not look like a 
valid floating-point value. 
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Floating-point 
tag Floating-point registers 

[UNIX registers 

Figurt. 12-22 klapping of MIX IZisicrs to Floating-Point Registers 

Interrupt Processing 

interrupt processing within a processor is a facility provided to support the operat-
ing system, II, 4illows an application program to be suspended. in order that a vari-
ety of interrupt conditions can be serviced and later resumed. 

Interrupts and Exceptions 
Two classes of events cause the Pontiurri to suspend execution of Lilo current 

instruction stream and respond to the event: interrupts and exceptions. In both 
cases, the processor &Ives the context of the current process and transfers to a pre-
defined routine to service the condition. An interrupt is generated by a signal from 
hardware, and it may occur at random times during the execution of a program. An 
exception is generated from software, and it is provoked by the execution of an 
instruction- There are two sources of interrupts and two sources of exceptions: 

Irtl urtipIs 
■ Maskable interrupts: Received on the procxssor's INTR pin. 'ffie processor 

does not recognize a mask able interrupt unless the interrupt enable flag (IF) 
is set. 

a Nonmaskablc interrupts: Received on the processor's NMI pin. Recognition 
of such interrupts cannot be prevented. 
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2. Exceptions 
• Processor-detected exceptions: Results when the processor encounters an 

error while attempting to execute an instruction. 

• Programmed exceptions: These are instructions that generate an exception 
(INTO, INT3. INT. and BOUND). 

Interrupt Vector Table 
Interrupt processing on the Pentium uses the interrupt vector table. Every 

type of interrupt is assigned a number, and this number is used to index into the 
interrupt vector table. This table contains 256 32-bit interrupt vectors, which is 
the address (segment and offset) of the interrupt service routine for that interrupt 
number. 

Table 12.2 shows the assignment of numbers in the interrupt vector table; 
shaded entries represent interrupts, while nonshaded entries arc exceptions. The 
NMI hardware interrupt is type 2. CNITR hardware interrupts arc assigned numbers 
in the range of 32 to 255; when an INTR interrupt is generated, it must be accom-
panied on the bus with the interrupt vector number for this interrupt. The remain-
ing vector numbers are used for exceptions. 

If more than one exception or interrupt is pending, the processor services them 
in a predictable order. The location of vector numbers within the table does not 
reflect priority_ instead, priority among exceptions and interrupts is organized into 
five classes. In descending order of priority, these are 

• Class 1; Traps on the previous instruction (vector number 1) 

• Class 2: External interrupts (2. 32 255) 

• Class 3: Faults from fetching next instruction (3. 14) 
• Class 4: Faults from decoding the next instruction (6, 7) 

• Class  51 Faults on executing an instruction (a 4, 5, 8. 10-14, 16. 17) 

Interrupt Handling 
Just as with a transfer of execution using a CALL instruction, a transfer to 

an interrupt-handling routine uses the system stack to store the processor state. 
When an interrupt occurs and is recognized by the processor, a sequence of events 
takes place: 

1. If the transfer involves a change of privilege level. then the current slack seg-
ment register and the. current extended stack pointer (ESP) register are pushed 
onto the stack. 

2. ' Mc current value of the EFLAGS register is pushed onto the stack. 
3. Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR 

interrupts and the trap or single-step feature. 
4. The current code segment (CS) pointer and the current instruction pointer (IP 

or ELF) are pushed onto the stack, 



resumes from the point of the interrupt. 

Table 12.2 

instruction..rhis causes all of the values saved on the stack to be rcslored; execution 

Number 
'Vector 

5. it the interrupt is accompanied by an error code, then the error code is pushed 
onto the stack. 6. 
The interrupl vector contents are fetched and /oaded ink) lhe CS and 11 3  or 
EIP regktcm Execution continues from the interrupt service routine. 

To return from an interrupt, the inlerrupt service routine executes an IRET 
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Peritiuni Exception and Ink: rrupt Vector Table 

Demription 

Divide error. divi OverilLyw (11" CilVi Si{ In ti' /Cr{ 

I Dul. ,ttg ukceptit)r); include.; v,lrinu 11111L5 rinil trap:,  rL IHIL it 11 4 1 4•hugging 

NMI pin ittcv-rupt: 

1-5,.,;)kpilini; eau NC LI I N .  r :I instruction, which is a 1-byte ins tilli:LiOrt Ur,811.11 for 
de htiy fang 

4 INTO-fictEctc4 overflow:: occurs when the processui executes INTO with the OF 
!lap_ (LL 

5 Ni) range exceeded; the SOUND inArUCtion CunIpqn-cs regislr wilh atod- 
stored in memory and generates an interrupt if the uontcnts of the retrixtu -  is 

ulit 4.)t•  hounds- 

6 Unacrined opcodc 

7 Devi.= no available; asternpt to use ESC or WAIT iiistraLtion fails due to lack of 
external dOviCe. 

DClul , lo fault; two inteirilptS fiCeLly durinti:  the si.1 7112 ins!" uclicm nntt erinncil he 
handled serially 

c) Reserved 

11) Invalid task stale 2. grOcril; sezrunt descrilling a requested task is not inicialized or 
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11 Segment not present; requircd xcgrnc.nl no! procns 

12 Stack fault: limit c,1 stack 6L .gmaint c r:ctcdcd pa-  stack segment not present 

13 General protecti4 prol..:.cLi on violation that does not cause another exception 
(e.g.. wrisisig Li) it rcad-cm1:!.. segrnv1t) 
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15 Rusurvcci 
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12.6 THE POWERPC PROCSSOR 

An overview of the Powerl 3C processor organization is depicted in Figure 4.14. In 
this section. we examine some of the details of the 64-bit implementation. 

Regis ter Organization 
Figure 12.23 depicts the user-visible registers for the PowerPC. The fixed-point 
unit includes 

• General: There are thirty-two 64-bit general-purpose registers. These may be 
used to load, store, and manipulate data operands and may also he used for 
register indirect addressing. Register 0 is treated somewhat differently. For 
load and store operations and several of the add instructions, register 0 is 
treated as having a constant value ,!:ero regardless of its actual contents. 

• Exception register (XER): Includes 3 bits that report exceptions in integer 
arithmetic operations. This register also includes a byte count field that is used 
as an operand for some string instructions (Figure 12.23a). 

The floating-point unit contains additional user-visible registers: 

• General: 'there are thirty-Iwo 64-bit general-purpose registers, used for all 
floating-point operations. 

• Floating-point status and control register (FPSCR): This 32-hit register con-
tains bits that control the operation of the floating-point unit and bits that 
record the status resulting from floating-point operations (Table 12.3). 

The branch processing unit contains these user-visible registers: 

• Condition register: Consists or eight 4-bit condition code fields (Figure 
12.24b). 

• Link register: The link register can he used in a conditional branch instruction 
for indirect addressing of the target address. This register is also used for 
call return behavior. If the LK bit in a conditional branch instruction is set, 
then the address following the branch instruction is placed in the link register, 
and it can be used for a later return. 

• Count: The count register can be used to control an iteration loop, as ex-
plained in Chapter 10; the count register is decrernented each time it is tested 
in a conditional branch instruction. Another use for this registoi is indirect 
addressing of the target address in a branch instruction. 

The fields of the condition register have a number of uses. The first 4 bits 
(CRO) are set for all integer arithmetic instructions for which the. Re bit is set. As 
'Fable 12.4 shows, the field indicates whether the. result of the operation is positive. 
negative. or zero. The fourth bit is a copy of the summary overflow bit from the 
XER. The next field (CR1) is set for all floating-point arithmetic instructions for 
which the Re bit is set. In this case, the 4 hits are set equal to the first four hits of 
the. FPSCR (Table 12.3). Finally. the eight condition fields (CRO through CR) can 
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Ial-Pie 123 PowizrPC 110k1iti n-Poinit Status and Cunirel Rc..!gista 

Bit Definition 

4.1 Exception summary. 54:1 i f ank 42xcupLiort occurs; remains sot until resuL by 1- 1. ware. 

Ertable-d exception 94Arn ni pry. Sct if uny enabEed exceptloo has occurred. 

Invalid operation xcer..riCS11 summary. Set if an operation cx..:;;:•rilion has occurred, 

3 Overflow excepciOn. MrignitiRic tA rtsoif ExcetC14 COO be repi-43s.:mi 

4 Undutflow excepdon. Result is to sm.:01 to by n ni 

5 Zero divide ex&eption.. Divisor is zero and divtdc.nd i5 finite Eionwro. 

I nEXNC1 exexplicin. Reloaded result ciiii4A -sirorn tn1cgirrncd,a-L rum.di of an werflow occurs 
with 45vcr flow In.C.121}Lic)IL disabled. 

opera ticrn exception. 7!'signaling NaN; C; 9: i  -:-•x•): la (1) 
11: (..K X11): E2: i:4.5(E)paviso]1 i vOlv big MN. 

13 Fraction roulalud. Reatiadinp cif the Nstili ilicrcl -ncnied the CI-adjust. 

1.1 Fraction inexact. ROuthie.d tesulLcItaitc.s fraciion or an civerflOW occurs wit El overflow 
eNct.ption disabled. 

I :Ii) Rcstl11 flap, Five-bit code specifies less than. greater Ihan. equal, unordered, quiet NaN, 
±norntoli.k•ed. Idenonualized. -ttt 

20 kcJim'vetl. 

1.-7; I m'tiIti3 opm-altos Incuptilm. 21: sortwaro r equi3st; RILpiru root i5t.  n number: 
1nwii....r k'45111VT'il..1111111.151.1'111.E4 a number. an coccncIv, or a NECK 

2.4 Envalid vxccpLion. 
Or eer0V.  Ar

r 
 

25 ()willow .....xcc‘pi yin citab1.3 . y. 

26 Uudevilow excQp1inn 12nd ilk 
erae,..  

27 Zero c 

28• Itiexa•a exceptiou 

.•• 
-W;31 Rounding con1J-t)1. Two-hit &:-!dc specifics to S10 itCSr, 1.4 P .9r• Ard I-CMa.id CC - k•Atril 

IL nth 1. .1 

be used with a compare instruction; in each case, the identity of lhe field is specified 
in the imItnicion itself- pot both fixed-point and floaling-point compare instruc-
tiorm, the firs.t -3 hits of the designated condition field record whether the lint 
operand is less than, greater than. or Lqun I to the second operand. 'the fourth hit is 
the summary overflow bit for a 1i:will-point compare. and an unordered indicator for 
a floating-point coraparc. 

In terrupt Processing 

As with any processor, the PowerPC includes a bait): that enables the processor 
to interrupt the currently executing program to deal with an exception condition. 

Types of Interrupts 

lateimpts on a PowerPC are classified a those caused by sonic. system condi-
tion or event and those cauwd by the execution of an instruction. Table 12,5 lists 
the inierrupis recognii.ed by the PowerPC. 
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Thble 12.4 Interpretation of Bits in Condition Rogithtr 
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i ' 3 Summary Ovifrilow Summary I :n45rdcred {one 
overilow exception uverflov operand ig Fi Nnl\r) 

mos!, or the interrupts listed in the table. are easily understood. A few warrant 
furthe I comment. The system reset interrupt happens at power on and when the 
reset button on the system unit is pressed, and it causes the system lo reboot. 'The 
machine check in lerrupt deals with certain anomalies, such as cache parit!,. ,  error and 
referc nce to a no: Le X istent memory location, and ma},  Lh.i .2 system to enter what 
is known as a checkstop state; this stale. SLINpc.nd!i processor execution and frc4ze.5 
the contents of registersunlil a neberal _ rr`hc floating-point assist enables the proCCS-

sor to invoke s.oftw.are routines to complete operations that cannot be handled 
directly by the floating-point unit. such as those involving denormaEized nunabcrs or 
unimplemented pooling-point opcocles. 

Machine State Register 
Fundarnenui I to the. interruption of a program is the Ability to recover the state 

of the prOfXS7:1{) I" at the ti me of the interrupt. This includes not only the contents of 
the various registers but also various control conditions reEating to execution. These 
conditions are conveniently summarized in I he. WISR (Table 12.4 Again, sevcrai of 
the bits in this registor vi4]rrant furtha comment. 

When the privilege mode bit (bit 49) is set, the prucxssor .6; operating at a user 
privilege level. Only a subset of the i n7.1 ruction set is available. When thc hit is 
cleared. the processor operates at supervisor privilege lave!. This enables all of the 
instructions and provides access to certain system registers (such as the rvISR) not 
accessible from the user privilege level. 

The values of the two floaling-point exception bits (bits 52 and 55) define the 
types of interrupts that the floating-point unit may generate. The interpretation iE 
as follows: 

MO FE1 Interrupts that will be recugnind 

0 11 Nurse 

0 I Ira prc.cl4r2 TlinITZ‘CC l'elL' Fel IJI.0 

I. It I mprecise recoverable 

[ 1 Precise 
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Table 12.S 1 3owerPC Inierrupt Tab[c. 
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recognttioii is C.Liablat 

Execution of a system call instruction 

Single-step or branch trai:e interrupt 

Atrempt Lo 1..xecuLe vety n fr.:(3u4231 I , complex 
11oatirg-point ope ru Lion tc.g.. opurni ion on dcaor-
inalized number) 

DOE I Dh Lh rc Fttzh 
OCFFFh 

01010h through 
02.FFFEk 

Psewr.:c 

impl cm En I  S i  111) 

speci fir) 

1:13Fluiicn! inc,frui,cx by insiriation cimlutiou 
h ruo.76.1pt.5 1 cil mod 0.xecution 

When the single-step trace Ht (bit 53) is set 5  the processor branches to the 
trace interrupt handler after the successful completion ofc4ieh instruction, When the 
branch trace bit (bit 54) is set, the processor branches to the branch trace interrupt 
hondler after the successful completion ()I' each branch instruction. whether or not 
the branch wuslaken, 

The instruction addre ,is Irlini7llation (bit 58) and data address translation (bit 
59) determine whether real ridclressing is used or whether the memory-management 
unit performs address translation. 
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Table 1245 PowcrPC Machim St e Rogkter 

Bit 

ProunSLI i' mode 
1.44 
4:5 Power rhartriol.rneln 41}1 ditlis4E)142:d • ..rlf.,"."..".W.ex..." 

.rfecr'' 
46 Inn. l.eineututiou dependent 

47 Define!, whether interrupt hand1:6 173: 0243004:,  

48 Exte.i.noi unnIlled;disabled 

i I c gc dlric  pri Ante 

50 Flouting-point unit avaiiahle.kina•vailatik 

51 Machine check inwrrLtros 
FI no-9tine-r1cunL uxue NMI 111013e. 

5.3 Sin0e.-scep trace eanblediclisablaci 
. 54 Branch trncia cnnbl.cdirivRhled 

Ficmiin-poilltuxceptiun Tri.Odo 1 

5fi Rum:pi:ea 

Most significant part of v -c..;2ption odtlmsr.. is 0C0131FFF11 

iiistrucalun address li8n.561,1urs ctn. iff 

5L) [Mtn addre s s LikSrimlutiOn. 

60:61 Re.siL.ro2c1 

62 insert:up t is remvc in hi cin onr=oviLrahl 

63 Proc.osiiar is in hig nairiii!littl-endian mode 

It I 

. StKio.I. :1;1.. or R I 

Interrupt 

When an interrupt occurs and is recognized by the processor, the following 
sequence of events. takes place. ;  

1. The processor pla..2.; the address of the instruction to he excepted ne..xt in the 
Save/Restore Register 0 (SRRO). This is t he address of the currently execut-
ing instruction if the interrupt was caused a failed attempt to eWeLILL:: that 
instruction; otherwise, it is the address of the next instruction to be executed 
;11' er t he uurrunt instruction. 

2. The processor copies machine state COMatiOn from the N1SR to thc Sake, 
Restore Register 1 (51-t R1). The bits that are depicted as unshaded in Table 
i7.6 are copied. The retnaining bits of SRR I RTC. loaded with information spe-
cific to the interrupt type. 

3. I'he :VI SR is set to a hardware-defined value specific to the interrupt type. For 
all interrupt types, address translation is turned off and external interrupts are 
d isabled, 

4. The processor then transfers control to the appropriale interrupt handler. 
The addresses of the interrupt handlers are stored in the interrupt 'rabic! 
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( Table [2.5). The base address of that table is determined by bit 57 of the 
MSR. 

To return from an in terrupi, 1hr,: interrupt se:rvicc routine executes an rfi 
(return from interrupt) instruction. This causes the bit i,ralties saved in SRR1 to he, 
restored to the MSR. Execution resumes at the localion slored in SR 12{1" 

P f7, RR c ONIN4NPEP .  RE41),INg 

EPA TTO1 I and EMOSHID1 1 provide excellent coverage of ih pipelining issues discussed in this 
chapter. [HENN91 .1 and [HWAN93] contain detailed discussions of pipelining. [50F119[1] pro-
vides an excellent. detailed discussion of the hardware design issues involved in an instruc-
tion pipeline, 

[EN/ER.1.11 examines the evolution of branch prediction s(ralegies. [CRAC192] is A 
detailed 91.114 of branch prediction in instruction pipelines. [LTL.:BE9 11 and [L.11181 exam-
ine various ',ranch prediction straicgies [hat can be used (o  (111.e perforinn nee of 

[ KAI:1,911 in:at:nines the dirficulvy introduced into branch prediction 
ini-r Viii (-& targe t addrelss is variable,. 

Ite Intel 80486 insir uci in pipeline i described to D'AIRA911. [HREN't1{)[ provides 
good coverage of intezmil I 1 ri IckIN!q] rig oo the P i11.IlLan, as does [S1-1AN93 I ror i11e PowerPC. 

BREV(1111 43rd', B. The In id  ic pro ce News .: 80186180M5, ti,.$643101 88 80.2 .86, 80386, 
80486. Pentium, Nt? neon Pro and Po?thi.  !I Proce . Upper Saiddlc River, NJ: 
Peel ricu 2000, 

C.B.A1U92. Cragoit., H. Bram .  n Strate..1 .1
.  To von' .  inn; and Perri e Jr.1 n ono:.  ...14orii. .4%. 

ton. CA: 114'...E.E. C,orripuicr Sock!' y PreNs. 
Dubey, P.. and NI. "Branch Strategic: fkl()&1111g te nd {"}17tidr^i%Rtifoll, "` 
Trawyrecrirypis cJeg IC:one pilaffs, Octoks 1991. 

EVEHO1 Ei..ers. M., and Ych. T. "1..inderstanding Brandin: and Designing 13ranch Pre- 
dicEors for High-Performanee Microproutssors." Prom-dings of Ow IEEE'. Novem-
ber 2001, 

HENN91 Hennessy. .1,, and Jouppi, N. "Computer Technology and Architecture; Al! 
Eyolving interaction." (. onp l ter, September J 991, 

HWAN93 'Hwang. K. Advanced coonpraeo. ArchMin•bere. New York: Nle0raw..1-lill, 1993. 
KAE1.91 teach, D., and 1..innia. 11'. -Branch Hist:pry Predici ion of tvloving Target 

Branches Due lo Subroutine f..citrrus." Proceeding:v., Men Annual Iniernationai Syn 1 . 9 
CC.Mptif2'1 ActlideeiraV, 1 9 1.}1, 

1), '•Rv.i.titeirig the Branch PEdlally in Pipe.tisi.ed Processors." Computer. 
July 

N10511101 Moshovos. A„ and S6hi, G. "Microlrhilucturtil 111novitions: Boasting Micro- 
processor Per forniHnce Beyond ScanicoudtietOr Techtiology Scaling," Procere.elings.  o f 
the. 1 N wthcr 2.0111. 

PATTIll Pail. Y. "Reoirements, Bottlenecks, and Good Fortune; Agents for Micro- 
processor .EYoluilion." Proctredingy or the EL E Novontbor 200J. 

S [110195 Stanley. T. PoworPC' System Aie.hticcrurd, Reading., Addison-W egey. 1995, 
8011190 Sohi, 0. `instruction issue: Logic for High Performance Interruptabl. Multi- 

ple Functional 4.:nit, Pipelines Computers," IEEE Transactions on C ynputer 
March 1990. 

T4BA91 Tabak, D. Atir..anced ,4 kTop . oce ..rsom. New York: McGraw-Hill, 19'91. 

 

agfre,e..4kr.  

 



458 CHAPTER L2 r UPU STRUCTURE AND FUNCTION 

12.8 KEY TERMS, REVIEW QUESTIONS, AlD PROBT EMS 

Key Terms 

         

[

branch pre.dictiou 
condition code 
delayed branch 

 

flag 
instruction 
instruction pipeline 

  

bl i u,Cf prefetch 
program stand!. word PSW) 

        

Review Questions 
1 2.1 What general roies are performed by CPU regi8te1K? 

121 Vvrhat categories of data are commonly suppcned by user-visible rcgis t ers'!' 

12._3  What is ale. function CFI condition codes? 

12A Vaal is a program status word? 

J1,2.5  Why is a two-stage instruction pipeline unlikely It) cut the instruction cycle time in 
half- cotnpared with the use of no pipeline? 

12.11  List and briefly explain ....aril Fus li which an instruction pipeline can deal with 
conditional branch instruciions. 

11.7 How are history bits used for branch prediction? 

Problems 
12.1 a. if the last operation performed on a computer with an xw w LI was an addition 

in which the two operands were 2 and 3. what would be the ',Ant. of i Ire °Flowing flan? 
* Carry 
■ Zero 
* Over]] ow 
• Sign 
• Even parity 
■ Half-carry 

b. What if the operands were —1 (twos complement) and +1.? 
12.2 Consider the tinning diagram of Figure 12.10. Assunio that there is only a two-stage 

(fetch, execute). Redraw the diagram 10 show how many time units are now 
n ceded Coe four instructions. 

123! Consider an instruction sequence of length tt that is streaming through ille instruction 
pipeline. Let p be the probabithy of encountering a conditional Or unconditional 
branch instruction, and ]et q be the probability that execution of a branch instruction 
1 causes a jump to a nonconsecutive ddwss. Assume that each such jump requires 
the pipeline to be cleared, desiroying all ongoing instruction processing, whca I 
emerges from the ]asl stage. Revise. Equations 12A and 12.2 to take these probabili-
ties into account. 

[2.4 One limitation of the multiple-stream approach to &Ming with branches in a pipeliiie 
is that additional branches will be encountered before the rirst branch is resolved. 
Suggcst two additional limitations or drawbacks. 

115 Consider the state diagrams of 1 -. (pre 12.2S 

a. Describe the behavior or each. 
b. Compare these with the branch prediction state diagram in Section 12.4, Discuss 

the re iat i L!..rits of each of the three approaches l o branch prediction, 



laken 

Not taken 

Figure 12.25 State Diaatam for. Problem I 2_5 

N4 it taken 
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12.6 The Motorola 68C4x0 machines include the inskructiou Decrement and Branch Accord-
ing w Condition, which has the follotiying farm 

DEcu Dn, 

where cc is one of the testable conditions, DTI is a general-purpose register. and dis-
placement specifies the target addres!i relatNe lo the current address. Thu instruction 
can be defined as kICOWS; 

if :cc 
then begin 

Du := (Dr) - 1; 
if Dr * -1 then PC := {PC: + .5iZMIacerrien= end 

ease FC := + 

When the instruction is executed, the condition  first tested to determine whether 
the iertniniltion coudition for the Loop is satisfied. if so :  no operation is performed and 
execution curitinue.s ai 1he next instruction in sequence. ff the condition is false, the 
specified cla.1.a .registE.r is decrement ell and checked to see if it is less than zero. II it is 
less than zero, the loop is terminated and execution continues at the next instructirm 
in sequence. Otherwise. the program branches to the specified 10ea.tion. Now consider 
the. following assembly. language program Iragmcni; 

AGATH :Al ,  
u8xL La, AGAIN 
NOP 

Two strings addressed by Al) and AL are compared for equalitj..; the string pointers 
are incremented with each reference. DI initially contains the number of longwords 
(4 bytes) to be compared. 
a - The initial contents of the reOsteN are AO = $00004 -000, Al - S00005000, and 

131 = $000000E17  (the 5 indiQtes hexadecimal notation). Memory between 540R) 
and $60(.110 is Loaded with words $AA A A. ff the foregoing program is run, speciflic 
the iminher of times the DiV,‘,41:: loop is executed and the contents 01 I [le Three re@- 
Niers when the NOP instruction is reached. 

h. Repeat (a), but now assume that memory between $4000 acid 54FEE is loaded with 
S0000 and between $5000 and $6000 is loaded with $AA.A. 

12.7 Redraw Figure 12.19c, assuming that the conditional branch is not taken. 
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KEY POINTS 

• Studies of the execution behavior of high-[eve] language proararns have pro-
vided guidance in designing :I flew typo  prOccssor architecture! the reduced 
instruction set computer (RISC). Assignment statements predominate, sug-
gesting that the simple movement of data should he >irtimizod. There ate also 
many IP and LOOP instructions, which suggesit. that the underlying7zeq 'Jena: 
control mechanism needs to ho permit cificieni pipelining. Stud- 
ies of operand reference patterns sup.est that it should be possible Lo enhance 
performance hy keeping a moderate number of operands in risers 

4,  These studies have motivated thc key characieristics of RISC machiries 1 .j a 
limited instruction set with a fixed format, (2) a ]at -ge number of registers or 
Lhe use a a compiler that optimizes register  and (3) tin cruphl$is on 
optimizing the instruction pipe.]inc. 

▪ The Nimple- instruction set of a RISC lends itself to efficient pipelining.becausc. 
there are fewer and more predictable cveralions peTFLirrutcd pet inslraction. A 
MSC' instruction set architecture. also lends itself to the. delayed branch ted-
nique, in which branch instructions are rearranged with other instructions to 
improve pipeline efficiency. 

irl.00 .the development of the stored-program computer around [9511. ill; n: 
have been remarkably few true innovations in the areas of computer orpiii. 
zation and architecture- The following are some of the major advances since 

II,: birth of the computer 

▪ The family concept: Introduced by IHM with its System:160 in 1964, followed 
shorth...

,  thereafter by DEC. with its PDP-g. The family concept decouples the 
architecture of a machine from its implementation. A set of computers is 
offered, with different pricelperformance characteristics. that presents the 
same architecture to the user. The differences in price and performance are 
due to differenl implementations of the same architecture. 

• Microprogranuaed control unit: Suggested hy Wilkes in 1951, and introduced 
by IBM on the S1360 line in 1964. Microprogramming eases the task of di:-
signing and implementing the control unit and provides support for the fain 
ily concept. 

• Cache memory: First introduced commercially on IBM S.f360 Model 85 in 
1968. The insertion or this element into the memory hio-Archv dramatically 
improves performance. 

• Pip-elining; A means of introducing parallelism into the essentially sec.' ttentiA 
nature of a machine-instruction program. Examples are instruction pipelining 
and vector processing. 

• Multiple processors: 'ibis category covers a number of different organizalions 
and ohjectiVes. 
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Table 13.1 Characteristics of Sonic CISCs, R1NC! ,.:., and Superscalar Procvssors 

Complex 
Instruction Si-e 

IT IS(:) Computer 

Reduced 
Insi Niel ion Set 

( RISC) Computer 
Suptrwalar 

Characteristic VAX 
37W L OR 11.•780 

hid 
p0446 SPARC 

MIPS
_ 

R404-10 powc r PC Chia 
Sl'ARC 

MIPS 

Year developed L973 1978 1989 1987 1991 1993 1996 1 Y9' 

NMWPM' of 
instru•tionN 298 303 235 94 225 

Instruction size 
Orocs) 2-57 1 -11 4 -1 4 4 

Addressing 
moats 4 22 I I 1 1 2 1 

Number of 
gcnend-purpose 
registers 

16 J6 40- -520 32 40-5,20 32 

Control memor, 
site Man 420 48i) 246 

Cache size 
64 64 ildrytcs) 1; 32 125 16—'4 2 32 

To this list must now be added one of the most interesting and, potentially, one 
of the most important innovations: reduced instruction set computer (RISC) archi-
tecture. The RiSC. architecture is a dramatic departure from the In.,' orical trend in 
processor architecture. An analysis of the RIS(.: architecture brings into locus many 
of the important issues in computer organization and architecture. 

Although RISC systems have been defined and designed in a variety of ways 
by different groups, the key elements shared by most designs arc these: 

• A large number of general-purpose registers, and/or the use of compiler tech-
nology to optimize register usage 

• A limited and simple instruction set 
▪ An emphasis on optimizing the instruction pipeline 

Table I3,1 compares several RISC and non-RISC systems. 
We begin this chapter with a brief survey of some results on instruction sets, 

and then examine each of the three topics just listed. This is followed by a descrip-
tion of two of the best-documented RISC designs. 

13.I INSTRUCTION EXECUTION CHARACTERISTICS 

One of the most visible forms of evolution associated with computers is that of pro- 
gramming languages. As the cost of hardware has dropped, the relative cost of soft- 
ware has risen. Along with that, &chronic shortage of programmers has driven up 
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software costs in absolute terms. Thus, the major cost in the life cycle of a system is 
software, not hardware. Adding to the cost, arid to the inconvenience, is the element 
of unreliability; It is common for programs. both syNiem irid application, to continue 
;4.) exhibit' new hugs after years of operation. 

The response from researchers and industry has been to develop ever more 
powerful and complex high-level prograin n; I anguages. These high-level lan-
guages (H [A.40 allow the programmer to express algorithms more concisely, take 
care or much of the detail, and often support naturally the use of structured pro-
gramming or oblect-oriented design. 

Alas. this solution gave rise to another problem, known as the semantic sap, 
the difference between the op2nition8 provided in HLLs and those provided in 
computer architecture. Symptoms of this gap are alleged to include execution in-
efficiency, excessive machine program size, and compiler .  complexity. Designers 
responded with architectures intended to close this gap. Key features include Tarp 
instruction sets, dozens of addressing modes, and various FILL siaEernents imple-
mented in hardware. An example of the latter is the CASE machine instruction on 
the VAX. Such complex instruction sets arc intended to 

■ Ease the task of the compiler wriler, 
• Improve execution efficienc:,, ,, because complex sequences of operations can 

he implemented in microcode. 
• Provide support for even more complex reed sophisticated HLLs. 

Meanwhile. a number of studies have been done over the years to determine 
the characteristics and patterns of execution of machine instructions generated from 
1i LL programs. The results of these studies inspired sonic researchers to look for a 
different approach: namely, to make. the architecture that supports the HLL sim-
pler, rather than more complex. 

To understand the line of reasoning of the RISC' advocates, we begin with a 
brief review of instruction execution characteristics. The aspects of cif imputation of 
interest are as follows: 

■ Operations performed: These determine the funeiions to he performed by the 
processor and its interaclion with memory. 

• Operands used: The types of operands and the frequency of their use deter-
mine the memory organization for sioring them and the addressing modes for 

“..-essing them. 
■ Execution sequencing: This determines the control and pipeline organization. 

In the remainder of this section, we summarize, the results of a number of stud-
ies of high-level-language programs. All of the results are based on dynamic 1TLe4• 
surernerns. That is, me urenients are collected by executing the program and 
counting the number of times some feature has appeared or ti particular property 
has held true, In contrast. static ITMISLITCMCFILs merely perform these counts OD the 
source Lcxt of a program. They give no useful information on performance, because 
they are not weighted relative. to the number of times each statement is executed. 

Operations 
A variety of studies have been made to analyze the behavior of HLL programs. 
Table 4.7, discussed in ChApter 4, includes key results from a number of studies. 
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There is quite good agreement in the results of this mixture of languages and appli-
cations. Assignment statements predominate. suggesting that the simple movemen 
of 6ta is of high importance. 'Fhere is 2ilso a preponderance of conditional state-
ments (IF, LOOP). These statements are implemented in machine language with 
some sort of compare and branch instruction. This suggests ihat the sequence con-
trol mechanism of the instruction set is irroportanl. 

These rt.uI1s arc instructive to the machine instruction set designer, indicat-
ing which types of statements occur most often and therefore should be supported 
in an "optimal -  fashion. However, these results do not reveal which statements 
use the most time in the execution of a typical program. That is, given a compiled 
mach ine-language program, which statements in the source laLiguage cause the exe-
cution of the most machine-langua ge instructions? 

Co get at this underlying phenomenon, the Patterson programs [PAP - 1 .824 
described in Appendix 4A, were compiled on the VAX, PDP-11, and Motorola 
68000 to determine the average number of machine instructions and meinor!, . ,  refer-
ences per statement I ype. The second and third columns in Table 13-2 show 1hc 
relative frequency of occurrence of various HI,L instructions in a variety of pro-
grants the data were obtained by obscrving the occurrences in running programs. 
rather than just the nwnber of times that statements occur in the source code. Hence 
these are dynamic frequency statistics. To obtain the data in columns four and 
five (machine - instruction weighted), each value in the second and third columns 
is multiplied by the number cal' machine instructions produced by the. compiler. 
These results are then normalized so that columns four and five show the relative 
frequency of occurrence, weighted by the number of machine insiruclions per 111_1_ 
statement. Simiiar1y,ihe sixth and seventh eolumns  by multiplying the 
frequency of occurrence of each statement type by the relative number of memory 
references caused by each statement. The data in columns four through seven pro-
vide surrogate measures of the actual time spent executing the various statement 
types. The results suggest that the procedure wiitireturn is the most time -consuming 
operation in typical I'LL programs. 

The reader should be clear on the significance of Table [3,2. This table indi-
eatcs the relative significance of various statement types in an [ILL when that HELL 
is compiled for a typical contemporary instruction set architecture. Some other 
architecture could conceivably produce different results, However, this study pro-
duces resul ts ill iL141re representative for eon tem pora ry complex instruction set corn- 

Table 13.2 Vir'cightcd Rclafivc Dynamic Fretpc.ncy ol:HLL Operatiuns [PATTS2a1 

Dynamic Occurrence 
PKi .al  I 

Machine-Instruction 
Weighted 

Pascal 

NIerniTt -liercrenet 
liveigbied 
Pascal C 

ASSICiN 45% 38% r3% 13% 14" 
LC)C.)3) 42% 3.7 % .1.1 % 

CALL 15% I k.  31% '13% 44% 45 . %. 

IF 11.M .  -I % 21% 
0(.11'0 
OTRF R 
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puter (CISC) architectures. 'i'hus, they can provide guidance to those looking for 
more efficient ways to support FILLS. 

Operands 
Much less work has been done on the occurrence of types of operands. despite the 
i mportance of this topic. There are several aspects the are significant. 

The Patterson study already referenced [PATTS2a] also looked at the dy-
namic frequency of occurrence of classes of variables (Table 13.3). 'Fhe results, 
consistent between Pascal and C programs. show that the majority of references are 
to simple scalar variablcs. Further, more than 80'% of the scalars were local (to the 
procedure) variabies. In addition. references to arrarAtructures require it previous 
reference to their index or pointer, which again is usuall!L. ,  a local scalar. 'finis, there 
is a preponderance of references to scalars, and these are highly localized. 

The Patterson study examined the dynamic behavior of FILL programs. inde-
pendent of the underl!,. , ing. architecture, As discussed before, it is necessary to deal 
with actual architectures to examine program behavior more deeply. One study, 

[LUND77], examined 1) E V- 10 instructions dynamically and found that each instruc 
lion on the average references 0.5 operand in memory and 1.4 registers., Similar 
results arc reported in IHUCK831 for C, Pascal, and FORTRAN programs on 5/370, 
PDP-11. and VAX- Of course. these figures depend highly on both the architecture 
and the compiler, hul they do iiiustrate the frequency of operand accessing. 

' nose latter studies suggest the import awe of an architecture that lends itself 
to fast operand accessing. because this I iperatiOn is performed so frequently. The 
Patterson study suggesis that a prime candidate for optimisation is the mechanism 
for storing and accessing local scalar variables. 

Procedure Calls 
We have seen that procedure calks and returns are an important aspect of I -I LL pro-
grams, The evidence (Table 13.2) suggests that these arc i.hc most time-consuming 
operations in compiled HLL programs. Thus, it will be p rofitable to consider ways of 
i mplementing these operations efficiently. Two aspects are significant: the number 
of parameters and variables that a procedure deals with, and the depth of nesting. 

Tanenbaum's study (TANEN' found tha1  of dynamically called prow' 
,lures were passed fewer than six arguments, and that 92% of them used fewer than 
six local scalar variables. Similar results were. reported by the Herkeiey RISC team 
I KATE.S.1, as shown in Table 13.4. These results show that the number of words 
required per procedwe activation is not large. 'I.'he studies reported earlier indinted 
that a high proportion of operand references is to Local scalar valiables_'[ .he.!:.e stud-
ies show that those references are in fact confined to relatively few variables. 

Table 113 Dynamic Pern[agtl, nt'Operanffi 

Vasa C Average 

wgur vulva an I. 

Scalar vuriable 

A rraylstructu re 

1656 

26% 

23% 

53% 
24% 

20% 
55% 

.25% 



13.2 ./ THE USE OF A LARGE REGISTER FRE 467 

Table 1.3.4 Procedure Argumenti and focal Scalar Variables 

Percentage of Executed 
Procedure Calls With 

Compiler, Interpreter, 
and Typesetter 

Small Nona IMIleriC 

Programs 

:::. Hrtzurne.nts 0-7% 
romerus 0--3% 0% 

wbrds of argumcnis and 
lucid scalars 

—2(1% 

"12 words of arpuinunts a nd 141% 3% 
Local scalars 

The same Berkeley group also looked at the pattern of procedure calls and re-
turns in FILL programs. They found that it is rare to have a long uninterrupted se-
quence of procedure calls followed by the corresponding sequence of returns. Rather, 
they found that a program remains confined to a rather narrow window of procedure-
invocation depth. This is illustrated in Figure 4.16, which was discussed in Chapter 4. 
These results reinforce the conclusion that operand references are highly localized, 

Implications 

A number of groups have looked at results such as those just reported and have con-
cluded that the attempt to make the instruction set architecture close to H I.,1,s is not 
the most effective design strategy. Rather. the HLLs can best be supported b!,. opti-
mizing performance of the most time-consuming features of lypieal HLL programs. 

Generalizing from the work of a number of researchers, three elements emerge 
that. by and large. characterize RISC architectures. First, use. a large number of reg-
isters or use a compiler to optimize register usage. This is intended to optimize 
operand referencing. The studies. just discussed show that there are several refer-
ences per I ILI.. instruction. and that there is a high proportion of move (assignment) 
statements. This. coupled with the locality and predominance of scalar references, 
suggests that performance can be improved by reducing memory references at the 
expense of more register references. Because of the locality of these references, an 
.expanded register set seems practical. 

Second, careful attention needs 10 he paid to the design of instruction pipe-
li nes. Because of the high proportion of conditional branch and procedure call 
instructions, a straightforward instruction pipeline will be inefficient. This manifests 
itself as a high proportion or instructions that are prefetchcd but never executed. 

Finally, a simplified (reduced) instruction set is indicated. This point is not as 
obvious as the others. but should become clearer in the ensuing discussion. 

76.2 firE CJSE OF AiIiiiGF:ILEGISYtitIPILE 

Thg. results summarized in Section 13.1 point out the desirability of quick access to 
operands. We have seen that there is a large proportion of assignment statements 
in I Il i programs, and many of these are of the simple form A  B. Also, there is 
a significant number of operand accesses per 1-ILL statement, It' we couple these 
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results with the fact that most accesses are to local scalars. heavy reliance on regis-
ter storage is suggested, 

The reason that register storage is indicated is that it is the fastest available 
storage device, faster than both main memory and cache. The register file is ph!, . , s-
ically small, on the same chip as the AIA.1 and control unit, and employs much 
shorter addresses than addresses for cache and memory. Thus. a strategy is needed 
that will allow the most frequently accessed operands to be kept in registers and to 
minimize register-memory operations. 

Two basic approaches are possible. one based on software and the other on 
hardware. The software approach is to rely on the compiler to maximize register 
usage. The compiler will attempt to allocate registers to those variables that will be 
used the most in a given time period. This approach requires the use of sophisticated 
program-analysis algorithms. The hardware approach is simply to use more regis-
ters so that more variables can he held in registers for longer periods of time. 

In this section, we will discuss the hardware approach. This approach has been 
pioneered by the Berkeley RISC group [PATT824 was used in the first commer-
cial RISC product, the Pyramid 1RAGA831: and is currently used in the popular 
SPARC architecture. 

Register Windows 
On the face of it, the use of a large set of registers should decrease the need to access 
memory. The design task is to organize the registers in such a fashion that this goal 
is realized. 

Because most operand references are lo local scalars, the obvious approach is 
to store these in registers, with perhaps a few registers reserved for global variables. 
The problem is that the definition of local changes with each procedure call and 
return. operations that occur frequently. On every call. local variables must be saved 
from the registers into memory, so that the registers can be reused by the called pro-
gram. Furthermore., parameters must be passed. On return, the variables of the par-
ent program must he restored (loaded back into registers) and results must be 
passed back lo the parent program. 

The solution is based on two other results reported in Section 13.1- First. a typ-
ical procedure employs only a few passed parameters and local variables (Table 
13.4), Second, the depth of procedure activation fluctuates within a relatively nar-
row range (Figure 4.1.6). To exploit these properties. multiple small sets of registers 
are used, each assigned to a different procedure, A procedure call automatically 
switches the processor to use a different fixed-size window of registers, rather than 
saving registers in memory. Windows for adjacent procedures are overlapped to 
allow parameter passing. 

The concept is illustrated in Figure 13.1. At any lime, only one window of reg. 
inters is visible and is addressable as if it were the only set of registers (e.g.. addresses 
0 through N — I ). The window is divided into three fixed-size areas. Parameter reg-
isters hold parameters passed down from the procedure that called the current pro-
cedure and hold results to be passed back up- Local registers are used for local 
variables, as assigned by the compiler. Temporary registers are used to exchange 
parameters and results with the next lower level (procedure called by current pro-
cedure). The temporary registers at one level are physically the same as the para. 
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meter registers at the next lower level- 'Fhis overlap permits parameters to be passed 
wilhout the actual movemeru of data. 

To handle any possible pattern of calls arid returns, the number of rigis.ier win-
dows would have to be unbounded. Instead, the regisler windows can be used to 
hold the Cew most recent procedure activations. Older acrivations must be saved in 
memory and later restored when the nesting depth decreases, Thus. the tel ual orga-
nization of the register file is as a circular buffer of overlapping windows. Two 
notable examples of this approach #arc Sun's SPA RC' architecture, described in Sec-
tion 13.7, and the IA-64 architecture used in Inters I tanium processor, described in 
Chapter 15. 

This organization is shown in Figure 13.2, which depicts a circular buffer of six 
windows, The buffer is filled lo a depth or 4 (A eAled 13; B called C. C called ID) 
with procedure D active. The current-window pointer (OAT) points 10 the window 
of the currently active procedure. Register references by a machine instruction are 
ofCsel  pt inier to delermine the itctwil physical register. The saved-window 
pointer identifies the window most recently saved in memory. If procedure D now 
calls procedure E. arguments for E are place.d in D's temporary registers (the over-
lap between w3 and w4) and the  k advanced by orie window. 

procedure then makes call to procedure F, the ca]] cannot be made with 
the current status of the buffer. This is because F's window overlaps  window. 11 .  
F begins to load its temporary registers. preparatory lo a call. ii will overwrite the 
parameler registers of A (,Ain}.'I1 -ius., when CW1' is incremented (modulo 6) so that 
it becomes equal to SWP. an interrupt occurs. and As window is saved. Only the 
first two portions (A.in and Aloe) need be saved. Then, the. SWP ix increminted 
and the call to I-  proceeds. A ,Thtil:tr inl.errupl can occur on returns. For example, 
subsequent to the activation of I when B returns to A. CV ,IP is decremented and 
becomes equal to SWP. This causes an interrupt that results in i he re .slOr'enion ref 
A's window. 

From lhe preceding. it can be c.t!CII 111.;11 ni N-window register file can hold only 
N — I procedure aetivi ions. The value of N need not be large. As w'EIS mentioned 
in Appendix 4A. one study [TAM183] found that. with g windows, a save or resLore 
is needed on only I% or the calls or TO urns. I li e Berkeley RISC computers use 8 
windows of 16 registers each.  Pyramid computer employs 16 windows of 32 reg-
isters each. 

1 
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Figure 13.2 Circular-Butter Organization of Overlapped Windows 

Global Variables 
The window scheme just described provides an efficient organization for storing 
local scalar variables in registers. However, this scheme does not address the need 
to store global variables, those accessed by more than one procedure. Two options 
suggest themselves. First, variables declared as global in an FILL can be assigned 
memory locations by the compiler, and all machine instructions that reference these 
variables will use memory-reference operands. 'this is straightforward, from both 
the hardware and software (compiler) points of view. However, for frequently 
accessed global variables, this scheme is inefficient. 

An alternative is to incorporate a set of global registers in the processor. These 
registers would he fixed in number and available to all procedures. A unified num-
bering scheme can he used to simplify the instruction format. For example, refer-
ences to registers 0 through 7 could refer to unique global registers, and references 
to registers 8 through 31 could be offset to refer to physical registers in the current 
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window. There is an increased hardware burden to aecommod.ate the split in regis-
ter addressing. In additiOn, the compiler must decide which global variables should 
be assigned to registers. 

Large Register File versus Cache 

'file register file, organized into windows, acts as a small, faSL buffer rot holding a 
subset or all variables that are likely to be used the most heavily. From this point of 
view, the register file ads much Eike a cache memory. although a much faster mem-
ory. The question therefore arkes ;is to whel her i1 would be simpler and better to 
use a cache and a small traditional renister file. 

Table 13.5 compares characteristics of the two approaches. The window-based 
register file holds all the local scalar variables (except in the rare case of window 
overflow) of the most recent N — 1 proeedure activations. 'I'he cache holds a wlee-
flan of recenily used scalar variables. The register file should save time, because all 
local scalar variables are retained. On I he other hand, the cache may make. more 
efficient use of space, because it is reacting to Lhc ;...ittnuion dynamically, Further-
more, caches generally treat all memory references alike, including instructions and 
other types of &Oa, Thus, savings in these other areas are possible with a cache and 
not a reaister file. 

A register tile may make inefficient use of space, because nol procedures 
will need the full window space allotted to them. On the other hand, the cache 
suffers from another sort of inefficiency: Data are read into the cache in blocks. 
Whereas the register file contains only those V4iri All  in use, the cache reads in 41 

Nock of Ili ta, some or much of which will not be used 
The cache is capable of handling global as well as local variables. There are 

ustialEy many global scalarzt. but only a few of 1hern arc heavily used [KATE.3]. A 
cache will dynamically discover these variables and hold them. If the window-hascd 
register file is supplemented with global registers, it too can hold sonic glohril 
scalars. Elow.evcr, it is difficult for a compiler to determine which globa]s will be 
heavily used. 

1he register file, the movement of data between registers and memory is 
determined 

by, 
 the procedure nesting depth. Because this depth usually fluctuates 

within a narrow range, thc.use of memory is relatively infrequent, Most cache Meal- 

Table 13-5 Cliaroctoristic9 of Large-Register-File and Cadic 
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ories.are set associative with a small set silf.c. 'lhus, there is the danger That 
data or instructions will overwrite frequi.'2ntiy used variables. 

I-  sect on the discussion so far, the choice between a large window-based reg-
ister file and a cache is not clear-cut. There is one characteristic_ however, in which 
the register approach is clearly :iuperior and which su ggests that a ea(,:he-based sys-
tem will be noliceL -Fly sEcrwer. This distinction shows up in the amount of address-
ing overhead experienced by the two approaches. 

Figure 13.3 illustrates the difference. To reference a local scalar in a window-
based register rile. a 'virtual" register number and a window number are used. 
'Ilicse can pass through a relatively simple decoder to select one of the physical reg-
isters. To reference. a memory location in cache, a full-width memory address must 
be generated. The conip]exi ty of c his operation depend s on the addressing mode. in 

set associative cliche, a portion of the. address is used to read a number of words 
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and tags equal to the set size. Another portion of the address is compared with the 
tags. and one of the words that were read is selected. It should he clear that even if 
the cache is as fast as the register file, the access time will be considerably longer. 
Thus, from the point of view of performanoc, the window-based register file is supe-
rior for local scalars. Further performance improvement could be achieved by the 
addition of a cache for instructions only, 

13.3 COMPILER-BASED REGISTER OPTIMIZATION 

1..ei us assume now that only a small number (e.g., 16-32) of registers is available on 
the target RISC machine. In this case, opt imit.ed register usage is the responsibility of 
the compiler, A program written in a high-level language has, of course, no explicit 
references to registers, Rather, program quantities are referred to symbolically. The 
objective of the compiler is to keep the operands for as many computations as possi-
ble in registers rather than main memory ., and to minimize load-and-store operations. 

In general_ the approach taken is as follows. Each program quantity that is a 
candidate for residing in a register is assigned to a symbolic or virtual register, 'Fhe 
compiler then maps the unlimited number of symbolic registers into a fixed number 
of real registers. Symbolic registers whose usage does not overlap can share the 
same real register. if, in a particular portion of the program. there are more quan-
tities to deal with than real registers, then some of the quantities are assigned to 
Memory locations_ Load-and-store instructions are used to posil ion quattities in 
registers temporarily for computational operations. 

The essence of the optimization task is to decide which quantities are to he 
assigned to registers at any given point in the program, The technique most com-
monly used in RISC compilers is known as graph coloring, which is a technique bor-
rowed from the discipline of topology [CHAI82. CHOW86. COU186. CHOW901, 

The graph coloring problem is this_ Given a graph consisting of nodes and 
edges. assign colors to nodes such that adjacent nodes have different colors, and do 
this in such a way as to minimize the number of different colors. this problem is 
adapted lo the compiler problem in the: following way. First, the program is analyzed 
to build a register interference graph. The nodes of the graph are the symbolic reg-
isters. If two symbolic. registers are "live" during the same program fragment, then 
they arc joined by an edge to depict interference. An attempt is then made to color 
the graph with n colors, where n is the number of registers. Nodes that share the same 
color can he assign ed to the same register, I r this process does not fully succeed, then 
those nodes that Cannot be colored must be placed in memory, and loads and stores 
must he used to make space for the affected quantities when they are needed. 

Figure L3.4 is a simple example of the process. Assume a program with six 
symbolic registers to he compiled into three actual registers. Figure I3.4a shows the 
ti me sequence of active use of each symbolic register. and part h shows the register 
interference graph (shading and cross-hatching are used instead of colors). A pos-
sible coloring with three colors is indicated. One symbolic register. F, is left uncol-
ored and must be dealt with using loads and stores. 
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In general. there is a trade-off between the use of a large set of registers and 
compiler-based register optimization. For example, I BRAD91 al reports on a study 
that modeled a RISC architecture with features similar to the Motorola 88000 and 
the ZIPS 82000. The researchers varied the number of registers from 16 to 128. 
and they considered both the use of all general-purpose registers and registers 
split between integer and floating-point use. Their study showed that with even sim-
ple register optimization. there is little benefit to the use of more than 64 registers. 
With reasonably sophisticated register optimization techniques. !here is only mar-
ginal performance improvement with more than 32 registers. Finally, they noted 
that with a small number of registers (e.g.. VI). a machine with a shared register 
organization executes faster than one with a split organization. Similar conclusions 
can be drawn from [HUGIA911. which reports on a study that is primarily concerned 
with optimizing the use of a small number of registers. rather than comparing the 
use or large register sets with optimization efforts. 

13.4 REDUCED INSTRUCTION SET ARCHITECTURE 

In this section. we look at some of the general characteristics of and the motivation 
for a reduced instruction set architecture. Specific examples will be seen later in this 
chapter_ We begin with a discussion of motivations for contemporary complex instruc-
tion set architectures. 

Why CISC 
Vie have noted the trend to richer instruction sets, which include a larger number 
of instructions and more complex instructions. Two principal reasons have moti- 
vated this trend: a desire to simplify compilers and a desire to improve. perfor- 
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mance. Underlying both of these reasons was the shift to high-level languages 
(FILL) on the part of programmers architects attempted to design machines that 
provided better support fOr 

It is not the intent of this chapter to say that the CISC designers took the 
wrong direction_ Indeed, because technology continues to evolve and because archi-
tectures exist along a spectrum rather than in two neat categories, a black-and-white 
assessment is unlikely ever to emerge. Thus:, the comments that follow are simply 
meant to point out some of the potential pitfalls in the CISC approach and to pro-
vide some understanding of the motivation of the RISC lidherents. 

The first•of the reasons died, compiler simplification, Weill obvious_ The task 
of the compiler writer is to generate a sequence of machine instructions for each 
HLL statement. If there are machine instructions that resemble HLL statements, 
this task is simplified. This reasoning has been disputed by the RISC' researchers 

IHNNS2.]. [RADIS31, [PA'1182b]). They have found that complex machine 
instructions are often hard to exploit because the compiler must find those cases that 
exactly fit the construct. 'Pie task of optimizing the generated code to minimize code 
size, reduce instruction execution count. and enhance pipelining is much more dif-
ficult with a complex instruction set. As evidence of this. studies cited earlier in this 
chapter indicate that most of the instructions in a compiled program are the rela-
tively simple ones. 

The other major reason cited is the. expectation that a CISC will yield smaller. 
faster programs. Let us examine both aspects of this assertion: that programs will be 
smaller and that they will execute faster. 

There are two advantages to smaller programs_ First, beeause e program 
takes up less memory, there is a savings in that resource. With memory today being 
so inexpensive, this potential advantage is no longer compelling. More important, 
smaller programs should improve performance, and this will happen in two ways. 
Hrst, fewer instructions means fewer instruction bytes to be fetched. Second, in a 
paging.environment, smaller programs occupy fewer pages, reducing page faults. 

The problem with this line of reasoning is that it is far from certain that a CISC 
program will be smaller than a corresponding RISC program. In many cases, the 
CISC program, expressed in symbolic machine language, may be shorter (i.e.. fewer 
instructions), but the number of bits of memory occupied may not be noticeably 
smaller. Table 3.fi shows results from three studies that compared the size of com-
piled C' programs on a variety of machines. including RISC which has a reduced 

Table 13.6 Code Sise Resistive iii RISC I 

I PA'ITS2a1 
11 C Programs 

[KATE831 
12 C Programs 

111•ATS41 
5 17 Programs 

RISC I I.0 1.0 1.0 
VAX- 1 1178D 0.8 0.67 
M6tWG 1).9 0.9 
78012 1.2 1.12 
PDP-11170 .0.9 0,71 
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instruction set architecture. Note thnt there is little or no savings using a GISC over 
a RISC. it r iist.1 ;ni c.ro4Eing to note that the VAX, which has 41. much more complex 
instruction set than the. PDP-11, achieves very [it * Savingz, over the biter. 'Mese 
results were confirmed by IBM researchers I RAD W .I. who found that the I BM 801 
(a RISC) produced code that was 0.9 times the size of code on an IBM St370. The 
cludy used a set of PL,II programs. 

There are several reasons for the7se railicr surprising results. We have already 
noted that compilers on CISCs tend to favoi simpler instructions, so that the con-
ciseness of inc. complex instructions seldom comes into pia Y. Also, because there are 
more instructions on a C.ISC, longer opcodes are required, producing longer instrue-
lions. Finally, RISCs tend to emphasize register rather than memory references, and 
the former require fewer bits- An exampie of this last effect is discussed prez;.cittl±f.. 

So the expectation that a CISC. will produce smaller pa)grorns, with the alien' 
dant advantages, may not be realized, The second mc,Itivating factor for increasingly 
complex instruclion sets was that instruction execution would be faster, it seems 
to make. scnsc alai a complex FILL operation will execute more quickly as a Single 
machine instruction rather than as a series of more prirniiive instructions. However. 
because of the bias toward the use of 1[11.,fiL' simpier instructions. this may no.1 be so. 
The entire control unit mull he male more complex, anclior the microprogram 
control store must be made larger. to accommodate a richer instruction set. Either 
factor increases the execution time of the simple insi ructions. 

in fact, sonic researchers have found that the speedup in the execution of oomplcx 
functions is due not so much to the power of the complex machine instructions as to their 
✓esidence in high-speed control store [RADI.8.3], In effect, the control store acts as an 
instruction cache. Thus. the hardware archiLcet is in the position of trying to determine 
which subroutines or functionK will he used most frequently and assigning those to the 
control store by implementing them in microcode. The results have been less than 
unCOLINiging. On S/390 systems, instructions such as II- 41 74rib: and Extended-Precision• 
Floating-Point-Divide reside in high-speed storage, while the sequence involved in sot• 
brig up procedure calls or initiating an interrupt handler are in slower main memory, 

Thu:5, it is far from dear that a trend to increasingly complex instruction sets 
is appropriate. This has led a number of groups io pursue the opposite path. 

Characteristics of Reduced Instruction Set Architectures 

Although a variety of diffcreni appro2iches to reduced instruction sal :. iithitecture 
have been Lakcn. certain characteristics are common to all of them: 

• One instruction per cycle 

• Register-to-register operations 

• Simple aLldressing modes 
• Simple instruction formats 

Here, we provide a brief discussion of these characteristics, Specific examples are 
explored later in this chapter. 

The first characteristic listed is that There is one machine instruction per 
machine cycle. A machine cycle is defined to he the time it takes to fetch two 
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operands from registers, perform an ALL' operation. and store the result in a reg-
ister. Thus, RISC machine instructions should be no more complicated than, and 
execute about as fast as. microinstructions on CISC machines (discussed in Part 
Four). With simple, one-cycle instructions, there is little Or no need for microcode; 
the machine instructions can be hardwired. Such instructions should execute faster 
than comparable machine instructions on other machines. because it is not neces-
sary to access a microprogram control store during instruction execution. 

A second characteristic is that most operations should he register to register, 
with only simple LOAD and SIORE operations accessing memory. This design fea-
ture simplifies the instruction set and therefore the control unit. For example. a 
RISC instruction set may include only one or two ADD instructions (e.g., integer 
add, add with carry): the VAX has 25 different ADD instructions. Another benefit 
is that such an architecture encourages the optimization of register use, so that fre-
quently accessed operands remain in high-speed storage. 

This emphasis on register-to-register operations is notable for RISC designs. 
Contemporary C1SC machines provide such instructions but also include memory-
10-memory and mixed registerimemory operations. Attempts to compare these 
approaches were made in the 1970s, before the appearance of R SCs. Figure 13,5a 
illustrates the approach taken. Hypothetical architectures were evaluated on pro-
gram size. and the number of hits of memory traffic. Results such as this one led one 
researcher to suggest that future architectures should contain no registers at all 
[ MYER781. One wonders what he would have thought, at the time, of the RISC 
machine once produced by Pyramid, which contained no less than 528 registers! 

What was missing from those studies was a recognition of the fregtxnt access 
to a small number of local scalars and that, with a large bank of registers or an opti-
mizing compiler. most operands could he kept in registers for long periods of time. 
Thus. Figure 13.5b may be a fairer comparison. 

A third characteristic is the use of si mple addressing modes. Almost all RISC 
instructions use simple register addressing. Several additional modes, such as dis-
placement and PC-relative. may be included. Other, more complex modes can be 
synthesized in software from the simple ones. Again, this design feature simplifies 
the instruction set and the control unit_ 

A final common characteristic is the use of simple instruction formats. Generally. 
only one or a few formats arc used. Instruction length is fixed and aligned on word 
boundaries. Field locations, especially the opcode. are fixed. This design feature has 
a number of benefits. With fixed fields, opcode decoding and register operand access-
ing can occur simultaneously. Simplified formats simplify the control unit, Instruc-
tion fetching is optimized because word-length units are fetched. Alignment on a 
word boundary also means that a single instruction does not cross page boundaries. 

Taken together, these characteristics can be assessed to determine the poten-
tial benefits of the RISC approach. These benefits fall into two main categories= 
those related to performance, and those related to VLSI implementation. 

With respect to performance, a certain amount of - circumstantial evidence" can 
be presented. First. more effective optimizing compilers can be developed. With more-
primitive instructions, there are more opportunities for moving functions out of loops, 
reorganizing code for efficiency. maximizing register utilization, and so forth. It is even 
possible to compute parts of complex instructions at compile time. I car example, I he 
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5i390 Mi ,YE Characters (PvIVC.) instruction moves a string of characters from one loca-
tion to another. Each lime it is executed, the move will depend on the length of the 
string, whether and in which direction the locations overlap, and what the alignment 
characteristics are. In most cases, these wilt al] he kilowli at compile time.Thus,ihe com-
piler could pnicitice ain optimized sequence of primitive instructions for this function. 

A second point, ; ..ilready nutted, i.s that most instructions generated by a com-
piler are relatively simple anyway. It would seem reasonable that control  built 
sped liea rly for those instructions and usin@, little or no microcode could execute 
them faster than a comparable CISC. 

A third point rclates to the use of instruction pipelining. RISC researchers feel 
that the instruction pipelining technique can he applied much more effeciively with 
a reduced instruction set. We examine this point in some detail presently, 

A final, and somewhat less significant. point is that RISC processors are more 
responsive to interrupts because inierrupts are checked between rather elementary 
operations. Architectures with complex instructions .either restrict interrupts to 
instruction boundaries or must define specific interruptible points and implement 
mechanisms for restarting an instruction, 

The case for improved performance for a reduced instruction set architecture is 
strong, bui one could perhaps still make an argument for CISC. A number of studies 
have been done but not on machines of comparable technology and power. Further, 
most studies have not attempted to separate the effects of a reduced instruction set and 
the effects of a large register file. The "circumstantial eviderirc," however, is suggestive- 

111e second area of potential benefit, which is more dear-cat, relates to VLSI 
implementation. When VLSI i7,1te:le(1,1he design and implementation of thg proces-
sor are fundamentally changed. Traditional processor, such as the IBM S.1390 and 
the VAX, cAmsis1 of one or more printed circuit boards containing standardized 551 
and MST packages, With Ihe advent of LSI and VLSI, it is possible to put an entire 
processor on a single chip. For a single-chip processor, there arc two motivations for 
following a RISC strategy. First, there is the issue of performance. On-chip delays 
are Or much shorter duration than interchip delays. Thus, it makes sense to devote 
scarce chip real estate to those activities that occur frequently. We have seen that 
si mple instructions and access to [twat •.L7114]1 - 5 411.- C, in fact, the most frequent activi-
ties, The Berkeley RISC chips were designed with this consideration in mind, 
Whereas a typical single-chip microprocessor dedicates about half of its area to the 
microcode control store. the RISC / chip devotes only about 6% of its area to the con-
trol unit [SHER84]. 

A second VLSI-related issue is design-and-implementation time. A VLSI 
processor is di fficuh to develop. Instead of relying on available SSUMSI parts, the 
designer must perform] circuit design,  [avow, and modeling at the device level. With 
a reduced instruction set architecture, this process is far easier, as evidenced by 
Table 13,7  781] IL in addition, the performance of the RISC chip is equivalent 
to comparable MC. microprocessors. [hen the advantages of the RISC approach 
become. evident. 

CISC versus RISC Characteristics 
After the initial enthusiasm for RISC machines, there has been a growing realiza- 
tion that (1) RISC designs may benefit from the inclusion of some CISC' features 
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"fable 13,7 1.) s.ign mid Layout Effort rcir Sonic. Microprocessors 

CPU 
Transistors 1)4Aga Layout 

(thousands) (person-mouths) (pet'snu-monalm) 

RISC1 44 15 12 
RISC. II 41 Its .12 
M4581.100 (5b: NO 70 
7.0...10 1R 60 10 
In iet iAPA-432 110 170 90 

and that (2) C1 SC designs may benufit from the inclusion of some RISC features. 
The result is that the more recent RISC designs, notably the PowerPC, are nu longer 
"pure" RISC and the more recent CISC designs, notably the Pentium II and later 
-Pentiktm models. do incorporate SOMe RISC' characteristics, 

An interesting comparison in 'MASI 195J provides soma insight into this issue. 
Table 13.8 lists a number of processors and compares them across a number or chat. 
acteristics. For purposes of this comparison. the Lotlowing are wrisitlenal t!,. pieal of 
a classic RISC; 

1. A single instruction size, 
2. That size is typically 4 bytes. 
3. A small number of data addressing modes, typically less than five, This para-

meter is difficult to pin down. In the table, register and Ulu& modes are not 
counted and different formats with different c afrsei sizes arc,  counted separately. 

4. No indirect addressing that requires you to make one memory access In ga 
the address of another operand in memory, 

5, No operations that combine load/store with arithmetic (e.g., add from mem-
ory, add to memory), 

6. No more than one memory-addressed operand per instruction- 
7. Does not support arbitrary alignment of data. for loadIstore operations. 
K. Maximum number of -uses of the memory m;inagemeni unit (MMI..) for a data 

address in an instruction, 
9. Number of bits for integer register specifier equal Lo five or more. 'Phis means 

that al (east 32 integer registers, can he explicitly referenced at a time. 
10. Number of bits for floating-point reaister specifier equal to four or more, 

This means that at least 16 floating-point registers can be Yxpl ly refer- 
enced at a time. 

Items 1 through 3 .  are an indication of instruction decode complexity. Items 4 
through S suggest the ease or difficulty of pipelining, especifllly in the presence of 
virtual memory recitnrcmen Ls. [terns 9 and 10 are related to the ability to take good 
advantage of compilers. 

In the table, the first eight processors are clearly RISC' architectures, the next 
ruc are clearly CISC, and the last Iwo are processors often thought of as RISC that 
in fact hz•r ,..c many ('IS C characteristics, 



Table 13.8 Character islics of Some Processors 

Processor 

Number 
of 

in.structinn 

sizes 

Max 
instruction 

size 
in bytes 

Number 
of 

addressing 

mz.Ries 

Indirect 

addressing 

Load/store 
combined 

with 
arithmetic 

Max 
number 

of memory 

operands 

Unaligned 

addressing 
allowed 

Max 

nipmber 
of MMU 

uses 

Number 

of bits 
for integer 

register 
specifier 

Number 
of bits 
for FP 

register 
specifier 

A N.11/29U0il 4 tiCt 110 3' 

MIPS R201-,4.1 4 S 4 • 

SPARC 1 no 110 no 4 

MC8S0011. 1 4 11. 0 no 0(1 1 5 • 1 

TIP PA • . e_r ors 110 no 4 

IBM RT.TC 4 1 110 no 1 11 0 -44  

IBM RSI61'..0.10 1 4 4 no 00 yeS 1 

Inte41860 1 4 110 no 1 n 1 5 1 

IflM .10,41) n(1' yes VCS 4 

Intel 80486 17. 12 1.5 1101.  yES. 2 yes 

NSC. 32016 71 21 23 yo.s yes _Yc5  4 3 

‘1068040 1 1 77 -14 yes yts ves 4 3 

VAX 56 56 22 yEs. 11,,es ycs 24 4 

ClIpper 4" no nu 2 44  3' 

Intel 80960 1••:. 8" 110 TN) yesz' 5 

Rim.. i sLi lc% FIJI conform to this di 
11132 d0C-, ri i! confouri to thx_C Chal acr.s:TI,I lc. 
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13.5 RISC PIPELINING 
, „ 

Pipelining with Regular Instructions 
As we discussed in Section 12,4. instruction pipelining is often used to enhance per-
formance. Lei us reconsider this in the context of a RISC archiLecLutc, Most instruc-
ti ons are register to register, and an instruction cycle has the following two stages: 

• I: Instruction fetch. 
• E= ENCQUW. Performs an ALU operation with register input and output. 

For load and store operations. three stages are required! 

• I: Instruction fetch. 
• E.! Execute. Calculates memory address-. 
• D: Memory. Register-Io-memory or inemory-toiegistu operation. 

Figure 13.6a depicts the timing of a sequence of instructions using no pipelin-
ing. Clearly, [his is a wasteful process. Even very simple pipelining can substantially 
improve performance. Figure i3.01) ;,lhow!, a two-stage pipelining scheme, in which 
the I and E stages of two differcni. instructions are performed simultaneously. This 
scheme can yield up tie twice the execution rate of a serial scheme. Two problems 
prevent the maximum speedup from being achieved. First, we assume that a single-
port memory is used and that only

, 
 irnc memory access is possible per stage. This 

requires the insertion of a wait state in some instructions. Second, a branch instruc-
ti on interrupts the sequential flow of execution. To accommodate this with mini• 
mum circuitry, a NOOP instruction can b4 inserted into the instruction stream by, 
the compiler or assembler. 

Pipelining can be improved further by permitting Iwo memory accesses per 
stage. This vicids the sequence, shown in Figure 13.6c. Now, up to three instructions 
can be overlapped. and the iniprovemcnl is as much as a factor of 3. Again, branuh 
instructions cause the speedup to fall short of the maximum possible. Also, note 
that data dependencies have an effect. If an instruction needs an operand that i8 
altered by the preceding instruction, a delay is required. Again. this can be accom-
plished by a NOOV. 

The pipelining discussed so far works best if the three stages are of approxi-
matel!,.y equal duration. Because the E stage Lain:illy involves an ALL operation, il 
may be longer. In this case, we can divide into two substages; 

• E,1 Register file read 
• E,: ALU operation and register write 

Because of the simpkity and regularity of a RISC instruction set, the design 
or the phasing into three or four stages is easily accomplished. Figure 13,6d shows 
the result with a four-stage pipeline-Up 111 four instructions at a time can be under 
way, and the maximum poLeTlial speedup is a factor of 4. Note again the use of 
NO0 Ps to account for Li ma and branch delays. 
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Figure 13.6 The Fifects of Pipelining 
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Optimization of Pipelining 

Because or the simple and regular nature of MSC instructions, pipelining schemes 
can be efficiently employed. There arc few variations in instruction execution dura-
tion, and the pipeline can be tailored to reflect this. However, we have seen that data 
and branch dependencies reduce the overall execution rate. 

To compensate for these dependencies. code reorganization techniques have 
been developed. First. let in (.74insider branching instructions, Delayed broach, a way 
of increasing the efficiency of the pipeline, makes use of al-Franch that does noel Lake 
effect until after execution of the following instruction (hence the term deiciye411. 
'I'he instruction location immediately following the. branch is referred to as the defay 
Nlo.r. This strange procedure is illustrated in Table 13.9, In the column labeled "nor-
mal branch, -  we see a normal symbolic instruction machine-language program. 
After 102 k executed :  the next instruction to be executed is 105. To regularize the 
pipeline, a NOOP is inserted alter this branch. However. increased performance is 
achieved if the instructions at 101 and 102 are interchanged. 

Figure 13.7 shows the result. Figure, l3- 7a shows the traditional approach to 
pipelining, of the type discussed in Chapter 12 (e.g., see Figures L2.11 1.riti 1 112). 
The .11:MP instruction is fetched al time  At time 4. the JUMP instruction is exe-
cuted at the same time thai instruction 103 (ADD insiruci ion) is fetched. Because 
a 31.11vIP occurs, which updates the program counier, the pipeline mull be cleared 
of instruction 1113: at time 5, instruction 1115, which is the target of the JUMP. is 
loaded. Figure 13.7b shows the same pipeline handled by a typical RISC organiza-
tion. The timing is the same. However, because or the insertion of the NOOP 
insiruelion, we do not need special circuitry 1of clear the pipeline; he NOOP simply 
executes with no effect. Figure 13.7c shows the use of the delayed branch. The 
JIJMP instruction is fetched at lime 2, before the ADD instruction, which is fetched 
at time 3. Note, however, that the ADD instruction is fetched before the execution 
of the JUMP instruction has a chance to alter the program counter. Th ere fore., dur-
ing time 4, the ADD instruction is executed at the same time lhaL instruction 105 is 
fetched. Thus, the original semantics of the program arc retained but one less clod 
cycle is roc ired For execution. 

This interchange of instructions will work successfully for unconditional 
branches, calls. and returns. P'or conditional branches, this procedure cannot be 

iropie 11.9 Normal and Delayud Branch 

Address Normal Branch Delayed Branch 
Optimized 

Delayed Branch 

Rio LOAD X.A L OAD X,A LOAD X,A 

101 ADD 1: A ADD L,A .11!MP 105 

102 JUMP 105 JUMP 1U ADD LA 

103 ADD A.B Is.:00P ADD .A,6 

104 SUB C..14 ADD AJEL SUFI C.13 

11)5 STORE A.Z SUB C.B. STORE A,Z 

106 S1 01-4. 1=  A.Z 



1 

1) 

100 LOAD X, A 

101 ADD 1.A 

102 .111: MP 106 

103 NOOP 

106 STORE A. Z 
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Time 

1 1 2  1 3 I 4 I 5 

1 I 

100 LOAD X, A I 
1 

101 ADD 1. A 

102 JUMP 105 

103 Alit) A, 11 1 

105 STORE A, Z I  

(a) Traditional pipeline 

(11)1 RISC pipeline with inserted NOOP 

100 LOAD X, A 

101 JUMP ins 

102 ADD 1, A 

105 STORE A, Z 

 

    

    

  

I I 1 
(Eh Revemerl 

Figure 13.7 use of Lhc Delayed 

blindly applied. If the condition that is tested kr the branch can be altered by the 
immediately preceding instruction. then the compiler must refrain from doing the in-
terchange. and instead iris..121- 1  NOOP. Otherwise, the compiler can seek to insert a 
useful instruction after the branch. The experience wish harsh the Berkeley RISC 
and IBM SO I systems is that the majority of conditional branch instructions can be 
optimized in this fashion ([1 3AT1'82a], [RADI83]}, 



486 CHAPTER 13 I REDUCE) INSTRUCTION SET COMPUTERS 

A similar sort of tactic, called the delayed had, can be used on LOAD instruc• 
tons. On LOAD insiructions, the register that is to be the target of the load is 
locked by the prouessor. The. processor then continues execution of the instruction 
stream until it reaches an instruction. requiring that register, at which point it idles 
until the load is compleic. If the compiler can rearrange instructions so that useful 
work can be done while the load is in the. pipeline, efficiency is increased. 

Asa final note., we should point out than the (lesign of the instruction pipeline 
should not be carried out in isolation from other npl iini 7. a I. ion techniques applied to 
the system. For example, [BRAD9Ibi show.s that the scheduling of instructions for 
the pipeline and the dynamic allocation of registers should he considered together 
Lo achieve the greatest efficiency. 

13.6 MIPS R401)(1 
_er arr,f- 

If ae  .7-:"Prf-err.,..Werre are, 
• ,arC .ferre  Y.. yr.  - aSerrer."-A.-  

One of the first commercially available RISC chip sets was developed by MIPS 
'Teehnology inc. The system was inspired by an experimental system, also using the 
name MIPS, developed at Stanford 1HENN84]. In this section we look at the MIPS 
84000. It has substantially the same architecture and instruction seI of the earlier 
MIPS designs: the 82000 and R3000. The most significant . difference is that the 
84000 uses M rather than 32 bits for all internal and external data paths and for 
addresses, registers, and the ALL:. 

The use of 64 hits has a number of advantages oi.rer a 32-bit architecture. Et 
allows a bigger address space—large enough for an operating system to map more 
than a terabyte of files directly into virtual memory for easy access. With 1-gigabyte. 
and larger disk drives now common, the 4-gigabyte address space of a 32-bit 
machine becomes Iiniiiing, Also, the 64-bit capacity allows the 840010 to process 
data such  d4puble-precision floating-point numbers and character strings, 
up to eight chat deters in a single action. 

The R40r)0 processor chip is partitioned into two sections, one vim aining the 
CPU and the other containing a coprocessor for memory management. The proces-
sor has a very simple architecture. The intent was to design a system in which the 
instruction execution logic was as simple as possible, leaving space available for Logic 
to enhance performance (e.g., the entire memory-management unit). 

The processor supports thirty-two 64-bit registers. It also provides for up to 
128 Kbytes of high-speed cache, hail each for instructions and data. The relatively 
large. cache (the IBM 3090 provides .128 to 256 Kbytes of cache) enables the system 
to keep large sets of program code and data local to the processor, off-loading the 
main rrwmory bus and avoiding the need for a large rcgister file with the accompa• 
nying windowing logic. 

Instruction Set 
Table 13.10 lists the basic insiruetion set for all MIPS R series processors. Table 
13.11 list the additional instructions implemented in the R4000. A]] processor 
instructions are encoded in a single 32-bit word format. All data operations are reg-
ister to register; the only memory references are pure Load/store operations. 
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The R411(111 makes no ui.;;I: of condition codes. I f in n instruction generates a con-
dition, the corresponding fldgs are stored in a gcneral-purpose register, This avoids 
the nced for spocial togie to deal with condition codes as Li -Icy rifted the pipelining 
mechanism and the reordering of instructions by 1he compiler_ instead. the mecha-
rasms already implemented to deal with register-value dc1, -)endencies are employed. 

IA* 13-10 R-Serics Instruction St11 

OP 

1.11 

LE--E 
1.1-11-1  
LW 
LWL 
L'afrFt 

.S T3 

.SH 
SW 
SWL 
swR 

Anal 
ADDIU 

ANDI 

ORE 
XDRE 

LL:1 

ADD. 
ADD( J 

SUB 
SUBL: 

SLTU 

OR 
XOR. 
NOR 

SLL 
SRL 
SRA 
SLLV 
S RLV 
SHAY 

Description 

Load/Store irattrutitans 
Load B yte  
Load By[e Unsigmd 
E..oad ITO:01 1.1 

LDUCJ Haliviord. Uih.i4Ined 
Loud Word 

Load Word 1.4L 
Load Word Righ1 
Store. 
S I orc Ha 1 fword 
wire Word 

Storu Vte'ord Leff 

Sion! Word 1R.;g1.0 

ArlthIllellic Instructions (All! Immediael 

Add lrffriwdiaLe 

Add Immediate Uns.ign.nd 

Set on I .c NE Than firimediarc 
Sot o Leas Than Entmediati2 Unqgried 

AND lmmcdiRre 

f makudi II 

E lasive-OR 
Load Upper EnnoodiaLc. 

Arithmetic Insinktions {3-operand, R-typeji 
Add 
Add Unsitmcd 
Suhtract 
Sub1mcs Unsigned 
Set on Lcss `Chau 

Set on 1.,c83 Than UnAigncd. 
AND 

OR 
Excluivr-OR 

lihifl I miracli.ons 

Shift 1.1A 1..4>eical 
Shift  .ogical. 

Shift RiOn. Aviihnicijc 

5filk Left Login!! Iv'ariatd.e. 

ShElk Right Lq.iciAl Variable 
Shin Righi Arithmetic Variable 

OP 

Imitruehions 
NI f LT 
MULTU Cnsigned 
DIV Divide 

1.:nhigncd 
:\0111-1 1 Move from HT 
MTH! Move to LEI 
MELD Move From LC) 
MTLO 4.11)VC' In LC) 

.1  Li mp and Etranch lastructionx 
.1 Jump 
.TAI . Jump and ].ink 
J R Jump to Rep.iriEur 

JALR .Jump and Link Regisicr 
B EQ Branch on Equal 

BNE Branch on Nol Equal 
Bra ach Than (5r Equal LC art) 

BGT7 Branch c,u GredLln- !hart Zero 
BLTZ Branch on Loss than 7.cro 
BGEZ Branch. on Crreutet Than or Equal. to Zero 
BLTZAL Branch on Less than Z.c.rd. and Link 
BUEZAL Branch oil &Hater Than or equal to Zero 

iind Link 
Coprocessor in.struclinn% 

Load Word I pTCK.018ar 

OIL: WOld IA) C1.33113CCSS{ Er 

M I lo Coprocessor 
.%/lovc Irani Coprocessor 

C:onirol lo Coproceswr 

rkloyc Control from Coprocenor 
Coproi..emiir Oricra d on 

Branch tan C7t)procchar E..True 

krwric la on copt000sErn- z 

LWC:7. 

WIC?: 

CTC7. 

COP./ 

Special ineitrutliMIS 
SYSCALL S:ystvm (Tall 
TIRP.AI Break 

1 
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Table 13.11 Additional 84000 InstruyLions 

DP Description OP Desffiption 

Load)Store Ingtxiictions Emption InstroctionN 
LL Load Linked TGE Trap if GfeaLey Than or .1-..qual 

SLOW: 4.-ontliLinnal 'EGEU 'Trap if CiTC.1 L1' Than or Equal Unsigned. 

Sync TLT Trap if lac:NS Foto 
]ump sund Branch iust1riiciions TL'I1.1  Trap if LlrisignW 

. BT;LE1C Il on. Equal Liktly EQ Trap if Ey UiLL 
SNEL liranch on Not Equal Likely TNE Trap Not Equal 

EZL. Branch on [..e.s Than or Equal IA '1(31:1 Trap if Greater 'I..han or P.qual lunnwdinw 
Zero Likely 

BCITZL Branch on Greaser Than Ze..I0 Likely ' UHL! Gremer Than Or ECIU a I 1.:ns.iersed 
Inuit di:pie 

BLTZL Branch on Les-; Itinn Zero L.ikely TLTI Trap it Less Than Immediate 
BGEZL Branch on {]realer Than or Equal TI..TII: Trap it Less Than 'Unsigned Im mcdi ate 

Lu Zeso Likely 
FiLTZ.A.f. Branch on Less Than Zero 'J'E.QI Trap 
L Link LIM y 
BGEZ AL Branch on Greater Than or Equal TNE] Ttap it Nol. Equal Inunediale 
L Lt Zero and Link Likely 
RC./.TL Brandt on Coppocessor z True Likely CIITED111.70.4.14 inStrUCtilDilS 

(:L FL DTA rich (in Cop' 5LT2r.SC1T t False LI)C..e Load I) 12  .  bproccmcii 
SEcire Double Coprocc.Fs.or 

Further, conditions mapped onto lhe register files are subject to the same eornpile-
ti me optimizations in allocation andl trctr,e t, otlICI' values stored in regbocts. 

As with most RISC-hosed machines, the NIPS liSeb. n single 32-hit instruction 
Length. '1'his single instruction length simplifies inOrtii:lion l'clCII and decode, and it 
also simplifies the interaction of instruction fetch with the virtual memory manage-
ment unit (i.e., instructions do not cross word or page boundaries). The three 
inslructiori formats, (Figure I 3.R)share common formatling  opcoides and register 
references :  simplifying instruction decode, Tlw effect Of more complex instructions 
can be. synthesized al compile LiInc- 

Only [he simples[ and most frequently used memory-addressing mode is 
imp]cryiented in hardware. Al] memory references consist 4.)1 a 1s-bit offset from fl 

32-bit register. For example, the 'Load word' in.intrUCtiOni is of the form 

1w r2, (r3) word n.e .ndd.ru!L. 12 ;:i f rnn rs.gister 3 intc: t.5tr. 2 

Each of the 32 general-purpo5.e rcgiA.er'S can be used as [he bme. register- One reg-
i5tcr, r0,..idways contains 0. 

The compiler makes use of mu]tipio machine instructions to synthesise 
addressing modes in convention01 machines. Some examples are prodded in Table 
13,12 [CH0W871. The table shows the USG of the instruction Lui (load upper imme-
diate). This instruction loads [he upper hal f {,r a register with a 16-bil immediate 
value, setting the lower hair 10 zcro. 
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Instruction Pipeline 
With its simplified instruction architecture,. the MIPS tit:Neve very efficient 
pipelining. Ii is instructive to look at the evolution of the MIPS pipeline, as it illus-
trates the evolution of RISC pipelining in general. 

The initial experimental RISC systems and the generation Of commercial 
RISC prow.ssors achieve exccution spaeds that approach one instruction per system 
clock cycle. To improve oh this perforinance, two classes of processors have evolved 
to offer execution of multiple instructions per clock cycle: superscalar and super-
pipelined architectures. In essence, a superscalar archilect to -c replicates each of the 
pipeline stages so that two or more instructions al the same stage of the pipeline can 
be processed simultaneously„k superpipelined architecture is one that makes use 
of more, and more nne-grained, pipeline. slages. With more Aiges, more instructions 
cAri he in thc pipeline at th.c same lime, increiv,ing 

Both approaches have limitations. With superscalar pipelining, dependencies 
between instructions in different pipelines can slow down the syslem, Also. over-
head logic is recuired to coordimtc these dependencies, With super -pipelining, there 
is overhead associated with transferring instructions from one stage to the next. 

Chapter 14 is devoted to a study of superscalar architecture. The MIPS R40.10 
is a good example of a RISC-based superpipe]ine architecture, 

1-tyF 
immodiatc) 

1-type 

ulliP) 
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trcgisier) 

() Nutt iori 
rs 
rl 
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Table 13.12 Synthesizing Other Addressing Modes with 
the MIPS Addre'ssing MOde 

Apparent Instruction Actual Instruelion 

1w r2., ...iffsea> 1 w r2, ‹16-hit (r()) 

lw 12, <:12-hit (Also} Ku 1 , 1, <high 16 hits of Dfisei> 
1w r2. <low l6 hits of c>ffset> 01) 

1w r2. (r4) lui r 1. <high IA hi 

addu r I. r]. r4 
lw r2. • ow ](.i ,tits of offset:. ir 1) 

Figure 13.9a shows the instruction pipeline of she R3000. In the R3000, the 
pipeline advances once per clock cycle. The MIPS compiler is able to reorder 
instructions to fill delay slots with code 70 to 90% of the lime. All instructions fol-
low the same sequence of five pipeline stages: 

• Instruction fetch 
• Source operand fetch from register file 
• ALL-) operation or data operand address generation 
• Data memory reference 
• Write hack into register file 

As illustrated in Figure 13.9a, there is not only parallelism due to pipelining 
but also parallelism within the execution of a single instruction. The 60-ns. clock 
cycle is divided into two 30-ns magus. The. external instruction and data access oper-
ations to the cache each require 60 as, as do the major internal operations (OP, DA, 
IA). Instruction decode is a simpler operation. requiring only a single 30-ns stage, 
overlapped with register fetch in the same instruction. Calculation of an address 
for a branch instruction also ovcrlapS instruction decode and register fetch. so that 
a branch at instruction i can address the !CACI - 1E access of instruction i - 2. 
.Similarly, a load at instruction i fetches data that are immediately used by the OP 
of instruction i  while- an ALA . 1 /ski ft result gets passed directly into instruction 

1 with no delay. This tight coupling between instructions makes for a highly 
efficient pipeline. 

In detail. then, each clock cycle is divided into separate stages, denoted as 61 
432. The functions performed in each stage are summarized in Table 13,1.3. 

The 840011 incorporates a number of technical advances over the 83000. The 
use of more advanced technology allows the clock cycle lime to be cut in half, to 
30 ns, and for the access time to the. register file to be cut in half. In addition, there 
is greater density on the chip, which enables the instruction and data caches to be 
incorporated on the chip. Before Looking at the final R4000 pipeline, let us consider 
how the 830001 pipeline can be modified to improve performance using R400-0 
technology. 

Figure 1 3.9b shows a first step. Remember that the cycles in I his figure are half 
as long as those in Figure 13.9a. Because they are on the same chip. the instruction 
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TF =r im&el) 
RD = Read 
MEM = Manor.: access 
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f-f";A:hcz  = Instrucriou caerm acccss 
RF =i»± oporand from regime,- 
D-Cachc = Data caLlit 
NIB = Instruction addr&•,..; 13 -an...Aaiun 
!DEC – Ins[ruLlion &code 
IA = Compute mw iork .,ttIdrcss 
DA = data virtual address 
DTE.E1 = Dara address irdrislatiou 
TC = Ddia k-HChe tag check 
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Table 13.13 83000 Pipulint. Siam; 

Pipeline 
Plum Function 

IF using shu rilniikaw an instrircLion .vircualaddross to Fl ph IITSI CH I 

.:1 11(1 Ll:Sti 4  I LiA" N 111W IlL11111 drCaSlprS i.  

IF 112 thr cm I Hd them, Lk, LhE irisilLICLiira address. 

RD 41 Return instruction from irisirugiion 

GOIllipare. sags and validity or luichcli 

1.P 2 Decade instruction. 

Rued register file. 

branch..calestlase braach target ackdress. 

A1.1.1 .131 + .02 1.1. op ;ration, the arilhrrioic or Ingi Ckl I Ope.raLi0(1 IS• 
perlDrrned. 

A I .131 11 a brunch, docide vel-i ther the branch is to in lakw, tar nut. 

mEniUTY rtft rcii.fiL (load cir store). calcutHtc data vi Luak 

ALL.' TI H mLnl nry rc 1trr n Ce. Ltamlate. data virtual address Ckl I usi ng 

MEM 4.11 Iry Inc wiry rLIcmhIEC. r412 n address Le•thiLa cache. 

M EF I 02 IF H rLI't.rc nLL .  ru L LIM data from data cache, and clicck 

1413 ol Write to regisler lilt , 

and•data cache stages take only halt as long so they still occupy only one clock cycle, 
Again, because of the speedup of ihe rc.gisLu file access, register read and wri1C still 
occupy only half of rr clock uycle. 

1[-Ice; Li-iL R4000 caches are on-chip, the virtual-to-physical address transla- 
tion can delay the cache access. This delay is reduced by imptementin2 virtually 
indexed caches and going Lo a parallel cache access and address trandEll  Figure 
L3,9c show the optimized fOtgX.) pipeline with this improvement. Hecause of the 
compression of eve 11 tS, 1.11 c data cache tag check is purfouncd separately on the next 
cycle after cache ziccess, 

In  f';u perpi pc. I i fled syz,teni, existing hardware is used several li mes per cycle 
by inserting pipeline registers to split up each pipe stage- kssentially, each super= 
pipeline stage operates at a mullipie of the base clock frequency, the multiple. 
depending on the degree of supcxpipelining. The R400() technology has the .petal 
and density to permit wperpipLdining of degree 2. Figure 13.10z1 shows Ole cvd-
mixed R3000 pipeline using this superpipelining. Note that this is essentially the 
same dynamic structure as Figure 13.9c. 

Further improvemcril's can he made, For the 84000, a much larger aid spe-
cial lined  vals designed. This makes it possible to execute ALI! operaticfns M 
twice the rate. Other improvements allow I hc QXC:CL11.100. Of loads and stores at 1vvicz 
the rate. The resulting pipeline is shown i n Figure 13.10b. 

Thu F 4 Il Hk hAs eight pipeline stages. meaning that ws rnany as eight instruc-
tions C4111 I)C: i n the pipeline at the same time. The pipelinc .,liivarices at the: rate of 
two  per dock cycle. The .eight pipeline stagQs are EN fO3lOWS1 
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IF = Instnicrion fetch first half 
IS = Inslruction Ictch second half 
RF = Fetch operands fet-gri reaisler 

EX — Instruction cxccutc 
= Insnitaino cache 

DC = Data cache 
Clock cycle IM = 1).am cadie aril. half 

o, 
-1 ! 

DS 
TC 

= Data cache second half 
= Tabu clsca. 

IF IS 1-0- / EX DF 1)5 W B 

IS RF E X DV DS TC %A. 13 I 

R4000 pipeline 

Figure 13.10 .ThoureLical R3017O and Actual 84000 Superpipclincs 
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• instrilvtiun fetch first half: Virtual address is presented to the instruction oche 
;I nd the translation look aside buffer.' 

• 'In traction fetch second half: Instruction cache. out 1 11  i 1 1 . u Lic..on and the 
TLB generates the physical address, 

• Register Me: Three 'activities occur in parallel! 

▪ Instruction is decoded and check made for inierloek conditions (i.e., this 
instruction depends on the result of a preceding instruction). 

c Instruction cache tag check is made. 

Operands are fetched from the register file. 

• Instruction execute: One of three activities can occur: 

c. If the instruction is a register-to-register operation, the ALU performs the 
arithmetic or logical opera tion. 

O If the imorto ion is a load or store, the data virtual address is caleulated, 

• lf the instruction is a branch, the branch target virtual address is calculated 
and branch conditions arc checked. 

• Data cache first: Virtual address is presented to the data cache and TLB. 

• Data cache second: Data cache outputs the instruction, and the TLB gener-
ates the physical address. 

• Tag check: Cache tag checks are performed for loads and stores. 

• Write buck; Instruction 'vial! written back to register file. 

SPARC (Sealable Processor Architecture) refers to an architecture defined by Sun 
Microsystems. Sun developed its own SPARC' implementation but also licenses 
the architecture to other vendors to produce SPARC-compatible machines. Tim.' 
SPARC. architecture is inspired by the Berkeley RISC I machine. and i1 instruction 
set and register organization is based closely on the BerkeIcy RISC mode]. 

SPARC Register Set 
As with the Berkeley RISC. the SPARC makes use. of register windows. Each window 
consists of 24 registers. and the total number of windows is implementation dependent 
and names from 2 to 32 windows. Figure 13.1 I illu bates ail implementation that sup-
ports S windows, using a total of 136 physical registers; as the discussion in Section 112 
indicates, this seems a reasonable number of windows. Physical registers 0 through 7 
are global registers shared by all procedures. Each process sees logical registers 0 
through 31.. 1,00w1 registers 24 through 31, referred to as jai, are shared with the coil-
ing (parent) procedure; and loaical registers 8 through 15, referred to as outx, are. shared 
with any called (child) procedure, These two portions c:pverlar with other windows. Log-
ical registers lf) through a referred to aLS /0i:ids. are not shared and donut overlap 
other windows. Again, as the discussion of Section 12.1 indicates, the availability of 8 
registers for parameter passing should lie adequate in most cases see Table 13.4). 
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Physical Logical registers 
registers Procedure A Procedure 13 Procedure C 

135 

• Fnr 

128   

127 

• IA 

120 

          

          

           

119 
OutN/Ins 

112 

    

R31t ,  
. ins 

R24t.  

    

            

          

           

         

103 

. OutOns. 

96 

     

K1F. t  
Outs 

118c 
c. 

95 
Locals 

88 

        

OLII s 

        

8.0 

        

• 

Figure 13.11 SPARC' Register Window Layout with Three Procedures 

Figure 13.12 is another view of the register overlap. The calling procedure 
places any parameters to be passed in its out registers; the called procedure treats 
these same physical registers as it ins registers. The processor maintains a current 
window pointer (CW1 3). located in lhe processor status register (PSR), that points 
to the window of the currently executing procedure. Thc window invalid mask 
(WINI). also in the PSR, indicates which windows are invalid. 

With the SPARC register architecture, it is usually not necessary to save and 
restore registers for a procedure call. The compiler is simplified because the corn- 
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piler need be concerned only with allocating the local register* for procedure in 
an efficient manner and need not be eonuCTni,:d with register allocation between 
procedures. 

Instruction Set 
Table 13.14 lists the instructions for the SPARC architecture. Most of the instruc-
tions reference only register operands. Register-to-register instructions 1 -i ve three 
operands and can be expressed in the form 

Rd Rsi  op S2 

1 „ and it,„ to re register refereno....!i; S. can refer ei1 her to 41 rcgistir or to a 13-bit iiniiic- 
di2itc operand. Register zero ( R,,) k hardwired with the value 0. This form is well 
suited to r!,. ,pieai pt.ograms. which have a high proportion of local scalars and vonstanis. 

CWP 

Figure 13.12 Eight Register Windows Forming a Circular Stack in SPARC 
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TtbI 13.14 SPARC instruction Set 

OP Oesetiplion OP Description 

Load/Store Instructions Arithmetic Instructions 

1...1)8EI Load 3ign.e.11 h .sc ADD Add 

LDSH Load signed halfword A DDCC Add, set ice 

LDEB Load unsigned byLi... ADDX Add with carry 

L.DL:H Load unsigned hallword AllaDiNCC Add with carry. set icc 

LD Luad word SUB. Subtract 

LDD Load douhkword SUB CC Sill) LniCi, set ice 

STR Store byte SUBX Sulhiniet WW1 carry' 

STH SLoretalipeord SL:BNCe Subtract with carry, set icc 

STD Store word MULSCX: Multiply stop, set Lee 

STDI) Store douhleword Jump/Brandi lug-melons 

Shift Instructions 11C(' Branch on condition 

SLL Shirt kit logic:II FBCC Brandi an floating-point 
con ditio n 

SELL Shift right logical CBCC Brunch on coproccsmn 
conilition % 

SRA Shirt Tight 211M1111 e Fie CALL ColL prucoiLere 

BIPOICHIL IIINiFtICtioM5 i MPL Jump and link 

AND ANT) To.: Trap on condition 

es. N DO  C AND, set ice SAVE AdvHnec rcgigcr window 

A\DN NAND RESTORE Move. mndows backward 

ANDNCC NAND. set i(,..7.; RETT Routru front heap 

OR oR Miscellaneous instructions 

0.14C(.' OR, set lee SETH] Scr high ?..7,..' bits 

0 RN NOR UMW Un im plemented IDSLFUCEi ors 
(trap) 

ORNCC NOR. R et ice RD Read a speciai register 

X0 E2 XOR WR WTI Li.' d Sp:Cla I register 

X oftcc XOR, set ice TFLILS'll Imitruction cache. flush 

XNOR Exclusive NOR 

X.NOROC Exclusive N'OR.:..i•I ice 



Mode Algorithm SPARC I-Cquivalera Instruction Type 

Tm meal ate ope rand A S2 Rcgis%1 La rEgisiel 

Direct EA - A R , + .S .'7  Load. SLOie. 

Ft.e.gkicr FA R Rsl' L. RegiEte.r10 rcgricr 
R egi N i t1.1 mdireci EA 1:R:i It,, F it 1...i5a4.1, slDre 
DispEat:emelst EA i.R .11 A Ri.; 1 t S2 LA5k14,1. ADM 
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The available ALL: operations can he grouped as follows: 

• Integer addition (with or without carry) 
• Integer subtraction (with or without carry) 
• Bitwise Boolean AND, OR, XOR and their negations 
• Shift left logical, right logical. or right aril hmel ic  

All of these instructions, except the shifts, can °pi ionally sei the four condition 
Codes (ZERO. NEGATIVE, OVERFLOW. (:'ARRY). Signed integers are repre-
sented in 32-hil twos complemen I form. 

Only simple load and store instructions reference memory, Then: arc separate 
load and store instructions for word (32 bits), doubleword, halrword. and byte. For 
the latter two cases. [here are ]nslructions for loading these quantities as signed or 
unsigned num bers. Signal num bers are sign  extended to fill out the 32-bit dcstina• 
Li on register. Unsigned numbers are padded with zeros, 

The only available addressing mode, other than register, is a displacement 
mode. That is, the effective  or an operand consists of a displacement from 
an address conl wined in ri rcgisler: 

EA =(R + 52 

or EA = (Ii„) + (R 52) 

depcnding tin whuther the second operand is immediate or a register rclerefice. To 
perform a load or store, an extra stage is added to the insivueiion cycle. During the 
second stage, the memory address is ciikulted using the ALL-.; the load or store 
occurs in a third stage-' t'hi74 single addressing mode is quite versatile and can he used 
to synthesize other addressing modes. as indicated in Table 13, J 5. 

It is instructive to compare the SPARC addressing capability with 'hal of 
the MIPS. The MIPS makes use of a I 6-bit of kr2 c, wmpared with a 13-hit offset on the 
SPA RC, On Elie other hand, the MIPS does not permit an address to be constructed 
from the contents of two registers. 

Instruction Format 

As with the MIPS R4000, SPARC uses a simple set of 32-hii instruction formats 
(Figure 13.13). All instructions begin with a 2 - biL oprode, For most instructions, this 

'aw 13.15 Synihesi4i ng Other  Addressing Hades with SPARC Addp:=:•5sinp, 
Andes 
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Figure 13.13 SPARC Instruction Formats.  
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is extended with additional opcode bits elsewhere in the format. For the Call instruc-
tion. a 30-bit immediate operand is extended with two zero hits to the right to form 
a 32 -hit PC - relative address in twos complement form. Instructions arc aligned on a 
32-hit boundary so that this form of addressing suffices. 

The Branch instruction includes a 4-hit condition field that corresponds to the 
four standard condition code bits, so that any combination of conditions can he 
tested. The 22-hit PC-relative address is extended with two zero bits on the right to 
form a 24-biz twos complement relative a ddress. An unusual feature of the Branch 
instruction is the annul bit. When the annul bit is not set, the instruction after the 
branch is always executed. regardless of whether the branch is taken. This is the typ-
ical delayed branch operation found on many RISC machines and described in 
Section 13_5 (see Figure. 13.7). However, when the annul hit is set, the instruction 
following the branch is executed only if the branch is taken. The processor sup-
presses the effect of that instruction even though it is already in the pipeline. This 
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annul bit is uscful because it makes it easier for the COnlitiliZT it) fill the delay slot 
following a conditional branch. The instruction that is the target of the branch can 
always be put in t]ie delay slot, because if the branch is not taken, the instruction 
can be annulled. The reason this technique is desirable is that conditional branches 
are generally taken more than. half t]ie time. 

I he II instruction is a special ins.;truction used to load or store a 32-bit 
value. This feature is needed to load and store addresses and large constants. The 
SETH I instruction sets the 22 high-order bits of a register with its 22-hit immediate 
operand, nd zeros out the low-order 10 bits. An irntn.ediate constant of up to 13 hits 
can be.wecified in one of the general l'orrnIes. and such an instruction could be used 
to fill in the remaining HI hits of the register. A load or store instruction can also 
be used to achieve a direct addressing mode. To load a value from location K in 
memory, we could use the following SPAR(' instructions: 

NrE ;lo:aa iligb-orAer 272 hLts of ddar42SS. 

K iri=o registGr LB 

- tiu(K)1, atrE ;load conten:= Df K rS 

The macros %hi and %Iu art: lised «) define immediate operands consisting of 
the appropriate address hits ot a location. This use of SETHI k similar to the use 
of the LUI instruction on the MIPS (Table 13,12), 

The floating-point format is used for IThating-point operations. i W 0 S ou rce 
and one destination registers are designated. 

Finally, all other operations. including loads- slores. arithmetic, and ic.qical 
operations use one of the last two formals shown ilk Figure 13.13, One of the forEnats 
makes use of two source registers and a destination register. while the other uses one 
source regisler, one I:4-hit immediate operand, and one destination register. 

13.8 RISC VERSUS CISC CONTROVERSY' 
. .;;--&=645-ef*Irr-ifA00 ,e,..erfor 

 

For many years the general tren4 I in computer architecture and organ isation has 
been toward increasing processor complexity: more instructions. more addressing 
modes. more Speci al ized registers. and so on. The RISC movement represents a fun-
damental break with the philosophy behind that trend. Naturally, the appearance 
of RISC' systems. and the publicafion of papers by its proponents extolling RISC 
virtues. led to a reite1ion frorn tho!,e involved in the design or CISC architectures, 

The work that has been done on assessing merits of the RISC approach can 
kc grouped into two categories .: 

• Quantitative: Attempts to compare program size and execution speed of pro-
grams on RISC' and CISC machines that use cumparabJe technology 

• Qualitative: Examination of issues such as high-level language support and 
optimum use of VLSI rca I estate 

Most of the work on quantitative assessment has been done by those working 
on RISC: systems I PATT82b, HEAT 84. rxr-rs4]. and it has been, by and large, 
favorable to the RISC approach. Others have =mined. the issue and come away 
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13.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terms 

Review Questions 

13.1 What are some typical distinguishing characteristics of RISC orgaiiiiation2 

13.2 Briefly explain the two basic approaches used to minimw.e register-memory opera-
t ions on RISC. machines. 

13.3 If a circular register buffer is used to handle local variables for nested procedures. 
describe two approaches for handling global variables:. 

13.4 What are some typical characteristics of a RISC instruction set architecture? 
13.5  What is a delayed branch? 

Problems 

13..1  Considering the call-return pattern in Figure 4.16, how many overflows and under-
fl ows (each of which causes a register savelrestore) will occur with a window size of 
a. 5? 
h. 8? 
c. 

13.2 In the discussion of Figure 13,;.. it was stated that only the first two portions of a Win-
dow are saved or restored. Vir'lly necessary to save the temp/1r ai IeTisters? 

13.3 We wish to determine the execution time for a given program using the various 
pipelining schemes discussed in Section [3.5. Let 

N = number of executed instructions 
D = number of memory accesses 

— number of jump instruct ions 
For the simple sequential scheme (Figure 13.6a), the execution time is 2N T D stages. 
Derive formulas for two-stage. three-stage, and four-stage pipelining. 

13.4 Consider the following code fragment in a high-level language: 

tar r in -1 loo2 
+ QM.VAL 

end loops 

Assume that 0 is an array of 12-hyte records and the VAL.. field is in the first 4 bytes 
of each record. Using WNW) code, we can compile this program fragment as follows: 

ECX,.  ECX  11 .010 I 

FAX, 'KZ, 32  r DoL ciffu% in EAK 
tax, Q[UX]  VA!' C:el.:. 

AUD  S. EflX 

DR'  ECX 

A•E  I.,F  : = Ler: 
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unconvinced ICOLW85a, FLY N87, DAN-187], There are several problems with 
attempting such comparisons I SERI_861: 

• There is no pair of RISC and CISC' machines that are comparable in life-cycle 
cost. level of technology, gate complexity., sophistication of compiler, operat-
ing system support, and so on. 

• No definitive test set of programs exists. Performance varies with the program. 
• It is difficult to sort out hardware effects from effects due to skill in compiler 

writing. 
• Most of the comparative analysis on RISC has been done on "toy" machines 

rather than commercial products. Furthermore, most commercially available 
machines advertised as RISC. possess a mixture of RISC and CISC character-
istics. Thus. a fair comparison with a commercial, "pure-play" C1SC machine 
(e.g., VAX, Pentium) is difficult. 

The qualitative assessment is, almost by definition, subjective. Several re-
searchers have turned their attention to such an assessment ICOLWK5a, WALL851, 
but the results are, at best, ambiguous, and certainly subject to rebuttal I PA'118.5b] 
and, of course, counterrebuttal [COLW85b]. 

In more recent years, the RISC versus CISC controversy has died down to a 
great extent, This is because there has been a gradual convergence of the technolo-
gies. As chip densities, mid raw hardware speeds increase. RISC systems have 
become more complex. At I he same Lime, in an effort to squeeze out maximum per-
formance, CISC designs have focused on issues traditionally associated with RISC, 
such as an increased number of general-purpose registers and increased emphasis on 
instruction pipeline design, 
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-This 'anagram makes use of the 'MU L instruction, which mul1iplies. the second 
operand by the immediate value in she third operand and places the result in 1he first 
operand (see Problem 1.0,13). A RISC advocate would like lo demonstrate that a 
clever compiler can eliminate unnecessarily complex insi ructions such as IMUL. Pro-
vide the demonstration by rewriting the above 810x 8n program without using the 
I M11, instruction. 

13.5 Consider the following loop: 
:= 

f K.  := to IOC 60 
S E  = E - K! 

A straightforward translation of this into a generic assembly language would look 
something like this: 

LD RI, C . ved .L.,13 uf E R:1 
LD R2, value ef f if. R2 

LP SUP R1, RI, R2 ;= S - K 

135Q :a0, U.:417 tf R = 1C) 
is17213 i317rt.mept K 

LP ec star= cf _cop 

A compiler for a RISC machine will introduce delay slots info this code .4o Mill the 
processor can employ the delayed branch mechanism, The J b1P instruction is ro 
ideal with,  instruclion is always followed by the 51.111 in traction: bore-
(ore, we can ...imply place a copy or IllySt Ili i nso Limon in [fie delay slot after the 
AI P. The RN) presents a difficult}?. W a ea n • Ie the t he lode as is, heca use the ADD 
instruction s.c..ould then he execuied one loo many times. Therefore. a NOP instruc-
tion is needed. Show the resulting code, 
Add entries for the following processors to Table 13.8; 
a. PtNitium III ..J 

h. PowerPC 
13.7 In many cases. common machine instructions that are not !islet] as part of the MIPS 

instruction set can be, synthesized with a single. MIPS instruction. Show this fol .  the 
1r1  

a. Register-to-register move 
h. butrement, decrement 
c„ Complement 
d. Negate 
e. Clear 

13.8 A SPARC implementation has .LK register windows. What is the number N of physi-
cal registers? 

133 SPARC is lacking a number of instructions commonly found on CISC machines. 
Some of these are easily simulated using either register RO. which is always set to .0, 
or a constant operand. These simulated instructions are called pscudoinstruetions 
and are reco.E.,rnized by the SPARC. compiler. Show how to simulate the following 
pseudoinstructions. cash with a single SPARC instruction. In all of these. src and dst 
refer to registers. iliar, A store to RO has no effect. 
a. YIONI src, dst d. NOT dsi 
b. COMPARF srcl, src2 e. NEC tist 
c. TEST srel f. INC dst 

13.10 Consider the following code fragment 
it ic > I r 

L != 4 

el me 
T. := - I, 

g. DEC 41,1 
It, C  dst 
i.  NOP 
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A straightforward translation of this statement into $1 3'.2t RC assembler could take the.. 
following form: 

-5 thL 21.11 2 rluad hLg.:a-Drder 22 biE of ad: ess 
rcf ioDeition K Lato reuLster r2 

Ld frKrA + %].:8 Joati.f.ELE5 oY locaDLcn f. ir.LQ f8 
crp rfi, lc 03rape,i0 ccIELeiL.s te le 
Die Ll ; bxana 10 
:top. 
aehi 5 ):9 
Ld [FE:rD 1 %10; 11, %r9 :lnad 2on7.ento of 1c)r.F_r.i.op N jnrc,. 79 
Lric ;NrE4 :add 1 ro 

trIO 

▪ 51
5r9, 11r1C :t 1c(Lj] ; store intc 1ca7.Lcn L 

Ll: set ..M 
ld - %r12 ;load ccnDoat Lccation K intu t=2 
dec %1.- 12 ...d1:3 -LtwoL _ = LOTEI tf12 
sethi qcr.fl 
s Stri2, Futr13 + ;FAcr:,  : or2aLi.i.r. I 

The code.coutairts a uop attu wash brauch instruction t& per.rnit tielayctlimineli oper-
ation. 
a. Standard compiler optimizations that live CIO *1111 RISC' machines; are 

gcnerally cffective in being able to perform two transformations 4)11 the ibleiZO[fla 
elide. Notice. that two of the loads are unnecessary and that the. two stores can be 
imrged if the stork: is rnovcd to a differcnt place in thc code. Show the program 
Om .  making  two changes, 

h. It now pa:Nil-AL, 
 hi NrI'1it1n4rtrr1t oplintif;ilions peculiar LE.1. SPARC. The n op af(V" 

the ble can he Fi2.1}hict'Ai h. mu  FiL•i  iik- ( ion into tha( delay slo( and Sc(-
Ong the annul l i1 on the Nu irt ,Lotici ion [..'N[ ressed at, blo,a L11, Show 411E; program 
after this change- 

r'. Them arc now two unnecessary instructions. Remove these and show the resulting 
program. 
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KEY POI Nas 
• A supcirsc;)1.ar processor is one in which multiple independent instruction 

pipelines are used. Each pipeline. conskts of multiple stages, 21 o that each 
pipeline can handle multiplc instructic,nis at a time. Multiple pipelines intro, 
duce a new level oiparaileiistn. enabling inultipio.strcarns of instructions to he. 
processed at a time. A superscalar processor explr.lit . iivhut is known as instruc-
tion-level parallelism, which refers Ire the degree to which the instructions of 
a program can be executed in pnaliel, 

• A superscalar processor lypically fetches multiple instructions at a time and 
then attempts to find nearby instruetions that arc independent of one another 

(..1  emi therefore he executed in parallel. 11 the input to One instruction 
depends en the output of a preceding instruction, then the latter instruc-
tion cannot complete execution at the smne time or before the former in. 
struction, Once such dependencies have been idani ified, the processor may 
issue and complete instructions in an o] -der that differs from that or the ofig-
ilia] machine code. 

• The processor may eliminate sortie unnecessary dependenciin by the use of 
additional registers and the renaming of register references in Lhe tit gina I cede. 

• Whereas pure RISC processors 0.1 . e11 employ delayed branches to masimiec 
the utilization of t he illStrliCi ion pipeline. this method is kc s appropriate to a 
superscalRr machine. Instead. most supc rsca jar machines use traditional brand) 
prediction methods to improve citieieney. 

ASuperscalar impleinentation of a processor archiieeiurc is one in which corn-
mon instructions-integer and floai ing-point arithmetic, loads. Flores, anti 
conditional branches..--can be initiated simultaneously .ii nd executed hide.- 

penden tly. Such implementations raise a number of complex design issues related 
to the instruction pipeline. 

Superscalkir design arrives oil I he senile hard on the heels of RISC.' architec-
ture, Although the simplified instruction set architecture of a RISC machine lends 
itself readily to Kuperscalar techniques, the superseakir ipproach can be used on 
either a RISC' or CISC architecture. 

Whereas the gestation period for the arrival of commercial RISC' machines 
from the beginning of true RISC research with the IBM 801 and the Berkeley RISC 
I was Stro2.11 or eight years, the first superscalar machines became commercially 
available within just a year or Iwo of the ctrining of the term superscafim The L$' - 
scatar npprL e  has now heeornc...• the standard method for implementing high-
pe[101 iii.iiiiec microprocessors. 

In this chapter, we begin will h an overview of the superscalar approach. von-
irasting it with supcipipelining. Next, we present the. key design i ,,,sile., associated 
w.ilh supuscihn- impleiricribition. Then we look at several importhiii examples of 
supursealar architecture, 
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14.1 OVERVIEW "W 
The term superscatur. first coined in 1987 1AGERK7], refers to a machine that is 
designed to improve the performance of the execution of scalar instructions. In most 
applications, the hulk of the operations are on scalar quantities. Accordingly, the 
supersealar approach represents the next step in the evolution of high-performance 
general-purpose processors,. 

The essence of the superscalar approach is the ability to execute instructions 
independently in different pipelines, The concept can he further exploited by allow-
ing instructions I n he executed in an order different from the program order. Figure 
14.1 shows, in :.T.enera I terms, the superscalar appri.ich. There are multiple. func-
tional units, each of which is implemented as a pipeline, which support parallel exe-
cution of sevend instructions. In this example, two integer. two floating-point, and 
one memory (either load or store) operations can he executing at the same time.. 

Many researchers have investigated superscalar-like processors, and their 
research indicates that some degree of performance improvement is possible.. 'fable 
14.1 presents the reported performance advantages. The differences in the results 
arise from differences both in the hardware of the simulated machine and in the 
applications being simulated, 

Superscalar versus Superpipelined 

An alternative approach to achieving greater performance is referred to as super-
pipelining, a term first coined in 1988 IJOUP881. Superpipelining, exploits the fact 
that many pipeline stages perform tasks that require less than half a clock cycle. Thus, 
a doubled internal clock speed allows the performance of two tasks in one external 
clock cycle, We have seen one example of this approach with the MIPS R4000. 

Figure 1=1.2 compares the two approaches_ The upper part of the diagram illus-
trates an ordinary pipeline, used as a base for comparison. Hie base pipeline issues 
one instruction per clock cycle and can perform one pipeline stage per clock cycle. 
The pipeline has four stages: instruction fetch, operation decode, operation exert'. 

Memory 

Figure 14.1 General Superscalar Organization ICO1titE95 

lti 
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Table 1.4.1 Reported Speedups of Supersea tar. Like Machines 

Reference Speedup 

prIAD7111 L.s 
[1c UCK72 .1 8 
I WEISS41 1,58 
I ACOS86I 2.7 
[S0HI90] 1.S 
ISIMI'FRY] 2.3 
1.1 011PS9h] 7,2 
I LEFL91 I 7 

lion, and result write back. The execution stage is crosshatched for clarity. Note that 
although several instructions are executing concurrently, only one instruction is in 
its execution stage al any one time. 

The. next part of the diagram shows a superpipelined implementation that is 
capable of performing two pipeline stages per clock cycle. An alternative way of 
looking at this is that the functions performed in each stage can be split into two 
nonoverlapping parts and each can execute in half a clock cycle. A superpipeline 
implementation that behaves in this fashion is said to be of degree 2. Finally, the 
lowest part of 1he diagram shows a superscalar implementation capable of execut-
ing two instances of each stage in parallel. Higher-degree superpipeline and super-
scalar implementations are of course possible. 

Both the superpipeline and the superscalar implementations depicted in Fig-
ure 14.2 have 1hc same number of instructions executing at the same time in the 
steady state. The superpipelined processor falls behind the supersealar processor at 
the start of the program and al each branch target. 

Limitations 

The superscalar approach depends on the ability to execute multiple instructions 
in parallel. The term instruction-level parallelism refers to the degree to which, on 
average, the instructions of a program can be executed in parallel. A combination 
of compiler-based optimization and hardware techniques can he used to maximize 
instruction-level parallelism. Before examining the design techniques used in super-
scalar machines lo increase instruction-level parallelism. we need to look at the fun-
damental limitations to parallelism with which the system must cope. fJOHN91] lists 
five limitations: 

• True data dependency 

• Procedural dependency 

• Resource conflicts 

• Output dependency 

• Antidependency 

We examine the first three of these limitations in the remainder of this section. A 
discussion of the last two must await some of the developments in 1hc next section. 



Writo Decode NmOVN tOOtA 121 

14.1 / ciATERIT.F.N.v 509 

True Data Dependency 

Consider the Co lowing selLtence: 

ado. r2 load rho col-. tents of r2 

pus the contents of xi 

rcove r3 w1 ;load regster .r3 the contonLs of fi 

The second instruction can be fetched and dccoLlud but L.innot c until the first 
instruction eNccuM. The reason is that the second instruction needs [lath produced 
b the first instruction. situation is referred to as a true data dependency (also 

called flow dependency or write-read dependency). 

K14.4.64.1.1114.t 
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Execute 

II 2 3 4 5 7 8 9 
Thou in base cycles 

Eiger' 14.3 Eacel of Depo -ulLnuich 

Figure 14.3 iilustrates this dependency in a superscalar machine of degree 2. 
With no dependency, two instructions can be Iciched  exectucd in parael, [f 
there is a da1.0 dependency between the first ond second instructions, i hen the sce-
ond instruction is dehoied as many clock cycles as required to lenlore the depen-
dency. In general, any instruction must be delved unlil all of its input values have 
been prodkcCil s  

1 SinL[rl12 Suihr pipeline, Ihe aforementioned sequence of instructions would 
C:itNt: no dchly. I lowc ,.. cr. consider 1h1 following, in which one of the loads is from 
incniory rusher than from a register: 

Load ri, cff ;load reg3LeT ri convent:, of 
ir.ernory add.fes ef 

MOve 1- 3 r  ri 'load regLste1 r3 tha of rl 
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A typical RISC processor takes two or more cycles to perform a load from 
memory because of the delay of an off-chip memory or cache access. One way to 
compensate for this delay is for the compiler to reorder instructions so that one or 
more subsequent instructions that do not depend on the memory load can begin 
flowing through the pipeline_ This scheme is less effective in the case of a superscalar 
pipeline: The independent instructions executed during the load are likely to be exe-
cuted on the first cycle of the load. leaving the processor with nothing to do until 
the load completes. 

Procedural Dependencies 

As was discussed in Chapter 12, the presence of branches in an instruction 
sequence complicates the pipeline operation. The instructions following a branch 
(taken or not taken) have a procedural dependency on the branch and cannot he 
executed until the branch is executed, Figure 14.3 illustrates the effect of a branch 
on a superscalar pipeline of degree 2. 

As we have seen, this type of procedural dependency also affects a scalar 
pipeline. Again, the consequence for a superscalar pipeline is more severe. because 
a greater magnitude of opportunity is lost with each delay, 

If variable-length instructions arc used, then another sort of procedural depen-
dency arises. Because the.length of any particular instruction is not known. it must 
he at least partially decoded before the following instruction can he fetched. This 
prevents the simultaneous fetching required in a superscalar pipeline. This is one 
of the reasons that.superscalar techniques ;ire more readily applicable to a.R1SC or 
RISC-like architecture, with its fixed instruction length. 

Resource Conflict 

A resource conflict is a competition of two or more instructions for the same 
resource at the same lime. Examples of resources include memories. caches. buses, 
register-file ports. and functional units (e.g.. ALL adder). 

In terms of the pipeline. a resource conflict exhibits similar behavior to a data 
dependency (Figure 14.3). There are some differences, however. For one thing, 
resource conflicts can he overcome by duplication of resources, whereas a true data 
dependency cannot be eliminated. Also. when an operation takes a long time to 
complete, resource conflicts can he minimized by pipelining the appropriate func-
tional unit. 

14.2 DESIGN ISSUES 

Instruction-Level Parallelism and Machine Parallelism 

POUPS9a] makes an important distinction between the two related concepts of 
instruction-level parallelism and machine parallelism. Instruction-level parallelism 
exists when instructions in a sequence are independent and thus can be executed in 
parallel by overlapping. 
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As an example of the concept of instruction-Level parallelism, consider Elio fol-
towing two code fragments POUP89131: • 

Load R_ <- R2 Add R3 
R3 1  11" Ada R4 (— Fe,  , R 

7-1 - K. 2 [ Re).] R.:: 

The [hree instruetion:i On Ihc kit are inKlependent, ;.]ncl in theory all llffee could be 
executed in  In conirast :  the ttu-cc instructions on the right cannot be exe-
cuted in parallel because the second instruction uses the result of the first, and the 
third instruction uses the resull of the second. 

Instruction - level parallelism is cictermined by the frequency of true data 
dependencies and procedural dellendencies in the code. These factors, in turn, are 
dependent on the instruction set architecture and on the application. Instruction. 
Level parallelism is also determined by what POIJI-)89411 refers lo as operation 
latency! the lime until the result of an iiis[i lad ion is available for use as an operand 
in a subsequent instruction. The Latency determines how much of a delay a data or 
procedural dependency will cause. 

Machine parialleli rn is a measure of l he ;Ibility ()I' the processor to take achan-
[age or instruction- level paollelisrn.  k determined by the num-
ber of instructions that can be fetched and executed at the same lime (the number 
of parallel pipelines) and by the speed and sophistication of the Mechani2!km2.., that the 
promsKIT uses to find inclepenclent insl ructions.. 

Both instruction-level and machine parallelism arc important factors in 
enhancing performance. A program may not have enough instruction-level parallel-
km to take full advantage of machine parallelism, The use of a fixed - length instruc-
[kin set irchiteeture, as in a HISC, cnhanees instruction - level parallelism. On the 
other hand, limited machine parallelism will Iimil performance no matter what the 
nature of the program. 

Instruction Issue Policy 

As was mentioned, nthchine parallelism is nut simply LI matter of having multiple 
instances of each pipeline stage. The processor must also be able to identify instruc-
tion-level parallelism and orchestrate the fetching. decoding, and execution of 
instructions in parallel. [JOI-r4911 uses the term instruction issue to refer to the 
process of initiating instruction execution in the processor's functional units and the 
term instruction issue policy to refer to the protocol used to issue instructions. 

in essence, the processor is trying lo look ahead of the current poinl of CNA> 
cation to locale instructions  Carl be brought into thy. pipdhic and executed. 
Three types of orderings are important in this regard: 

■ The order in which instructions are fetched 

• The Order in which instructions are cNecuted 
I  The, order in which instructions update the contents of register and memory 

locations 

The more sophistic4111lhe proccs ,;or..1he less it is hound by a strict relation-
ship he weep these orderings. To optimize utilii.alion of Hie various pipeline ele- 
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thc processor will need to alter one or more of these orderings with respect 
to the ordering to he. found in a strict sequential execution. The one constraint on 
the processor is that the result must be correct. Thus, the processor must accom-
modate the various dependencies and conflicts discussed earlier. 

In general terms, we can group superscatar instruction issue policies into the 
following categories: 

■ In-order issue with in-order conviction 

• In-order issue with out-of-order completion 
■ Out-of-order issue with out-of-order cornpleiion 

In-Order Issue with In -Order Completion 

The simplest instruction issue policy is to isuC instructions in the exact order 
'hal would be achieved by sequential execution (in-order issue) and to write results 
in that srmic. order (in-order completion). Not even scalar pipelines follow such a 
si mple-minded policy. However, it is uscful to consider this policy as a baseline for 
comparing more sophisticated aPProacllw- 

F'igure 14,4a gives an example of this policy. We assume a superscalar pipeline 
capable of fetching and decoding two instructions at a time, having three separate 
functional units (e.g., two integer arithmetic and one floating-point arithmetic), and 
having two instances of the write-back pipeline stage. The example assumes the fol-
lowing constraints on a six-instruction code fragment: 

• I] requires two cycles to execute. 
• 13 and 14 conflict for the same functional unit, 

• IS depcndN on the value produced by 14. 
■ 15 and 16 conflict for a functional unit, 

Instructions are fetched LINO at LI lime aired passed lo the decode LIDA. Because 
instructions are fetched in pairs, the next two instructions must wait until the pair of 
decode pipeline slagcs has cleared. To guarantee in-order completion. when there 
is a conflict for a functional unit or when a functional unit requi rex. more lhan one 
cycle to generate a result, the issuing of instruction temporarily stalls. 

In I his cx;imple, the elapsed time. from decoding the first instruction to writ-
ing the 1w4 results is eight cycles. 

In-Order Issue with Out-of-Order Completion 

Out-of-order completion is used in scalar RISC processors to improve the per-
formance of instructions that require multiple cycles. Figure 14.0 illustrates its LISc. 

cart a supersealar processor. Instruction 12 is allowed to run to completion prior to H. 
This allows I to he completed earlier, with the net result of a savings of one cycle. 

With out-of-order completion, any number or inslrucLion.s may be in the Q.:W-

t.:A.11 km stage at any one time, up to the maximum degree of machine parallelism 
across all functional units, Instruction issuing is stalled by a resource conflict, a data 
dependency, or a procedural dependency. 

In addition to the aforenieniioned li mitations, a new dependency. which we 
referred to earlier as an output dependency (also called write-write dependency), 
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(a) 1n-orderi a.ntl in-order compicuon 

(1-0 In- }Ilia issw and out-oi -order completion 
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Figure 14.4 Sziperscalar Instruction Issue and Completion Policics 

4i nscs. The rohowing cock!. Ir.igrne.ni  illustrates this dependency (op reprcsenLs nny 
opewion): 

:1: R3 op R 

L2 ; !"?.4 + 1 
:  R3 R5 1 

=4: F7 (— R3 Dp 

Instruction 12 canna execute before instruction II, becausc ii needs the result 
n register R3 produced in 1.1 this is an exiimple or true data dependency. as 
described inSection 1 4.1. Similarly, 14 must frI. because it uses a rosult pro. 
di,2eLl Ii 13.  .thoui the relationship between I] and 13? There is no daLs 

http://Ir.igrne.ni
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dependency here. as we have defined it. however. if 13 executes to completion prior 
to I1, then the wrong value of the contents of 1-1=; will be fetched for the execution 
of 14. Consequently, 13 must complete after 11 to produce the correct output values. 
To ensure this, the issuing of the third instruction must be stalled iI its result might 
later he overwritten by an older instruction that takes longer to complete. 

Out-of-order completion requires more complex instruction issue logic than 
in-order completion. In addition, it is more difficult to deal with instruction inter-
rupts and exceptions. When an interrupt occurs, instruction execution at the current 
point is suspended. to he resumed later. The processor must assure that the resump-
tion takes into account that, at the time of interruption, instructions ahead of the 
instruction that caused the interrupt may already have completed. 

Out-of-Order issue with Out-of-Order Completion 

With in-order issue, the processor will only decode instructions up to the point 
of a dependency or conflict. No additional instructions are decoded until the con-
flict is resolved. As a result, the processor cannot look ahead of the point of conflict 
to subsequent instructions that may he independent of those already in the pipeline 
and that may he usefully introduced into the pipeline. 

o allow out-of-order issue, it is necessary to decouple the decode and execute 
stages of the pipeline,. 'This is done with a buffer referred to as an instruction win-
dow. With this organization. after a processor has finished decoding an instruction. 
it is placed in the instruction window. As long as this buffer is not full, i he proces-
sor can continue to fetch and decode new instructions. When a functional unit 
becomes available in the execute stage, an instruction from the instruction window 
may he. issued to the execute stage. Any instruction may he issued. provided that (1) 
it needs the particular functional unit that is available and (2 ) no conflicts or depen-
dencies block this instruction. 

The result of this organization is that the processor has a lookahead capabil-
ity, allowing it to identify independent instructions that can be brought into the exe-
cute stage. Instructions are issued from the instruction window with little regard for 
their original program order. As before, the only constraint is that the program exe-
cution behaves correctly. 

Figures I 4.4e illustrates this policy. On each cycle, two instructions arc fetched 
into the decode stage_ On each cycle, subject to the constraint of the 'buffer size, two 
instructions move from the, decode stage to the instruction window. In this example. 
it is possible to issue instruction 16 ahead of 15 (recall that 15 depends on 14, but 16 
does not). Thus. one cycle is saved in both the execute and write-hack stages. and 
the end-to-end savings, compared with Figure 14,4b, is one cycle. 

The instruction window is depicted in Figure 14.4c to illustrate its role. 1 low-
ever, this window is not an additional pipeline stage. An instruction being in the 
window simply implies that the. processor has sufficient information about that 
instruction to decide when it can be issued. 

The out-of-order issue, out-of-order completion policy is subject to the same 
constraints described earlier. An instruction cannot be issued if it violates a depen-
dency or conflict. The difference is that more instructions are available for issuirw, 
reducing the probability that a pipeline stage will have to stall. In addition, a new 
dependency, which we referred to earlier as an autidependency (also called read- 
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write dependency). arises. The code fragment considered earlier illustrates this 
dependency! 

IL :  R3 R3 op R5 
12 ; R5 - 1 

3  R3 (— R5 — 1 
14: R^ R3 op R4 

Instruction 12. •annot complete execution before instruction [2 begins execu-
ti on and has fetched its operands. This is so because 13 updaces register R. v.rhich 
is a source operand for 12. The term toirlidependicncy is used because the colp.traint 
is similar to that of a true data dependency, but reversed: Instead of the firs! ar t ILLC• 

(i on producing a value that the second instruction uses, the second instruction 
destroys a value that the first instruction uses. 

Register Renaming 

When oui-ol-order instruction iSSLIirig and/or out-of-order instruct ion completion 
are allowed. we have seen that this gives rise to the possibility of output dependen-
cies and antidependencies. These dependencies differ from true data dependencies 
and resource conflicts. which reflect the flow of data through a program and the 
sequence of execution. Output dependencies and antidependcneics. on the other 
hand, arise because the values in registers may no longer reflect the sequence of 
values dictated by the program flow. 

When instructions 4Lre issued in sequence and complete in sequence, it k 
possible to specify the contents of each register at each point in the execution. When 
out-of-order techniques are used. the values in regisi ers cannot be fully known at 
each point in time just from a consi4lerai ion of thL' sequence of instructions dictated 
by lite program. In effect, value!, al e in conflict for the use of registers. and the 
processor must resolve th(we conflicts by occasionally stalling a pipeline stne. 

Antidependencies and output dopenciencies tiro hOLII examples of storage con. 
tlicts. Multiple:instructions are competing for t he use of the same register locations. 
generatin;, pipeline constraints that retard performance. The problem is made more 
acute when iegistet optimization techniques arc used (as discussed in Chapter 13). 
because these compiler techniques attempt to maximize the use of registers, hence 
maximizing 1 he number of storage conflicts. 

One method for coping with these types of storage conflicts is based on a 
traditional resource-conflict solution: duplica ion of resources. In this context, the 
technique is referred to as register renaming, In essence, registers are allocated 
dynamically by the processor hardware. and they are associated wilh the values 
needed h instructions at various points in time. When a new register value is created 
(i.e., when an instruction executes that has a register as a destination operand). a new 
register is a ilocatcd for that value. Subsequent instructions that access that value 
as source operand in that register must go through a renaming process: The regis-
ter references in those instructions must be revised to refer to the register conlitining 
the needed value_ Thus, the minic original register reference in several different 
instructions may refer to different actual registers. if different values are intended. 
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Let us consider how register renaming could be used on the code fragment we 
have been examining: 

1: R3 L, <— R3, Op a5, 
:  R4„ <— R3, + 1 

R3 + 1 
14: R7, <— H3,. op R4,, 

The register reference without the subscript refers to the logical register ref-
erence found in the instruction. The register reference with the subscript refers 10 a 
hardware register allocated to hold a new value.. TiLVIten a new allocation is made for 
a particular logical register, subsequent instruction references 10 that logical regis-
ter as a source operand are made to refer to the most recen I ly allocated hardware 
register (reccnt in terms of the program sequence of instructions). 

Iii this example, the creation of register R3,, in instruction I3 avoids the anti-
dependency on the second instruction and the outpul dependency on the first in-
struclion, and it does not interfere with the corrcet value bcing accessed by 14. The 
result is ihat 13 can be issued immediately; without renaming. 13 cannot be issued 
until the first instruction is complete and the second instruction is issued. 

Machine Parallelism 
In the preceding, we have looked a1 three hardware techniques that can be used in 
a superKalar processor to enhance performance! duplicikn of resources, oul-of-
order issue, and renaming. One study that illuminates the relationship among these. 
techniques was reported in j511 [1 .89]. The study made use of a simulation that mod-
eled a machine with the characteristics of the MIPS R2000, augmented with various 
superscalar features. A number of different program sequences were simulaicd. 

Figure 14.5 shows the results. In each of the graphs, the vertical axis corre-
sponds to the mean speedup of I he superscalar machine over the. scalar machine. 
The horizontal axis shows the rcsulis for tour alternative processor organizations. 
The base. machine does not duplicate any of the functional units, but it can issue 
instructions out ()I' order. The second configuration duplicates the toad/stone func-
tional unit that accesses a data cache. The third configuration duplicates the ALU. 
.end the fourth configuration duplicates both load store and AI, . in each graph, 
results arc shown for instruction window sizes of 8, 16, and 32 instructions, which 
dictates the amount of to okahead the processor can do. The difference between the 
two graphs is that, in the second, rep isl et renaming is allowed, Thia is equivalen1 to 
saying Ihal the firm graph reflects a machine that k limited by all dependencies, 
wheteaN I he second graph corresponds to a machine that is limited only by t rue 
dependencies. 

The two graphs. combined, yield some importani conclusions. The first is that 
it is probably not worlhwhile to add functional units without register renaming. 
There is some sl ight improvement in performance. but at the cost of increased hard-
ware complexity. With register renaming, which eliminates antidependencies and 
outpul dependencies, noticeable gains are achieved by adding more funciional 
units. Note :  however, Thal there is a significant difference in the amount of gain 
achievable between using an instruction window of 8 versus a larger instruction 
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Figure 14.5 Speedups or Various Machine Organizations, without procodund 
Dependencies 

window. This indicares aim if the instruction window is too small, data dependen-
cies will proicrul erreelivc utiliaition of the extra functional units the processor 
must he able Lo look quite far ahead to find independent instructions to utilize IhL 
hardware more fully. 

Branch Prediction 

Any high-performance pi pelined rnachine must address the issue of dealing with 
branches. For example. the Intel 80486 addressed the problem by ft:II:Fling both 
the next sequential instruction after a branch and speculatively fetching the 
branch target instruction_ However, because. there are two pipeline stages be-
tween prefetch and execution, this strategy incurs a two-cycle delay when the 
branch gets taken. 

With the advent of RISC machines, Ihe delayed branch sir:mew,/ wras ex-
plored, I his allows laic:. processor Lo calculate the result of conditional branch 
instructions before any unusable instructions have been prefetcbcd. With this 
method, the processor always executes the single ins1rurt inn that immediately 
follows the branch. 'fhis keeps the pipeline full while the processor fetches.a new 
instruction stream. 

With the development of supersealar machines, the delayed branch strategy 
has less appeal. 'Hie reason is that rriultirtic instructions need to execute in the delay 
slot, raising several problems relating to instruction dependencies. Thus, su pc:m:4u 
machines have returned to pre-RISC techniques of branch predie1ion, Some, like 
the rowerl'C NM. use a simple static branch prediction technique. More sophisti- 
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rated processors. such as the PowerPC 621) and the Pentium 4, use dynamic.branch 
prediction based on branch history analysis. 

Sup erscalar Execution 

We are now in a position to provide 4Lil overview of .supmcalar execution of pro- 
grams; this is illustrated in Figure 14.6. The program to be executed consists of a lin• 

sequence of instructions. This is the static program as written by the programmer 
or generatud by the conviler. The instruction fetch process. which includes branch 
prediction. is used to form a dynalirliC. hil -Cani Of instructions, This stream is exam-
ined for dependencies, and the processor nix' remove artificial dependencies. The 
processor i hun dispatches the instructions into a window of execution. In this win-
dow_ instructions no longer form . ,;equenlial stream but are structured according 
to their true data dependencies. The prcwessor perrorms the e xeen i on stta ge of each 
instruction in an order determined by the true data dependencies and hRrdware 
resource avai  Finally, instructions are conceptually put back into sequential 
order and their results arc recorded. 

The final step mentioned in the preceding paragraph iw relurcil to as coinnar• 
ti.v, or refiring. the instruction. This step is needed for the following reason. Because 
of the use or parallei, mulIipie pipelines. instructions may complete in an order dif-
ferent from that shown in the statie program. Further, ihe. use. of branch prediction 
and speculative execution means that some instructions rnav complete. execution 
and then musl be abandoned because the branch they represent is J101 taken, There-
fore, permanent sloragc mid program-vkibie rK•gi4ers cannot be updVed immedi-
ately when instructions complete execution. Results must be held in sonic Sod Of 
Iemporory storage that is usable by dependent instructions and then made pertna-
richt wheel ii is determined Ihat the sequential model would have executed the 
instruction. 

INI Wow of 
execution 

Figure 144 Conoepnial Derrietion cif Superscalar Processing ESIvIITY5 
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Superscahr Implementati 011 

Based on our discussion so lar, we can make some general comments about the 
proecssor hardware required for the superscalar approach. [SMIT951 lists the fol-
lowing key elements: 

• Instruction fetch strategies that simultaneously fetch multiple instructions, 
often by predicting the outcomes of. and fetching beyond, conditional branch 
instructions. These functions require Lhc use of multiple pipeline fetch and de-
code :stages- and branch prediction logic. 

• Logic for determining I rue dependencies involving register values, rind 
mechanisms for communicating these values to where they axe needed dur. 
ing execution. 

• Mechanisms for initiating, or issuing, multiple instructions in parallel 

▪ Resources for parAlel execution of multiple instructions, including muniplc pipe. 
li ned functional units and memory hierarchies capable of simultaneously ser-
vicing multiple memory references, 

• Mechanisms for committing the process state in correct order, 

14..3 PE,INITItai 4 aa"..f.;c3a. er
.roe ea:fel.:.5ePie"  •,:•,,,X.e.ro,,..--44,- ....sPrirY, ".."-> • .....lrIP-F4-'••::••:•:;•;•, :•.::. 

f". 
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Although the concept of superscalar design is generally associated with the RISC 
architecture, the same superscalar principles can be applied to a C.T.SC machine. Per-
haps the most. notable emimpic or this is the Pentium. The evolution cif supcirRealat 
concepts in the Intel line is interesting to note. The 80486 was a siva ightforward 
traditional C'ISC' machine, with no superscalar elements. '1 . he. original Pentium had 
a modest superscalar component, cunsisling of the use of two separate integer 
execution uniis. File Pentium Pro introduced a full-blown superscalar design- Suh-
&equent Pentium models have refined and enhanced the superscalar design. 

A general block diagram of the Pentium 4 wa. ,, shown in Figure 4.13. Figure 
14.7, based on one in [C At  depicts thc mime structure in a way more suitable 
for the pipeline discussion in this section. The operation of the Pentium 4 can be 
surnmari2ed as follows: 

L proce,ssc Yr I '
L' tales instructions from memory in the order of are stalie program, 

/ Each instruction is translated into one or more fixed-length RISC instructions, 
known as micro-operations, or micro-ups. 

3. The processor executes the micro-ops on a superscalar pipeline organization, 
so that the micro-ops may be execuled out or order. 

4. The processor commits the results of each micro:op execution in the proces-
sors register set in the order of the original program flow. 

In cited, the Pentium 4 architecture consists of an outer cis(' shell with an 
inner RISC core. The inner RISC micro-ops pass through a pipeline with at least 20 
stages (Figure 14.8): in some cases, Lha micro-op requires multiple execution stages, 

r. 
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figum 14.7 Protium 4 Nock Diagrurri 

resulting in an even longer pipeline, This contrasts with the five-stage pipeline (Fig-
ure [2.1(x) uw..t.1 on the Intel N.86 processors and on the Pentium. 

We now truce k operation of the Penli urn 4 pipeline. using Figure 14. 14 litP illus-
trate its operation. 

Front End 

Generation of Micro-Ops 

Thu Punli urn 4 organization include an in-order front end (Figurk.l. I4,{la) that 
can be considered outside the scope of thc pipeline depicted in Figure I4.K. Phis 
front end feeds into an LE instruction cache, culled the trace cache, which is where 

oXr.,27WrePt+WeSearcr.1 -:errlir 

I 2 3 4 • 9 10 II 112. 1t t 15 16 17 Ili 1g rtfl 
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the pipeline proper begins. Usually, the processor operates from the ince cache; 
when a Irace cache miss occurs, the in-order fron1 end feeds new instructions into 
the trace cache. 

With the aid of the branch target buffer and the instruction lookasidc buffer 
( 51 - B & I-TLB), the fetchidecode unit fetches Pentium 4 machine instvuctions from 
the 1.2 cache 64 bylcs at a time. As a default, instructions are fetched sequentially, 
so that each L.2 cache line fetch includes the next instruction to be fetched. Branch 
prediction via the BTB 3r 1-TLS unit may alter this sequential fetch operation. 
The ITLB translates the linear instruction pointer address given it into physical 
addresses needed Lo access the L2 cache. Static branch prediction in the front-end 
BTB is used to determine which instructions to fetch next. 

,  Once instructions are fetehed, the fetch/decode unit scans die bytes to deter-
mine instruelion boundaries; this is a necessary operation because of the variable 
1CJI ath of Pentium instructions. The decoder translates each machine instruction into 
from one to four micro-ops, each of which is a 118-bit RISC instruction. Note for 
comparison 1hat most pure RISC machines have an instruction length of just 32 bits. 
The longer micro-op length is required to accommodate the more complex Pentium 
operations. Nevertheless, the micro-ops are easier to manage than the original 
instructions from which they derive. 

The generated micro-ups are stored in the trace cache, 

Trace Cache Next Instruction Pointer 

The first two pipeline stages (Figure 14.9b) deal with the selection of instruc-
tions in the trace. cache and involve a separate branch prediction mechanism from 
that described in the previous section. The Pentium 4 uses a dynamic branch pre-
diction strategy based on the history of recent executions of branch instructions. A 
branch target buffer (EITB .) is maintained that caches information about recently 
encountered branch instructions. Whenever a branch instruction is encourocred in 
the instruction stream. the BTU is checked. If an entry already exists in the BTB, 
then the instruction unit is guided by the history information for that entry in deter ,  
mining whether to predict that the branch is taken. If a branch is predicted, then the 
branch destination address associated with this entry is used (0E prefetching the 
branch target insiruction. 

Once the iitz,tritction is executed, the history portion of the appropriate enlry 
is updated to reflect the result of the branch instruction. If this instruction is not rep-
resented in the Eira then the address of this instruction is loaded into an entry in 
the 1-11I-3; if necessary, an older enlry is deleted. 

The description of the preceding two paragraphs fits, in general terms. the 
branch prediction strate gy used on the original Pentium model. as well as the later 
Pentium models, including Pentium 4. However, in the ease of the Pentium, a rela-
tivehy. simple 2-bit history scheme is used. The later Pentium models have much 
longer pipelines (20 staes for the Pentium 4 compared with 5 stages for the Pentium) 
and therefore the penalty for misprediction is greater, Accordingly, the later Pen-
tium models use a more elaborate branch prediction scheme with more history bits 
to reduce.the misprediction rate. 

The Pentium 4 BTB is organized as a four-way set-associative cache with 512. 
lines, Each entry uses the address of the branch as a tag. The entry also includes the 
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branch destination address for the last time this branch was taken and a 4-bit his-
tory field. Thus use Of four history hits conlrasIs with the 2 bits used in the original 
Pentium and used in most superscalar processors, With 4 bits. the Pentium 4 mech-
anism can take into account a longer history in predicting branches. The algorithm 
that is used is referred to as Yeti's algorithm 1YEH91 J. The developers of this algo-
rithm have demonstrated that it provides a significant reduction in mispi ediction 
compared to algorithms that use only 2 bits of history [EVER98]. 

Conditional branches that do not have a history in the 1#TR are predicted 
using a static prediction algorithm, according to the following rules: 

• For branch addresses that are not IP.relative, predict taken if the branch is a 
return and not taken otherwise. 

• For IP-relative backward conditional branches, predict taken. This rule 
reflects the typical behavior of loops, 

• For IP-relative forward conditional branches, predict not taken. 

Trace Cache Fetch 

The trace cache (Figure 14.9c) takes the already-decoded micro-ops from the 
instruction decoder and assembles them in to program-ordered sequences of micro-
ops called traces. Micro-ops are fetched sequentially from the trace cache, subject 
to the branch prediction logic. 

A few instructions require more than four micro-ups. instructions arc 
transferred to microcode ROM, which contains the series ()I' microlops (five or 
more) associated with a complex machine instruction. For example, a string instruc-
tion may translate into a very large (even hundreds), repetitive sequence of micro-
ops. Thus, the microcode ROM is a microprogrammed control unit in the sense 
discussed in Part Four, After the microcode ROM finishes sequencing micro-ups for 
the current Pentium instruction, fetching resumes from the trace cache. 

Drive 

The fifth stage (Figure 14.9d) of the Pentium 4 pipeline delivers decoded instruc-
tions from the trace cache to the rename/allocator module, 

Out-of-Order Execution Logic. 

This part of the processor reorders micro-ops to allow them to execute as quickly as 
their input operands are ready. 

Allocate 

The allocate stage (Figure 14.9e) allocates resources required for execution. It 
performs the following functions: 

• If a needed resource, such as a register, is unavailable for one of the three micro-
ops arriving at the allocator during a clock cycle, the allocator stalls the pipeline. 

• The allocator allocates a reorder buffer (R014) entry, which tracks the com-
pletion status of one of the 12h micro-ups that could be in process at any time. 
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• The allocator allocates one of the 128 integer or floating-point register entries 
for the result data value of the micro-Op. and pmsibly a load or store. buffer 
used to track one of the 4 loads or 24 stores in the machine pipeline. 

• The allocator allocates an entry in one of the two micro-op (-11.1 QL,LCS in front of 
the instruction schedulers.. 

'The ROB is a circular buffer that c210 hold up to 126 micro-ops and also con-
tains the 128 liardiA ,are registers. Each buffer entry consists of the following fields; 

• State: indicates whether this micro-op is scheduled for C.ncx2Lition. has been dis-
patched For execution, or has completed execution and is ready for retirement. 

• Memory Address: The address of the Pentium instruction that generated the 
micro-op. 

▪ Miero.op: The actual operation. 

• Alia', Register: If the rmcro-op refe.renees one. of the 16 a rchitecturat registers, 
this entry redirects that reference to one of the 128 hardware registers. 

Micro-taps enter the ROB in order. Micro-ups are then dispatched from the 
ROB to the Dispatch/Execute unit out of order. The criterion for dispatch is that 
the approphate execution unit and all  dflth item s required for this micro-
op arc available. Finally, micro-n1t ti e retired from the ROB in order. To accom-
plish in-order retirement. micro-ops are retired oldest first after each micro-op has 
been designated as ready for retirement, 

Register Renaming 

Mc: rename stage (FigurC• I 4.9c ) rentaps. references LO the 16 architectural reg-
isters (8 floatinst-poini register!, plus FAX, 12BX, ECX, EDX, ESL EDI, EBP. and 
ESP) into a set of 128 physical registers. The stage removes false dependeneie. 
caused by a limited number of architectural registers while preserving the true data 
dependencies (reads after wriles). 

Micro-op Queuing 

After resource allocation  and register renaming, micro-cps are placed in one 
of two micro-op queues (Figure i4.90, where they are held until 

and 
room in 

the schedulers. One of the two queues is for memory operations (loac.N nd stores) 
and the other for micro-ups  clo noi involve memory references. Each queue 
obeys a PIPO (first-in-first-out) ilkcipline, but no order is maintained between 
queues. That is, a micro-op may be [cad out of one queue out of order with respeci 
lo micro-cps in the other queue. This provides greaher flexibility to the schedulers, 

-lip Scheduling and Dispatching 

The schedulers (Figure /4.Ug) ,  are responsible For retrieving micro-ops from 
he niicro-op queues and dispatching these for execution. Each scheduler looks for 

micro-ops in whose status indicates that the micro-op has all of its operands. If the 
execution unit needed by that micro-op is nvailable, then the scheduler fetches 
he micro-op and dispatches il to the appropriate execution unit (Figure 14.9h1. 

Up to six micro-ops can be dispatched in one cycle. If more than one micro-op is 
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available for a given execution unit, I hic n the scheduler dispatches them in sequence 
from the q1euu.'1'his is a sort or F110 disciptine that favors in-order execution, but 
by this time the instruction stream has been so rearranged by dependencies and 
branches that it is substantially out of order. 

12our pork attach the schedulers in the execution units. Port 0 is used for both 
integer and floating-point instructions, with the exception of simple integer opera• 
Lions and the handling of branch mispredietions. which are allocated to Port 1. In 
addition. NI MX execution units are . allocated between these two ports. The renEllin -

inv.  ports are for memory loads and stores. 

Integer and Floating -Point Execution Units 

The integer and floating-point register files are the source for pending operaliom 
by the execution units (Figure  Tile execution units retrieve values from the 
register files as well as from the f.I dam cnche (Figure 14.9j). A separate pipeline 
stAge i used to compute flags (c.g., zero, negative); these are typically the input to 
a branch instruction. 

A subsequent pipeline. stage performs branch checking (Pigurc 14.9k). This 
function compires [he ncrual br.iinch result with the prediction. If a branch predic-
tion turns out to have been wrong, then there are micro-operations in various stages 
of processing that must be removed from the pipeline, The proper Inancli destina-
Hon is I hen provided lo the Branch Predictor during a drive sta2e (Figure 14.91), 
which req.:irk the whole pipeline from the new target address. 

14.4 POWERPC 

he ].'awed'(: architecture is a direct des.cvridani car the 113M 603. the RT PC.". and 
the 1 S/6001..t, the last also referred to as xih imptementat ion of the POW FJ-3. 
architecture. Alt of these are RISC' machines, but the first in the series to exhibit 
superscalar features was the RSI6000. The first implementation of the PowerPC 
architecture, the 61[1, has a super.sc.Hlar design quite Siittflzu to that of the RS/6000. 
Subsequent PowerPC models carry the superscalar concept further. In this section_ 
we focus on the 601, which provides a good example of a RISC-based superscalar 
design. At the end or the section, we briefly consider thc 620. 

PowerPC 601 

Figure 14.111 is a general Vie.W of the flit organization. As with other superscatar 
machines, the fill is broken up irno independent functional units to enhance oppor-
tunities for overlapped execution. In particular, the core of the 601 consists of three 
independent pipelined execution unils: integer. floating-point, and branch process-
ing. Together, these uniLS Cain execute three instructions tit a time, yietding a super-
scalar design of degree 3. 

Figure 14.1.1. shows a ]odcal view of the 601 archii L N tire, emplmsizing the flow 
of instructions hOwe..eri func1iumil  The icteh unit ean wretch up to eighi 
ilistructions ,tit a time from the cache. The. cache unit supports a combined insiriAl ioni 
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data cache and ii.4.responsihIc for feeding instructions to the other units and data to. 
the regisiers. Cache arbitration logic sends the address of Ihe highest-priority access 
to the cache. 

Dispatch Unit 

The dispatch unit takes instructions frorn the cache and loads them into the 
dispatch queue, which can hold Light instructions at a time, It processes this stream 
of instruetion.s to Iced a steady flow of instructions to the branch processing. inie-
ger. and floating-point units. The upper half or the queue simply acts as a burlier to 
hold instructions until they move into the lower half. Its purpose is to elmLIIL that 
the dispatch unit is not delayed waiting for instructions from the cache. In the lower 
half_ instructions are. dispatched according to the following scheme: 

■ Branch procesxing unit: Handles all branch instructions_ The lowest such 
in!,truetion in the bottom half of the dispatch EARICite is issued to the branch pro• 
cessing unit if that unit can accept 

• FluatiNNFIFint Unit: handles all floating-point ins! ruei ions, The lowest such 
instruction in the bottom half of the dispatch queue is issued to the floating. 
point unit if the instruction pipeline in that unit is not full. 

* Integer unit: Handles integer instructions, load/stores between th ,;2,  registcr 
files and the cache, and integer compare instructions. An integer instruction is 
only i2-:.sued after it ha.!, tilLered to the bottom of the dispatch queue. 

Allowing branch and floating-point insi ructions to he issued out of order from 
the dispatch queue helps keep he instruction pipelines in the branch processing and 
li mning-point units full, and it moves instructions through the dispatch queue as 
rapidly as possible. 
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Figure 14.10 PowerPC #301 Block Diagram 
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Figure 14.12 PowerPC 601 Pipclinc. 

The dispatch unit also contains logic that enables it to calculate the prefeta 
addres.s. 11 contin ues fetching instructions sequentially until-a branch inslruclinti 
moves into the lower half of the dispaieh queue. When the branch processing mit 
processes an instruction, it may update the prefetch address so that succeeding 
instructions are fetched from the new address and entered into the dispatch queLm.. 

Instruction Fipeiin es 

Eigurc 14.12 illustrates the instruction pipelines for the various units. There 
a common fetch cvet r43.1"  I in2StrUci i(}11S; this occurs haore an ins1ruction k 
patched to a particular unit The second cycle begins with the dispatch of an instruc-
tion to a particular unit. This overlaps with other activities within the unit. During 
each clock cycle, the dispatch unit considers Ihe bollorn four en tries; of the 
Lion queue and dispatches .  up to three ihsLructions. 

For branch instructions, the second cycle involves decoding and executing 
ins l ructions as well as predicting branches. The. last activity is discussed in the nest 
subsection. 

The integer unit deals with instructions that cause a loadistore operation with 
memory (including floating-point load/store), a register—register move, or an ALU 
operation. In the caw (..11 a load/store, there is an address generation cycle ruikyviud 

sending the resulting address to the cache and, if neeesarli..., a write-back cycle. 
For other instructions. the cache is not involved and there is an execute cycle fol-
lowed by a write back to register. 

Floating-point inslrucl ions. lrhowa.mitt r pipelinc., but there ;Ire two executc: 
cycles. reflecting the complexity of floating-point operfitions. 
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SeVLtrul additional points are worth noting. The condition register contains 
eight independent 4-bit condition code fields. This allows multiple condition codes 
to be retained, which reduces the intedoek or dcpcndeney between instructions, For 
evimple, the e..f.m-npilcr can transform thc sequence 

cra-r.p2x.E 

crr.par e 

to the sequence 

c cAr.pa -ze 
c. mpare 

bra .cis 
brar...T.h 

RCC4iLLM,2 C'..Lch functional unit can send its condition codes to different fields in 
the condition register, interlocks between instructions caused by sharing of condi-
tion codes can be avoided,  • 

The prexonce of ihc. Save and Resume registers (SRRs) in the branch proces-
sor allows it to handie simple interrupts and software interrupts wii houi involving 
logic in the other functional units. Thus. simple operaling tlyslcm7.;crvices can he per-
formed rapid]v without complicalcd stab: Iminipulation or synchronization between 
the functional units. 

Because the 601 can issue branch and floating-poinl instrudions out of order, 
controls are needed to ensure proper execution. When Lk dependent v exists (i.e._ when 
an instruction needs an operand that has yet to be computed by a previous instruc-
tion), thc pipeline in the corresponding unit stalls. 

Branch Processing 
The key to the high performance of a RISC or superscalar machine is its ability to 
opiirni .i.e. the nse of the pipeline. Typically :  the most critical element in the design is 
how branches are handled. In the PowerPC, branch processing is the responsibility 
of the branch unit, The unit is designed so that in many cDsus. branches have no 
effect on the pac.12 of execution in the other units; these type of branches are referred 
to as zero-cycle branches. To achieve zero-cycle branching, the following strategies 
are employed: 

1. Logic is provided to scan through the dispatch buffer for branches. Branch 
1arget4iddre;ises ;ire gerwr2Jtcd when a branch first appears in the lower half of 
the queue and no prior hrailehes are pending execution. 



532 CHAPTER 14 / INSTRUCTION-LEVEL rAitALLELISM 

2. An attempt is made to determine the outcome.of conditional branches. If t4 
condition code has been set sufficient[!,/far in advance, this can he determined 
In any case, as soon as a branch instruction is encountered, logic determines 
if the branch 

a. Will be la kcn this is the case for unconditional branches and for conditional 
branches whose condition code is known and indicates a branch. 

hi, Will not he taken; this is the case for conditional branches whose condition 
code is known and indicates no branch. 

c. Outcome cannot yet be. determined. In this ease, the branch is guessed to 
he taken For backward branches (typical of loops) and guessed not to be 
taken for forward branches, Sequenlial instructions past the branch instruc-
tion are passed to the execution units in a co nditional fashion. Once the 
condition code value is produced in the execution unit, the branch unit 
either cancels the instructions in the pipeline and proceeds with the fetched 
target if the branch is taken, or !iigrtak ror the condiiionaal instructions to be 
executed. The compiler can use a single bit in the instruction coding to 
reverse this delaull behavior. 

The incorporation of a branch prediction strategy based on branch history was 
rejected I-Fccause. the designers felt that a minimal payoff would be achieved. 

As an example of the branch prediction effect, consider the program of Figure 
14.13 and assume that the branch processor predicts 1hal the conditional branch 
instruction is nol taken (the default case for a forward branch). Figure 14.14a shows 
the effect on the pipeline if in fact the branch is not taken. In the first cycle. the dis-
patch queue is loaded with eight instructions, The first six instructions are integer 
instructions and are dispatched one per cycle to ilie  eger unit, The conditional 
branch instruction cannol be dispatched until it progresses to the lower half of the 
dispatch queue, which happens in cycle 5. The branch unit predicts that this branch 
will not be taken, and so the next instruction in sec] LIW1Ce is tIondiiionally chspatched 
(inditlatc(.1 by a D'). The branch cannot be resolved until the compare instruction exe-
cutes in cycle 8. At ihat time, the branch processor confirms that its prediction was 
correct, and execution continues. 'There arc no delays, and the pipeline is kept full, 

Nolte that no instructions are fetched during cycles 4 throughi. This is because 
the cache is busy during I hose cycles with the cache access stage of the five load 
instructions. Even so, the inso-nei ion stream is not delayed, because the dispatch 
queue can hold eight instructions. 

Pigurc I 4.14b shows the result if the. prediction is incorrect and the branch is 
taken. In Lliis f::.1!,W, the three instructions starting at the IF must be flushed, and 
fetching resumes with instructions Starling xl 1A, S1-':. Asa result, the VWC.1..1k stage 
of the integer pipeline is idle for cycles' and 10. resulting in a two-eyele loss hccatisc: 
of the incorrect prediction. 

PowerPC 620 

The f2(1 is I he first 64-bit implementation of the Powei.PC architecture. A notable 
feature of this implementation is that it includes six independent execution units: 
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• Instruction unit 
• Three integer units 

• 1-.041dIstoN: unit 
• Floating-point unit 

This organization enables the processor to dispatch up to four instructions simulta-
neously to the three integer units 4i nci one rloating-point unit. 

The 620 employs a high-performance branch prediction strategy that involves 
prediction logic, register rename buffers, and reservation stations inside the execu-
tion units. When an instruction is fetched, it i' issigned a rename buffer to hold 
instruction results temporarily, such as reyimur stores. Because of the u se ()I' rcnarnu 
buffers, the processor can specaol[rsivefv e. tc:aade instructions based on branch pre-
diction; if the prediction turns out to be incorrecl, then the regilts of the speculative 
instructions Call be flushed without damaging the register file. Once the outcome or 
a branch is confirmed, Temporary results can be written out permanently, 

T.aelt unit has two or more reservation stations, which 614.1.rc: dispatched instruc-
tions that must be held up for the results of  instructions. This feature clears 
these instructions out of the instruction unit, enabling it to Continue dispaiching 
instructions to other execution units. 

(a 21 
a 

01Se 
a 

i bicidi of 

- o - - d e; 

(a) C code 

m..9=et(r1 
:12=b(r1.4) 

✓107dr1,12) 
✓:1=er1.16) 
cra=r8,C. 
ELgE,L7r0/gt= 1..3e 

T:2=r8,r12 
✓12=r12,r9 
:712=r12. ,2: ,3 
r4=r12,r:::L. 
2“.c .1)=rd 

r12=r12,r8 
r12=r9,1c:2 
r1.2=r1 ,-L2 
r4=r12,rli 
a{r:O=r4 

r91 poLnts t.o a, 
/71+4 points to b, 

*r14•5 points to c, 
r1+12 point'.2 to d, 

fi r I.+LE poinr.9 to e :  
Ricad a 
Oload b 
4load c 
41Qad 
41ad e 
4con,nare itndint.e 
Obranch if btt 

>k add 
Oadd 
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fl add 
#soret 
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Itstlbtract 
Osuhtra= 

4store 

IF: 

ELSE: 

1WZ 
1 Wz 
'l ea 
lwa 
1WZ 

bc 

add 
add 
adcl 
add 
stw 
b 

5eW 

OUT: 
(b) Assembly cod 

Figure 14.113 Codlc E.N.Hrrspl.c. wit h Branch IVELS941 
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1 2 4 5 6 ; e 9 La 11 12 13 14 15 14. 
r8.3(t1) Y G E C W 

twa  r12=b•LI.41 P • i a  
LWZ  r9-cir1,B) • D E 2 li 
Lwz  rIC,d(f1.221 D C 

F D E C U 
=1-5,r8.:1 n a 

'Lc Er E,cr:;:igt=Lalscl p • • S 
IF; au'd D' E I 

nit! 1- .12,r12,x9 ? • • • • 

 

D  6 
add k- 12-r12,r1C 7 D E 
.1,31 r4 , 1. 12,Y11 F C E 1.%■ 
cu.+  alra)=xd • C a C 
15 c .  

ELSE: E.J1f r12re,r12 

subf r12=rL2,11 
IT.Lbt r12=rt2,1.12 
uubf 14=r12,r11 
374  

(a) Correct prediction: Branch was not taken 

r=a?rj.: 

l wz f1==hir'..,4; 

l wz r9=L(r1.9j 

rIC =d1-1,12) 
r11=e.(1-1,16 

c:Tpi crp=f9.4 

IF: add :12.rS.112 
add r12=r12,r9 

nEd T12=r12.1-10 
1T:9d  x1==]2 ; r1 

ttw 

• COT 
ELSE:aubf r12f8,r12 

ahbE ri2=r12,r9 
• r22=s112,r10 

• rd=r1.5., YLI 
137W 

Oaci 

1 2 2 4 5 0 7 8 5 10 11 12 13 14 15 1 
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F • R 

D 

D  E 
F. • 8 

F • • 

F 

F  P E 
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F • 1:  
3 
F. 7. • C 

(13) Incorrect prediction: Branch wa.s taken 

F= fetch 
D =dispatch/decode 
E= execute/address 

C =cache access 
W writeback 
S dispatch 

Figure 14.14 Branch Pmdiction: NoL Taken !NE/S94] 

'Pho 620 can speculatively execute up to rour unresolved kaneh inMructions 
(versus ono for the 601). Bruch prediction is based on the use of a brunch hislory 
mble with 2448 entries. Si/inflations run by the PowerPC designers show that the 
branch prediction sitieoes rate is 90% /THON194]. 
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14.5 RECOMMENDED READING 

IJOHN911 remains a relevant and excellent hook-lengt It treatInent 4)1 qiperscalai LIr:41 n_ 
Worthwhile survey articles on the subject are [SVIrl'95] and [SI MA97]. [J01.; P891] 
instruction-level parallelism. looks at various techniques for maximizing parallelism, and CO 31- 
pares supersealar and superpipelined approaches using simulation_ Two recent papers that 
pritvide good coverage of superscalar design issues are [PATT01I and I MOSI-101 I_ 

[POPE9J] provides a detailed look at a proposed supersealar machine. It also provides 
an excellent tutorial on the design issues related to out -of-order instruction policies. Another 
look at a proposed system is found in [KUGA91]; this article raises and considers most of the 
import atil doL:ig n  issues for superscalar implementation. [LEE91 examines software tech 
niques rh;li  used to enhance s u pc rsealar performance. [WALL91] is an interesting study 
of the extent iii which instruction-level parallelism can he exploited in a supersealar processor. 

Volume 1 of [IN 11201a] provides general description of the Pentium 4 pipeline; more 
detail is Provided in [ 1 \'i'1-  01  

[POTT941 is a detailed examination of instradion pipelining on the PowerPC 601, 
[SHAN95] also provides good coverage_ 
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Teehnology Journal, Q1 2001. lutrAeveloper.intel.coinhechnology!itil 
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ment 2489M-04. Aurora. C.'0. 2001. hilp:Alevetoper.intel.cornAtesignipentium4iman- 
uals124-894Klit m 
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tice Hall. 1991, 
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sron.95 smith, :  J., and Sohi, (3. The Microarchitecture clF Superscalar P.rocessors," Pre).- 

eftclings of the IEEE. nc cenil-Rrt9V3.. 

1r' ALL91 Wall, D. '•1.ini1s IFt instruction - Level Pmc .aretkth}s, Rir.orcle trieeer- 
teenioreal a}/JP:VetECT On A rchieeco fro) Seipport for PreJgreem.Pree)q Ltengrurges irrrel {)per-. 
along Sy...lems, April 1901, 

Key Terms 

regi L'.1" renaming 
resource conflict 
snperpi 
supersealar 
true darn dependency 

Review Questions 
14.1 What is the essential characteristic of the superscalar approach lo processor design? .  
14.2 What is the difference between the supersealar and superpipelined approaches? 
14.3 What is instruction-level parallelism? 
14.4 Briefly define the following terms: 

■ .Frite tlata dependency 
• Procedural dependency 
■ Resource conflicts 
• Output. dependency 
■ Araidependeney 

14.5 What is the distinction between) ins1ruction-lcv el I and machine parallelism? 
I4A List and briefly define three types of supersealar instruction issue policies. 
14-7 What is the purpose or an instruction window . ? 
14.8 'hal is register renaming and what is its purpose 
14.9 What are the key elements of a supersealar processor organization? 

Problems 
mi. When out. of .order completion is used in a superscalar processor. resumption of exe-

cution after interrupt processing is complicated, because the exceptional condition 
may have been detected as an instruction that produced its result out of order. The 
program cannot be restarted at the instruction following the exceptional instruction. 
becati."0 Subseci uenE instructions have already completed. and doing so would cause 
cheso ii IkI 31.14.:11c)lis to be executed twice. Suggest a mechanism or mechanisms for deal-
iiig will' 115i ,  

14.2 Consider the following sequence nr instructions, where the syntax consists or an 
tpcodc followed by the destination register followed by one or two source rettistersi 



14.6 / KEY TERMS, REVIEW QUESTIONS AND PROBLEMS 537 

a2, Al, 2 
I LOAD'  6, 11R3. 

AND RI, Rt., 
3 ADD R1, 75, RO 

SRL R7, RO, 8 
5 OR R2, R4, .7'; 

R1, 3, R4 

V!  LOAD  R6, [R5: 

?2, 71, 76 

11:  AND  ?3,  15 

A 5.c..;11rrEC the use Of '1'1  1{11.3r -Stilge I1i1 ,4 EiI1t i  i L.11. ch....code/issue. execut.L., write 1.-Fack, 
pipeline shigesiaki .  irk! clodk cycle except for the execute stage. For 

sirlrl I  111[4 ii' ..tit inctie ;lad  iir,tructioris, the c.xecute stage takes une cycle, 
hill fall a 1 .0All ['tom memory, five e I s ire consumed in the execute stagc, 

we have a simple scalar pipeline but allow otol-of-order exec:01110o, Wet eau 
construct the following table tor the execution of the. first seven instructions: 

Instruction Frith IF:XeCUIV Write Buck 

0 I.) ] 
7 :1 

I I 0 4 !..I 

7 7 .•-;  

3 3 4 10 I1 

4 4 5 6 7 

5 6 8 I0 
(.1 {.. 7 9 I '2, % 

I I w L'1.21Ci4J.S 4411 1, 1
k1 (  thk: the CILICk cycle al. which each 

i i4.12ins end, ErhIasLC, rii 115i, the second ADD instruction (insiruc.. 
Lion 1 thipenik 1.0A I) IIKIE dui ion (11E...1 tiierion I) ror one of its operands, th. 
Becatiso the LOAD iciAttiL -tioit I I  v clock cycles, and the issue logic encciunters 
the ElenuoLlein ADD ir hl fuel  of ici .  clucks, ihu issuc logic must delay 1.1.1c ADD 
Instruction I'iir i hre c clock cycles.. With an out-of•order capability :  [tic processor can 
stall instruction 3 at clock. cycle. 4, and then move on LC issue the following Olive nide-
Re.ndent instructions, which Enter Execution at clocks 6, 8, and 9. The LoAn finishes 
execution at clock 9. and so the depundeni ADD can be launched into execution on 
dock [(1. 
a. Complete the preceding table.. 
b. 11?...!rli 1 111.4 ;•,k1)11:, assuming no otit -or -order capabiliv, What is the savings using the 

capolAility'1 
e. Redo the tablu, assuming a•superscalar implementation that can haudly two in-

structions at a time k .it each stage-  

143 [n the instruction queue in the dispatch unit of the PowefPC 601, insttudion.- fE;iw Est 
dispatched out of order w the hranch processing and Iloalin42-puint  but instruc-
tions intended for the integer unit must he dispaieha only from the luittoin of the 
queue. Why this limitalionl 

14.4 Produce a figure similar to Figure 14. L4 for the following LR.150. 6: 

Brarivii preditition; taken:. correct pro.liction: branch WAS taken 
h. litanch predici taken: incorte.ct prediction: branch was not taken 

14.5 Consider the following assembly larignago program! 
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T1: MOVE. Rj RT. /Rj :R7 
12: Lr d3 R8. {R3 /38 <— 

13: Arf;I:i Fl=.,  F3, 4 /R3 +  / 
r4 Load .7.9. 
IF.: ThI).7. (F. ) r 1!•RA1 

This program includes write -write, read -wrike, and write -read dependencies. Show 
these. 

14.6 Figure 14A5 shows an exampte of a superscalat processor organization. The prom ,  
scar can issue two instructions per cycle if there is no resource conflict and no data 
dependence problem. There arc essentially two pipelines, with four pro-uessing. stages 
(fetch, decode. execute, and store). Each pipeline has its own fetch decode and stun 
unit. Four functional units (multiplier.. adder, logic unit, and load unit) arc available 
for use in the execute Stage and arc shared by the two pipelines on a ds.nainic bast 
The Iwo storc tiniN can be ciynarnically used by the two pipelines, dopending on avail. 
ability at a particular  There is a lookallead window with ils own fetch and 
decoding ingic. This window is used for instruction lankabead for out-of-order 
instruction issue, 

following program tot execute!] oil (INS processor, 

Ii  t  Lcad Al ;  A i .R.1 4• ke7=y IA) 
1.2 Add R2, RI /R2 <-- :R2 + R;1)/ 
13 Add R3, R4 f- + R14)/ 
14: `1u1 P4, R5 /R4 ;P ,U + 
15r C.1%rp P /R6 (R6) / 
16 r T'.i1 R6, F.'? /R:J. + R 

H.  What dependencies exist in the program. 

b.  Show the pipeline activity for this program on the processor of Figure 14.15 using in. 
order issue. with i 11 .order completion policies and using a presentation similar to 
Figure 14,2, 

e.  Repeat for in-order issue with out of•order completion. 

d.  Repeal for out-cif-order issue with out-of-order completicin. 

Figure 14.15 A Dual -Pipeline SuperseHlkir Processor 
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TO X 

    

        

 

(a) 

  

From -Pm'  I  I I  

 

TfIi r-  To x 
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Figure 14.16 Figurc for Problem L4. 

14.7 Figurc 14.10 i. from a paper oil .supi.ltrscaliir &sign. Explain the L]ire u pi  s of tk. 
fio:urc, and &rimc w x. y, and 
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KEY POINTS 

• The LA-64 instruction set architecture is a new approach to providing Turd-
ware.support for instruction-level parallelism and is significantiy different that 
the approach taken in yverscalar architectures, 

• 'i .he most noteworth!,.: features of the IA-64 arcin [eel Lire arc hardware s.upport 
for predicated execution, control speculation_ data spc.cu[atiort, and software 
pipeiining. 

• With priAicated execution, every IA-64 instruction includes Ei reference to a 
[-bit predicai regisLer and only executes if the predicate value is L Orue). 
This enables the processor to speculatively execute both branches of an 
statement and only commit after the condition is deli:mined, 

• With control speculation, a load instruction is moved earlier in the program 
and its original position replaced by a cheek instruction. The early load s.;Lvt:.s 
cycle time; if the Load produces an exception, the exception is not activated 
until the chui.:k instruction determines if the load should have 1. -5een taken. 

• With chin speculation, a load is moved bci'ore a store in struction that mi0t. 
alter the memory location that is the. source of the load. A subsequent check 
is made to assure that the load receives the proper memory vise. 

• Software pipelining is a technique in which instructions from multiple itera- 
Eions of a loop are enabled to execute in parallel. 

w itli the Pentium 4, the microprocessor family Thal began with the 8086 
and I hat has been the most successful computer product line e ,L.er 
appears to have come to an end. Intel has teamed up with Hewlett- 

Packard (HP) to develop a new fiz1--hit architecture. called IA-64, IA-64 is not El 
64-bit extension of biters 32-bit x86 architecture_ nor is ii an adaptation of IllcwIca. 
Packard's 64-hit PA-RISC architecture. Instead, IA-64 is a new architecture that 
builds on years of research at the we companies and pit universities. The architec-
I Lire exploits the vast circuitry and high speeds available on the newest gcnoraiions 
or microchip; by a systematic use of parallelism. IA-64 architecture represents a si, 
nificant departure from the trend to supersca]ar schemes that have dominated 
recent processor development. 

We begin this chapter with a discussion of the motivating factors for the new 
architecture. Ncxl, we look at the general organization to support the architecture. 
We then examine in some detail the key features of the IA-64 architecture that pro-
mote instruction-Level parallelism. Filially, we Look a( the IA-64 imslruction set archi-
tecture and the Itanium organization. 
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15.1 MOTIVATION 

The, basic concepts underlyinr2. IA664 are as follows.: 

■ Instruction-level parallelism that is explicit in the machine instructions rather 
than being del Qrmincil AL rim lime by the processor 

* Long or very long instruction words (LINV/VLIW) 

• Branch prodica tlgn (ni)i. the same ihin2, as branch prediction) 

* Speculative loading 

[ Mel .tind H P refer to this combination of concepts as explicitly parallel  inslruC-
iian computing (EPIC). Intel and HP use the term EPIC to refer kJ the. technology, 
or collection of techniques. I A -64 is an actual inAtruction rct architecture that is 
intended for implemenivition using the EPIC technology. The first Intel. product 
based on this IA-64 is referred to as lianium. Other products will follow. based on 
the same IA-64 architecture. 

Tablc... 15.1 sLimmarizes key di ITerc.ricc!, helmecu LA -64 and a traditional super-
Sea I ar 21 pprozich. 

For Intel, the move to a new architecture, one that is not hardware compati-
ble with the xSfi instruction architcolure, i;'.; a momentous decision. But it is driven 
by the Llicc ilex of the iechnology. When the x86 family began. back in the laic 1970, 
tlie processor chip had tens of thousands of transistors and waS Sin CNs.0 111 141 I I y scalar 
device. Thai is. instructions were processed one li me. with little LI no pipelin- 
ing. As the number transisl ors increased into the hundreds of thousands in 1hiz, 
mid-1980s., Intel introduced pipelining Figure 112.1.S). Meanwhile, .E.)1 hur man- 
ufacturers were attempting to take advantage of the increased 1. ra.m,istor count and 
increased speed by means of the RISC' approach, which enabled more effective 
pipelining, Li nd la Let the superscalar/RISC. combination. which involved mul 
execution. units. With the. Pentium, Intel made zr 11.1 0deS1 14.) use superscalku. 
techniques, gnawing two CISC instruct ions to cxecute it of lime. 'Then_ the Pentium 
Pro and Pentium II through Pentium 4 incorporated a mapping from CISC  instruc- 

1'Ab1e 1.5.1 PraLliiional Supers.cular versus IA-64 Architcillurc 

Siiiicrscalar 1 4-64 

RESC - Il aC: instructions...one. pi.kr  word 1.z.i S.C-ILFW LDst rvciiorm bundlud into gcCitipS Cif 1..Eifee 

Multipl:2 pilTillIC-] CXZCL.11.1011 1.11111 LS Mull iple parallel ...:•xN111 ion kalils 

Nxnrdcrq ki nd OPI.ilrillrC!.; liKE11.101011 slrekint 
io T1.111 L1111.2 
_ . 

Reonlurs dad opciniivos iii3lru4tion Ntrcarn at 
i_DELS1)11V Linl.:.3 

Brandt fil'OdiCt it)1.1 wit h h spcculoieivc il..xcciiii(1T] 
of ORO path 

Speculative excuukitn) akinp h431.1t paths of a 
branch 

Loads dithi from 1.13 01101' .y o.rily Mica neoiled. 
iiiid tries so find ell:: diviii in clic ciiclics ririi 

.vc.:si .ciiid _s _3.}.1 .)12:(1T12 .IS riecided. arid Spc.culiiii I I dl I I i 
still tric.s Ia rind data in tlii2 caukie; first 



544 CHAPTER 15 l THE 1A-6.4 ARCI -11TECTURE 

lions to RISC-like micro-operations and the more aggressive use of superscalar.  
techniques. This approach enabled the effective use of a chip with millions of trarl• 
sistors. But for the next generation processor, the. one beyond Pentium, Intel and 
other manufacturers are faced with the need to use effectively tens of millions of 
transistors on a single processor chip. 

Processor designers have few choices in how to use this glut of transistors. One 
approach is to dump those extra transislors into bigger on-chip caches. Bigger caches 
can improve performance to a degree but eventually reach a point of diminishing 
returns, in which larger caches result in tiny improvements in hit rates. Another 
alternative is to increase the degree or 5IJperscaling by adding more Execution units. 
The problem with this approach is that designers are, in effect, hitling a complexity 
wall. As more and more execution units arc added. making the processor "wider," 
more logic is needed to orchestrate these units. Branch prediction must be improved, 
OW-of-order processing must be used. and longer pipelines must he employed. But 
with more and longer pipelines, there is a greater penalty for misprediel isrn, Oui-ef• 
order execution requires 4i large number of renaming registers and complex inter-
lock circuitry to account for dependencies. As a result. today's best processors can 
manage at most to retire six ilIMI'LLCijOils per cycle, and usually less. 

To address these problems, Intel and HP have come up with an overall design 
approach that enables the e •ketivc, use of a processor with many parallel execution 
units. The heart of this new approach is the concepi o[ explicit parallelism, With this 
approach. the compiler statically schedules the. instruetions.at  compile time, rather 
than having the processor dynamically schedule them at run time. The compiler 
determines which instructions can execute in parallel and includes Ibis information 
with Ihe machine instruction. The processor uses this informal  lo perform paral• 
Eel execution. One 44.1vantEigc of this approach is that the EPIC processor does not 
need as much complex circuitry .t7:1 an out-or-order superscalar processor. Further, 
whereas the processor has only a matter of nanoseconds to delermine putenl ia] par-
allel execution opportunities, the compiler has orders of inagn itudc morn time in 
examine the code at leisure and see the program as a whole. 

15.2 GENERAL ORGANIZATION 

As with a nv processor architecture. IA-64 can he implemented in a variety of 
organizations. 1;igure 15.1 suggests in general terms the oreanization of an IA-64 
machine. The key features are 215 1 . {1110W:;.; 

• Large number of registers:Thu I A-64 instruction Format assumes the use of 256 
registers: 128 64-hit registers for integer, logical, nd general-purpc.i.sc  use, and 
12g 82-hit registers for floating-point and graphic use. There Tire also 64 1-hit 
predicate regkters used for predicated execution, as explained subsequently. 

• Multiple execution units: A typical commercial superscalar machine today 
may support four parallel pipelines, using four parallel execution units in 
both the integer and ItoaIing-point portions of the processor. It is expected that 
1 A-64 will he implemented tin xv7,11cinS with eight or more parallel units. 
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r R = Gcncrul-inirposc or inieger'reisior 
I- H. =I-loafing-point or graphic:, register 

PR =  predicate register 
3211 = lkixecution unit 

Figure 15.1 Gent.ral Organization for IA•i4 Architccturc 

The register file is (wile. large compared with n -i mi R[S(' and superiicAar 
machines. Thc reason for this IN dial ai large number of registers is needed to sup-
port a high degree of parallelism. In a traditional supersca]ar machine, the machine 
language {and the assembly language) employs a small number of visible registers, 
and the processor mum l he se onto larger number of registers usi ng register renam-
ing technique.s and dependency analysis. Because We wish to make parallelism 
explicit and relieve the processor of the burden of register renaming and depen-
dency analysis, we need a large number of explicit regislETS- 

The nutniler of esceui ion units is u function of ihe number of transistors avail-
able in a particular implementation. The processor will exploit parallelism to the 
.extent that it can. For example. if the machine language instruction siro.iim  (es 
that eighl integer instruction may he 1:2 ›: ccuted in parallel. a Tyroces!,or with four 
integer pipelines will execute ihese in two chunk z,.. A processor with eight pipelines 
will execute all eight instructions simultaneously. 

Four types of execution unit are defined in the IA-64 ..irchitecture! 

• I-unit: For integer urit hinetie. shift-kind-add, logical, compare, and integer mul-
ti media instructions. 

• M-unit: Load and store between register and memory plwi:ionle integer ALI; 
o[IcratiunS. 

• B-unit: Branch instructions. 
• iro„iruclicinN. 
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TWA 15.2 Relationship between Instruction Type and Execution Unit 

Instruction Type Desrriplinii 1.:".c.cution Unit Type 
. _ 

A 
_ 

integer ALU 1.unit or.M.unit 

I Non-ALU intem 1-unit 

M Mcinory M-unit 

P floating pm-1i F-tniii 

B Branch 13-unit 
l 

L I X Extended I-onit/13-unic 

Each I.A-64 instruction is categorized into one of six types. Table 15.2 lists the 
instruction types and the.exectition unit types on which they may be executed. 

15.3 PREDICATION, SPECULATION, AND 
SOFTWARE PIPELINING 

This suction looks at the key features of the IA-154 architecture that support 
instruction-level paraiiehsrn. First, we need to provide an overview of the IA-64 in-
struction format and, to support the exEimples in this section, define the general 
format of lA-64 assembly language instructions. 

Instruction Format 

I A-64 defines a 128-1 -iii bundle that contains three instructions, called syllables, and 
a template field ( Figure 15.2a). 'File processor can 1'0.6 instructions one or more 
bundles at a time: each bundle fetch brings in three instructions. The template field 
euntains in l'ormation that indicates which instructions can be executed in parallel. 
The interpretation of the reit -Th.11e field is not confined to a single bundle. Rather, 
the processor can look at multiple bundles to dctermine which instructionp. may 
be executed in parallel. For example, the instruction stream inav be such that eight 
instructions can be execuied in parallel. The compiler will reorder instructions 
so that these eight instructions Daman contiguous bundles and net the lerrlphle hiss SO 
that the processor knows that these eight instructions re independcnt. 

The bundled instructions do not have to be in the original program order. Fur-
ther, because of the flexibility of Lite template field, the compiler can mix indepen-
dent and dependent instructions in the Ndrtle bundle. Unlike some previous VLIW 
designs, IA-M does not need to insert null-operation (NOP) instructions to fill in 
the bundles. 

Table 15.3 shows the interpretation of the possible values For the 5-bit tem-
plate field (some values are. reserved and not in current use). Tire template value. 
accomplishes two purposes: 



PR 
Major 
opcodc 
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128- b it hut idk 

L struction slot 2   Instruction slot I .11n   

 

Instruction slot 0 
Tem- 
plate 

  

   

41 al 5 

t a) IA-64 binallc 

41-bit instruction 

II)} General 1A-64 instruction format 

Major 
opoude Other modifying hits1  GR3 GR2 GRI PR 

     

4 10 7 7 7 

(C) Typical 1A-64 instruction format 

PR — Pprdi•ale register 
OR = General or floating-point register 

Figure IS/ 1A4iLl instruction Fortnai 

1. The field specifics the mapping of instruction slot, to execution unit types. Not 
possible mappings or instructions to units are available, 

2. The field indicates the presence of any stops. A stop indicates to the hardware 
that one or more instructions before the stop may have certain kinds of re-
source dependencies with one or more instructions after the stop. In the table, 
a heavy vertical line indicates a stop. 

Each instruction has a fixed-length 41-hit format (Figure 15.2b). This is some-
what longer than the lraditional 32 -bit length found on RISC and RISC' superwalar 
machines (although it is much shorter Than the 118-bit micro -operation of the Pen-
tium 4). Two factors lead to the additional hits. First, IA-t4 makes use of more reg-
isters than a typical RISC machine: 128 integer and 128 floating -point registers. 
Second, to accommodate the predicated execution technique. an  IA-64 machine 
includes 64 predicate registers. Their use is explained subsequently. 

Figure 1.5.2c shows in more detail the typical instruction format. All instruc-
tions include a 4- hit major opeode and a reference to a predicate register. A/though 
the major opcode field can only discriminate among 16 possibilities, the interpreta- 
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Table 15.3 Template Field Encoding and Instruction Sc( .N.lapping 

Template Slut 111 Slot 1 Slot 2 

IX1 M-ursiL [-unit I-unii 

LI.1 M-urkil. 1 -snit 1 - unil 

112 1.1-unit I-unit 1-unit 

IY3 h3-unit T-unit 1 - unit 

LF4 M -urkli 1.--untl X-11nit 

05 M-uni1 L-unis X-1.11111. 

Og rirl•unii M-ullil E-unit 

04 !‘rl-unlit M-unit [-unil 

OA M-unit M-unit [ -unh 

IIB '24 ,unis NI -unit 1 - unit 

OC M- unit F-unil. f-unil 

OD M-unit F-unil I - unii 

OE NI-unil Ivl-ursil. F-unit 

OF N1-unit Pvl-anit F-unit 

10 M -unit I -Lull t B-111114 

II M -unii. 1•unit B-uttic 

42 Nef-unit B-unit 13 -uniL 

1,3 M - 1.131i1. B -unit B -unit 

13•unit 1 L6 Th -unit El-unit 

t7 13-u11O B-unit B-unit 

l's N -uriii M -unit B - unii 

19 M-u101. ht -unit B-unil 

I C M-nrni F•unit l3-unit 

I n M-unii F-tiit 1:5 - unit 

lion or the major opcode field depends on the ternpl.ate2 valuu nd the locifi.ion 

instruction within zi hundlf: ( -Fable. 15.3 .1hus affording more possible opcodes. Typ-
ical instructions also include reference registers. leaving 1.0 bits for 
ether in rormation needed to fulby specify the instruction. 

Assembly-Language F ormat 

As with i:iny machine instruction set. an assembly language is provided for the con- 
venience of the pro@,rafarner. The sissUnbler or compiler then translates each assail- 
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bly language instruction into a 41.-bit JA-04 instruction- The gencrffl format of an 
assembly language instruction is 

[ cip] mnerrionic[-r :  dt?,5LL=src 

where 

cep Specifies a 1-bit predicate register used 0} qualify the. instruction. If 
Inc value of 1Vgkier is I (true) at execution time, the instruction 
executes and the result is committed in hardware. It the va [Lie is 1.•.11:',112, 
the result of the instruction is not committed but is discarded. Most 
I A-64 instructions may he qua li lied by a predicate but need not be. To 
4.account for in instruction [hat is not predicated, the cip value is sc1 
to 0 and predicate register zero always has the constant vahJe of 1. 

nrnemonic Specifies the name of an IA-t4 insi ruei ion. 

COM"? Specifies one or more instruction completers, Separtitcd by periods. 
which are used to qualify the mnemonic. Nol Fill insiroutiLms require 
the Use of a eompicrer. 

ifrvl Specifies one or itlOrC destination operands, with the typic,a1 case being 
a single destination. 

4TE'' Specifics one or more source operands. Most instructions have two or 
more source operands. 

On line, any el7eiraelers Lo the right of a double slash - IC are created as a 
comment. Instruction groups and stops are indicated by a (10131.111. W.11147011ln An 
instruction group is defined as a sequence of instruciions that have no read after 
write or write after write dependencies- . ]'he processor earl issue these without hard-
ware checks for rel.!ister depe.ridehrie. I Jere is a simple example; 

=dB r= = [r5] /i First gyDup 
acd r3 = x - , r4 /  SecpnCi L.Tr up 

The First instruction reads an : ..z.-hyte value from Ihe mcmory [ocation whose 
address is in register r5 and then placeNil -wt value in register it The second instruc-
tion adds the contents of rl and M. and places the result in r3. Because Ihe second 
instruction depends on the value in rl, which is changed by Ihe first instruction, the 
t wo instructions cannot be in the same group (or pnillel execution. 

Hero is. a rylone cumpJe example, with multiple register flow dependencies: 

1d2 rl 7 
 [L- 51 // .E; rst group 

sub r6 = r8; ;; // FLrgt group 
= rl, 174  i/ 8econd 

F.r.E1  - r12 /i Second 

'fhe [am instruction stores the contents of r]2 in the memory location whose 
address is in r6. 

We are now ready to look at the low -  key mechanisms in the IA-64 architec-
ture 10 support instruction-Level paza lielism: 
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• Predication 
• Control speculation 
■ Data speculation 
• Software pipelining 

Figure 15.3, based on a figure in [HALF97I, illustrates the first two of these tech-
niques, which are discussed in this subsection and the next. 

Predicated Execution 

Predication is a technique whereby the compiler determines which instructions may 
execute in parallel. In the proce.ss_ the compiler I; i u..m.nates branches from the pro-
gram by using conditional execution. A typical example in a high-level language is 
an if-then-else instruction. A traditional compiler inserts a conditional branch at the 
if point of this construct. If the condition has one logical outcome, the branch is not 
taken and the next block of instructions is executed, representing the then path; at 
the end of this path is an unconditional branch around the next block, representing 
the else path. If the condition has the other logical outcome, the branch is taken 
around the then block of instructions and execution continues at the else block of 
instructions. The two instruction streams join together after the end of the else 
block. An IA-64 compiler instead does the following (Figure 15.3a): 

1. At the if point in the program, insert a compare instruction that creates two 
predicates. If the compare is true. the first predicate is set to true and the sec-
ond to false: if the compare is false, the first predicate is set to false and the 
second to true. 

2. Augment each instruction in the then path with a reference to a predicate reg-
ister that holds the value of the first predicate, and augment each instruction 
in the else path with a reference to a predicate register that holds the value of 
the second predicate. 

3. The processor executes instructions along both paths. When the outcome of 
the compare is known, the processor discards the results along one path and 
commits the results along the other path. This enables the processor to feed 
instructions on both paths into the instruction pipeline without waiting for the 
compare operation to complete. 

As an example. consider the following source code 

if ( a&s,b) 
= J I t; 

falae 

Source Code: 
k = k + 

else 
< k - 1 

i = i - 
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Two if statements jointly scicci eort hrec possible e xccu ti on paths. This can 
be compiled into the following code, using the Pentium assembly language. The pro-
gram has three conditional branches and one unconditional branch instructions: 

rxr1) ;  c=ompare a with 0 
je Li ;  branch to Li if a = 
curl b, 0 
le Li 
adti j r  i ;  j J -F 

Assembly Code: jimp 13 
{nip 

IL 

add. :c, 1 ; k=k-FL 
jrr.p L3 
sub 3. ;  k k - 

In the Pentium assembly language, a semicolon is used to delimit a commcnk, 
Figure 15-4 shows a flow diagram of . this assembly code. This diagram breaks 

the assembl!,.y language prograiti into separate blocks of code. For each block that 

Figure 15A Fxample Pre.dioi 
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executes conditionally, the compiler can assign a predicate. Thest.: predicates are 
indicated in Figure .15.4. Assuming that all of these. predicates have been initialized 
to false. the resulting IA-64 assembly code is as follows; 

Predicated Code: 

:1 cmp..F,q p1. p 2 . = c, , ;: 
:2 (p2) car p1, p3 = 0, b 
3 (p3) add j = L, j 

(p1) cay..ne p4. p5 = 0, c 
fp4)  add k = 1, k 

;6 fp5) add k -1 k 

add  = 

Instruction (E) compares the contents of symbolic register a with th it sets the 
value of predicate register pl. to I (true) and p2 to 0 (false) if the relation is true.and 
will set the value of predicate p1 to 0 and p2 lo 1 if the relation k false. Instruction 
(2) is to be executed only if the predicate v2 is true (i.e., if a is true, which is equiv-
alent to a ;& 0). The processor will fetch, decode, and begin executing this instruc-
lion, -?1,11 only make a decision as to whether to comthil the resu]1 after it determines 
whether the value of predieHtc register t,l is I or 0. Nli  that instruction (2) is a 
predicate-generating instruction and is itself predicated. This instruction requires 
three predicate register fields in its format. 

Returning lo our Penguin program, the first two condilional branches in chic 
Pentium assembly code are translated into tv,..o IA-64 predicated compare instruc-
tions. If instruction (1) sets p2 to false, the instruction (2) is not executed. After 
insiruction (2) in the IA-64 program, p3 is true only if the oilier it sIat6,rrient in the 
source code is true. Thal is, predicate p3 is true only if the expression (a AND El) is 
true (i.e., a T 0 AND h 0 0). The then part of the outer if statement is predicated 
on p3 for this reason. Instruction (4) of the 1A-64 code decides whether the addi-
lion or subtraction instruction in the outer else part is performed. Finally, 1 he incre-
ment of i is performed unconditionally. Looking at the suurce code and then at 
the predicated code, we see that only one of instructions (3), (5 .). and (6) is to be 
executed. In an ordinary supersealar processor, we would use branch prediction lc} 
guess which or the three is to be executed and go down that path, If the processor 
guesses wrong, the pipeline must be flushed. An IA-64 processor can begin execu-
tion of all three of these instructions and, once the values of the predicate registers 
are known. commit only the results of the valid instruction, Thus. we make use of 
additional parallel L'XI:Cul ion units Lo avoid Ale delays due to pipeline flushing. 

Much of the original research on predicated execution was done at the Uni-
versity of Illinois. Their simulation studies indicate that the use of predication results 
in a substantial rcclueti4pn in &mimic branches and branch mispri2dictions and a sub-
stantial performance improvement for processors with multiple parallel pipelines 
(e.g,, IMAHL941. IMAHL9.51). 

Control Speculation 
Another key innovation in IA-64 is control speculation. also known as speculalive load- 
ing. This enables the processor 10 load data from memory before the program needs 
it, to avoid memory latency delays. Also, the processor postpones the reporting of 
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exceptions until it becomes ncixs,sary to report the exception. The term hoist is used to 
refer to the movemeni of a load instruction to•a point earlier in the instruction stream 

The minimization of load latencies is crucial to improvinv performance. Typ-
ically, early in a block of code, there are a number of loid openitioli.s that bring data 
from memory Lo registers. Because memory, even augmented with one or Iwo Icy-
els of cache, is slow uompared with the processor, the delays in oblainingthlta from 
memory become a bottleneck. To minimize this, we would like to rearrange the 
code so that loads are done as early as possible. This can be done with any compiler. 
up lo point. l'he problem occurs i r we attempt to move a load across a conlrol flow, 
You cannot unconditionally move the. load above branch because the load may 
not actually occur. We, could move the load conditionally; using predicates. so  that 
I he data could he retrieved from memory but not committed to an architectural reg. 

until the outcome of the predicate is known; or we can use branch prediction 
techniques of the type we saw in Chapter 14. The problem with this strategy is that 
the load can blow up. An exception due ul invalid address or a page fault could be 
generaled. If this happens. ilia~ o i ,  would have. to deal with the exception or 
fault. causing a delay. 

Flow, then, can we move the load above the branch? The solution specified in 
I A-64 is the control speculation, which separates the load behavior (delivering the 
value) from the exception behavior (Figure 15.3b). A load instruc1ion in t he origi- 
nal program is replaced by two instructions: 

■ A speculative load (Id-s) executes the memory fetch. performs exception 
detection, but does 110f deliver the exception (call the OS routine that handles 
the exception). This ld.s instruction is hoisted lo an appropriate point earlier 
in the program. 

■ A checking instruction (chk.$) remains in the place of the original load and 
delivers exceptions. This chk.s instruction may be predicated RID that it will only 
execute if the predicate is true. 

If the ld.s detects an exception.. it sets a token bit associated with the target 
register, known as the Nol Thing ( Na]') hit.  the corresponding chk.s instruction 
is exceuied, and if i he Nal' hit is set, the clik.s instruction branches to an excepaorl-
hantlEing routine. 

Let us look at a simple example. taken from [INTEiHla, Volume -I i, Here is the 
original program: 

Lp1) br sorr.e_Label 
1d8 rl = 
add r2' - I- 1, r3 

C..sic;1 

/  Cycl42 

/./ Cyc_e. 3 

rirsL iiisLrucLion branches if predicate pl is true (register p1 has value. 1). 
Note that the branch and load instructions are in the same instruetion group, even 
though the load should not execute if the branch is Laken. IA-64 guarantees that if 
a branch is taken. later instructions. even in the tame instruction group, are not C.Xe• 

cutest, 1A-64 implementations may use branch prediction to try I o i mprove effi-
ciency but must assure against incorrect resailV!:.. Finally. note that the add instruction 
it delayed 

by, 
 at least a clock period (one cycle) due to the memory latency of the 

load operatit,n. 



15.3 / PREDIC,ATION, SPbCULATION, AND SOFTWARE PIPELINING 535 

The compiler can rewrite this code using a control speculative load and a check: 

lda.s r: = !r5: F; /./ cycle -2 
ofrier instrotions 

// C'ycie 0 
rl, reco'vQfy ;.yule 0 

add r2 = rl, x3 /i ,'L'ycle 0 

We can't simply move the Load instruction above the branch instruction, as is, 
because the load instrucl ion may cause an exception (e.g., r5 may contain a null 
pointer). instead, we convcrl the load to a speculative load, Ed 8.s. and then move it. 
The speculative load doesn't immediately signal an exception when deluded: it just 
record; that fact by setting the NaT bit for the target register (in this case. H.). The 
speculative load now executes unconditionally at least two cycles prior to the 
branch. The chk,s instruction then cheeks to see if the NaT bil is set on 11- 11 not, 
execution simply falls through to the next instruction. If so, a branch is taken icy a 
recovery program. Note that the branch, check, and add instructions are a]] shown 
as being executed in the Namc clock cycle. However, the hardware ensures that the 
resulis produced by the speculative had do not update the application statc. (c Hnge 
the coniniis of rl and r2) unless two conditions occur The branch is not taken 
(pt = 0) and the check does not detect a deferred exception (r1.NaT - 0). 

There is one other important point 1(5 note about  example. If there is no 
exception, then the speculative load is an actual load and takes place prior to the 
hranch that it is supposed to follow. If the branch is taken, then a Ioad has occurred 
that was not intended by the original program. The program. as written. assumes 
that rl is not read on the taken-branch path- If r1 is read on the taken - branch path, 
then the compiler must use another registet to hold the speculative result. 

Let us look at a more complex example, used by Intel and HP to benchmark 
predicated programs and to i [ Iasi rale the use of speculative loads, known as the 
Eight Queens Problem. The objective is to arrange tight q LleeT1S on a chessboard so 
that rtt, queen threatens any other queen. Figure 15.5a shows one solution. The key 
line of source code, in an inner loop, is the following; 

if ((b[j] == true) && OE ri 1 j] 17. rue) .z2& (c[i 

where 1 j = K. 
The queen conflict tracking Tricehanism consists of three Roolean arrays that 

track queen status for each row and diagonal. TRUE means no queen is on that row 
or diagonal; FALSE means a queen is already there. Figures 15.5b and c show the 
mapping of the arrays 10 the chess board. All array elements are initialized to 
]' RUE. The B array elements 1-8 correspond to rows l-8 on the board, A queen in 
row ot sets b[n] to FALSE, C array elements are numbered from -7 to 7 and corre-
spond to the difference 1)ciwtcn column and row numbers. which defines the diag-
onals that go down to the right. A queen at column 1. row I sets 401 to FALSE. A 
queen eMumn I. row 8 sets cH 71 to FALSE. The A array elements are numbered 
2- l6 and correspond to the sum of the column and row. A queen placed in column 
1, row 1 sets a[2] to FAL-SE. A queen plaual in column 3, row' sets alSiio FALSE. 

overall program moves through the columns, placing a queen on each col-
umn such that the new queen is not attacked by a .  queen previously placed on either 
along a row or one of the two diagonals. 

) 
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11) b Rriti  arrays 

Figare 15 The Eight Ou Bens Prohlein 

A 1:1traightforward Pentium assemIlly program includes three Icxids itnd thrce-
licanchcs; 

ea :er cc . ntsof locat:w 

: BR: tc yeffiEter r2 

Aim,erobly Code: 

=ID 2. 

jr.. 

4I 62aL 

{5; cmp rl, 1 

(6) jr.  L2 

(7) V rb, 

(UJ cmp r5, 1 

19) in.. L2 

(.r then pozE:. 

1:1)L2: L: cDce for wee 

In thepreceding prounl, the notation & symbol ins tin immediate address for 
Loe,atiDn x, Using speculative loads and predicated execution yields, the following: 
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1: mov rl = &[3( r  

most r = La[L + j] 

i ^n«MI ad. ress of 

h:j1 to rl 

nu= r3 = .Stc[: - j 4 71 

? 4; .d8 x2 = t r1J /i toad iniract N/La. rl 

( 5 1d.f; x = [r3] 
ldB.s r6 = [ r5] 

Code with 
Speculation and 

Y7 
Q:12) 

crip.eq pl, p2 = 1, 

Predication: .:1=?) rZ, rEtc very_a fixup for ic. Lac.1 

Ue; crip.eq p3, p4 =, r4 

11: (p0 br L2 

chk, r6. recove.rv_a i/ fixup for l•adLag b 

1 3: cmp.pc n5, p5 = L. 

1 1J: (pa) br L2 

;15iL1; code of 

‹clode for 191;Re 

The assembly program breaks down into three basic blocks of code, each of 
which is a load followed by a conditional branch. The address-setting instructions 
4 and 7 in the Pentium assembly code arc snit * arithmetic calculations these can 
be done anytime, so the compiler moves these up to the top- 'C'hcn the compiler is 
faced with three simple blocks, each of which con sists of a load, a condition calcu-
lation. and a conditional branch. Then: seems little hope of doing anything in par-
allel here. Furthermore, if we assume that the load takes two or more dock eycics, 
we have some wasted time before the conditional branch can be executed. What the 
compiler can do is hots the second and third Loads (instructions 5 and 8 in the Pen-
tium cock) above all the branches. This is done by putting a speculalive load up top 
(IA-64 instructions 5 and 6i and leaving a check in the original codc block (IA-64 
instructions 9 and 12). 

This iransformitiion rrmkes it possible to execute all three loads in parallel and 
to begin the loads early so as to minimize or avoid delays due to load latencies. the 
compiler can go further by more aggressive use of predication. and eliminate two of 
the three branches; 

[1 

(2) 
(3) 

mov r1 
rt•.7 f3  7 La[i 
MGV r5 = Rc[i 

r2 = (TI.] 

+ j] 
- j - 71 

Revised Code r4 = [ L- S] 
with Speculatilla =de.s rs = [r5] 
and Predication: 

(8) (7:) 
crrip,eci p1, 

r4, 

p2 = 1. -.T2 

(9) (D -1) LTA.p.eg  n3, n4 = 1, r4 
(10) p.3) r6. xeccvery_b 

J11) cmp,eq p5, = 1, ,z5 
( p) hr L2 

(13)L= <code for then path} 
(14)L2: <code for elFe 

http://LTA.p.eg
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We already had a compare that generated two predicates. In the revised code, 
instead of branching on the false predicate, the compiler qualifies execution or both 
the check and the next compare on 11 -N... true predicate, The elimination of rivo 
branches means the elimination of 1\'.{ potential mispredictions, so that the savings 
is more than just two instructions. 

Data Speculation 

In ri COI-AM! .spcculaiion, a toad is moved earlier in code StNi LlenCe to compensate 
fur load latency, and a check k made to assure that an exception doesn't occur if it 
subsequenth.,.

,  turns out that the load was not taken. In data speculation, it load is 
mowil kr.fore, a store instruclion [hat might aIter Zh u vnenlory 10Chtion that is the 
scores or the load. A subsequent check is made to  L. that the load receives the 
proper memory value. To explain the mechanism, we use an example Taken from 
[I NI'at]a. Volume J.]. 

Consider ;he following program fragment: 

r8 [r4j = r:2 /I Cycle 
r6 = [r] ;; // Cycle D 

rE - r E7 ;r // Cycle 2 
st8 [r18] = r5 I/ Cycle 3 

As written, the code requires four instruction cycles to execute. If registers r4 
and r do not contain the same memory address, ;hen the. More l hrough r4 cannot 
affect the valLie  the  eoniained in I'S; under this circumstance, it is safe. to 
reorder the load and store to more quickly bring the value into r6, which is needed 
subsequently. However. because the. addresses ill r4 and rS may be the sarrie or.over-
lap, such a swap is no 'Safe- IA-64 oNrcroomcs 1h is problc.m with the use of .  a tech-
nique known as advanced load. 

r6 (2- 31 :; 

st8 [r4] = r12 
r6 = [raj 

rac34 r5 = r L I  H 

sL2 [r18: - 1-3 

// Cycle -2 or eamlier: advesiced load 
// insLrac=ions 
ii Cycle 0 
// Cycle Q. hec -,c  load 
././  Cycle 0 
II cycle 1 

lore we have nItTve.d the Id instruction earlier and converted it into an 
advanced load. In addition to performing the specified load. the ldS,a instruction 
writes its source. address (address contained in FS) to a hardware data structure 
known 2IS the Advanced Load Addrcss  (ALAT). Each IA-64 store instruc-
tion checks the ALAT for entries that overlap with its target address; if 4i match is 
found, the ALAT entry is removed. When Ihe original ld8 is converied to an Ida 
inst ruction and movcci, the  igifl iI po.sition of that instruction is replaced with a 
check load instruction, ldS.c. Wien the check load is executed. it checks the ALAT 
for a matching address. If one is found, no store instruction between the iidvanued 
load aud the. check load has iilkered the source address; of !lie load, and no action is 
taken. I lowever, if the etteLk load instrUction does not find t matchin2 ALAT entry, 
then the load operation is performed again to assure the correct TCfitilk, 
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We rhay also want tO spwola tiv4;[y cac.eutc. insLructio]is IhaL are data dependent 
on a load instruction, together with the load itself. Starting with the same original 
program, suppose we move LL both the load and the subsequent add instruction: 

lda.a r6 // cycle -3 or earlier: advanced load 

olner instrzictLons 

ado; r5 r6, r7 // Cycle -L; ade  that ki4e.:3 r0 
// 07.er ir.ntr..LctLne. 

std [r.4] = rig i  cycle 0 

16, recover Cycle 0; check 
.L.Fac:11! i/ pn'=nt ffimr. jump t recover 

m_#; frnI - rc cycle 0 

f lere we use a ehk.a instruction rai her ihan an ILI 3,C instruction to validate the 
advanced load. If the chk.a instruction determines that the load has failed, it cannot 
si mply recxecute the load: instead. it branches to a recovery routine to dean up: 

Recover: 

1d8 r6 = [re:1 ;; // reload r6 iron 
adn r5 = r6, :; // L1=  add 

br back // fump bac= . to main code 

This technique is effective only if the loads and stores involved have. little 
chance of overlappin. 

Software Pipelining 

Consider the following loop: 

1d4 r4 - :r5] , 4 ;; 
add 17 - r4, rg  

[r6 = r7, 4 

br.c-oop Ll ;; 

2: load poeLncl 4 

// cycle 2 

i/ Cycle 3; store .costi.r.c 4  

Cyo.le 

This loop adds a constant to one vector and stores the result in another vector 
(e.g, y[i] = x[i] I c), The .Ed4 instniclion loads 4 bytvs from memory. C he qualifier 
", 4" at the end of the instruei itm signals that this k the base update form of the load 
instruction; the address in 5 is incremented by .4 atter the load takes place. Simi-
larly. the st4 instruction stores four bytes in memory and the address in r6 is incre-
mental by four 4(.21-  t he More, 'Vlic hr.cluop inMruclion. known Lis a counted loop 
branch, uses the Loop Count (LC) application register. If the LC register is greater 
than zero, it is decremented and the branch is taken. The initial value in LC is the 
number or ilerations of the loop. 

Notice that in this program, there is virtually no opportunity for instruction-
level parallelism within a loop. Further, the instructions in iteration x are all exe- 
cuted beforc. iteration .v 1 begins. However, if there is no address eon flic1 between 
the load and store (r and poin1.10 nonoycrIvping muniory locarion.9_ then uti- 
lization could be improved by moving independent instructions from iteration x • I 
to iteration x. Another way of saying this is that if we unroll the loop code by iwtu;illy 
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writing out El new set of instructions for each ieratio± then there is opportunity to 
increase parallelism, Let's see what could be done with five iterations: 

la4 r32 

Ld4 1. 34 
add r36 

= [r5]. 
- 
- 
= r32, 

4 
4 
d 

r5 

;r 
; 

; 

1/ 
/1 
// 

Cycle 
Cycle 
..7Arcle 
Cycle 

0 
1 
2 
2 

r:35 = Lx 72.1. 4 // Cycle -;1. 
a 2 = r2s, r 17.: ZZ 7.2vcle 

st4 [1- 61 = f36, 4 ;r /1 Cycle 3 
la4 r36 = [r5]. 4 /I Cycle 3 
add r R= r?4, Cycle 4 

s=4 [r6 -  - L. 37, 4 ;; 7/ Cycle 4 
add -L- 39 = r35, r9 ZZ Cycle 5 

1- .0. 4 t; Cycle 5 
add L4C. - r3 G, Cycle G 

= r39. 4 ;; /1 cycle 6 

57,4 .r Ed = r.10, 4 ;; /1 Cycle 7 

' thi program compIL:tes 5 iterations in 7 cycles, compared with 20 cycies in the 
original iooped prOgrarn, This assunii,:s 1h.at there  L WILF memory ports o that a 
load and a store can be. executed in parallel. This is an example. of software pipelin-
ing, .i npli gcriii; to hardware pipelining. Figure 15.6 illustrates the process. Parallelism 
is achicycd  grouping toptlwrinsirtictions from differen1 iterations. For this to 
work, the temporary registers used imide the loop MLA( Ile c hriged foreach iterEi- 
tion Lc] avoid register conflicts. In this case, two temporary registers are used fr4 anti 
r7 in the origimil program), in the e.xpanded program, the regiger numher of each 

(W10. 

Cycle I 

Cycle 2 

Cycle ,1 

Cycle 4 

Cycle 5 

['vete 6 

Cycle 7 

Figure 15-6 .cifilwarc Pipelining Exnrnplc 
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register is incremented For each iteration, and the register numbers are initialized 
sufticierdly far apart tO avoid overlap. 

Figure 15.6 shows that the software pipeline has three phases. During the pro-
log phase, a new iteration is initiated with each Clock cycle and the pipeline gradu-
ally fills up. During the kernel phase, the pipeline is full. achieving maximum 
parallelism, For our example, three instructions are performed in parallel during the 
kernel phase, but the width of the pipeline is four. During the epilog phase_ one iter-
ation completes with each clock cycle. 

Software pipelining by loop unrolling places a burden on the compiler or 
programmer to assign register names properly. Further, for long loops with many 
iterations, the unrolling results in a significant expansion in code size. For an inde-
terminate loop (total iterations unknown at compile time), the task is further com-
plicated by the need to do a partial unroll and then to control the loop count. IA-64 
provides hardware support to perform software pipelining with no code expansion 
and with minimal burden on the compiler. The key features that support software 
pipelining are as follows: 

• Automatic register renaming: A fixed-sized area of the predicate and floating-
point register files (p16 to p63: fr32 to frI27) and a programmable-sized area 
of the general register file (maximum range or r32 to r127) are capable of rota-
tion. This means that during each iteration of a software-pipeline loop, regis-
ter references within these ranges are automatically incremented..Thus. if a 
loop makes use of general register r32 on the first iteration, it automatically 
makes use of r33 on the second iteration, and so on, 

■ Predication: Each instruction in the loop is predicated on a rotating predicate 
register. The purpose of this is to determine whether the pipeline is in prolog, 
kernel, or epilog phase, as explained subsequently. 

• Special loop terminating instructions: These are.branch instructions that cause 
the registers to rotate and the loop count to decrement. 

This is a relatively complex topic; here, we present an example that illustrates 
some of the IA-64 software pipelining capabilities. We hake the original loop pro-
gram from this section and show how to program it for software pipelining, assum-
ing a loop count of 2(X) and that there are Iwo memory ports: 

mcn, - 199 /i lop cryJnr, regisrer ro 19 9 , 
// WI1lc ecual6 loop corn:: - 1 

no ec = 4 // Set epilog co-1n ._ regiFt:.er 
// 7.o number of epilog 6LageE 1 

mov -1-:‹16;; I/ oriS - 1; rest - 
1..f..4 r32 - :rS: e  4 // Cycle 0 

(p17) Empty stage 
(p18) add 173!, r34, r9 Cycle 
Up -19 s=4 - r6: = z .36, 4 f,! Cycle 0 

br.etc; LL :; 11 Cycle C! 

We summarize the key points related to this program: 



P16 P17 1 P18 P1.9 LC EC 

4 

4 

bc.ccop 

hr.ctop 

hi clop 

hr.acip 

Mobil • 

st4 hr.ctop 

• • • •• 

st4 1-Ir.cl op 

st4 hr.ctop ti 

s1 1 br.ctup 9 

st4 brxtop 0 fi 11 

0 

riri 
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1. The loop body is partitioned into multiple Wages, with zero or more instruc-
tions per stage. 

2. Execution of the loop proceeds through three phases, During the prolog 
phase, a new loop iteration is started each time around. adding one stage to 
the pipeline. During the kernel phase, one loop iteration is started and one 
completed each time around; the pipeline is full, with the maximum number 
of stages active. During the epilog phase. no new iterations are started and one 
iteration is completed each time around. draining the software pipeline. 

3. A predicate is assigned to each stage to control the activation of the instruc-
tions in that stage. During the prolog phase. pi() is true and p17. p1S. and p19 
are false for the first iteration. For the second iteration, p16 and p17 are Inlet 
during the third iteration pi6, p17, and p18 are true. During the kernel phase. 
all predicates are true. During the epilog phase, the predicates are turned to 
false one by one. beginning with p16. The changes in predicate values are 
achieved by predicale ,  register rotation, 

4. All general registers with register numbers greater than 31 are rotated with 
each iteration. Registers arc rotated toward larger register numbers in a wrap-
around fashion. For example, the value in registers will be located in register 

+ 1 after one rotation: this is achieved not by moving values but by hard-
ware renaming of registers, Thus. in our example, the value that the load 
writes in r32 is read by the add t wo iterations (and two rotations) later as r34. 
Similarly, the value that the add writes in r35 is read by the store one iteration 
later als 06. 

Table 15.4 Loop Trace for Stiftwarc Pip-dining Example 

Execution Unitilastrudion 
Cycle 

tI 14.14 

I 1d4 

1d4 add 

3 1d4 add 

• • 

100 1d.4 add 

•• P• • .1. •• 

1114 arid 

21X1 add 

201 add 

2(12 

State Whine br.ctop 
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5. For the br.ctop instruction, the branch is taken if either LC > 0 or EC > 1. 
Execution of br.ctop has the following additional effects: if LC > 0. then LC 
is decrennerned; this happens during the prolog and kernel phases. If i.c = 
and EC > 1, ..1 2.0 i decremented; this happens during the epilog phase. 'The 
instruction also control register rotation. lf LC > 0. each execution of br.ctop 
places a I in p63. With rotation, p63 becomes pie). Feeding a continuous 
sequence of ones role} the predicate resisters during the prolog and kernel 
phases. If LC = 0, then hr.c1op sets p63 to O. feeding zeros into the predicate 
registers during the epilog phase. 

Table 15.4 shows a trace of 1he execution of this example, 

IA-64 INSTRUCTION SET AREHITECTURi 

,Figure 15.7 shows the set cat 3.42 ;.Nters available to application programs. That is :  
these registers are visible to applications and maybe read and, in most coxes, written. 
The register sets include the following: 

• General reOsters: 12 general-purpose M-hil registers. Associated with each 
register is a NaT bit used to track deferred speculative explained 
in Section 13.3. Registers r0 through r31 are referred to at, t,hltiC; program 
reference to any of these references is literally interpreted. Registers' r32 
through r127 can be used as rotating registers for soft 'arc pipelining (dis-
cussed in Section 1.5.3) and for register stack implementation (discussed sub-
sequently in this section). References to these registers are virtual, and the 
hardware my perform register renaming dynamically. 

* Floating -point registers: 128 82-bit registers for floating-point numbers. This 
size is sufficient to hold IEEE:. 754 double extended format numbers (see Table. 
9,3). Registers fr0 through fr3 I ;ire static, and registers fr32 through fr127 can 
be used as rotating registers for software pipelining. 

• Predicate registers: Cam# i -bit registers used as predicates. Register pro is always 
set to 1 to enable unpredicated instructions. Registers prO through pr13 are 
static, and registers pc16 through pri63 can he used ws rotating registers for soft-
ware pipelining. 

■ Branch registerx: 8 64-bit registers used for branches. 
■ Instruction pointer: Holds the bundle address of the currently executing IA-

64 instruction. 
• Current frame marker: Holds state information relating to the current general 

register stack frame and rotation information for fr and pr registers. 
• User mask: A set of single-bit values used for alignment traps. performance 

monitors, and to monitor fl oating-point register usage. 
• Performance monitor data registers: Used to support perforrimncc. monitor 



Branch registers 
63 0  

brO  
brl  

Application registers 
63 0  

ar0 i KRO   

KR7 ar7 

arl 6 
arl 7 
ar18 
arl 9 

coy   ar32 

Instruction pointer 
63 0 

IP   

Current frame marker 
37 0 

CFM 1 

 arl27 

FC R 
• 

User mask 
5  0 
L_ J 

Performance monitor 
data registers 

63 
prric10 
pmd1 

• 
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• Processor identifiers.: 1)Gscribc Farmessor implurneiiialiort-daptndunL features. 
• Application registers: A collection of special-purpose registers. Table 15.5 pro-

vides 21 brief definiWon of each. 

Register Stack 

1 he register stack mechanism in IA-64 avoids unnewssary movement of data inio 
and out of registers at procedure eal I  return. The nreehani SIT) autornaticalhj

,  pro-
vides a called procedure with a new frame. of up to 96 registers (r32 through.r127) 
upon procedure entry. The compiler specifies the number of registers required IT Y 
procedure with the ailtie instruci ion, whidi s.peViCiefi hel, W mariv of these girt; local 
(used only within the procedure) and how MAW,' are output (used to pass parame-
ters Io a procedure called by this procedure). When a procedure ca]] occurs. the 
I A-64 hardwme rt.:names registers so that the local registers; from the previous frame 
are hidden and what wcre the output registers of the calling procedure now have 
register numbers starting at r32 in the called procedure. Physical registers in the 

r32 through r 127 are allocated in a circular-buffer fashion to virtual registers 

fable 15—C I .A-6-4 Application Regist e rs 

Kurill21 ruil1o.1217 3 l< R 1)-7) Conveyinformari on from the operating sysl cm to the 
application, 

Register stack configuration (ESC) Controls the operation of the:register stack engine (RSE). 

RSE 13ackin store prim ler (FISP) lioldri the address in memory that is the r,LIFI2 Ii3e2Lion .i. w 
r32 ill the current stack. frame 

RSE Backing store poinler to millTIOry 
slimes (IISPSTORE) 

H oids. the add rc cs in enennon) Lci which 11-1.: RSE will ,:pii3 
ilw nest vriluc. 

R.SE NaT coilect i on rcgtsler (AN A'l ) Used by Elie R b... w r cm poraril,v hotel Nai hits when it 1.-. 
spilling general registcrs. 

Cprn parc and exchange. value (CCV) Contains the compare value used as the third sourt:.. 
operand in the cgiprie1]s instruction. 

User Karr collection re Oster (UN AT) Fixed to temporarily hob.] NaT bits wheri.s.aviii:J. ;old 
TtiN L{ItiDg g1.11{:Tai 3 • g .

B LOU!, Yr iih th e  idg.rii] and AN !.i:ill 

ilISEructium;. 

FloaLin-poinl. gailiS Te.giter (Fps R) CaniIDIa tTO1zi, CC I LI ndin .F mode., pf6i2isic }11 1.1331 mil. 1100., 
kind othel cOnircil hits for floatirig-pOini. inStr➢ CtiOnA. 

Iniervak time CCI LI rilxr OTC) C:ounts up irl El fixed ri2 !at i unsh i p to the p1131:EXSOT 1:101± 
frequency, 

Prc}iou's functi on stale (F.ES) Saves value in CE1y1 rcgier and relatcd information- 

Loop count (LC) Used in counted loops and is clecremented by counted ,  
loop• .type branches. 

Epilog count (EC) Lid for couniin the final (epilo[?.) stMe in Modulo- 
seiseduld loops. 
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associated with procedures. That is. the next register allocaled afLer 1. 127 is r32. 
When necessary, ihe hardware moves register contQnls hel wean registers and mem-
ory to free up 2iddiiional registers when procedure calls occur, and restores consents 
rrorn memory Lo registers as procedure returns occur. 

Figure 15.8 illustrates register stack behavior, Pic11(.14 .2 insiruetion includes 
sof {size of frame) and sol (size of locals) operands lo specify the required number 
trf registcrs. 'These  I ue.!.4 are stored in the (TM register. When a cal] occurs, the sel 
and sof values from the CFM are stored in the, soi and sof fieids of the previous func 
tion state (PFS) application register (Figure 15.9)- Upon return these so] and sof 
values must be restored from th4,:.  !he CPM. To a  nested calls and returns, 
vreivious valUe:S of the PFS fields niust be saved through successive calls so th4it they 
can be. restored through successive returns. This is a function of 1.111 .2 411 hoc instruc• 
lion, which designates a general register 10 save the current volue of the PFS fields 
hcforc they Lire ovcrwritten from the CFM fields. 

instruction execution 
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Figure 15.8 Register Stack Behavior on Procedure. Call and Return 
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Current Frame Marker and Previous Function State 

The CFM register describes the state of the current general register stack fr rne. 
associated with the currenay active. procedure. It includes the following fields: 

• 1.01'; Size of slack frame 
■ soh Size of Locals portion or stack frame 

• son size of roiAting portion of stack frame; this is a subset of the local portion 
that is dedicated Lo s.oftware pipelining 

• register rename h e values: Values used in performing  register rotation gen. 
erat, floating -point and predicate registers 

The PFS register contains the following fields: 

▪ pfm: Previous tramc nlarki,:r.: of Ihc fields of the cFro 
• pee: Previous epilog count 
■ ppl: Previous privilege level 

15.5 rrArsllum aftGANizATIoN 

Intel'; Z Lardurn processor is Ihe first implementai ion of the I A-454 instruelion set 
architecture, The Itaniurn organi?.ation blends superscIlar features with support for 
the unique EPIC. -related IA -64 features. Among the t‘uperscalar features are a six-
wide, ren......%tagc-deep hardware pipeline, dynamic prefetch, branch prediction. and a 
register scoreboard to oplirniv.c for compile lime nondelerminitim. EPIC'-related 
hardware includes support for predicated execution_ control arid data speculation, 
and software pipelining. 

Figure k a general Nock diagram of the I tanium organization. 'The Ito• 
nium includes nine execution units: Lwo integer, iwo 1104iting-point, Iwo inernery, 
and three branch execution units. Instructions are retched through an Ll instruction 
cache ;I nd fed into a buffer that holds up to eight bundles of instructions. When 
deciding.on funciiorra I uni Es For instruction dispersal, the processor views al mast 
Iwo instruction bundles at a time. 'rke. processor can issue a maximum of six insirtic• 
Li ons per clock cycle, 

the orpiniwai ion is in some ways simpler than a conventional contemporary 
superscalar  Itanium does not use reservalion  reorder 
buffers. and memory ordetirt2 buffers, all replaced by simpler hardware for specu-
lation. The register remapping hardware is simpler than the register aiiasing typical 
of superscalar machines. Register dep endency-detection logic is absent, repla ced by 
explicit parallelism directives prccoinputed by LH software. 

Using branch prediction. the fetchlprefetc]i engine can speculatively load an 
Ll instruction cache= 10 minimize cache misses on instruction fetches. The fetched 
code is fed into a decoupling buffer [hat can hold LE F : to eight bundles of code. 

Three levels of cache are used. The LI cache is split into a 16 -kbyto instruc-
tion cache and a lb-]chute data cache, each 4-way set associative with a 32-byte 
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Figure 15.10  Ranh= Processor Organization ISHAR0101 

]inc size, The 96 -kbyte L2 cache is 6-way set associative with a 64-hyte line sire, [he 
4-Mhyte L3 cache is 4 -way set associative with a 64 -byte line size. The LI and I. 
caches are on the processor chip: the L3 cache is off-chip hut on the same package 
as the processor. 

15.6 RECOMMENDED READING AND WEB SUES 

ifill:CKCX71 provides an overview of IA-64; another overview is IDUL098I. [SCHLMa] pro-
vides a general discussion of EPIC; a more thorough treatment is provided in [SCHLOOb]. 
Two other good treatments are 111WLI011 and IKATHOl [CHASM and [I IWI.:98] provide 
introductions to predicated execution. Volume 1 of IINTEMal contains a detailed treatment 
of software pipelining; two articles that provide a good explanation of the topic. with exam-
ples. arc VARP01] and IBHARi-1U!. 

For an overview of the hani um prueessor architecture, see [SH.A kW]; INTEMbi pro-
vides a more detailed treatment. 

Both rrRIEall and [MARKOOI contain more detailed treatments of the topics of this chap-
ter. Finally:  for an exhaustive look at the TA-64 architecture and instruction set. see 
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• Itanium:lnters site for the latest information on IA-64 and Itanium. 

• IMPACT: This is a site at the University of Illinois, where. much of the research on 
predicated execution has been done, A number of papers on the subject arc available; 

15.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terms 
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• predicate register 
predication 
register stack 
software pipeline 
--- - • 

speculative loading template field 
Slack frame very long instruction word 
stop 
ff.C...t1krble. 

Review Questions 
15,1 What are the different types of execution units for IA -64? 
15.Z. Explain the use of the template field in ;in IA -6.1 bundle. 
15.3 What is the significance of a stop in the instruction stream? 

15A Define predication and predicated execution. 

15.5 How can predicates replace a conditional branch insirtiction? 

L5.6 Define con1rol speculation. 

15.7 'INhat is the purpose of the NaT bit? 

15.8 Define data speculation. 

15.9 What is the difference between a hardware pipeline and a software pipeline? 

15.10 Virrhal is the difference between stacked and rotating regrsters? 

Problems 
15,1 Suppose that an IA-64 opcodc accepts ihrec registers as operands and produces one 

register as a result. What is the maximum number of such opcodes that can he defined 
in One major opcode [arni]y?  • 

15.2 At a certain point irk an IA-64 program, Ihere are LO A •typo instructions and six 
floaling-point instructions. Ihat can be issued concurrently. How many syllables !nay 
appear without any stops hetwcun them? 

15.3 In Problem 1 s.2, 

a. How man's.. cycles am required for a small LAM. impierneniation haying one floating-
point urkii, two integer units. and Iwo memory units? 

b. How many cycles are required for the Itanium organisation of Figure 15.10? 

15.E An algorith in ChM can utilize four floating-point instructions per ma lt ,  is coded for IA-
64. Should instruction groups contain four limning-point ()reran.' in••••? What are the 
consequences if the machine on which the  rypigram runs has fewer  four floating-
point units? 

15.5 In Section 15.3, we introdueed the following constructs for predicated execution; 

p2, D3 = a, h 
ODL) croD,CL.A 2, .33 = a, h 

where. orel is a relation, such as eq, ne. etc.: p1. p2. and p3 are predicate registers; a is 
either a register or an immediate operand; and h is a register operand. 

Fill the following truth table; 
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I . For the predicated program ASection 15.3, which iinpleirieJits the flowchart of Fig ,  
urc L5.4. indicate 
41, Those hum ructions [hot can he eNecuted in. parallel 
h. Those instructions that can he bundled into the same 1A-0 ,1 instruction bundle 

15-7 Consider Ihe following suurce cude scgmcnt: 

for ( i DJ  c 101:.;  ) 

-t (A[ij < ) 
j = j - 14. 

= - 

WTI.% •a COMSrondinigl Pentium assembly code segment. 
h. Rewrite as an /A4.r4 assembly code segmcnt using predicated execution technive„. 

15.8 Consider the following C program fragment dealing with float a .211.1:111 .1 

a IL: 
C j 

The compiler cannot establish thal i i. hut has rcasoli that it probably 

H. Write an 1A-64 proform Limn!! :Irl ;RIv .,incze.1 toad to impleinClit this C program. 
rhv tl oal A m m1aGm1 mm(iy mgeG is are r  iid Innpy, respectively. 

h. Recode the program using predication instead of the advanced load. 
c. What LLTC the advantages and disadvanlages. of [he two approache4. compared with 

cach other'? 
153 .60.9ume: th .:41 a si nk. registi,:r firaim k created with si7e eq altoSOF= 48. If the size 

or the. [Ewa! register siroitip is SOf 16 :  
a. How many output registers (SOO) are there? 
b. Which registers are in the local and output repister groups'? 
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In Part Three., we focused on Inaeh'inee instructions and thc. opmmion:s per-
formed by the processor to execute each instruction, Vit'hat was lc it out of 

iS exactly 1101V eitCh individual operation is caused to happen. This 
is the job of the coin rol 

The controi unit is tEurt portion of the procesor that actuatfy cattwes 
things to happen. The control twit issueN controi signals external ,to the 
proccsor to cause data exchange with me3nory and 110 modules. The con-
trol unit also issues control signak inIvrnal to the processor lo move data 
between registers, to cause the ALU to pert( inn a. specified function, and to 
regulate. other internal operations. Input to the control unit consists of the 
instruction register, kags, and control signals from external sources (e.g., 
interrupt signals). 

eeee e 
e'ree&-  

Chapter 16 Control Unit Operation 
In Chapter I 6, We (UM to a discussion of how processor functions are per-
buried or, more specifically; how the widow.; elements or the processor are 
controlled to provide these functions, by means of the control unit. It is 
shown 1ha E each insErucl ion cycle is made up of a set of micro-operations that 
generate control signals. Exeetil ion is accomplished by the effect of these 
control signals. emanating from the control unit to the AFAT,  nd 
system interconnection structure. Finally, an approach to the implementation 
of the .conttol unit, referred to as hardwired implementation, is presented. 
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Chapter 17 Microprogramined Control 

Chaptcr 17. }1/4'(;.' KC. /K-tom cOnCepl of mice qt lea.(L to an elegant 
powerful approach to control unit impicmentation, known SE. microprogramming, 
En es6ence, lk -pwer-level programming lan2tiage is dveloped, Each instruction in 
the machine 1.4inguage of the procesma  traos»Led ito a scttacnce of 
contfol writ instructions. These Joi,ver-lcvel instructions aye referred to as micro-
instruction2i, and the process of translation is referral to as microprogramming. 'Hit! 
chaptcr (lc:scribes die layout of a conlrol memory conLaiMng n vriklrprogrAii, [en 
each machino instruclion is dc..e.ri bed. 'rho sEructurt and function of the micro-
programmedcontrol unit CUD then I:Fe explained, 
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KEY. POINTS 

* The execution of an instruction involves the execution of a sequence 01' sub- 
cps, generally called cycles, Fur example, au execution ma!• , ,  consist of fetch, 

indirect, execute, Intl inlerrupt cycles. Each cycle is in turn made up of a 
so.itience of more. fundamental operations. called iniero -Operations. A 8i4,,112 
micro-t-Fperation generally involves a transfer between registers. a transfer 
between Lk register and an external bus. or a simple ALL' operation. 

• The control unit of a proce ssor performs two ia!,ks: l) It causes the ffocessor 
to execute micro-operations in the . proper sequence, determined by the pro-
gram being executed, and f2 it generates the control signals that cause each 
micro-operation to be executed. 

• The control signals generated by the control unit cause the opening and clos-
ing of logic gates, resulting in the transfer of dal a in and from regiSters and the 
operation of the ALL 

• 
 

One teehnique for implementing a control unit is referred to ax hardwired 
implementation, in which the controt min is a ccmtioatcrisl eircuii. Jis input 
logic signals. governed by the current  instruction. arc transferred into 
a set of oulput control signals, 

I n _'h;ipter 10, we pointed out (hal z.J. mLtchinc instruelion set goes a Long way 
I o...,..;ir,1 defining the processor. if we know the machine instruction set, including 
an understanding of the effect of each opcode and an understanding of the 

iL.Ii.lressing modes, and if we know the 5ei of user-vi5d)le registers. i hen we krKrk 
thc functions that the processor must perform. This is not the complete picture. We 
must know the external interfaces, usually through a bus. and how interrupts are 
handled. With this line or reasoning, the following list of those things needed trP 
specify the function of a processor emerges!' 

L Operations'. (orodes.) 
2. Adire.ssing modes 
3. Registers 
4. 110 module interface 
5. Memory. module 
6. Interrupt processing structure 

This list, though general. is rather complete. Items 1 through 3 are defined by the 
instruction Set. I teni ,, 4 11“.1 5 are typically defined by sped Lying the system bus, Item 
6 is defined partially by the system hus and p;irlinlEv by the type of support 
processor offers to the operating system. 

This list or six iLfm-m mighi be termed the functional requirements for a proces-
sor. They determine what a proulssor must do, This is what occupied us in Part 
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Two and Three. Now. we turn to the cluei ion of how these functions are performed 
or, more specifically. how the various elements of the processor are controlled to 
provide thcse functions. Thus, we turn to a discussion of the control unit, which con-
trols the operation of the processor. 

16.1 MICRO-OPERATIONS 

\V have seen that I ht. operation of a computer, in executing program. consists of 
rs sequc...nce of instruction cycles, with one machine instruction per cycle. Of course, 
we must remember that this sequence of instruction cycles is not necessarily the 
same as the written sequence o.1 irv;tructions that make up the program, because of 
the existence or branching instructions. What we are referring to here is the execu-
tion time sequence of instructions. 

‘Ve have further seen that each instruction cycle is made up of a number of 
smaller units. One 111-itli vision that we found convenient is fcieiL indirect, execute, 
and interrupt, with only fetch and execute cycles always occurring. 

To design a control unit. however, we need to break down the description 
further. In our discussion or pipelining in Chapter 12, we began Lo sec that a further 
decomposition k possible. ln fact, we will see that each of the smaller cycles involves 
a series of steps :  each of which involves the processor registers. We will refer lo 
these steps as micro -operation..'1 . 1 - ,I. Felix nrinro refers to the fad that each stela in 
very simple and accompiishes vary tithe. Figure MI depicts I he relationship among 
the various concepts we have been discussing, To sumrnalie.e, Lhc execution of a pro-
gram consists of the sequential execution of instructions. Each instruction is exc-
culed during an insi ruction cycle made. up of shorter subcycles  fetch, indirect, 

Program mciillon 

Ilion.. 16.1  Constituent Elements of a Program ExtCLI(kul 
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execute. interrupt). The performance of each suhcycle involves one or more shorici 
operations, that is, micro-operations. 

Micro-operations are the functional, or atomic. operations of a processor, In 
this section, we will examine micro-operations to gain an understanding of how 
the events of any instruction cycle can be described as a sequence of such micro 
operations. A simple example will he used. In the remainder of this chapter, we the!' 
show how the concept of micro-operations serves as a guide to the design of the 
control unit. 

The Fetch Cycle 

We begin by looking at the fetch cycle, which occurs at the beginning of each 
instruction cycle and causes an instruction to be fetched from memory, For pur-
poses of discussion, we assume the organization depicted in Figure 1.2.6. Four reg-
isters are involved: 

• Memory address register (MAR): Is connected to the address lines of the sys- 
tem bus. It specifies the address in memory I'nr a read or write operation. 

• Memory buffer register (MR): Is connected to the data lines of the system bus. 
11 contains the value to be stored in memory or the last value read from memory. 

• Pregnant counter (PC): Holds the address of the next instruction to be fetched. 
• Instruction register ( R): Holds the last instruction fetched. 

Let us look at the sequence of events for the fetch cycle from the point of view 
of its effect on the processor registers. An example appears in Figure [6.2. At the 
beginning of the fetch cycle. the address of the next instruction to he executed is in 
the program counter (PC); in this case. the address is 1100100, The first step is to 
move that addrc.•.ss to the memory address register (MAR) because this is the only 
register connected to the address lines of the system bus. The second step is to bring 
in the instruction. The desired address (in the MAR) is placed on the address bus, 
the control unit issues a READ command on the control bus. and the result appears 
on the data bus and is copied into the memory buffer register (MBR We also need 
to increment the PC by 1 to get ready for the next instruction. Because these two 
actions (read word from memory. add 1 to PC.) do not interfere with each other, we 
can do them simultaneously to save. time, The third step is to move the contents of 
the MB R to the instruction register (1R). This frees up the vIBl( for use during a 
possible indirect cycle, 

Thus, the simple fetch cycle actually consists of three steps and four micro. 
operations. Hach micro-operation involves the movement. of data into or out of a 
register. So long as these movements do not interfere with one another, several of 
them can take place during one step, saving lime. Symbolically, we can write this 
sequence of events as follows: 

(— (PC:. 
MER Memory. 
PC (PC) + 

4-- (MBR ) 
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Figure 16.2 Sequence of Events. Fetch 

(d) Third step 

where I is the instruction length. Wc need 10 make several Comments about this 
sequence. Wc assume that a clock is available for timing purposes and tho  emits 
regularly spaced clock pulses. Each clock pulse defines a time unit. Thus, all time 
units are of equal duration. Each micro -operalion cxn he performed within the time 
of a single time unit. The notation (L i , t„ t,) represents successive time units. Iii 

words, we have 

• First time unit Move contents of PC to MAR. 

• 

 

Second ti me unit: Move contents of memory location Teeificd by MAR to 
MBR. Increment by I the contents of the PC. 

• Third time unit Move contents of MHR  I R. 

Note that the second and third micro-operations bosh take place during the second 
time unit. The third micro-operation could have been grOuped with the twirl h with-
out affecting the (etch opera lion: 

t. (PC 
L n  i•MR. <— Memory 

PC (— T 

ZR ; 2.1ER 

The groupings of micro-operations must follow two simple rules:  

1. The proper sequence of events must be raovecd. Thus (MAR  (PC)) must 
precede. MBR e Memory) hoc iuse the memory read operation makes use of 
the inidecs in the MAR. 
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2. Conflicts must he avoided. One should not attempt to read to and write front 
the same register in one time unit. because the results would be unpredictable. 
For example. the micro-operations (MBR <— Memory) and (IR  MRR1 
should not occur during the same time unit. 

A final point worth noting is that one of the micro-operations involves an addi• 
tion. To avoid duplication of circuitry, this addition could be performed by the 
ALL. The use of the ALZJ may involve additional micro-operations, depending on 
the functionality of the ALL' and the organization of the processor. We defer a dis• 
cussion of this point until later in this chapter_ 

II is useful to compare events described in this and the following subsections 
to Figure 3.5, Whereas micro-operations are ignored in that figure, this diseussion 
shows the micro-operations needed to perform the subcycles of the instruction cycle. 

The Indirect Cycle 

Once an instruction is fetched, the next step is to fetch source operands. Continu-
ing our simple example. let us assume a one-address instruction format, with direct 
and indirect addressing allowed. If the instruction specifies an indirect address, then 
an indirect cycle must precede the execute cycle. The data flow differs somewhat 
from that indicated in Figure 12.7 and includes the following micro-operations: 

t: MAR (— (IR ii-Vi(iress) 
; <— Memory 

TP.1.7iddres,$) CAER fAdaroiF;) 

The address field of the instruction is transferred to the MAR. This is then used 
to fetch the address of the operand. Finally, the address field of the 1 R is updated 
from the MBR, so that it now contains a direct rather than an indirect address. 

The. IR is now in the same state as if indirect addressing had not been used, 
and it is ready for the execute cycle. We skip that cycle for a moment, to consider 
the interrupt cycle. 

The Interrupt Cycle 

At the completion of the execute cycle. a test is made to determine whether any 
enabled interrupts have occurred. If so, the interrupt cycle occurs. 'Mc nature of this 
cyCle varies greatly from one machine to another. We prescra a very simple 
sequence of events, as illustrated in Figure 12.K We have 

t 113R ( PC 
t L  MAR 4 SaveAcir-a 

PC 4- Rout,Lne_Ac",dress 
tilettufy : MET; 

In the first step, the contents of the PC are transferred to the MBR, so that 
they can be saved for return from the interrupt. Then the MAR is loaded with the 
address at which the contents of the, PC are to be saved, and the PC is loaded with 
the address of the start of the interrupt-processing routine. These two actions may 
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each be a single micro-operation. However. because most processors provide mul-
tiple types and/or Levels of interrupts, it may Lake one or more additional micro-
operations to obtain the save_address and the routine_address before they can be 
transferred to the MAR and PC, respectively. In any case. once lhis is done. the final 
step  to store the MBR, which contains the old value or the PC into memory, 'Fhe 
processor is now ready to begin the next instruction cycle. 

The Execute Cycle 

The fetch, indirect, and interrupt cycles are simple and predictable. 
Ma ch  involves a 

small. fixed sequence of micro-operations and, in each CAW, the same micro-opera-
tions arc repeated each tune around. 

This is not true of the execute cycle, For a machine with N differen opCOdeS, 
there are N different sepienees of micro-operations that can occur. LeL us; consider 
several hypoi helical examples. 

First. consider an add instruction: 

ADD R1, X 

which adds the contents of the location X to register RI. The following sequence or 
micro-operations might occur: 

VAR fIR.:address) 
MER Memory' 

<— +.R1 (MER! 

We begin with he IR containing the ADD instruction. in the first step, the 
address portion of the IR is loaded into the MAR. Then the referenced memory 
Location is read. Finally, the contents of R1 and MBR are added by the AIX. Again% 
this is a simplified example„.Nilditional micro-operations may be required to extract 
the register reference from the IR and perhaps to stage the AL, U inputs or outputs 
in some intermediate registers.. 

Let us look at two more complex examples. A common instrueth PT] is incre-
ment and skip if zero: 

ISZ 

The content of location X is incremented by L. If the result is 0. the next instruction 
is skipped. A possible sequence or IILicro-operations is 

E MAR (11.7.1:adciress) I 
t,  FIER Xemory 
t,  MBR ( MBR) - 
t... Memo r-

y
- ( MBR) 

(•alR.) = CO then {?C. (PC .:  - I) 

The new feature introduced here is the conditional action, The PC is incre-
mented if .!v1 B1.?..) = This test and action can be implemented as one micro- 
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operation. Note also that this micro-operation can be performed during the same 
ti me unit during which the updated value in MB R i stored back to memory. 

Finally, consider a subroutine call instruction. As an example, consider a 
branch-and-save-address instruction: 

BSA X, 

The address of the instruction that follows the RSA instruction is saved in location .  
X, and execution continues at location X — I. The saved address will later be used 
for return, This is a straightforward technique for providing subroutine calls. The 
following micro-operations suffice: 

WAR (— CFR 
1,113F. PC) 
PC <— (iR. ,:address) 

(NBR) 
PC ; PC )  .1 T 

The address in the PC at the start of the instruction is the address of the next 
instruction in sequence. This is saved at the address designated in the IR. The lat-
ter address is also incremented to provide the address of the instruction for the nest 
instruction cycle. 

The Instruction Cycle 

We have seen that each phase of the instruction cycle can be decomposed into a 
sequence of elementary micro-operations. In our example, there is one sequence 
each for the fetch, indirect, and interrupt cycles, and, for the execute cycle. there is 
one sequence of micro-operations for each opeode. 

To complete the picture, we need to tie sequences of micro-operations 
together, and this is done in Figure 16.3. We assume a new 2-hit register called the 
immtetion cycle code (ICC), The ICC designates the state of the processor in terms 
of which portion of the cycle it is in: 

00: Fetch 
01: Indirect 
10: Execute 
1I: Interrupt 

Al the end of each of the four cycles, the ICC is set appropriately. The indi-
rect cycle is always followed by the execute cycle. The interrupt cycle is always fol-
lowed by the fetch cycle (see Figure 12.41. For both the execute and fetch cycles, the 
next cycle depends on the state of the system. 

Thus, the flowchart of Figure 16.3 defines the complete sequence of micro-
operations, depending only on the instruction sequence and the interrupt pattern. 
Of course. this is a simplified example. The flowchart for an actual processor would 
be mote complex. In any case, we have reached the point in our discussion in which 
the operation of the processor is defined as the performance of a sequence of micro-
operations. We can now consider how the control unit causes this m2quence to occur, 
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16.2 CONTROL OF THE PHOCESSOR 

Functional Requirements 

result of our analysis in the preceding section. we have decomposed the bc-
haviOr or funclioning of the processor ink elemcni.nry o r i,:rations, callcd  icro-
operations. 

By, 
 reducing the operation of [he pi .cluessai to its most fundamental 

level, we are able to define exactly what it is that the control unit must cause tc.) 
happen, Thus, we can define the fiinctional requfremenrs for the control unit: those 
functions that the. control unit must perform. A definition of these functional re-
quirements is the basis for the design and implementation of the control unit. 

'With the information at hand, the following three-step process leads to a char-
eicrizaLion of the cornrol anti; 

L Define the basic elements of the processor. 

2. Describe the micro-operations that the processor performs. 

3. Determine the functions that the control unit must perform Lo cause the miCro-
opf.l.TaLiorVs i« he performed. 

We have already performed steps I and 2. Let us summarize the Icsuit:,;- First, 
he basic funetionai elements the processor are alc f011owirig! 
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• ALU 
▪ Registers 
▪ Internal data paths 
• External data paths 
▪ Control unit 

Some thought should convince you that this is a complete list. The. Al .11 is the 
functional essence of the computer. Registers are used to store data internal to thr 
processor. Some registers coniain status information needed to manage instruction 
sequencin.g (e.g., a program status word}_ Others contain data [hail go 10 or come 
from the ALU. memory, and I/0 modules. Internal data paths 41E0 toed to move 
data between registers and between register and ALL. External data paths link reg-
isters to memory and I/O modules, often by means of a system bus. The control unit 
causes operations to happen within the processor. 

'rho execution of a program consists of operations involving these processor 
elements. As we have seen, these operations consist of a sequence of micro-opera-
tions. Upon review of Section 16.1, the reader should see that all micro-operations 
fall into one of the following cateaories! 

• Transfer data from one register to another. 
• Transfer data from a register to an external interface (e.g., system bus). 
▪ Transfer data from an external interface to a register. 
• Perform an arithmetic or logic operation, using registers for input and output. 

Al] of the micro-operations needed 10 perform one instruction cycle, including all 
of the micro-operations to execute every instruction in the instruction set. (all into 
one of thew cittegories. 

We can now be somewhat more explicit about the way in which the control 
unit functions. The control uni t Furrorms two basic lasky: 

• Setptencin The control unit eauseN the processor 0.11 step through a series of 
micro-operations in the proper sequence, based on the. program being execute,a 

• Execution: The ctphlrol unit causes each micro-operation to be performed. 

The preceding is a functional dewript ion of what the control unit does. The 
key to how the control unit operates is the use of control signals. 

Control Signals 
We have defined the elements that make up the processor (ALL'. registers, Lima 
paths) and the micro-operations that are performed. For the control unit to perform 
its function, it must have inputs that allow it to determine the state of the system 
and outputs that allow it to control the behavior of the system. Thctie are the exter-
nal specifications of the control unit. laternall! F , the control unit must have the logic 
required to perform its sequencing and execution functions. We defer a discussion 
of the internal operation of the control unit to Section 16.3 and Chapter 17. The 
remainder of this section is concerned with the interaction fictwccn the control unit 
and the other elements of the processor. 
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Figure 16.4 is a geneniI mode] of the control unit, showing all of iis inputs and 
outputs. The inputs /Ire as fa lows: 

* Clock: Tki:i is how the control unit - keeps time. -  The conl rot 'mil causes one 
micro-operation (or a sci of simillEaneous micro-operations) to be performed 
for each clock pulse. This is sometimes referred to as the processor cycle time 
or the dock cycle time. 

• Instruction register: The opcotic of the current instruction is used to determilic 
which micro-operations to perform during the execute cycle. 

■ Flags: These arc ncethAl by the control unit to determine the st4i r us or the 
processor and the outcome of previews ALL' operations. For example, for the 
ineromenl-and-skip-if-zero (JSZ) instruction, the control unit will increment 
the PC if .  the 4c:tio flag is set. 

■ Control signals front control hus:'1 . hu control bus portion of the system hus pro-
vide., signals to the control unit, such as interrupt signals and acknowledgments. 

The outputs are as follows! 

• Control signals within the processor: These are two types: those the] cause 
data to be moved from one register In another. and those that activate specific 
ALL functions. 

• Control signals to control bus: These are also of two types: control signals lo 
memory, and.control signals to the I/O modules. 

The new element T hat has been introduced in this figure is the control sigma 
Three types of control signals arc used: those that activate an ALE! function, those 
that activate a data path, and those that arc signals on the external system bus or 
other external interface. ALL of these signals are ultitmitcly a ppl ied  dirco Iv as binary 
inputs to individual logic gates. 

instruction register 

Control .5ignak 
within CPU 

• 
Flags • • 

Control 
unit 

Control. sjg-na Ls 
from system bus 

Clock 

Figure 16.4 ?41.0c11 of the Control Unit 

Control !..g.nals 
ILO system 1}115 

Control 
bus 
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Let us consider again the fetch cycle to sec how the control unit maintains 
control. The control unit keeps track of Where it is in the instruction cycle. Al a 
given point, it knows that the fetch cycle is to be performed next. The first step is 
to transfer the contents of the PC to the MAR, The control unit does this by acti-
vating the control signal that opens the gates between the bits of the PC and the 
bits of the !OAR. The next step is to read a word from memory into the MBR and 
increment the PC. The control unit does this by sending the following control sig-
nals simultaneously: 

• A control signa] that opens gates, allowing the contents of the MAR onto the 
address bus 

• A memory read control signal on the control bus 
• A control signal that opens the gales, allowing the contents of the data bus to 

he stored in the MBR 
• Control signals to logic that add 1 to the contents or the PC and store the result 

back to the PC 

Following this, the control unit sends a control signa] that opens gates between the 
MBR and the IR. 

This completes the fetch cycle except for one thing: The control unit must 
decide whether to perform an indirect cycle or an execute cycle next. ' fo decide this, 
it examines the IR to see if an indirect memory reference is made. 

The indirect and interrupt cycles work similarly. For the execute cycle. the 
control unit begins by examining the opeode and, on the basis of that, decides which 
sequence of micro-operations to perform for the execute cycle, 

A Control Signals Example 

To illustrate the functioning of the control unit, let us examine a simple example. 
Figure 16.5 illustrates the example. This is a simple processor with a single accumu-
lator. The data paths between elements are indicated. 'Ihe control paths for signals 
emanating from the control unit are not shown, but the terminations of control sig-
nals are labeled C. and indicated by a circle. The control unit receives inputs from 
the clock, the instruction register. and flags. With each clock cycle, the control unit 
reads all of its inputs and emits a set of control signals. Control signals go to three 
separate destinations: 

• Data paths: The control unit controls the internal flow of data. For example, 
on instruction fetch. the contents of the memory buffer register are transferred 
to the instruction register, For each path to be controlled, there is a gate (indi-
cated by a circle in the figure). A control signal from the control unit tem-
porarily opens the gate to let data pass. 

• ALU: The control unit controls the operation of the ALU by a set of control 
signals. These signals activate various logic devices and gates within the ALU. 

• System bun: 'I -he control unit sends control signals out onto the control lines 
of the system bus (e.g., memory READ), 

The control unit must maintain knowledge of where it is in the instruction 
cycle. Using this knowledge, and by reading all of its inputs. the control unit emits 
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•0.11 

Control 
signals 

Clock 

Figure 16.5 Data Paths and Control Signals 

a sequence of control signals lIuiI muses micro-operations to occur. I . uses the dock 
pulses Io time the sequence tai events., ki [ow ing time between events. for sina] lev-
els to sLa ham. Talle 61 indicates the control signals that are needed for 'some of 
the micro-operation sequences described carlier. For simplicity, the data and Con-
trol paths for incrementing the PC and for loading the fixed addrcssc!, int() the PC 
and MA R  ;ire not shown. 

It is worth pondering the minimal nature of the control unit. The cons rcrl Linn 
is the engine that runs the entire computer. It does this based only on knowing the 
instructions to be executed and the nature of the results of arairrictii: rind logical 

Table 16.1 Micro-Opc.ratiums and Cornrell Signals 

Micro-Operations Timing Control Sigmas 

( PC) 
MEIILOTy 

]'{' r(FC)+ I  
13! ( MBR) 

indifuet: 

i is MAR CIR(Addressi$ C, 

t2; MI31i Mcinciry 

L3! 1RI:Address) e— (ME3R(AddrcNs0 C, 

LI: 1 1f3R E (PC) C, 

t2; MAR 4— SaVi!-NdlirCSS• • 

PC (— Rotnaw-Nklitress 
L3- lvkinory .(• (MBR) 

 

Irittrrap(: 

 

34x,vi ts.:•• ,:slet11 

C y, - Ny'liCirl 

Foie IT 
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opuations (e.g., positive, overflow, cic,). It never gets to see the data being 
processed or the actual results produced: And i l Quntrois everything with a few con-
trol signals to points within the processor and a Few control signals to the sysLctn  bua- 

Internal Processor Organization 

Figure 16.5 indicatus the use of a variety of data paths. The complexity of this type 
of organization should be clear, More typically, some. sort of internal bus arrange-
ment, as was suggested in Figure 12i, will be used. 

Using an internal processor bus, Figure [6.3cai he rearranged as shown in 
Figure 1(-1.h. A Nilltgle iniernal bus connects the ALU and al] processor rq.iste. 
Oates and control signals rf1-1,: provided for movement of data onto and off the bus 

 

Control 
unit 

 

Internal 
CPU bus 

Figure 16.6 CP1 . 1  with internal Bus 
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from each register. Additional control signals control data transfer to and from the 
system (external) bus and he operation or the ALU. 

Two new registers, labeled Y and Z. have been added to the organizalion. 
These are needed for the proper operation of the ALL. When an Ope1-4+1jOn involv-
ing Ewo ipperands i perrornicti, now can 1 -ic ohudllcd from the internal bus. but the 
other must be obtained from another source. The AC. could be used for this pur-
pose, but this limits the flexibility of the system and would not work wi  Li proces-
sor with multiple general-purpose registers. Register Y provides temporary storage 
for the other input. The A LIH is a combinatorial circuit (see Appendix A) with no 
internal storage. Thus. when control signals activate an ALL:function, the input to 
the ALL is transformed to the output. 'Thus. the output or the AU; cannot he 
directly conneeied to the bus. b4cau7 ,.e this output would feed hack to the input Reg-
ister Z provides temporary output storage. With this arrangement. an operation to 
add a value from memory to the AC would have the following steps; 

MAR 4- 1: :R i address ) 
MER Y_emory 

, ; (19-1I) 
(AC', + ("Z) 

1.. z  AC (— 

Other organizations are possible, but in genera[. some sort of internal bus or 
set of internal buses is used. The use of common data paths simplifies the interoon-
ncction layout and I he eontro] (lithe processor. Another practical reason for the use 
of an internal bus is to save space. Especially for microprocessors, which may occupy 
only a 11 .4-inch square piece of silicon, space occupied by interregister connections 
must be minimizaed. 

The Intel 8085 
'1 .0 illustrate some of the concepts introdu0..!{ 1 1 11111-,  far in this chapter, let us consider 
the Intel 8085. Its organivation is Nhown in Figure 16.'7. Several key components that 
may not be self-explanatory arc as follows:. 

• Incremeuteridecrementer address latch: Logic that can acid I. to Or subtract 
rrtlin the conLeTsis .or the slack roinlcr or prOgrMn counter. This saves time by 
avoiding the use of the A LI.J for this purpose. 

■ Interrupt control: This tnodule handles multiple levels of in1errup1 signals. 

• Serial I/O control; This module interfaces to devices that communicate 1 bit at 
a time. 

Table I rp.2 describes the external signals into and out of the KfIK.5. These are 
linled to 1he eikternal system bus. 'E .hesc Signals arc the inierface between the 8085 
processor and the rest of 1.1112 system (I iigure 16.8), 

The control unit is identified as having two components labeled (1) instruction 
decoder and Machine cycle encoding and (2) timing and control. A discussion of the 
first component is deferred until the next section. The essence of the control unit is 
the timing and control module. 'This. module includes a clock and accepts as inputs 
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Fable 16.2 Intel 8085 External Signals 

High Address (A1-AR) 
itdrfreS. Dahl SiyI)11J1: 

The high-order g bits of a 1 fi-hi1. address. 
AddiremurDabi (AD7—A1}0ni 

The lower-order H bits of a Its-bit address or 8 hits of data.. This multiplexing saves on pins. 
Serial Inpni Delo (SID) 

A single-bit input to accommodate devices that transmit aeii:ilfc tone hit at a time), 
Serial Output Dula (SOD) 

A single-bit Out put to accommodate devices that receive 

riMing and Control SiviaLs .  
CLK (OCT) 

The system clock. Each cycle represents one's slate. The CLK sienal goes to peripheral chips and 
synchronins their liming. 

Xl. 
These signals come from all external crystal or other device to drive the Internal clock generator. 

Address Latch Enabled (ALE) 
Occurs during the first clock slate of a machine cycle and causes peripheral chips to store the address 
lines, This allows the address module memory. ) to recognize that it is being addressed. 

Slants (SO, SD 
Control signals used to indicate whether a read or write operation is taking place. 

Used to enable either U0 or memory modules for read and write operations, 
Read Control (RD) 

Indicates dim the selected memory or I'O module is to be read and that the data bus is available for 
data transfer. 

'Lille Control (MR) 
Indicates. that data on the data bus is to he written into the selected inemnri or I/O location. 

Memory am/ Itiitietrett Symbr•1.i' 
Hold 

Requests the. CP1.s to relinquish control and use of the external system bus. The CPC will complete 
exec-10k m of the instruction presently in the IR and then enter a hold state, during which nu signals are 
inserted by I he CPI, to the control. addres, or data buses. During the hold slate, the bus may be used 
for DMA operations. 

Hold Acknowledge IHOLDA) 
This control unit output signal acknowledges the HOLD signal and indicates that the bus is now available: 

READY 
Used to synchronin the CPC wit h sLtiwei memory or UO. de ities. When en addressed device iissens 
READY, the CP1 1  may proceed with an input (DBIN) or output 1WRt operation, Otherwise, the CPU 
enter+. a w ait state until i he device is ready. 

imermpi-kelated SignolY 
TRAP 

Restart Interrupts (RST 7.5. 6.5. 
Interrupt Request (1NTR) 

These lines are used by an external Lievice to interrupt the CPU, 'The CPU will not honor the 
request if it is in the hold state or if the interrupt is disabled, An interrupt is honored only at the 
completion of an instruction. The interrupts are in descending order of priority_ 

Acknowledge 
Acknowledge'. in interrupt. 

cpti 
RESET IN 

Causes the contents of the PC to be set to zero. The CPU resumes execution al location 7,0-0_ 
RESET OUT 

Acknowledges that the CPU has been reset_ The signal can he used to reset the rest of the system. 

VCC 
Voltage and Gtrorrnel 

+5 volt power supply 
USS 

Electrical eround 
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the current instruction and some external control signals. f (Pulpit consists of con-
trol signals to the other components, of the processor plus control signals to the 
external system bus. 

The liming of processor operations is synchronized by the clock and can-
irolled by the conirol unit with control signals. Each instruction cycle is divided into 
from one to five machin e. cycles: each machine, cycle is in turn divided into from 
three to five stares. Each state lasts one clock evelc. During a state, the processor 
performs one or a set of simultaneous micro-operations as determined by the con ,  
11-01 signals, 

The number of machine cycles is fixed for a given instruction but varies from 
one instruction to another. Machine cycles are defined 10 be equivalent to hug 
accesses. Thus, the number of 1/Lachine cycles for an instruction depends on the 
number of times the processor must conirriunic4itz with external devices. For exam-
ple, if an instruction cons.isis of two 8-bit portions, ihcn two machine cycles are 
required to Teich the instruction. if Ihat instruction involves a 1-1 -Fyte memory or 110 
operation. then a third machine cycle is required for execution. 

Figure 16.9 gives an e4inapie of 8085 timing, showing the value of external con-
trol signals- Of course, at the same lime, the control unit gcneraies internal control 
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signals that control internal data transfers. The diagram shows the instruction cycle 
for an OUT instruction. Three machine cycles (M I , M 3, M) are needed. During the 
first, the OUT instruction is fetched. The second machine cycle fetches the second 
half of the instruction. which contains the number of the I/O device selected for out- 
put. During the third cycle, the contents of the AC are written out to the selected 
device over the data bus. 

The Address Latch Enabled (ALE) pulse signals the start of each machine 
cycle from the control unit. The ALE pulse alerts external circuits, During timing 
state T, of machine cycle M 1 , the control unit sets the 10/NN signal to indicate that 
this is a memory operation. Also, the control unit causes the contents of the PC to 
he placed on the address bus (A.. through AO and the address/data bus (AD, 
through ADO, With the falling edge of the ALE pulse, the other modules on the 
bus store the address. 

During timing stale T,. the addressed memory module places the contents of 
the addressed memory location on the address/data bus. The control unit sets the 
Read Control (RD) signal to indicate a read, but it waits until '1 to copy the data 
from the bus. This gives the memory module time to put the data on the bus and for 
the signal levels to stabilize. The final state, T4 , is a bus idle suite during which the 
processor decodes the instruction. The remaining machine cycles proceed in a sim-
ilar fashion. 

16.3 HARDWIRED impuiviEN-iiiiarW 

 

i- 

  

We Imve discussed the. control unit in terms of its inputs, output., and functions. We 
now turn to the topic of control unit implementation. A wide variety of technique. 
have been used. Most of these fall into one of Iwo categories: 

• Hardwired implementation 

• Microprogrammed implementation 

In a hardwired implementation, the control unit is essentially a combinatorial 
circuit. Its input logic signals are transformed into a set of output logic signals, which 
are the control signals. This approach is examined in this section, Microprogranuned 
implementation is the subject of Chapter 17. 

Control Unit Inputs 
Figure 16.4 depicts the control unit as we have so far discussed it. The key inputs are 
the instruction register. the clock, flags. and control bus signals. In the case of the 
flags and control bus signals. each individual bit typically has some meaning (e;g.. 
overflow). The other two inputs, however, are not directly useful to the control unit, 

First consider the instruction register. The control unit makes use of the 
()Node and will perform different actions (issue a different combination of control 
signals) for different instructions. To simplify the control unit logic, there should be 
a unique logic input for each opcode. This function can be performed by a decoder, 
which takes an encoded input and produces a single output. In general. a decoder 
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will have n. binary inputs and 2." binary outputs. Each of the 2' different input pat-
terns will ;.ictiyatc a single unique output. Table .16,3 is an example. The decoder for 
a control unit will typically hays to he more complex than that, to account for vari-
able-length opcodes. An example or I hc digital logic used to implement a.decoder 
is prescrfled in Appendix A. 

'the clock portion of the control unit issues a repetitive sequence of pulses. 
This is useful for measuring the duralion of micro-operations. Essentially, the period 
of the clock pulses must be long enough to allow the propagation of signals along 
tlatit paths and through processor circuitry. However, as we. have 8L2[1,  the control 
unit emits different control signals at different lime units within a single instruction 
cycle. Thus, we would like a coupler as input to the control unit. with a different 
control signal being tiwd  and so forth. At the end of an Ins  lrucl ion cycle:, 
the control unit must feed back to the counter to reinilializc it all 

With these two refinements, the control unit can lie depicted, as in Figure 
16.10, 

Control Unit Logic 
To define the hardwirc0 impIernentation of a control unit, all that remains is to dis-
cosZi Lhc inicrnal logic of the control unit that produces output control signals as a 
function of its input signals, 

Table 16.3 A. Decoder with Fuur Sixt4.24.11 Outputs 
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Clock 
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Timing 
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I 
Control signals 

Figure 1.6.10 Control Unit with Decocted Inputs 

Essentially, what must be done is, For each control signal, to derive a Boolean 
expression of that signal as a function of the inputs. This is best explained by exam-
ple. Let us consider again our simple example illustrated in Figure 16.5. We saw in 
Table 16.1 the micro-operation sequences and control signals needed to control 
three of the four phases of the instruction cycle. 

Let us consider a single control signal, C,. This signal causes data to he read from 
the external data bus into the MBR, We can see that it is used twice in 'Table 16.1. Let 
us define two new control signals. P and 0. that have the following interpretation: 

Pc .= 02. 
PQ = 0: 
?Q= 1C 
Q= 11 

Fezch Cycle 
Incnrect Cycle 
txecute Cycle 
Tnterrupz Cycle 

Then the following Boolean expression defines C,: 

C ., = P • Q • T7, + P • 0 • 

That is. the control signal O a  will be asserted during the second time unit of both the 
fetch and indirect cycles. 

This expression is not complete. C', is also needed during the execute cycle. 
For our simple example, let us assume that there are only three instructions that 
read from memory: LDA, ADD, and AND. Now we can define C, as 

I 
C, 

C 5 = P 0 • T2 -I-  P • Q • + P • Q • (1....DA -I- A DD + AND) • T2 
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This same process could be repeated for every control 6ignal generated by the 
processor. The resull would he a set of Boo]esn equal ion:i ihat derine the behavior 
of the control unit ;ind hence of the processor. 

To tie everything toget her. the control unit must control the state of the 
instruction cycle. As was maitioned, at the end of each subcycle (fetch, indirect, 
execute, interrupt), the control unit issues a signal that causes the Liming generator 
to reinitialize. and issue 'f,. The control unit must also set the appropriate values of 
P and Q to define the next subcycle to be performed. 

The reader should be able to appreciate that in a modern complex processor, 
the number of Boolean equations needed to define the control unit ix very large. 
The task of implementing a cornbinAtorial circuit that satisfies all of these equations 
becomes extremely difficult. The result is that a far simpler approach, known as 
inie.`ropmgrainnang. is usually used. This is the subject of the next chripler. 

16.4 RECOMMENDED READING 

number of textbooks I I t mi I Ehc bask. principles of control unit function; two pall ictilarly 
clear treatments are in [HA Y.E981 and INIAN00]1.. 

HAVV98 1-11:q0s, 3. Compuipy. A rrliire oto re. ,10.1d Or gym i z: vii on, Nc.vii York: McGraw-Hi]] .  
1998. 

A1AN0111 Islme,.M. Logic cord Computer Des4m f, rn, ir.intoJtu !Vol' , 
PrefiricE• Nail, I WI. 

16.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terris 

     

control bus control signal 
conto.5.1 path control unit 

 

hardwired implementation 
microopera 

    

Review Questions 
16.1 Explain the distinction Between (he written scqucecc and the time sequence of an 

instruction. 
16.2 What is the relatinnshipl -peiwen in.structions and micro-operations? 
163 What is the overall function of a proctssur's control unit? 
16.4 Outline a three , stap process dint leads to a ellaractai2ation of chi control unit. 
16..5  What basic tasks does a control unit pc.rforrn? 
1(0 Priividc a typical list of the inputs and outputs of ec.itrill 
1fi..7  Lig! three Cypcs of control signals. 
16.N.  Elijah explain what is meant by a hardwired iinplemotalion of a control unit. 
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Problems 
[6.1 Your ALU can add its 14ko input registers, and it can logically complement I lie bits of 

eith&r input register_ but it cannot 6ubtrau. Numbers arc to be stored in twos com-
plement representation, L,isl the tilierooperations yoLli control unit must perform to 
cause a subtraction, 

162 Show the miero•operations and control signals in the same fashion as Table 16_1 for 
the proccssor in Figure 16.5 for the rollowing instructions: 

• Load Accumulator 
• Store Accumulator 
▪ Add to Accumulator 
• AND w Accumulator 
* Jump 
■ Jump if AC - 0 
■ Complement Accumulator 

16.3 Assume that propagation delay along the bus and (haw gh the ALU of f=igure L6,6 are 
20 and /00 as, respectively. The time required lot ruglster to copy data from thu buE 
is 10 ns. What is the Oink:. lhat must be allowed for 
a. trace ferring data rroni one register to another'?' 
b. incrementing the program courur -.) 

1.6.4  Write the sequence of micro-operations required rot the bus structure of Figure 16.6 
to add a number to the AC when the number is 
a. an immediate operand 
13: a direct-address operand 
f. an indirect-address operand 

16.5 A stack is implemented as shown in Figure L0.14, Show the sequence of micro ,  
operations Fo r 
21. popping 
b. pushing the stack 
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KEY POINTS 

• An alternative to a hardwired control unit is a microprograrnmed control unit ;  
in which the logic of the control unit is specified by a microprogram. A micro- 
program consists of a sequence of instructions in. a microprogramming 
language_ These are very simple instructions that specify micro-operations, 

• A microprogrammed control unit is a relatively simple logic circuit that is 
capable of (/) sequencing through microinstructions and (2.) generating con-
trol signals; to execute each microinstruction. 

• As in a hardwired control unit, the control signals generated by a microin-, 
struction are used to cause register transfers and ALL) operations_ 

T.  h.e. ye

II,K5 l]. Wilkes proposed an approach to control unit design that was 
term microprogram as first coined by M. V. Wilkes in the early 1950s 

IW 
.. -  .:Organized and systematic and avoided the complexities of a hardwired 

implementation, The idea intrigued many researchers but appeared unworkable 
because it would require a fast, relatively inexpensive control memory. 

The state of the microprogramming art was reviewed by Datamation in its 
February 1964 issue. No microprogrammed system was in wide use at that time, and 
one of the papers I I II 11,641 summarized the then-popular view that the future of 
microprogramming "is somewhat cloudy. None of the major manufacturers has evi-
denced interest in i he technique, although presumably all have examined it." 

This situation changed dramatically within a very few months. IBM's System360 
was announced in April, and all but the largest models were mierc.iprogrammed. 
Although the 360 series predated the availability of semiconductor ROM, the 
advantages of microprogramming were compelling enough for IBM to make this 
move. Since then, microprogramming has become an increasingly popular vehicle 
for a variety of applications, onc of which is the use of microprogramming to imple-
ment the control unit of a processor. That application is examined in this chapter. 

17.1 BASIC CONCEPTS 

Microinstructions 
The control unit seems a reasonably simple device. Nevertheless. to implement a 
control unit as an interconnection of basic logic elements is no easy task_ 'I .  he design 
must include logic for sequencing through micro-operations. for executing micro-
operations, for interpreting opcodes. and for making decisions based on ALL flags. 
It is difficult to design and test such a piece of hardware, Furthermore, the design is 
relatively inflexible. For example, it is difficult to change the design if one wishes to 
add a new machine instruction. 

An alternative, which is quite common in contemporary OW processors, is 
to implement a microprogrammed control unit. 
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roinstruction add TeSS 

p condition 
- nconditional 

ZEE} 
Overflow 
Indirect bit 

Sys tom bus otintrol signals 
int rnal CPU control signals 

(a) Horizontal microinstruction 

Nlicroirish-OCd011 address 
 Jump condition 

} Function codes 

(b) Vertical microinstruction 

Figure 17.1 Typical Microinstruction FOnnals 

Consider again Table 16.1. In addition to the use of control signal.., each 
micro-operation is described in symbolic notation. This notation looks suspiciously 
like a programming language_ In fact it is a language, known as a inicroprogranuning 
language. Each line describes a set of micro-operations occurring at one time and is 
known as a microlivaraction. A sequence of instructions is known as a micropro-
gram, or firmware, This latter term reflects the fact that a microprogram is midway 
between hardware and software. It is easier to design in firmware than hardware. 
but it is more difficult to write a firmware program than a software program. 

How can we use the concept of microprogramming to implement a control 
unit! Consider that for each micro-operation, all that the control unit is allowed to 
do is generate a set of control signals. Thus, for any micro-operation, each control 
line emanating from the control unit is either on or off_ This condition can, of course, 
be represented by a binary digit for each control line. So we could construct a con-
rro, word in which each bit represents one control line. Then each micro-operation 
would be represented by a different pattern of is and fls in the control word, 

Suppose we string together a sequence of con irol words to represent the 
sequence of micro-operations performed by the control unit. Next, we must recog-
nize that the sequence of micro-operations is not fixed. Sometimes we have an indi-
rect cycle sometimes we do not. So let us put our control words in a memory, with 
each word having a unique address. Now add an address field to each control word, 
indicating the location of the next control word to be executed if a certain condition 
is true (e.g.. the indirect bit in a memory-reference instruction is  Also. add a few 
bits to specify the condition. 

The result is known as a hurizontai inicrginstructic% an example of which 
is shown in Figure 17,1a. The format of the microinstruction or control word is as 
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follows. here. is one bit for each internal proeussor control line and one bit for each 
system bus control line. There is a condition field indicating the condition under 
which there should be a branch. and there is a field with the address of the micro-. 
instruction to be executed next when a branch is taken. such a microinstruction h 
interpreted as follows: 

1. To execute this microinstruction, turn on all the control lines indicated by a I 
bit; leave off al] control lines indicated by a 0 bit. The resulting control signals 
will cause one or more micro-operations to he performed. 

2. 11 the condition indicated by the condition bits is false, oxeculc the next 
microinstruction in sequence. 

3. If the condition iridie.ri Led by the condition bits is true, the next microinstruc-
tion to be executed is indica ted in the address field. 

Figure 17.2 shows how these control words cw microinstructions could he 
arranged ltl a co land mummy. The microinstructions in each routine are to be exe-
cuted sequentially, Each routine ends with a branch or jump instruction indicating 
where to go next. 'IhCre is a special execute cycle routine whose only purpose 
to signify that one of the machine instruction routiric (AND, ADD, and so on) is to. 
be executed next. depending on the current opcode. 

Fetch 
cycle 
routine 

Lidi red 
,7ycle 
routine 

interrupt cycle routine 

F.xecute cycle lvginning 

AND routine 

ADD routine 

• 
■ 
■ • 

IOF routine 

Figure 17.2 Organization cir C'ciiitroJ Mom ory 
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I Control address register 

Figure 17.3 Control ll..:nit \tic], mrchitecturc 

The control memory of Figure 17.2 is .a concise description of the complete 
operation of the control unit. It defines the sequence of micro-operations th he per-
formed during each cycle (fetch, indirect, execute. interrupt), and it specifies the 
sequencing of these cycles. If nothing else. this notation would he a useful device for 
documenting the functioning of a control unit for a particular computer. But it is 
more than that. It is also a way of implementing the control unit. 

Microprograrnmed Control Unit 

The control memory of Figure 17.2 contains a program that describes the behavior 
of the control unit. It follows that we could implement the control unit by simply 
executing that program. 

Figure 17.3 shows the key elements of such an implementation. The set of 
microinstructions is stored in the control memory. The control addre.vs regisfrr con-
tains the address of the next microinstruction to he read. When a microinstruction 
is read front the control memory. it is Li mtNferred to a control buffer regiver. The 
left-hand portion of that register (see Figure 17.1a) connects to the eon I rol lines 
emanating from the control unit. Thus, reading a microinstruction from the control 
memory is the same as executing that microinstruction. The third element shown in 
the figure is a sequencing unit that loads the control address register and issues a 
read command. 

Lot us examine this structure in greater detail, as depicted in Figure 17,4. 
Comparing this with Figure 16.4, we see that the control unit still has the same 
inputs (IR. ALU flags, clock) and outputs (control signals). The control unit func-
tions as follows: 
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Instruction regbier 

Control signals  Control signali% 
within CPU to symiem IPA 

Figure 17.4 Functioning of Microprogrammed Control Unit 

1. To execute an instruction, the sequencing Logic (mil iisu s a HEAD roinniand 
to the control memory. 

2. The word whose address is specified in I he control address register is read into 
the control buffer register. 

3. The content of the. control buffer register generates control organs and next-
address information for the sequencing logic will. 

4. The sequencin logic unit loads a new address into the control 4ithirt:•Ss regis-
ter based on the next-address information from I he control buffer register and 
I he f IA: flogs. 

All this happens during one clock pulse. 
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The last step just listed needs elaboration. AL the conclusion of each microin-
struction, the sequencing Logic unit loads a new address into the control address reg-
ister. Depending on the value of the AL'S flags and the control buffer register, one 
of three decisions is made; 

■ (et the nest instruction: Add 1 to the control address register. 
• Jump to a new routine based on H jump microinstruction: Load the address 

field of the control buffer register into the control address register. 
• Jump to a machine instruction routine: Load the control address register based 

on the opecrde in the I R. 

Figure 17.4 shows Iwo modules Labeled clecodo .. The upper decoder translates 
the opcodc of the IR into a control memory address. The lower decoder is not used 
for horizontal microinstructions but is used for vertical microinstructions (Figure 
17.1b). As was mentioned, in a horizontal microinstruction every hit in the control 
field attaches to a control line. In a vertical microinstruction, a code is used for each 
action to he performed [e.g., MAR  (PC)], and the decoder translates this code 
into individual control signals. The advantage of vertical microinstructions is that 
they are more compact (fewer bits) than horizontal microinstructions. at the 
expense of a small additional tinourit of logic and time delay, 

Wilkes Control 

A.s was mentioned, Wilkes first proposed the use of a microprogrammecl control 
unit in 1951 EWILK51 I. This proposal was subsequently elaborated into a more 
detailed design I WILK53j. It is instructive to examine this seminal proposal_ 

The configuration proposed by Wilkes is depicted in Figure 17.5. The heart of 
the system is a matrix partially filled with diodes. During a machine cycle, one row 
of the matrix is activated with a pulse. 'this generates signals at those points where 
a diode is present (indicated by, a dot in the diagram). The first part of the row gen-
erates the control signals that control the operation of the processor. The second 
part generates the address of the row to be pulsed in the next machine cycle. Thus, 
each row of the matrix is one microinstruction, and the layout of the matrix is the 
control memory. 

At the beginning of the cycle, [hi:. address of the row to be pulsed is contained 
in Register 1. This address is the input to the decoder. which, when activated by a 
clock pulse, activates one row of the matrix_ Depending on the control signals, either 
the opcode in the instruction register or the second part of the pulsed row is passed 
into Register II during the cycle. Register II is then gated to Register I by a clock 
pulse. Alternating clock pulses are used to activate a row of the. matrix and to trans-
fer from Register II to Register I. The two-register arrangement is needed because 
the decoder is simply a combinatorial circuit; with only one register, the output 
would become the input during a cycle, causing an unstable condition. 

This scheme is very similar to the horizontal microprogramming approach 
described earlier (Figure / 7,1a). The main difference is this: In the previous descrip-
tion, the control address register could he incremented by .one to get the next ad-
dress. In the Wilkes scheme. the next address is contained in the microinstruction, 
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Figure 17.5 Wilkes's Mieroprograrnmed Control Unit 

To permit branching, mw TrIUS1 o nl.iin 1 wo Kidraqs parts. controlled by a condi-
tional signal (e.g„ flag), as shown in the figure. 

Havin•g proposed this scheme, Wilkes provides an exam * of its use to imple-
ment the contra[ unit of a simple machine. This example, the first known dcsign  uF 
a microprogrammcd processor, is worth repeating here bccause it illustrates many 
of the contemporary principles of inicroprogramining. 

The processor of the hypothetical machine includes the following registers; 

A multiplicand 
H ncurnulittor (leas! -significan I. hal kl  
C accumulator (most-significant half) 
I) shift register 

In addition, there are three registers and two 1-bit flags accessible only to Ow con. 
Irc^l aril, The registers are as follows; 

E serves as both a memory address register (MAR) and temporary storage 
F program counter 
▪ another temporary register; used for counting 

Table 17.1 lists the machine instruction set for this example. Table 17.2 is the 
complete sei of microinstructions, expressed in symbolic form, I hal implemcnrs 

C113C1c. —0- 
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Table 17.1 Machine Instruction Set for Wilkes Example 

Order Effect or Order 
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. 10;...11-11 I. 
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the controt unit. Thus. a total or 38 microinstructions is all that is required to define 
the system completely. 

The first full column gives the address (row number) of each mierdnstruction. 
Those a ddresse=s eorrcsponding to opcodes are labeled, Thus, when the opcode for 
the add instruction (A) is encountered, the microinstruction to locai ion 7 7,  is exe-
cuted. Columns 2 and 3 express the actions to be taken by the ALU and control unit. 
respectively. Each symbolic expression must be translated into a set of control sig-
nals (microinstruction Fins). Columns 4 2ind 5 have to do with 1he setting and use of 
the two flags (flip-flops). Column 4 specifies the signal that scis the flag. For exam-
ple, MC, means that flag number 1 is set by the sign hit of the number in register 
C. lIcolumn 5 contains a flag identifier. then columns 6 and 7 contain the two alter-
native microinstruction addresses to he nsed. Otherwise, column t4 specifics !he 
address (.11-  the next microinstruction to he letchcd. 

1 mi ruetions 0 through 4 constitute the fetch cycle. Microinstruction 4 presents 
the opcode to a decoder, which genenues the address of a microinstruction corre-
sponding to the machine instruction to be fetched. The reader should he able to 
deduce the complete functioning of the control Mil from a careful study of Table 17.2. 

Advantages and Disadvantages 

The principal advantage of the use or micn3prognimming It implement a control 
wail is that it simplifies the design of the control unit. Thus, it is both cheaper and 
Less error -pri.,ne to implement, A irtirdwired control unit must contain complex logic 
for sequencing through the many miero-operations of the insiruclion cycle - On the 
other hand, the decoders and sequencing logic unit o[ a microprogrammed control 
unit are very simpie pieces of logic, 
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Table 17,2 MikiroiOstrUctions fur Wilkes Example 
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Table 172 +.1.1.1 rimmed) 
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The principal disadvantage of a microprogrammed unit is that it will he 
somewhLit slowur i kein 4 hardwired unil of comparble tcchnoltrgy. Despite this 
microprogramming is the dominant technique for implementing control units in 
conternporar.,.

,  CISC, due to its ease of implementation. RISC processors, with their 
si mpler instruction rormat% typically use hardwired control units- We now examine 
the m ieroprc Tin mined 4ippro.wh in greater cleWil. 

17.2 MICROINSTRUCTION SEQUENCING eAgrr  .01= erelryr,„,-erfr:Aerefreer;Are9.4vVw .̀i.}.9.1",  
• 

The two basic tasks performed by a atieroprograinimcd control unit are as follows; 

• rilicroinstruction sequencing: Gel the next microinslruction from I he utyn1roE 
Memory, 

• Microinstruction execution: Generate the control signals needed to execute 
the microinstruction. 

In designing a control unit, these tasks must be considered together, because 
both affect the format of the microinstruction and the lirrting of the control unit, In 
this section, we will focus on si2quencing and say as iittie as possible a bouE format 
and timing issues. These issues are examined in more detail in the next section, 



610 CHAPTER 17 I M1CROPROGRAMMED CONTROL 

Design Considerations 

'Iwo concerns are involved in the design of a microinstruction sequencing lechniqw:.: 
the size of the microinstruction anc,lthc address-generation time. The first concern 
is obvious minimizing the size of the control memory reduces the cost of that corn-
poncril. The second concern is simply a desire to execute microinstructions as fast 
as possible. 

In executing a microprogram, the address of the next microinstruction to be 
executed is in one of these categories: 

■ Determined by instruction register 

* Next sequential address 

▪ Branch 

The, first category occurs only once per instruction cycle, ust after an instruction 
is fetched. The second category is the most common in most designs. However, 
the design cannot be optimized just or sequential aeeess. kranches, both condi• 
lional and unconditional, are a necessary part 0] a microprogram. Furthermore. 
microinstruction sequences tend to be short; one out of every three or four micro-
instructions could he 21 branch [SIEW82]. rhus, ,s irnpoliatiL Lo design compact. 
time-efficient techniques for tnicroinstruetion branching. 

Sequencing Techniques 

Based on the current microinstruction, condition flags, and the contents of the 
instruction register. a control memory address must be generated for the neat 
microinstruction. A wide variciy or technique ,; have been used, WQ. 1:411 group them 
into three general categories, as illustrated in Figures 17.6 to 17.8. These categories 
are based on the format of the address information in the microinstruction: 

• Two addresf., fields 

• Single addrc!. Field 
• Variable format 

The simplest approach is to provide two address fields in each microinstruc-
tion. Figure 17,6 suggests how this information is to be used. A multiplexer is pro-
vided [hal sere air destination ror both address rielthi plus I he instruction register, 
Based on an address-selection input, the multiplexer transmits either the opcode 
or one of the two addresses to the control address register (CAR). The CAR is sub-
sequently decoded to produce the next microinstruction addro”. The address-
selection signals are provided by a branch logic module whose input consists of 
control unit flags plus hits from the control portiOn Or the microinstruction. 

Although the two-address approach is simple, it requires more bits in the 
microinstruclion than other approaches. With some additional logic, 'savings can 
be achieved. A common approach is to have a single address field (Figure 17.7). With 
this approach. the options for next address are as follows: 
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III 

Figure 17.6 Branch Control Logic. Two Address Fields 

* Add resA field 
* Instruction register code 
I  Next sequential address 

The address-selection signals determine which option is sele.6ted. This approach 
reduces Ehe number of address fields to one. Note, however, that the address fi dd 

willsoften  nut he wicfl, TM's, Eh.crt is some illaii6encv in the microinstruction cod-
ing scheme. 

Another approach is to provide for two entirely different microinstruction for-
rnais (Figure 17.8). One bit designates which formal is being used- In one format, 
the remaining hi Is ;ire used to virliv;ite eon Li-01 sigrth Is. In the other formai, sonic bits 
drive the branch logic module, and the remaining bits provide the address. With the 
first format, the next address is either the next sequential address or an iiddres ,, 
derived from the instruction register- Willi the second format, either a conditional 
or unconditional branch is being specified. One disadvantage of this approach is [hal 
one entire cycle is consumed with each branch microinstruction- With I he other 
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appr9ac1ics, vicldrcs;71 generation occurs as part of the same cycle as control. signal 
?eneration, control mcmory acceSses. 

The approaches just described are gcneral. Specific implementations will often 
involve a variation or combination of these techniques. 

Address Generation 

We have looked al the sequencing problem from the point of view of format con-
siderations and general logic requircmcnbl. Anoi her viewpoint is io ccJrisider the 
various ways in which the next address can be derived or computed. 

'table 17,3 lists the various address generation techniques. These can be. 
divided into explicit techniques, in which the address is explicitly available in the 
microinstruction. and implicit techniques, which require additional logic to gcno.- 
41 to ihe address. 

We have essen tinily dealt with the explicit techniques. With a two-field ap-
proach, two alternative addresses are available with each microinstruction. Using 
either a single address field or a variable format, various branch instructions can be 
inipiernenied. A conditional branch instruction depends on the following types of 
information: 

• AL[! 

• Part of the opcode or address mode fields of the rwichinc ims1ruction 

Figiire 17.7 13nrich Coritrul. Sirsg142. Address Field 
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Figure MK Branch Control Logic, variable Format 

• Parts of a selected register, such as the sign bit 
• Smuts hits within the control unit 

Soieral implicit techniques are also commonly used. One of these. mapping, 
is required with virtually all designs. The opcode portion of a machine instruction 
must be mapped into a microinstruction address. This occurs only once per instruc-
tion cycle. 

Table 17.3 Microinstruction Address Generation Techniques 

Explicit Implicit 

Two-fickl Mapping 
UncondiLioneMI branch Addition 
Conditional branch Residual control 
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00 07 08 09 10 12 

A common implicit technique is one that involves combining or adding two 
portions of an address to form the complete address. This approach was taken for 
the IBM Si360 family EI'LICK671 and used on many of the S/370 models. We will use 
the IBM 3033 as an example. 

The control address register on the IBM 3033 is 13 bits long and is illustrated 
in Figure 1.7.9. Two parts of the address can he distinguished, The highest-order 8 
bits (00-)7) normally do not change from one microinstruction cycle to the next. 
During the execution of a microinstruction, these 8 bits are copied directly from au 
K-bik field of the microinstruction (the BA field) into the highest-order 8 his of the 
control address register. This defines a block of 32 microinstructions in control 
memory, The remaining 5 hits of the control address register arc set to specify the 
specific address of the microinstruction to be fetched next. Each of these hits is 
determined by a 4-bit field (except one is a 7-bit field) in the current tnicroingroc-
firm; the field specifies the condition for setting the corresponding bit. For example. 
a hit in the control address register might he set to.1 or 0 depending on whether a 
carry occurred on the last AL1.1 operation. 

The final approach listed in Table 17.3 is termed reyidual control. This 
approach involves the use of a microinstruction address that has previously been 
saved in temporary storage within the control unit. For example, sorni.2 microin-
struction sets come equipped with a subroutine facility. An internal register or stack 
of registers is used to hold return addresses, An example of this approach is taken 
on the 1.,S1-1.1, which we now examine. 

LSI-11 Microinstruction Sequencing 

The LSI-11 is a microcomputer version of a PDP-11, with the main components of 
the system residing on a single board. The LSI-11 is implemented using a micro-
programmed control unit [SEBE76]. 

The LSI-11 makes use of a 22-bit microinstruction and a control memory of 2K 
22-bit words. The. next microinstruction address is determined in one of five ways: 

• Next sequential address: In the absence of other instructions, the control unit's 
control addres7., register is incremented by 1. 

■ °rode mapping; At the beginning of each instruction cycle, the next microin-
struction address is determined by the opeode. 

• Subroutine facility: Explained presently. 
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• Interrupt testing: Certain microinstructions specify a test for interrupts. Eau 
interrupt has occurred, this determines the next microinstruction address. 

■ Branch: Conditional and unconditional branch microinstructions are used. 

A one-level subroutine facility is provided. One bit in every microinstruction 
is dedicated to this task. When the bit is set, an 11-bid return register is loaded with 
the updated contents of the control address register. A subsequent microinstruction 
that specifies a return will cause. the control address register to be loaded from the 
return register. 

The return is one form of unconditional branch instruction. Another form of 
unconditional branch causes the hits of the contro] address register to be loaded 
from 11 bits of the microinstruction. The conditional branch instruction makes use 
of a 4-bit test code within the microinstruction. This code specifies testing of vari-
ous AM.' condition codes to determine the branch decision; If the condition is not 
true, the next sequential address is selected. If it is true, the 8 lowest-order hits of 
the contro] address register are loaded from 8 bits of the microinstruction. This 
allows branching within a 256-word page of memory, 

As can he seen, the LSI-11 includes a powerful address sequencing facility 
within the control unit, This allows the microprogrammer considerable flexibility 
and can ease the microprogramming task. On the other hand. this approach requires 
more control Linn logic than do simpler capabilities. 

'Ile microinstruction cycle is the basic event on a microprogrammed processor. 
Each eyelc is ma dc up oil' 1 wo parts: fetch and execuict. The fetch portion is deter-
mined by the generation of a microinstructitrn address, and this was dealt with in the 
preceding section. This section deals with die execution of a microinstruction. 

Recall that the effect of the execution of a microinstruction is to generate 
eoril rol signals. Some of these signals control points. internal to the processor. The 
remaining signals go to the external control bus or other external interface. As an 
incidental function, the address of the next microinstruction is determined. 

The preceding description suggests the organi .e.: a Lion of a control unit shown in 
Figure 17. Ltil. This slightly revised version of Figure 17.4 emphasizes the focus of this 
section. The major modules in this diagram should by now he clear. The sequenc-
ing logic module contains the logic to perform the functions discussed in the pre-
ceding section. It generates the address of the next microinstruction. using as inputs 
the. instruction register. AL[! flags. the contro] address register (for incrementing). 
and the control buffer register. The last may provide an actual address. control bits, 
or both. The module is driven by a clock [hal determines iht timing of the micro-
instruction cycle. 

The control logic module generates control signals as a function of some of 
the bits in the mieroin ,s1rudion. Ii should he clear that the format and content of the 
microinstruction will determine the complexity of the control logic module. 
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A Taxonomy of Microinstructions 

Nlicroinstruction can be classified in a variety of ways. Distinctions that arc com-
monly made hi the literature include the followin4: 

• Vcrticaiihorizont4i1 
* Packetkunpacked 

■ HardIsoft microprogramming 
* Direct/indirect encoding 

All of iheRe bear on the format of the microinstruction, None of these terms has 
been used in a consistent, precise way in the literature, However, an examination of 
th e pairs of qualities serves to i I lurninatc microinstruction de s ign f11 k In 
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the following paragraphs, we first look at the key design issue underlying all of these 
pairs of characteristics, and then we look at the concepts suggested by each pair. 

In the original proposal by Wilkes [WILK51], each bit of a microinstruction 
either directly produced a control signal or directly produced one bit or the next 
address. We have seen, in the preceding section, that more complex address se-
quencing schemes, using fewer microinstruction bits. are possible. These schemes 
require a more complex sequencing logic module. A similar sort of trade-off exists 
for the portion of the microinstruction concerned with control signals. By encoding 
control information, and subsequently decoding it to produce control signals, con-
trol word bits can be saved. 

How can this encoding be. done? To answer that, consider that there are a total 
of K different internal and external control signals to be driven by the control unit. 
In Wilkes's scheme, K hits of the microinstruction would he dedicated to this pur-
pose. This allows all of the 2 1  possible combinations of control signals to be gener-
ated during any instruction cycle.. But we can do better than this if we observe that 
not all of the possible combinations will be used. Examples include the following: 

• Two sources cannot be gated to the same destination (e.g., C,. and C, in Fig-
ure 16.5). 

• A register cannot be both source and destination (e.g.. C ;  and C: in Figure l(15 .). 
• Only one pattern of control sig,nals can be presented to the ALI] at a ti me. 
• Only one pattern of control signals can be presented to the external control 

bus at a time. 

So. for a given processor, all possible allowable combinations• of control 
signals could be listed, giving some number Q < 2' possibilities. These could be 
encoded with log.:Q bits, with (log,Q) < K. This would be the tightest possible form 
of encoding that preserves all allowable combinations of control signals. In practice, 
this form of encoding is not used, for two reasons: 

• It is as difficult to program as a pure decoded (Wilkes) scheme. This point is 
discussed further presently. 

• It requires a complex and therefore slow control logic module_ 

instead, some compromises are made. These are of two kinds: 

• More bits than are strictly necessary arc used to enaxle the possible combinations. 
• Some combinations that are physically allowable are not possible to encode. 

The latter kind of compromise has the effect of reducing. the number of bits, The 
net result. however, is. to use more than lo2. 3Q bits. 

In the next subsection, We will discuss specific encoding techniques. The re-
mainder of this subsection deals with the effects of encoding and the various terms 
used to describe it. 

Based on the preceding, we can see that the control signal portion of the 
microinstruction format falls on a spectrum_ At one extreme., there is one hit for 
each control signal; at the other extreme, a highly encoded format is used. Table 17.4 
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Table 17.4 The Microinstruction Spectrum 
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shows that other characteristics of a mieroprograrnmed control unit tlso fall a]ong 
..i.pectritin and that these spectra are, by and large, determined by the degree-of-

en cod i tig spectrum. 
The second pair of items in the lable is rather obvious. The pure Wilkes 

sehen-Ki. will require the M051 bits,  ShiDUILI 411M) he apparent that this extreme pre-
sents the most detailed view of the hardware. Every control signal is individually 
controllable by the microprouammer. Encoding is done in such a way as to aggre-
gate funciion,s or resources, so chat the inicroprogrammer is viewing the processor 
at a higher. lesf., detailed level. Furthermore, the encoding is designed to 42-.ise l h 
microprogramming burden. Again, it should be clear Thai the Task c.i.funderstandin 
and orchestrating the use of all the control signals is a  It one As was men-
tioned, one of the consequences (J1 encoding, typically, is to prevent the use of cep. 
Min otherwise aiiown hie combinations. 

The preceding paragraph discusses microinstruction detlign from the micro-
programmer's point of view. Bill the degreC of cricodi lig also can be viewed from its 
hardware effeeLS. Wilk it purl: uncncoded format. little- or no decode logic is needed: 
each bit generates a particular control signal. As more compact and more aggre-
gated encoding schemes are used, more complex decode logic is needed. This, in 
WM, may affect performance. More time is needed to propagate signals through the 
gates of the more complex control logic module. Thus. the execution of encoded 
microinstructions takes longer than the execution 01 uncrtcoded ones. 

Thus, all of the charaetcYristics iisied in Table 17.4 fall a]ong a spectrum of 
design Kinatv.gie. In general, a design that falls toward the left end of the tipectrum 
is intended to optimize the performance of the control unii. Designs iownrd the right 
end are more concerned with oplimizing the process of microprogramming. Indeed, 
microinstruction 7,;(AS TIC2.411-  the right end of the spectrum look very much like 
machine instruction sets. A good example of this is lhe LS1-1 1 design, described 
later in this section. Typically. when the objective k simply to implement a control 
unit, the design will he near the left end of the spectrum. The IBM 3033 design, dis- 
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cussed presently. is in this category. As we shall discuss later. some systems permit 
a variety of users to construct different microprograms using the same microin• 
struction facility. In the latter cases. the design is likely to fall near the right end of 
the spectrum. 

We can now deal with some of the terminology introduced earlier. Table 1'1.4 
indicates how three of these pairs of terms relate 10 the microinstruction spectrum. 
In essence, all of these pairs describe the same thing but emphasize different design 
characteristics. 

The degree of packing relates to the degree of identification between a given 
control task and specific microinstruction bits. As the hits become more parked, a 
given number of bits contains more information. Thus, packing connotes encoding. 
The terms horizontal and vertical relate to the relative width of microinstructions. 
[SIEW82] suggests as a rule of thumb that vertical microinstructions have lengths in 
the range of 16 to 40 bits, and that horizontal microinstructions have lengths in the 
range of 40 in 100 bits, The terms hard and soft microprogramming are used to sug-
gest the degree of closeness to the underlying control signals and hardware layout. 
Ilard microprograms are generally fixed and committed to read-only memory. Soft 
microprograms are more changeable and rn c suggestive of user microprogramming. 

The other pair of terms mentioned at the beginning of this subsection refers 
to direct versus indirect encoding, a subject to which we now turn. 

Microinstruction Encoding 
In practice, microprogrammed control units ;ire not designed using a Rare. un- 
encoded or horizontal microinstruction format. At least some degree of encoding is 
used to reduce control memory width and 10 simplify the task of microprogramming. 

The basic technique for encoding is illustrated in Figure 17.11a. The micro-
instruction is organized as a set of fields. Each field contains a code, which, upon 
decoding, activates one or more control signals. 

Let us consider the implications or this layout. When the microinstruction is 
executed, every field is decoded and generates control signals. Thus. with N fields, 
N simultaneous actions arc specified. Each action results in the activation of one or 
more control signals. Generally, but not always. we will want to design the format 
so that each control signal is activated by no more. than one field. Clearly, however, 
it must be possible for each control signal to be activated by at least one field. 

Now consider the individual field_ A field consisting of L bits can contain one 
of 2 codes, each of which can be encoded to a different control signal pattern_ 
Because only one code can appear in a field at a time, the codes are mutually exclu-
sive, and, therefore, the actions they cause are mutually exclusive, 

The design of an encoded microinstruction format can now he stated in sim- 
ple terms: 

▪ Organize the format into independent fields, That is, each field depicts a set 
of actions (pattern of control signals) such that actions from different fields can 
occur simultaneously. 

• Define each field such that the alternative actions that can he specified by the 
field are mutually exclusive. That is, only one of the actions specified for a 
given field could occur at a time. 
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(b) indirect encoding 

Figure 17.11  NJ icroin1Lruction Encoding 

Two approaches earl he taken to organizing the encoded microinstruction into 
fields: functional and resource.. The fitntlif»tal etwoffing method identifies functions 
within the machine and designates ficid5 by function type- 1-;or example., if various 
sources can he used for transferring data to the accumulator, one field can be des-
ignated for this purpose. with each code specifying a different source. Resource 
encoding views the machine as consisting of a set of independent resources and 
devotes one field to each (e.g._ f.'(l, memory, Alt:). 

Another aspect of encoding is whether it is direct or indirect (Figure 17. lib). 
With indirect encoding, one field is used to determine the interprcia Lion of another 
field. For e-qnysple, consider an Al ,T,J Thal is capable of performing eight different 
arithmetic operations and eight different shift operations. A 1-hit field could be used 
to indicate whether a shift or arithmetic operation is to be used a 3-bit tick] would 
indicate the operation. This technique generally implies two levels of decoding, 
increasing propagation delays. 

Figure 17.12 is a simple example of these concepts. Assume a processor with 
a single accumulator and several internal registers. such as a program counter and a 
temporary register for A19.1.! input. Figure 17.12a shows a highly vertical format. The 
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Figure 17.12 Alternative Nlicroinviroci ion l'orinats for a Simple fvlachine 
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firm 3 bits indicate the type of operation, the next 3 encode the operation, and the final 
2 select an internal register, Figure 17 12b is a more horizontal approach, although 
encoding is still used. In this case, different functions appear in different fields. 

LSI-11 Microinstruction Execution 

L.S1-1,1 [SEBE76] is a good example 01' a vertical microinstruction approach. We 
look first at the organization of the control unit, then at the. microinstruction format, 

LS1-11 Control Unit Orguni,ation 

The LSI-1 1 is the first member of the PDP-1 I family that was offered as a sin• 
gle-hoard processor. The hoard contains three LS1 chips, an internal bus known as 
the microinstruction bus (MIB), and some additional interfacing logic. 

Figure 17.13 depicts. in simplified form, the organization of the 1.S1-11 proces-
sor, The three chips are the dicta, control. and control store. chips. The data chip 
contains an 8-bit ALU, twenty-six N-bit registers, and storage for several condition 
codes. Sixteen of the registers are used to implement the eight 16-hit general-
purpose registers of the PDP-11. Others include a program status word, memory 
address register (MAR), and memory puffer register. Because the ALU deals 
with only 8 hits at a time, two passes through the AIA.: are required to implement 
a 16-hit PDP-I 1 arithmetic operation. This is controlled by the microprogram. 

The control store chip or chips contain the 22-hit-wide control memory. The 
control chip contains the logic for sequencing and executing. microinstructions, It 

Address Control 
store 

/22  
22 

0. Microinstruction bus 
16 

Control 
chip 

Data 
chip 

'4 
16 

taus control 
and other Bus logic 4 
processor 
board logic 

LSI-11 system hus 

Figure 17.13 Simplified 131ock Diagram cif 1 he I .S I I Prucolor 
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Microprogram — 

sequence 
control 

Kellam register. 
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Figure 17.14 OrgarsiAai kin 01 the LSI-11 Control unit 

contains the control address register, the control data register, and a copy of the 
machine instruction register. 

.1he MIB ties i1] the components together. During microinstruction fetch, the 
control chip generates art 1]-bit address onto the NUB. Control store is accessed. 
producing a 22-bit microinsLruction, which is placed on the  III. The low-order 
16 bits go to the data chip, while the low-order 1K hits go to the control chip. The 
high-order 4 bits control special processor board functions. 

Figure 17.14 provider; a still simplified bi.LE more deLii led look at the LS.1.-/ 
control unit: The figure ignores individual chip boundaries. The address sequencing 
scheme described in Section 17.2 is implemented in iwo modules. Overall sequence 
control is provided by the microprogram sequence control module. which is capa-
ble of incrementing the microinstruction address register and performing uncondi-
tional branches. The other forms of address calcuiation are carried out by a separate 
rrans[alion array. This is a combinatorial circuit that a.cnerates an address based 
on the microinstruction, the machine instruction, the microinstruction program 
counter, and an interrupt register. 
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Thu 1ransiation array comes into pla!,. ,  on the following occasions: 

• The opcode is used to dcierminu thy. sta rt or 

• At appropriate ti mes, address mode bits of the microinstruction are tested to 
perform appropriate addressing, 

• Interrupt conditions are periodicaLly tested. 

• Conditional branch microinstructions arc cvgillialled, 

LSI- I I M iCTIF instructi4F II Format 

The LS1-I L uses 4i n ex I remely vertical microinstruction format, which is oak 
22 hits wide, Thu microinstruction set strongly resembles the PDP-1 I machine. 
instruction set that it impLements. This design was inlendcd  optimii.e the perfor-
mance of the control unit within the constraint of a vertical, easily programmed 
design. 'rabic 17.5 lixix some of the 1_,S.1-1 1 microinstructions. 

Figure 17.15 shows the 22-bit LSI-11 microinstruction formai. ' ['he high-order 
4 bits control special functions on the prom.ssor board. The translate bit enables the 
[1- 41risth Lion array to clic k Cor pending interrupts. The load return register hil is used 
At the cad of a Mier0rOUtifie to cause the next microinstruction address Lo ire Loaded 
from the return register. 

The remaining 1.6 bits 41TC Wit:1i for highly encoded micro-operations. ThC: far• 
mad is much like a machine instruction, with a variable-length opco4.1u arid one or 

more operands. 

Table 17.5 Some LSI 11 Microinstructions 

Arithmetic Operations 
Add ward (byte, 111Crril 

Tem word;'Fete, litcrak) 

fricrethem word (byte) 1}v I 

Increment word (1v}.1.0 by 2 

Ni::garc wnrd (hym) 
Canditiimally irturernorn Idcurcineisi) by L' 

C:unditionall:v add word (byre) 

.Add word (hyte) mat cnrry 
Canditi.ursull:y add 131giLs 

Sul tract word (byte) 

Compare word (byw. literal) 
S'ubtracl ward { hyi C}  with carry 

DeCi'd'Elierit ward (byte). by 1 

Logical Operailons 
AND word (byre, titeral) 
Tr:sr word (hyi,7) 
OR word iFylc) 

Exclwiwe-014. (bys.i3) 

Flit c.1....:ar word (hyic). 
Shift .0,151a fhytcj right (112f1.) with (wilhow 1  iii1 

Coittyletisertt wind (11).1e) 

Ocneral Operations 
MOV 
Jump 
RuurEs 
Conditioital jump. 
Set (reset) L1a,9,3 
Load G kiw 

MC.)V ward 
Ciperatiuns 

Input word (bloc.) 
inpui $taltEs word (kiy(vj 

1.<{m4.1 
Wrilu 
ker.H.1 (wrili2) Lind loci-ern:ant word {byte) i 
Read Ixyritti i Lind iiici:2111e1}L word {byte) by 
Rid (wi ire) ocknowlodge 
Ouipul. word {byte, stat us? 
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4 1 1 1. 6  

I Lnad return register 
Translate 

(a) Format d the full] 1.,9I-n microinstruction 

11 

Dp,-ode Jump address 

Unconditional jump microinsrruction format 

4 4 8 

OpcoJe 
Test 
code 

Jump address 

   

Conditional lump microinstruction Ibrrriat 

4 4 

Opcode T Litcral value I A register 

Literal microinstruction forrnat 

4 4 
A 

Opcode register tester 

Rglster microinstruction format 

(b:i Format of the encndaci part of the L51-11 inicronstruction 

fligunr. k7.15 L.S.1-1 1 Microinstruction Format 

IBM 3033 Microinstruction Execution 

The standard I.BM 301 control memory consists of 4K word ,;. Thc first half of these 
(11.000-071'17 ) contain 108-bit microinstructions, what.: the remainder (0800-1FFE) 
are used to store 126-bit microinstruclions. rhe format is depicted in Figure 17.16. 
Although this is a rather horizontal format, encodin.g is still extensively used, The 
key fields of that format ire summarized in Table 

The A Lti operates on inputs from four Lic.di -Lii.ed, non-user-visible registers, 
A, B. C. and D. The microinstruction format contains fields for loading these rcais-
ten.; ['Tom user-visible registers_ performing an ALU  :ind specifying a user 
visible register for storing the result, There arc also Ileitis for loading and storing 
data between registers and memory. 

The sequencing mechanism for the IBM 3033 was cliscursscd in Section 17.2. 



ALL Control Fields 

AA(3) Load A register from uric: 01 data registers 
ARO) Load B register from one of data registers 

AQC C' ) Load reiister 1:11)(11 011 12 O !LILL f registers 

ADO .' 1.cukd I) registur From 4.5(u.'e dHkarugislQr!:: 

A F.0.1 Rouse. specified A hits to ALIJ 
AF1:4) Rout. specified 13 bilk lo ALL! 

AGN Spc.rifin. AL.1. drribm,•111.9. cip2ralton nn A inInput

AH{I) Specifies ALL; on B input 
A..1(1) Speeilifies D or 13 ininput L. ALL: B side 
AK(4) Rciat4,. arithmetic outpuL Li, shifter 

C1-3(1 .) Activ.m sinker 
C' '(5) Specifies logical and carry .  functions 
C.E( 7) Spcciiitn ;hilt :A mount 

CA(3) I .ond F Ngidor 

Sequencing and Branching Fields 

Al.(1 I Era/ operaiiO31 and perform branch 
i high-order hits 01417) N .  c PEI kr() I Add ro5 register 

/ili(ii .Spec corid it10 11 for Et3ts Lag hti g of control address re gist er 
Specifics cortdilhin for seltiag of control address regist er 

BED(4) Specifies condiii(in fcw scuL irl g hit 10 of ciin trial n:gis tor 
B144t SpecifieN coaiithon rod. sckting his 11 of conirol addrcs, Ngisic r 

B[ 4) Speciilos condition for swain 1)1i 12 of control address 113gi stet. 

CB Cr CG 

Storage address  Sh1fr vontrol Local storage 3eliscullaneo

▪ 

u

▪ 

s controls 

125  

DB DO DE 

' I  
Testing and condition code setting 

Figure 17.16 1 BM. 3113 3 Microinstruction Format 

Table 17.6 IBM 3033 Microinstruction Control Fields 

BH CA CB r 
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Next microcode address 

Microcode  mar). 
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- - 

. . 

.0.  a, • 

The Texas Instruments 880 10 Software Development Board (SDB) is a mieropro-
grammable  computer card. The.system has a wrritable control store. imple-
monied in RAM rather than ROM. Such System does not IleilieVi2 the speed or 
density of a microprogrammed sysleln with a Ram control store. However, it is use-
ful Yor developing protoiypes and for educational purposes. 

The 8800 S.D.8 er_Insistii of the following components {Figure 17.17}: 

• Microcode rueniory 
▪ iCIOSC([ Uen CCF 

• 32-bit A 1.L.1  
• Floating-point and integer processor 
• Local data memory 

16 

Figure 17.17 TI 8800 Block Diagram 
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Two buses link the internal components of the system. The DA bus provides 
data from the microinstruction data field to the ALL, the floating-point processor, 
or the mierosequencer. In the latter case, the data consists of an address to he used 
for a branch instruction. The bus can also he used for the ALL or microsequencer to 
provide data to other components. [he System Y bus connects the All) and floatine-
point processor to local memory and to external modules via the PC interface. 

The hoard fits into an IBM PC-compatible host computer. The host computer 
provides a suitable platform for microcode assembly and debug. 

Microinstruction Format 
The microinstruction format for the 8800 consists of 128 bits broken down into 3U 
functional fields, as indicated in Table 17.7. Each field consists of one or more bits, 
and the fields are grouped into five major ca tegories: 

• Control of board 
• ,S847 floating-point and integer processor chip 
• 8832 registered ALU 
• 8818 microscquencer 
• WCS data field 

As indicated in Figure 17.17, the 32 bits of the WCS data field are fed into the DA 
bus to he provided as data to the ALM, Floating-point processor, or microsequencer. 
The other % bits (fields 1-27) of the microinstruction are control signals that are 
fed directly to the appropriate module. For simplicity, these other connections are 
not shown in Figure 17.17. 

The first six fields deal with operations that pertain to the control of the 
board. rather than controlling an individual component. Control operations include 
the following: 

▪ Selecting condition codes for sequencer control. The first bit OF field I indi- 
cates whether the condition nag is to be set to I or 0, and the remaining 4 bits 
indicate which flag is to be set. 

• Sending an 110 request to the PCIAT. 
• Enabling local data memory readlwrite operations. 
• Determining the unit driving the system Y bus. One of the four devices 

attached to the bus (Figure 17.17) is selected. 

The last 32 hits are the data field, which contain information specific to a par-
ticular microinstruction. 

The remaining fields of the microinstruction are best discussed in the contest 
of the device that they control. In the remainder of this section, we discuss the 
microsequencer and the registered ALU, The floating-point unit introduces no new 
concepts and is skipped. 

Mic.!rosequencer 

The principal function of the 8818 micmsequeneer is to generate the next microin-
struction address for the microprogram. This 15-hit address is provided to the 
microcode memory {Figure 17.17). 
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` Tale 17.7 TI 88(X) Microinstruoriors Formal. 

Field 
Number 

Number 
of Bits Descrip1i on 

Control of Board 

L .5 Select condision code input 

2 I krobleiclisnl-ilt. exlernid 1.:0 r:LNAL.teS1.i.i.,.n.al 

2 Enable,:disable local data memory road/writ c i5perkiliotts 

4 1 Load status/do no load status 

5 2 I1eurnunci.  unit driving Y b.us 

6 2 Dett.rrrtine unit driving DA bus 

8847 Iiinaiing Point ttnd Integer Procesv,ing Chip 

1 rcgi S I CT COT1LTD: LECICk. 111.1 not cluck 

iitt}St significant or loins( 5/g113 riCA L hiss lor Y bus 

C register claim ScrUTCC: 

10 4 Seteet 1E .F .E or FAST mode ifif ALL' and MUL 

I I 8 Scti...keL.:.:ources for chits operands; RA rcgiRtu .s. FOR registl2r.q, P regi3ter. 

5 regi3ter. C register 

1 2 I R.1:1.R:fiictcr Cn111.1- nl -  clock, do not rIoL.14. 

1 3 I k A re ? isIerssLro1:cicxk,Llo liras clock 

1 4 '2 DALu source uoirllirriation 

15 .2 Enable...disable papclinc registers 

1.6 1 i 4l-1,-1.7 AU; runclion 

P832 Registered ALL! 

17 2 Wriic unable/disable itnizi output to Ec I ucLe d i eginer: most SIgnificortl, tthlr, kirst 

signilioini hHII 

I x 2 Sukci re.d.istEr filu dirLa source.: DA bus, [)13 hos. Al,[ I Y 11[1X- output s....sieni 
Y bus 

19 3 Shift instruction modther 

2U I Carry in: lorcc.. do run el5rce 

...i. 

22 

2 

2 

Sgl ALI? Ilurtiveat ion mode:: 32. 16, Or hits 

to .. niti....p.......Nor: l' el2iRR::T Ilk:, 1)13 bus, MQ rueister Select inpui 9 Ili I 

23 I S.c.lcct inpuE to R rnolli I ...p.cx UT:. rogiEM lilt., DA bus 

24 •fi :iult.ci rc.gistur in tile C for WY.i Le: 

25 6 Select register ill rile 8. tbi .  read 

26 11 Seleci regisior in tilt A for wril.c 

2 7  g ALI i funcIrcin 

8818 kliernseqruencer 

 

Control input %gunk to i1,c M g 

  

     

  

PiCS Data Field 

  

16 Most siFnificaitil Ellis or wribiblu coritrcil store data field 

signiRcunt hits cif writul-rl u C1.51111.31 store data Reid 

_ 
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The next address can be selected from one of live sources: 

1. The microprogram counter (MP() register, used for repeat (reuse same ad-
dress) and continue [increment address by 1) instructions, 

2. The. stack, which supports microprogram subroutine calls as well as iterative 
loops and returns from interrupls, 

3. The DRA and DRB ports, which provide two additional paths from external 
hardware by which microprogram addresses ein be generated. These two 
purls 411- C conneeLed. Lo the most significant and least significant 16 hits.. of 
the DA bus, respectively. This allows the microsequencer Io obtain die next 
instruction address from the WCS data field ()Mlle etirrem microinstruction or 
from a result calculated by the ALI:, 

4. Register counters RCA and RCB, which can be used for additional address 
storaae. 

5. An external input onio the bidirectional Y port to support external interrupU.. 

Figure 17 7 18 is a logical block diagram of the 8818. The device Qunsisls or the 
following principal functional groups: 

■ A l6-bit microprogram counter (NIPC) con wiling or a rqzister and an incrementer 

• Two register counters- RCA and RC.13, for counting loops and iteratiorm stor-
ing branch addresses, or driving external devices 

I  A 65-word by L.6-bit stack. which allows microprogram subroutine calls and 
interrupts 

• An interrupt return register aitd Y output enable for interrupt processing at the 
microinstruction level 

■ A Y output multiplexer by which the next 4iddress can be selected from MPC, 
RCA. RCB, external buses URA and DRB, or the stack 

Registers/Counters 

The registers RCA and Rai may he loaded from the DA bus, either from the 
current mieroinstrue1ion or irons the output of the ALU. The values may be used 
as counters to control the flow of execution and may be auLornLiticaRy decrcmeiited 
when accessed. The values may also be used as microinstruction addresses to be 
supplied to the  output multiplexer, Independent control of both regisn,:rs during 
a single microinstruction cycle is supported with Ihc exrcption of simultaneous 
decrement of both registers, 

Stack 

The stack allows multiple lcvels of nested calls or interrupts, and it can he used 
Lo support branching and looping. Keep in mind that these opera Li ons rcl'er to 
the control unit, not the overall processor,. and that the addresses involved are those 
of microinstructions in the control memory, 

Six stack operations are possible; 

1. Clear, which sets the stack pointer to zero, emptying Ike stack 
2. Pop, which decrements the stack pointer 
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DA_11-1DA16 
[DRA) 
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DA15—DAIX) 
(DREI.) 

Sta.. k 

Dual 
regislersimanters. 

Interrupt 
return 

register 

Y output 
\ multiplexer 

Microprogram 
Counter/ 

incrernenter 

Next microcchde 
address 

Figure 17.18 TI SSA Microsoquencer 

3. Push. which raas the contents of the. MPC, interrupt 1-01,1171 register, or DRA 
bus onto the stack and increments the stack pointer 

4. Road, which makes the addrc.m. indicated by the read pointer available al the 
oulpul multiplexer 

5. Hold, which comes the address of the stack pointer to rcrnain unchanged 
6. Load stack poinlc.r, which inputs the seven [east signi]'icant bits of DRA to the 

s lack pointer 
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Control of Microsequencer 

hi mierosequencer is controlled primarily by the 12-bit field of the current 
microinst ruction. field 28 (Table 173). This field consists of the following subfields: 

• OREL (1 bit): Output select. Determines which value will be placed on the 
output of the multiplexer that feeds into the DRA bus (upper left-hand cor-
ner of Figure 17.18). The output is selected to Time from either the stack or 
from register RCA. DRA then serves as input to either the Y output multi-
plexer or to register RCA. 

• SELDR (1 bit): Select DR bus. if set to 1, this hit selects the external DA bus 
as input to the DRA/DRB buses. if set to 0. selects the output of the DRA 
multiplexer to the DRA bus (controlled by OSEL) and the contents of RCB 
to the DRI3 bus, 

• ZERO1N (1 bit)• Used to indicate a conditional branch. The behavior of the 
mierosequeneer will then depend on the condition code selected in field I 
(Table 17.7). 

• RC2—RCO (3 bits): Register controls. These bits determine the change in the. 
contents of registers RCA and R(.13. Each register can either remain the same. 
decrement, or load from the DRAIDRB buses. 

• S2—S0 (3 hits): Stack controls. These bits determine which slack operation is 
to he performed. 

• NIUX2—MUXO: Output controls. These bits, together with the condition code 
if used, control the Y output multiplexer and therefore the next microin-
struction address. The multiplexer can select its output from the stack, DRA, 
DRB, or MPC. 

These bits can be Net individually by the programMer. However. this is typi-
cally not done. Rather, the programmer uses mnemonics that equate to the hit pat-
terns that would normally he required. Table 17_8 lists the 15 mnemonics for field 
28. A microcode assembler converts these into the. appropriate bit patterns. 

As an example, the instruction 1NC88181 is used to cause the next micro-
instruction in sequence to he selected, if the currently selected condition code is 1. 
From Table 17.8. we have 

INN 8=81 = OC.00 .̀..'021111: 

which decodes directly into 

• OSEL = 0: Selects RCA as output from DRA output MU X: in this case the 
selection is irrelevant. 

• SELDR = 0: As defined previously; again. this is irrelevant for this instruction. 
• ZEKOIN = 0: Combined with the value for MUX, indicates no branch 

should he taken. 
• H = 000: Retain current value of RA and RC. 

• S = .111: Retain current state of stack. 

• MLA = 110: Choose MPC when condition code DRA when condition 
code = O. 



17.4 / TI titiOth 633 

Table 17.8 SN I g M icrosequencer .  icroiristritetion Bits {Field 28} 

Mnemonic Value. Description 

RS . 114818 00300006:1110 Reset in SU uction 

El RAM181 01104011 [000 Branch to DRA instruction 

BRAiSIS0 01000011 I I 10 Branch Lo DRA instruction 

INC881.81 000000111110 Continue instruction 

INCSRES41 001000001000 . Con tinue instruction 

CA I.M1R1 0101A01 mom 31iiirr) t o subroutine at address Speeirwri by DRA 

oh otX101411110 CALKH1K1 Jump rn subroutine at address Specified by DRA 

k 1-.:1 NM, Zi 01)0000011 0 1 0 Return from subroutine 

VLSHWilti 01104X10] 10111 Push interrupt return address onto stack 

POP8818 1000210010000 Retort from interrupt 

LOADDRA 00001011 11 10 Load DRA counter from DA bus 

LOAD DR B 000110111110 Load DRB counter from DA bus 

LOAD DRA B 400110111100 LA }NJ D R Am R [i 

DECRDRA ()LOW] I 1 1I00 Decrement DR A coon tar and branch it not zero 

DFCRDRB 010101111 WO I )ecronc.nt DR B counter ;Ind branch ii not vcr() 

Registered ALU 
The 8832 is a32-hit ALU with 64.registers that can he configured to operate as four 
8-bit ALUs. two 16-hit ALA:s, or a single 32-bit ALA.:. 

The 8832 is controlled by the 39 hits that make up fields 17 through 27 of the 
microinstruction (Table 17.7): these are supplied to the ALL: as control signals. In 
addition, as indicated in Figure 17.17. the 8.832 has external connections to the 32-
hit DA bus and the 32-hit system Y bus. Inputs from the DA can be provided simul-
taneously as input data to the 64-word register file and to the ALI! logic module. 
Input from the system Y bus is provided to the ALU logic module. Results of the 
ALU and shill operations are output to the DA bus or the system Y bus. Results 
can also be fed back to the internal register file. 

Three 6-bit address ports allow a two-operand fetch and an operand write to 
he performed within the register file simultaneously. An NiQs.hifter and MO regis-
ter can also be configured to function independently to implement double-precision 
8-bit, 16-bit, and 32-bit shift operations. 

Fields 1 .7 through 26 of each microinstruction control the way in which data 
flow within the 8832 and between the 8832 and the external environment. The fields 
are as follows: 

17. Write Enable. These two hits specify write 32 hits, or 16 most significant bits. 
or l6 least significant bits. or do not write into register file. The destination 
register is defined by field 24. 

18. Select Register File Data Source. If a write is to occur to the register file, these 
two bits specify the source: DA bus, DR bus. ALIJ output, or system Y bus. 



Group 1 Fundion 

AND R AND S t140A 

OR R OR S HIT013 

Hlis71 RtSt 

1-1Al2 (NOT R) 4•.S + Cn 

R (NO`I. 5) t 

S .CD 

ADD 

SUBR 

SUBS 

INS(' 

H;403 

H#C.14 

INCNS 

1NCR 

INC NR 

',KC* 

(NOT 5) t Ca 

(NOT RI + Ca 

R XOR S 

14a:tit) 

1-3#07 

HAlg. 

NAND Hit0C- R NAND S 

NOR HOD R NOK 

ANDNR 1140E.. (NOT R) AND S 
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I % Raft Instruction Modifier. Svceifies options concerning supplying end fill 
and reading bits [hat are shifted during shift instructions-  

20. Carry In. This bit indicates whether a bit is carried into thy ALL: for this oKt• 
a lion, 

21, ALU Configuration Mode. The 8832 can he configured to oriel -ale as a single 
32-bi ALU. two 16-bit A LUs, or four 8-bit Al.,Us. 

22. S Input. The. ALU logic module inputs are provided by tWo internal multi-
plexers referred to xS the S and R multiplexers. 'This tkeld selects the input to 
be provided 

by, 
 the S muliiplexer; register file, DB bus, or MQ register. Thy 

s ource register is &lined by field 25. 
23. It Input. Selects input to be provided by the R multiplexer: register file ox 

DA bus. 
24. DestiuRtion Register, Address of register in register file to be used fOr the des-

tinntion. operand. 
25. Source Register. Address of register in register file 10 be used for the source 

operand, provided by the S multiplexer. 
26- Source Register. Address of register in register file to be used l'or the source 

operwnd, provided by ihe R multiplexer. 

Finally, field 27 is an 8-bit opeodc that specifies the atithmelic or logical func-
tion to be perforated by lhe ALU. Table 17.9 lists the different operations that can 
be performed, 

Table 17.9 TI 8832 1.Zigi4(4tred ALL' Instruclion Field (Field 27) 
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Table 17-9 fmlismeeij 

Group 1 l'u ntliou 

SRA. H± .00 Ari l 11 n tetic right sin .Fle pr.....cision hhill 

SR, D lill. 1.0 Ariihrneiic right double precision shir, 

SRL H2OM Logical righi .i rtgl.w prucision shift 

S14.1...1j H#'30 Lojlica I r i:Ost double. pi ecision shift 

SLA Hg40 Arithmetic left 5rrig3c precision Nhift 

SLAF] 1-1g515 Ariihrnelie kfit double prceision ..; hjri 

,•:II.0 
... . 

H;461.) Circular left single precision shift 

SLCD 11471) Circular len. double preeision shift 

'SRC 1.I4S11 Circular right sin& premion shift 

SRCD 1-1 9l.l.  Ciretilaf tight double precision shin 

V1(1.1.44 A H#AQ Arithmetic right shift MO register 

iMQSRL H4130 Logical riLiht shift MO register 

MOSLI.. FITFCr) Logieril Ii... 0. w hiff ",,V..) r,.gisii...i. 

MOSLC' HTFDO 6rcula r left shift MO r6giii(er 

LOADMQ Huai Load MO register 
_ . 

PASS I - Ii*•{1 PDhs AI LIR) ''‘. (no shgt oporation) 

Gr4 pup 3 1.'0111.1iiniti 

.S17111'1 lii+08 Set it L 

Set() 1'141 F Set bit (I 

TB] 1-Mr.i. '1 e51 bit 1 

'1 . 131) H;13'... Test bit 0 

ABS I Ig4g Absoluie value 

SMTC E-14g: g Sign inagniturIcitwos complonioni 

AI)I)I Hite& Add imme.diace 

SUBI 1'N7ii Subtract immediate 

BA DD H4Sfi Byte add R Ia S 

13SUB5 RIGS 1-lyw. suhtraes S from R 

RSUBR HTFA8 Byte subtract R from S 

BINCS HuI3S B:if te increment S 

BIN CNS I .1.1±0. .Ryl ..-. increment negative S 

fI XOR. 1-1 ,:k.M Byti:.%. XORR and S 

II.AND HIFE8 Byto AND R and 'S 

B OR 1-iltrzi Byte OR R ...ii i 1.3 S 
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'rabic 17.9 (uoruinliCa! 

Group 4 Function 

CRC H101 Cyclic; redundancy character aiec um. 

SEL HTF 10 Sec S or R 

SNORM H2Oi:r Sin izle length MD- MN I I i5i2 
— 

DNORM 1-1.1*3 1:l Doutile length normalize 

DIVRF Hst41.1 Divide remainder fix 

SD iv QF H+ 1.50 Signed d i vidz. quotient l'i x 

SMUL1 Hil4-10 Signed multiply iterate 

SN11.ii,rf Hfi.7 1. 1 
._ 

Signed inulcipli, terminate 

SDIVIN 1-Ii+80 SiK;iitect divide in i tialiv.c. 

SDIVIS 11490 Signed d ivu lc sidd 

SDIVI F-1 . .ast) Signal divt& ieruLo 

UDIV IS HN1:30 Unsigned. cli.i.ide start 

UDIVI .1-3 C-Al Unstued divide itemLe 

LI:v1U LI 1-INPO Unsigned inulttply iterate 

SDT V l'i H .LrE() Signed divide Lernlinate 

UDIVIT 1-14F0 (Jusipnc.d divide Iciniirtmc 

Group Jr Function 

LOA DPP Wi.)F.' Loact.divide;BCD flip-flopt:. 

CI,R 1-E.fl F Cleat 

DUMPFF 1-14i5F Output divided:10E) flip-[lops 

BCDBIN f-1.1f7F BCD to hinars... 

FA:11-IC lifF817 Excess 3 lyyLe cOi reetion 

E.X.312 FIAL..117 Exces.s 3 word con-cell CITI 

SD[VD I I itAT Signed divide overflow tem. 

131N EX 3 HRDF binary to execissji 

NOP3?.. Id ifFF No.operation 

As an example of the coding used to l'y tichis 17 through 27, consider du. 
acid the contents of register 1 to register 2 and plee the result in reg-

ister .3. The svrribolie instruel ion is 

C 01.771 F _ 7 WEr=i1-1,  ;3.7431.7.YFY:1X [ 2 4] 1 3 , R2, rt1, S —ADD 

The assembler will translate this into the appropriate bit pattern. The individual 
components of the instruction can he deKribed as follows: 
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• CO T[ L is the basic NOP instruction. 

• Field [1.7] is changed to WELI-1. (write enable, low and high), so i hat a 32-bit 
register i Wri LIAM into  

• Field [18] is changed to SELRI'NM.X to select the feedback from the A1,U Y 
NILO< output. 

• Field [24] is changed to designate register R3 for the destination register_ 

* Pield [25] is changed to designate register R2 for one of the source registers. 
• Field [26] is changed lo designate register R1 for one of Zhu source registers. 

* Field 12.7] is changed to specify an ALU operation of ADD. The ALL! shifter 
instruction is PASS; [herefore, the ALL output is not shifted by the shifter. 

Several points can be made about the s!,. ,rnbolic notation. It is not necessary to 
specify the field number for consecutive fields, That is, 

C.:D2q711. [17] , 1,1ELH, L18.1, SEL.RFYYR 

can be written as 

CONTI"! - 171 , , 

because SELRFYMX is in field 18. 
Al.0 instructions from Group 1 of Table 17.9 must always be used in conjunc-

tion will' Group 2. ALU instructions from Groups 3-5 must not be used with Group 2. 

17.5 APPLICATIONS OF MICROPROGRAMMIN Y'rarr,""r-A- 
frfeir. :;r0:'  err re; 

Since the introduction of microprogramming, and especially since the hoe 1.900s, 
the applications of microprogramming have become increasingiy varied and wide-
spread. As early as 1971, most if not all of the contemporary uses of micropro-
gramming were in evidence [FL N71], Subsequent surveys discuss essentially the 
same set of appiicatioas (e.g., [R A US80]). The set of CUM:DI applications for micro-
programming includes 

• Realization of computers 
• LintilMlion 
• Operaiing system support 
• Realization of special-purpose devices 
▪ I language support 
• fylicrodiagnostics 
• User tailoring 

This chapter has been devoi  1o•a discussion of realization of compurery. The 
microprogrammed approach offers a systematic technique for control unit imple-
mentation. A rclaled technique is ernulalion I MALL751. Emulation refers to the 
use of a microprogram on uric machine to execute programs originally written for 
another. The most common use of emulation is to aid users in migrating from one 
eompuier to another. This is frequently done by a vendor to make it easier for exist- 
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MR customers to trade in older machines for newer ones, thus making a switch to 
another vendor unattractive. Users are often surprised to find out how long this 
transition tool stays around. One observer [MALL81 noted that it was still pos-
sible in 1983 to find an IBM Systern/37{1 emulating an lB.M 14W that was physically 
replaced over a decade and a half earlier. 

Another fruitful use of microprogramming is in the area of operating system 
support. Microprograms can be used to implement primitives that replace important 
portions of operating system software. This technique can simplify the task of oper-
ating systern implementation and improve operating system performance. 

Microprogramming is useful as a vehicle for implementing .spe•ial-purpose 
devices that may be incorporated into a host computer. A good example of this is 
a data communications board. The board will eorn;iin its own microprocessor. Be-
cause it is being used for a special purpose, it makes sense to implement some of its 
functions in firmware rather than software to enhance performance. 

High-level language support is another fruitful area for the application of 
microprogramming techniques. Various functions and data types can be imple-
mented directly in firmware. The result is that it is easier to compile the program 
into an efficient machine language form. In effect, the machine language is tailored 
to meet the needs of the high-level language (e.g.. FORTRAN, COBOL, Ada). 

Microprogramming can he used to support the monitoring, detection, isola-
tion. and repair of system errors. These features are known as microdiagnmtio and 
can significantly enhance the system maintenance facility. This approach allows the 
system to reconfigure itself when failure is detected' for example. if a high-speed 
multiplier is malfunctioning, a microprogrammed multiplier can take over. 

A general category of application is reser tailoring. A number of machines 
provide a writable control store, that is. a control memory implemented in RAM 
rather than ROM, and allow the user to write microprograms. Generally, a very 
vertical, easy-to-use microinstruction set is provided. This allows the user to tailor 
the machine to the desired application. 

17.6 RECOMMENDED READING 

Tiler L: >ne a number of hooks devoted to microprogramming, . Perhapc. the most compre. 
hensive is [LYNC93I .  ISEGE9I J pres12 , nis I he fundamentals of microcoding and IIIL design 
of microcoded systems by means orf iI sie - p - by -si.cp design of a simple 16-hil p uessur. 
ICART961 also presents the basic concept. using a sample machine. [PAR109]  [Tr90] 
provide a derailed description of the TI 880J StAlWare Development Board. 

CART% (:'artcr, J. Micropracessol- A 0am:here and Mkroprop (-moping. Upper Saddle, 
River. NJ: Prentice Hall, 1996, 

LNAC93 Lynch, M. Microprogrammed Stare Machine Design. Boca Raton. FL: CRC 
Press, 1993, 

PAR1K89 Parker. A., and liainhien„1. An introdaction tr, Mi4:roprivamonnpg with 
Exorises.  DesItmed ,for the !'cirri instruments SN7-1ACIN8490 Software anelopment 
Boma Dallas. TX; Texas Instruments, 1989, 

SEGE91 Segee, B. and Field, .1. Microprogtwormin,s,,  and Compoter Arhiterotre. 'Nov 
York: tkiIcy, 1991, 

T1911 Texas Instruments inc. SA74.4C7880 ranadv Data Mannal. SCSSOCHA% P)99. 
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17.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key 'Te ri  

control memory 
control word 
firmware 
hard microprogramming 
hori -f,ontal 

microinstruction 

 

microinstruction encoding 
microinstruction execution 
microinstruction 

sequelicing 
inicroinSiT act ions 
microprogram 

nnicroprograrnmed control 
unit 

microprogramming language 
soft microprogramming 
unpacked microinstruction 
vertical rnicToinstrUction 

 

  

  

  

  

  

                   

Review Questions 
17.1 What is the difference between a hardwired implementation and a microprogrammed 

i mplementation of a control unit? 

17.2 llow is a horizontal microinstruction interpreted? 
17.3 What is the purpose of a control memory'? 

17.4 What is a typical sequence in the execution of a horizontal microinstruction? 
17.5 What is the difference between horizontal and vertical microinstructions'? 
17.6 Wh at are the basic tasks performed by a microprogrammed control unit? 
17.7 What is the difference betv..cen packed and unpacked microinstructions'? 
17.S What is the difference between hard and soft microprogramming? 
17.9 Whar k the difference between functional anti resource encoding? 

17.10 List some common applications of microprogramming. 

Problems 

17.1 Describe the implementation of the multiply instruction in the hypothetical machine 
designed by Wilkes. Use narrative and a flowchart. 

17.2 Assume a microinstruction set that includes a microinstruction with the following 
s ymbolic form; 

? AC : ,  -  j  MEE' CAR E.L,C.E CAR + 1 
AC,, is the sign bit of the accumulator and C„,, are the first seven hits of the micro-
instruction. Using this microinstruction. write a microprogram that implements a 
Branch Register Minus (13RM) machine insi ruction, which branches if the AC is neg-
ative. Assume that bits C I  through C of the microinstruction specify a parallel set of 
micro-operations. Express the program symbolically, 

17.3 A simple processor has four major phases to its insirlictiLm cycle: fetch. indirect, exe-
cute. and interrupt. Two I -bit flags designate the current phase in a hardwired 
i mplementation, 
a. Why arc these flags needed? 
b. Why arc they not needed in a microprogrammed control unit:' 

17,4 Consider the control unit of Figure 17.7. Assume that the control memory is 24 bits 
wide. The control portion of the microinstruction format is divided into two fields. A 
micro-operation field of 13 bits specifies the miero-operai ion ,; trF h.L. performed, An 
address selection field  specifics a condition, based on the flags. that will cause a 
microinstruction branch. There are eight nags. 
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g. How many bits are in the address selection field;' 
h. How many Nis are in the address ficrd?' 
tr. 'What is the size of the control memory? 

17,$ Flow i.:an unconditional branching he done ti nder the circumstances of the previoul. 
problem? !Tow can branching he avoided. That is. describe. a microinstruction that.- 
does not specify any branch. conditional or unconditional. 

L7.6 We wish to provide 8 conlrol words for each machine instructjr a riotitirw. Madtinc 
instruction opmdes have 5 bits. and control memory has 11)24 words. Suggest a map-
ping from the instruction register to the control address register. 

173 An encoded microinstruction format is to be used. Show how a micro-operation 
field can be divided into suhfie!ds to specif..... 46 clifft.T4Jni actions. 

17.8 A processor hiw3 16 rogimurs, an ALE with 1ti logic and In Hritlirlieti‹: functions, and 
a shifter with Op5--Tations, all connected by an internal Irrtrrussor hos, Dcsigi a 
microinstruction roring spet:ily the various micro -opi2c11itrr4 I,ii 111..1 pri,Fee-SSOr, 



Parallel Organization 

,6 er,rff4:r 

The final part of the book looks at the increasingly important area of parallel 
organization. In a parallel organization. multiple processing units cooperate 
to execuk tipplierition5, Whereas a supercaLar processor exploits opportu-
nities ror parallel ex,v.cution at the instruction level, a paraLLel processing 
organization Looks for a grosser level of paralteLism, one that it rin Nes work 
to be done, in parallel, and conperatively, by multiple processors. A number 

ksues are raked by such organizations. or example, if multiple proce.,- 
sors, each with its own. cache, share access to the same mcmory, hardware or 
software mechanisMs must be cmploycd to ensure ihat both professors share 
a valid imap of main memory; this is known as the cache coherence prob-
kern. ['his design issue, and others, is exp]ured in Part Five, 

Chapter 1S Parallel Processing 

Chapter IBS provides ttn overview of parallel processing eomitLrMion7.;. Thcri 
the chapter looks at three approaches to ornuizing mull ipto processors: s.y rn-
metric multiprocessors (SNIP), clusters. and nonuniform memory access 
(NUM  A) machines. SNI Ps and dust ers are the two most common ways of 
organizing multiple processors to improve performance and avirilahilit!, ... 
N t.IN1 A systems are a more recent concept that have 111.1.il yet achieved wide-
spread commerciat success but that show considerable promise. Finally, Chap-
ter 1.8 looks at the .speciali.bed oryonization known as a vector processor. 
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KEY POINTS 

♦ A traditional way to increase system performance is to use multiple, proces-
sors that can execute in parallel to support a given workload. The two most 
common multiple-processor organizations are symmetric multiprocessors 
(S MPs) a TI d clusters. More re02.11tly, nonuniform memory icccss {NU.rsil A) sys-
tems have been introduced commercially, 

♦ An SNIP consists of multiple similar processors within the same computer. 
interconnected by a bus or some sort of switching arrangement. The most crit-
ical problem to address in an SNIP is that of cache coherence. Each processor 
has its own cache and so it is possible for a riven line of data to be present in 
more than one cache. It such a line is altered in one cache, then both main 
memory and the a -liber cache have an invalid version of that fine. Cache collet. 
ence protocols are designed to cope with this problem. 

♦ A cluster is a group of interconnected, whole computers working togethe, as 
a unified computing resource that can create the illusion of being one. 
machine. The term whole computer means a system that can run on its own, 
apart from the duster. 

• A NUMA system is a shared-memory multiprocessor in which the le.cess time 
from a given processor to a word in memory varies with the. location of the 
memory word. 

• A special-purpose type of parallel organization is the vector facility, which is 
tailored to the processing of vectors or arra!, . ,s of data. 

T raditionally, the computer has been viewed as a sequential machine. Most 
computer programming languages require the programmer to specify algo-
rithms as sequences of instructions. Processors execute programs by exe- 

cuting machine instructions in a sequence and one at a time. Each instruction is 
executed in a sequence of operations (fetch instruction, fetch operands, perform 
operation, store results). 

This view of the Computer has never been entirely true. At the micro-operation 
level, multiple control signals are generated at the same time. instruction pipe-
lining, at least to the extent of overlapping fetch and execute operations, has been 
around for a long time. Both of these are examples of performing functions in par-
allel. This approach is taken further with superscalar organization, which exploits 
instruction-level parallelism. With a supersca]ar machine, there are multiple execu-
tion units.within a single processor, and these may execute multiple instructions 
from the same program in parallel. 

As computer technology has evolved, and as the cost of computer hardware 
has dropped, computer designers have sought more and more opportunities for par-
allelism, usually to enhance performance and. in some cases, to increase availabil-
ity. After an overview, this chapter looks at three of the most prominent approaches 
to parallel organization. First, we examine symmetric multiprocessors (SMPs), one 
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of the earliest and 5i i [I the most common example of parallel organization, hi an 
SMP organization, mufti* processors share a common memory. This organization 
raises the issue of cache coherence, L4 t whien a separate section is devoted. Then we 
describe clusters, which consist of multiple independent computers organized in a 
cooperative fashion. Clusters have become increasingly common to support vk.ork-
loads that are beyond the capacity of a single SNIP. The third approach to the use 
of multiple processors that we examine is that of nonuniform memory access 
(VI, MA) machines. The NL:MA approach is relatively new and not !, . ,ct proven in 
the marketplace, but is often considered as an alternative to the SMP or cluster 
approach. Finally, this chapter It  al hardware organizational approaches to vec-
tor computation. These approaches optimize the AM; for processing vectors or 
arrays of floating-point numbers. They are common on the class of ,ystetris known 
as 2awercoinpurer.v. 

18.1 MULTIPLE PROCESSOR ORGANIZATIONS 

 

5E1; 
'.3.41;.:L".1•7 

Types of Parallel Processor Systems 

A 1axonorny first introduced by Flynn IFINN721 is. still the most common way of 
caterriAing systems with parallel processing capability. Flynn proposed the follow-
ing categories of computer systems: 

• Single instruction, single data (SISfl) stream.  A single processor executes a 
single instruction stream to operate on data stored in a single mcrr u 
Uniprocessors fall into this cahegory. 

• Single instruction, multiple data (SIMI)) stream A single machine instruction 
controls the simultaneous execution of a number of processing elernenis on 4i 
lockstep basis. l=och processing element has an associated data memory, so 
that each instruction is executed on a different set of data by the different 
processors. Vector and array processors fall into thins emegory. 

* Multiple instruction. single data (MISD) stream: A sequence. of data is trans-
mitted to a set of processors, each of which executes a different instruction 
s.equence. This structure is not commercially implemented. 

I  Multiple instruction, multiple data (M1MD) stream; A set of processors si mul-
taneously execute different instruction .sect LI WICVN on different data sets- SNIPS, 
clusters, and NUMA systems fit into this category. 

With the ts,1 I rvI D organization, the processors are general purpose: each is 
able to process a]] of the instructions necessary to perform the appropriate data 
transformation. MIMDs can be further subdivided by the mans in which the 
processors communicate (Figure L8.1). If the processors share a common memory. 
then each processor accesscs programs and data shored in the shared memory. and 
processors communicate with each other via that memory. The most common form 
of such system is known as a symmetric multiprocessor (SN413 ), which we examine 
in Section 18.2. lit an SM P. in Lill iple processors share a single memory or pool of 
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memory by means of a shared bus or other interconnection mechanism; a distin-
guishing feature is 111;11 the memory access time to any region of memory is approx. 
imatOy the same for each processor. A more recent development is the nonuniform 
tnemor access (NUMA) organisation, which is described in Section 1.8.5. As the 
name suggests, the memory access time to different regions of memory may differ 
for a NUMA processor. 

A collection of independent uniprocessors or SMPs may he interconnected to 
form a cluster, Communication among the computers is either via fixed paths or via 
some network facility, 

Parallel Organizations 

Figure 18.2 illustrates the general organization of the taxonomy of Figure 18.1. Fig. 
are 16.2a shows the structure, of an SISD. There is some sort of control unit (CU) 
that provides an instruction stream (IS) to a processing unit (PU). The Processing 
unit operates on a single data stream (DS) from a memory unit (MU), With an 
SIAM). there is still a single control unit, now feeding a single instruction stream to 
multiple RN. Each PU may have its own dedicated memory (illustrated in Figure 
18.2b), or there may be a shared memory..Finally, with the MIMD, there arc mul-
tiple control units, each feeding a separate instruction stream to its own PU. Tha 
MIMI.) may be a shared-memory multiprocessor (Figure  or a distributed-
memory multicomputer (Figure I8.2d). 

Processor organizations 

Single instruction, 
single data stream 

Single instruction, 
multiple data stream 

Multiple instruction, 
single data stream 

rquitiple instruction, 
multiple data stream 

(SISI)) iS1341)) (MIST)) (PkilI MD) 

IfnipmceSsos 

Vect or Array 
processor  processor 

Shared memory 
(tightly coupled) 

Distributed memory 
(loosely coupled 

Clusters 

 

S 1111ilut tic Nonurnifont 
multiprocessor memory 

( SMP) access 
( NUMA} 

Figure 01, I  A Taxonomy of Parallel Processor Architectures 
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'11-11.: design issues rclatinglo SN.T-Ps, clusiers. 4i nd NUNlAs are complex, involv-
ing issues relating, to physical organization, interconnection structures, i nterproces-
sor communication. operating system design, and application software techniques. 
Our concern hire; iN primarily with organization, MO -lough we touch bricrly on oper-
ating sys.lcnri 
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Until fairiy vir[iui]ly all single-user personal computers and most worksta- 
tions contained a single general-purpose microprocessor. As demands for perfor-
mance increase and as the cost of microprocessors continues to drop, vendors have 
introduced syslems with an SMP organization, The term SMP  eomputcr 
hardware architecture and also to the operating system behavior that reflects that 
architecture. An SNIP can be defined as a standalone computer s!./stem with the fol-
lowing characteristi C5: 

I. There are two or more similar processors of comparable capvibihtv. 
/ These processors share the same main memory and I./0 facilities and are inter-

connected by a bus or other internal connection scheme. such that memory 
acccss time is approximately the same for each processor. 
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3. All processors share access to I/O devices, either through the same channels 
or through different channels that provide paths to the same device, 

4. All processors can perform the same functions (hence the term Nymmefric). 

S. The system is controlled by an integrated operating system that provides inter- 
action between processors and their programs 41t the job, task, rile, and dutil 
element levels. 

Points 1 to 4 should he self-expianatory. Point 5 illustrates one of the contrasts 
with a loos.ely coupled multiprocessing system. such as a duster. In the latter, the 
physical unit of interaction is usually a message or complete file. In an SNIP, indi-
vidual data elements eau constitute the icvel of interaction, and thole can be a high 
degree of cooperation between vroces2,es, 

The operating system of an SMP schedules processes or threads across all of 
the processors, An SMP organization has a number of potential advantages over a 
uniprocessor organization, inciuding the k I lowing; 

■ Performance: If the work to be done by a computer can be organized so that 
some portions of the work can be done in parallel, then a sril.Gm with multi• 
plc processors will yield greater performance than one with a single processor 
of the same type (Figure 183). 

Time 

Process 1 

Process 2 

Prnecss 3 ZZZ=ZZZ7.2-7.2,,,,:zi. 

(a) interieindrip. ilau1llipr0gr9 Milling, One prUCCSSOI I 

Process riralralliger.drallragi 121Fardir 

 

Procef.9 2 

Process 3 .;Z:e1.7.Z2ZZ 

ib) hiterleaving and overlapping .1 m ulltiprot-esii mulli plc  mull prat-errors) 

Ricpc.kell I• Running 

Figure 113.3 Multiprogramming and Multiproccssing 
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■ Availability; In a symmetric multiprocessor, because all processors can per.- 
form the same functions, the failure of a single processor does not halt the 
machine. Instead, the syMem ciin continue to function at reduced performance. 

• lnevernentstl growth: A user can ciih4nce the performance of a system by 
adding an additional processor. 

• Scaling: Vendors can offi2r range of products with different price and per-
formance characteristics based on the number of processors configured in 
the system. 

it is i mportant Lc) note that these are potentiat, ra diu than guaranteed, benefits. The 
operating system must provide tools and functions to exploit the parallelism in an 

P system. 
An al kiii.CINV feature of an SNIP is that the existence of multiple proecAsor iS 

transparent to ihr user. The operating system takcx care of scheduling of threads or 
processes on individual processors and of synchronization among processors. 

Organization 
Figure [8.4 depicts in general terms the organization of a multiprocessor sysleni, 
There are lwo or more processors. 1 --]eh processor is self-contained, including a 01,311. 

Main !WV 

Figure 18.4 Generic Block .Diagrarn cif a ri g htl y  COUp1C d [1/4.1ultiprocuFAcir 
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trol unit ALU. registers, and, typically, one or more levels of cache. Each proces-
sor has access to a shared main memory and•the 1/0 devices through sonic form of 
i merconnection mechanism. The processors can communicate with each other 
through memory (messages and status information left in common data amts.). It 
may also be. possible for processors to exchange signals directly. The memory h 
often organized so that multiple simultaneous accesses to separate blocks of 
memory arc possible. I I I  wtrmr configurations, each processor may also have its own 
private main memory aud I/O channels in addition to the shared resources. 

OrErinizational approaches for an SMP can be classified as follows: 

■ Time-shared or common bus 

* Multiport memory 

■ Central control unit 

Time -Shared Ruh 

• hc lime-shared bus is the simplest mechanism [or consiructing a multi• 
processor system (Figure 'Ihe structure and im ethic:es are basically the .sa rne 
as for a single-processor system that uses a bus interconnection. The bus consists 
of control. address, and data lines. To facilitate DMA transfers from 110 processors, 
the following fcaitli-c;,1 arc provided: 

• Addressing; It must be possible to distinguish modules on the bus to dcicrinine 
I he source and destination or data. 

■ Arbitration: Any 1/0 module can temporarily function as "master." A mech-
anism is provided to arbiira l e compel log requesis for bus control_ using some 
sort of priority scheme. 

• Time sharing: When one module is controlling the bus, other modules arc loacd 
out and must, if necesmiry, suspc.nd operation until bus access.  is achieved. 

These uniprocessor features are directly usable in an SMP organization, In this 
latter case. there are now multiple processors as well as multi * I/O processors all 
attempting to gain access to one or more memory modules via the bus. 

The bus organization has several advantages compared with other approLiclu•: 

* This is [..11 C si mplest approach to multiprocessor organiiution. The 
physical interface and the addressing, arbitration, and time-sharing logic of 
each processor remain the same as in a single-processor system. 

■ FlexihiLit!..: [1 is generally (2. W.Sy' lo exp.und th4 systcm by attching more proces-
sors to the bus. 

■ ReliAility: Thc bus is essentially a passive medium, and the failure of ape 
attached device should not cause failure of the whole system. 

The main drawback to the bus orga]li2ation is performance. All memory ref-
erences pass through the common bus. Thus. the bus cycle time limits the speed 
of the systcm. To improve perrormance, it is desirable to equip each processor with 
a cache memory. This should reduce the number of bus accesses dramatically. Typ- 
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ically. workstation and PC 8/s4Ps have two levels of cache, with the I.1 caehe inter-
mil (same chip as the processor) Find the L2 cache either internal or external, 

I he .ti c of caches introduces sonic new design considerations. Because each 
local cache eoniains an image of a portion of memory. ir a word is altered in one 
cache. it could conceivably inv4lidatiz, a word in another cache. 'I'D prevent phis, the 
other processors must be alerted thal an update hiis taken place, This problem is 
known as the ruche' coherence problem and is typie2Illy :.iLial -QT:ICf5 in hardware rather 
than by the operating system. We address this issue in Section 18.1. 

Multiport Memory 

The mulliport memory Approach allows the direct, independent access of main 
memory modules by each processor and I/O module (Figure 18,6), Logic associated 
with memory is required for resolving conflicts, The method often used to resolve 
conflicts is to assign permanently designated priorities to each memory porI. Typi-
eatly, the physical and electric:ill interlace at each port is identical to what would he 
seen in a singly.-port memory module, Thus, little or no rnodifiekition is needed for 
either processor or I10 modules to accommodate muEtiport memory. 
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Figure 18.6 Multiporl Memory 

The rnultiport memory approach is more complex than the bus approach, 
requiring a fair amount of logic to he added to the memory system. It should, how-
ever, provide better performance because each processor has a dedicated path to 
each memory module. Another advantage of multiport is that it is possible to con-
figure portions of memory as -private" to one or more processors andlor I/O mod-
ules. This feature allows for increasing security against unauthorized access and for 
the storage of recovery routines in areas of memory not susceptible to modification 
by other processors. 

One other point: A write-through policy should be used for cache control 
because there is no other convenient means to alert other processors to a MQ111- 
ory update, 

Central Control Unit 
The central control unit funnels separate data streams back and forth between 

independent modules: processor, memory. I/O. The controller can buffer requests 
and perform arbitration and timing functions. It can also pass status and control 
messages between processors and perform cache update alerting. 

Because all the logic for coordinating the multiprocessor configuration is con-
centrated in the central control unit, interlaces from 1/0, memory. and processor 
remain essentially undisturbed. This provides the flexibility and simplicil y of inter-
facing of the bus approach. The key disadvantages of this approach are that the con-
trol unit is quite complex and that it is a potential performance bottleneck. 

The central control unit structure ).4..as once quite common for multiple proces-
sor mainframe systems, such as large-scale members of the IBM S/1170 family, It is 
rarely seen today. 

Multiprocessor Operating System Design Considerations 
An SNIP operating system manages proce...sor and other computer resources so that 
the user perceives a single operating system controlling system resources. In fact, 
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such a configuration should appear as a single-processor multiprogramming system. 
In both the SNIP and uniprocessor cases, multiple jobs or processes may he active 
at one time, and it is the responsibility of the operating system to schedule their exe-
cution and to allocate resources. A user may construct applications that use multi-
ple processes or multiple threads within processes without regard to whether a 
single processor or multiple processors will be available. Thus a multiprocessor 
operating system most provide all the functionality of a multiprogramming system 
plus additional features to accommodate multiple processors. Among the key design 
issues are the following: 

• Simultaneous concurrent processes: OS routines need to be reentrant to allow 
several processors to execute the same IS code simultaneously. With multiple. 
processors executing the sallle or different parts of the OS, OS tables and man-
agement structures must be managed properly to avoid deadlock or invalid 
opera tions. 

• Scheduling: Any processor may perform scheduling, so conflicts must he 
avoided, The scheduler must assign ready processes to available processors, 

• Synchronization: With multiple .active processes having potential access to 
shared address spaces or shared 110 resources, care must be taken to provide 
effective synchronization. Synchronization is a facility that enforces mutual 
exclusion and event ordering. 

• Memory management: Memory management on a multiprocessor must deal 
with all of the issues found on uniprocessor machines, as is discussed in Chap-
ter 8. In addition. the operating system needs to exploit the availablo hardware 
parallelism, such as muhiported memories, to achieve the best performance. 
The paging mechanisms on different processors must be coordinated to en-
force consistency when several processors share a page or segment and to 
decide on page replacement. 

• Reliability and fault tolerance: Thy operating system should provide graceful 
degradation in the face of processor failure. The scheduler and other portions 
of the operating system must recognize the loss of a processor and restructure 
management tables accordingly. 

A Mainframe SMP 

Most PC and workstation SMPs use a bus interconnection strategy as depicted in 
Figure 18.5. It is instructive to look al an alternative approach, which is used for a 
recent implementation of the IBM .5 390 mainframe family [MAK971. Figure 18.7 
depicts the overall organization of the S1390 SMP_ This family of systems spans a 
range from a uniprocessor with one main memory card to a high-end system with 
ten processors and four memory cards. '['he configuration includes one or two addi-
tional processors that serve as I/O processors. The key components of the configu-
ration are as follows: 

• Processor unit ITU): This is a CiSC microprocessor. in which the most Ire-
.quently used instructions are hardwired and the rest are executed by firmware. 
Each PU includes a 64-KB Li cache that is unified (combined data and instruc- 
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Figure 18.7 IBM S..3 440 Orpnization 

lion). The 1,1 cache sir{ was chosen to fil on the PL: chip and to achieve a one-
cycle access. 

▪ L2 cache: Faeh 1.2 cache eon twins 384 k B, The L2 caches Lire arranged in clus-
ters of two, with each cluster supporting thrcu Pl)s and providing to Lb42 
entire main memory space. 

▪ Bus -switching network adapter (BSN): I he IiSNs ini crcon 1 2 cache 
the main memory. Each BSN also includes a level 3 (L3) cache whose 

size is 2 MB. 
▪ ritlemory card; Each card holds 8 GB of memory, for a total of 32 GB capacity. 

There are a number of interesting features in the S/390 SMP configuration, 
which we discuss in [urn; 

• tithed intercct nrkceti cm  
• Shared 1.2 caches 
• 1 3 cache 

Switched Interconnection 
A ingle shared bus is a common arrangement on SMPs for PCs and work-

stations (Figure I N5). Wish This arrangement, the single bus becomes a bottleneck 
affecting the scalability (ability to scale to largQr ;izcs .) ,}r the design. The S/390 
copes with t his problem in two ways. First, main memory is split into row. separate 
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cards, each with its own storage controller that can handle memory accesses at high 
speeds. 'Ric average traffic load to main memory is cut by a factor of 4, because of 
the four independent paths to four separate parts of memory. Second. the connec-
tion from processors (actually from L2 caches) to a single memory card is not in the 
form of a shared bus but rather point•to-point links, where each link connects a 
group of three processors via an L2 cache to a BSN.'1 . 11e. BSN. in turn, performs the 
function of a switch that can route data among its five links (four 12 links. one mem-
ory card ). With respect to the four 12 links, the BT .: connects the four physical links 
to one logical data bus. Thus. an incoming signal on any of the four L2 links is 
echoed back to the remaining three L2 links: this feature is required to support 
cache coherence. 

Note that although there arc our separate memory cards. each KJ and each 
L2 cache has only has two physical ports in the direction of main memory. This is 
because each L2 cache only caches data from half the main memory. A pair of 
caches is required to service all of main memory, and each PU must connect to both 
caches in a pair. 

Shared L2 Caches 

In a typical two-level cache scheme for an SNIP. each processor has a dedi-
cated LI cache and a dedicated L2 cache. In recent years, interest in the concept of 
a shared L2 cache has been growing. In an earlier version of its Si390 SMP, known 
as generation 3 (031. IBM made use of dedicated L2 caches. In its later versions (G4 
and G5), a shared 12 cache is used. Two considerations dictated this change.: 

L in moving from G3 to G4. IBM doubled the speed of the microprocessors. If 
the (i3 organization was retained. a .significanl increase in bus traffic would 
occur. At the same lime, it was desired to reuse as many 63 components as pos-
sible. Without a significant bus upgrade, the BSNs would become a bottleneck. 

2. Analysis of typical SI:390 workloads revealed a large degree of sharing of 
instructions and data among processors. 

These considerations led the 51391) G4 design team to consider the use of one 
or more L2 caches. each of which was shared by multiple processors (each proces- 
sor having a dedicated on-chip LE cache). Al first glance, sharing an L2 cache might 
seem a had idea. Access to memory from processors should he slower because the 
processors must now contend for access to a single L2 cache_ I Iowever, if a suffi- 
cient amount of data is in fact shared by multiple processors, then a shared cache 
can increase throughput rather than retard ii. Dal a that are shared and found in the 
shared cache are obtained more quickly than if they must be obtained over the bus. 

One approach considered by the S/390 04 design time was a single large fully 
shared cache. used by all processws. While this would have provided improved sys- 
tem performance via higher cache efficiency, this design approach would have 
required a complete redesign of the existing system bus organization. But perfor- 
mance analysis indicated that introducing cache sharing on each of the existing USN 
buses would generate a large percentage of the advantage of shared caches while 
reducing bus traffic. Thc value of shared caching was confirmed by performance 
measurements that showed that lite shared cache improved cache hit rates signifi- 
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Table ISA Typicnl Cache Hit Rate cm S;390 SNIP Con liauration 

Vie En sr, 
Subsystem 

Access Pcualty 
(PLI cycles) T  Cache Size Hit Rate CYO 

L [ each.12 I 32 K ii ft9 

L2 cache -7: 256 KB c 

L.3 CEIEFIE l 4 2 \i1 3 

Nivniory 32 K [ 11 :3 

cantiy over the dedicated cache scheme used in the 03 organization rMAK97]. 
StudicN of the value of shared caches on smaller-scale microprocessor SMIN confirm 
the value of this approach (Q.2., [NAYF96]). 

L3 Cache 

Another interesting feature or th, S/390 SNIP is the use of a third level of 
cache (L3). 1  The L3 caches are located in the BSNs, and therefore each L3 cache 
provide!) a buffer between L2 caches and one memory card. The L3 cache reduces 
latency for the data not kern in the LI and 1.2 caches of Ihe requesting rroeL.s..sor. Il 
provides the data much more quickly than a main memory access if the. requested 
cache line is already shared by other processors but was not recently used by the 
requesting processor, 

Table 18.1 shows performance results l'or this Ihree..level cache system for a 
typical S/390 cornmercial workload with heavy memory and bus load IDOET9712 
the sittn-age access penally is 1he Latency between the data request lo the cache hir.r-
archy and the first returned 16-byte data Hoek. ' fhe 1.1 ciiefic produces a hit rare of 
9%, so that the remaining 11% of memory references must be resolved at the L2, 

1..3. or memory level. Of this 11 %, 5% are resolved at the L2 level, and so on Merith 
three levels of cache, only 3% of references require a memory access. Without the 
third [excl. the rate of main memory access (.10nbles. 

18.3 CACHE COHERENCE AND THE MESI PROTOCOL 

Iii CAM emporary multiprocessor systems. it is customary to have one or Iwo levels 
of cache associated with each processor. 'phis organisation ix  cnli it to .tichiev;2 
reasonable performance. It does, however, create a problem known as the cache 
cr.therence problem. The essence of the problem is this: Multiple copies of the same 
dala can exisl in different caches simultaneously, and if processors are allowed to 

I B Wh.liwrauirc vErers to this caLhc iss a n I,2.5 cvcli . 12E12 St!crn4 nu p,lrLiLutar advitn tHge of this term, 
ns2 in tact this cache constitute3 a third level of .crichirtg. 

7 rite data are for a 03 system, which use.; &cheated L2 caches, E-I.Dwevor, the reaffis are sticsesti%e of 
t he pci- l'orm.Hrtce. lo he expected with shared L2 cache. as round on (34 and (35 Si390s. 
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update their own copies freely, an inconsistent view of memory can result. in Chap-
ter 4 we defined two common write policies: 

• Write back: Write operations are usually made only to the cache. Main mem-
ory is only updated when the corresponding cache line is flushed from the cache. 

• Write through: All write operations are made to main memory as well as to the 
cache, ensuring that main memory is always valid. 

It is clear Ihat a write-hack policy can result in inconsistency. If two caches con-
tain the same line, and the line is updated in one cache. the other cache will unknow-
ingly have an invalid value. Subsequent reads to that invalid line produce invalid 
results. Even with the write-through policy. inconsistency can occur unless other 
caches monitor the memory traffic or receive some direct notification of the update. 

In this section, we will briefly survey various approaches to the cache coher-
ence problem and then focus on the approach that is most widely used: the MESI 
(modifiedlexclusivcisharedlinvalid) protocol. A version of this protocol is used On 
both the Pentium 4 and PowurPC implementations. 

For any cache coherence protocol, the objective is to let recently used local 
variables get into the appropriate cache and stay there through numerous reads and 
write, while using the protocol to maintain consistency of shared variables that 
Might be in multiple caches at the same lime_ Cache coherence approaches have 
generally been divided into software and hardware approaches. Some implementa-
tions adopt a strategy that involves both software and hardware elements. Never-
theless, the classification into soil ware and hardware approaches is still invructive 
and is commonly used in surveying cache coherence strategies. 

Software Solutions 
Software cache coherence schemes attempt to avoid the need for additional hard-
ware circuitry and logic by relying on the compiler and operating system to deal with 
the problem. Software appr4 1.21 C.1Cti 4ite attractive because the overhead of detecting 
potential problems is. transferred From run time to compile time. and the design 
complexity is transferred from hardware to software. On the other hand, compile-
time software approaches generally must make conservative decisions. leading to 
inefficient cache utilization. 

Compiler-based coherence mechanisms perform an analysis on the code to 
determine which data items may become unsafe for caching, and they mark those 
items accordingly. The operating system or hardware then prevents noncacheable 
items from being cached. 

The simplest approach is to prevent any shared data variables from being 
cached. This is too conservative, because a shared data structure may be exclusively 
used during some periods and may he effectively read-only during other periods. It 
is only during periods when at least one process may update the variable and at least 
one other process ma access the variable that cache coherence is an issue. 

More efficient approaches analyze the code to determine safe. periods for 
shared variables. The compiler then inserts instructions into the generated code to 
enforce cache coherence during the critical periods. A number of techniques have 
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been developed for performing t he analysis 4111d 1 .01 -  enforcing the results; see 
1L111931 and ISTEN901 for surveys. 

Hardware Solutions 

Hardware-lt solutions are generally referred to as cache coherence protocols.. 
These solutions provide dynamic recognition at run time of potential ineonsisiency 
conditions. Because the problem is only dealt with when it actually arises, there is 
more effective use of caches, Fending to improved performance over a software 
approach. In addition, these. approaches Li re transparent to Lhc programmer and the 
compiler, reducing the software development burden, 

Hardware sehemes differ in a number of paniculars, including where the state 
information about data lines is held, how that na formalion is organized, where coher-
ence is enforced, and the enforcement mechanisms. In general, hardware schemes 
can he divided into Iwo categories: directory protocols and-snoopy protocols. 

Directory Ptotocok 
Directory protocols collect and maintain information about where copies of 

li nes reside, Typically, there is a centralized controller that is pan of the main mem-
ory controller, and a directory chat k sitYri2d in main memory. The directory contains 
global state information about the contents of the various local caches. When art 
individual cache controller makes a request. the centralized controller checks and 
issues necessary commands for data transfer between memory and caches or 
between caches themselves. It is also responsible for keeping t he S.1 ate information 
up to date; therefore, every local action that can affect the global state or a line must 
be reported to the cern ral controller, 

Typically, the controller maintains in ro1111;ki ion aboul which processors have B 
copy of which lines. Before a processor can write to a local copy oaf a li ne, it roust 
tcqust exclusive access to the line from the controller. Before granting this exclu-
sive access, the controller sends a message to all processors with a cached copy of 
this [inc. forcing each processor to invalidate its copy- After receiving aeknowledg-
men is back from each such processor, the controller grants exclusive access to 
requesting processor. When another processor tries to read a line that is exclusively 
granted to another processor. i1 will send a miss notification to the controller. The 
controller then issues a command to the processor holding that line that requires Llic 
processor to do a write back to main memory. The line may now be shared for read-
ing by the original processor and the requesting processor. 

Directory schemes suffer from the drawbacks or a central bol del-leek and the 
overhead of communication between the various cache controllers and the conital 
controller. However, they are effective in large-scale systems that involve multiple 
buses or some other complex interconnection scheme. 

S noopy PrOti Fen N 

Snoopy protocols distribtiEe the responsibility for maintaining cache coherence 
among all of the cache controllers in ai ITliihiprticessor, A cache must recognize when 
as lime that it holds is shared with other caches. When an update action is performed 
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on a shared cache line, it must be announced to all other caches by a broadcast 
mechanism. Each cache controller is able to "snoop" cm the network to observe 
these broadcasted notifications, and react accordingly. 

Snoopy protocols arc ideally suited to a bus-based multiprocessor, because the 
shared bus provides a simple means for broadcasting and snooping. However, 
because one of the objectives of the use of local caches is to avoid bus accesses, care 
must be taken that the increased bus traffic required For broadcasting and snooping 
does not cancel out the gains from the use of local caches, 

I wo basic approaches to the snoopy protocol have been explored: write inval-
idate and write update (or write broadcast). With a write-invalidate protocol. there 
can be multiple readers but only one writer at a time. Initially, a line may he shared 
among several caches for reading purposes. When one of the caches wants to per-
form a write to the line, it first issues a notice that invalidates that line in the other 
caches, making the line exclusive to the writing cache. Once the line is exclusive, the 
owning processor can make cheap local writes until some other processor requires 
the same line. 

With a write-update protocol, there can he multiple writers as well as multiple 
readers. When a processor wishes to update a shared line, the word to be updated 
is distributed to all others, and caches containing that line can update it. 

Neither of these two approaches is superior to the other under all circum-
stances. Performance depends on the number of local caches and the pattern of 
memory reads and writes. Sonic systems implement adaptive protocols that employ 
both write-invalidate and write-update mechanisms. 

The write-invalidate approach is the most widely used in commercial] multi-
processor systems, such as the Peril ium 4 and Po•erPC. It marks the state of every 
cache line (using two extra bits in the cache tag) as modified, exclusive, shared, or 
invalid. For this reason, the write-invalidate protocol is called MESI. In the remain-
der of this section, we will look at its use among local caches across a multiproces-
sor, For simplicity in the presentation, we do not examine the mechanisms involved 
in coordinating among both level 1. and level 2 locally as well as at the sarne time 
coordinating across the distributed multiprocessor, This would not add any new 
principles but would greatly eomplicate the discussion, 

The MESI Protocol 
To provide cache consistency on an SMP, the data cache often supports a protocol 
known as NIES!. For MESI, the data cache includes two status bits per tag. so  that 
each line can be in one of four states: 

6  Modifieth'Ite line in the cache.has been modified (different from main mem-
ory) and is available only in this cache. 

■ Exclusive: The line in the cache is the same as that in main memory,' and is not 
present in any other cache. 

• Shared; The line in the cache is the same as that in main memory and may be 
present in another cache. 

• Invalid: The line in the cache does not contain valid data. 
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Table 182 MES1 Cachi: Line States 
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I 
Invalid 
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The memory copy it ... 
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out or dme 
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No 

Valid Valid — 

l'Co 1434'l:..c Maybe 

A twill; tci. this line .... D{5122, not go to hum Docs not .c, La bin 
Gi.)12s 

upd.dLcs  cdow
t}liui.: and 

COL. A directly to bus 

Table 18.2 summarizes the meaning of the four statc. Figure 18.X displys a 
state diagram for the Mfr protocol. Keep in mind that each line of the cache has 
its own state bits and therefore its own realization of the state diagram. Figure 1X.8a 
shows the transitions that occur due to actions inil kited by Ilie proces ,.or attached 
to ;his cache. Figure 1 SME-i shows the triirmitions that occur due to events that are 
snooped on the common bus. This presentation of separate state diagrams for 
processor-initiated and bus-initiated actions helps to clarify the. logic of the ME.S1 
prolocol. At any time a cache line is in a single slate, If the .next event is from the 
mulched procesor, then the iranshion is dictated by Figure 8.8a and if the next 
event is from the bus, the transition is dictated by Figure .I Bath, Let us look at these 
transitions in more detail. 

ead Miss 

When a read miss occurs in the local cache, the processor initiates a memory 
read to read the ]ine of main memory containing the missing address. The proces-
sor inserts a signal on the bus that a]erts all other process )] -!cacheunils snoiip the. 
irinactipn, There are a number of possible oulcomes: 

• If one other cache has a clean (unniodirics3 since read from rnernoi).9 copy of 
the line in the exclusive state, it returns a signal indicating that it shares this 
]ine. The. responding processor then transitions the state of its copy from eNclu-
sive lo shared, and the initialling processor reads the line from main memory 
and transitions the Line in its cache from. invalid to shared. 

• If one or more caches have a clean copy of the line in the shared state, each of 
them signals Lhal ii shares Lhc Eine. The initiating processor reads the line and 
transitions the line in its cache from invalid to shared. 

• If one other cache has a modified copy of the line, then that cache blocks the 
memory read and provides the line to the requesting cache over the shared 
bus. The resp4 in& ciche Ilion changes its line from modified to shared.' 

In scinac. i mplcinentationF., Lhc cache with the modilied line signals the niici•iiting pi ocessor to retry. 
Merinwhilv, the prcwesNor with Oho modiricg.io3py . F.7.:izes the bus,  he inocliricd line buck La main 
niLrnorx.. and I mnsiiions Ole line in its cuctic horn iniadifi.eii to shared. Subseclueraly, die requestiag 
prossor tries I atr7 and liacisdhas one or more processors have a ckon cf5py or the line in ihu sharn1 
s[nLc, as described. in I he prcceding point. 
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• I f no other cache has a copy of the line (clean or modified). then no signals an 
returned. The initiating processor reads the ]ine and transitions the line in its 

t . cache from invalid to exclusive- 

feud Hit 
When a read hit occurs on a line currently in the local cache, the processor sim-

ply reads ihe required item. There is no stale change; The stale remains modified, 
shared, or exclusive. 

Write Miss 

When a write. miss occurs in the local cache, the processor initiates a memory 
read to read the tine of main memory containing the missing address, For this pup 
pose, the processor issues a•signal on the bus that means reall- with -inteni - fo -inufgy 
(RWITM). When the line is loaded, it is immediately marked modified. With respect 
to other caches, two possible scenarios precede the loading of the line of dala. 

First, some other cache may have a modified copy of this line (state  rrindify). 
In this case. the alerted processor signals the initiating processor that another 
processor has a modified copy of the ]ine. The initiating processor surrenders the 
bus and waits. The other processor gains access to the bus. wait ers I he modified cach e  
li ne back 10 main memory, and transitions the slate of the cache Zinc iti invalid 
(because the initiating proce ssor is going CO modify this tine). Subsequently. the ini-
tiating processor will again issue a signal to the bus of RWITM and then read the 
line from main memory, modify the line in the cache. and mark the line in the mod. 
ilk...LI state. 

The second scenario is that no other cache has a modified copy of the 
requested line. In this case, no signal is returned, and the initiating processor pre-
coeds to read in the tine and modify it. Meanwhile., if one or more caches have a 
clean copy of the line in the shared state, each cache invalidates its copy of the line, 
and if one cache has a clean copy of the ]ine in the exclusive state, it invalidates its 
copy of the line. 

Write Hit 

When a write hit occurs on a line currently in the local cache, the effect 
depends on the current state of that line in the local cache: 

▪ Shared: Before performing the update, the processor must gain exclusive own- 
ership of the line. The processor signals its intent on the bus. Each processor 
that has a shared copy of the line in its cache transitions the sector from shared 
to invalid. The. initiating processor then performs Lhc update and transitions 
its copy of the line from shared to modified, 

• Exclusive: The processor already has exclusive control of this line, and so it 
si mply performs the update and transitions its copy of the li ne from exclusive 
to modified. 

• Modified: The processor already has exclusive control of this line and has the 
line marked as modified, and so it simply performs the update. 
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LI- l,2 Cache Consistency 

We have so far described cache coherency protocols in tenros of the woperate 
activity among caches connected to the same bus or other SNIP interconnection 

fypically,ihese caches are L2 caches, and each processor also has an Li 
cache that does not connect directly ,  10 the bus and that therefore cannot engage in 
a snoopy protocol. Thus, some scheme is needed to maintain data integrity. across 
both levels of cache and across all caches in the SNIP configuration. 

The strategy i to extend the MF.SI protocol (or any cache coherence protocol) 
to the LI caches. Thus, each line. in the l ..i cache includes hits to indicate the state. 
In essence, the objective is the following: For any line that is present in both an L2 
cache and its corresponding LI cache, the LI line state should track the state of the 
L2 line. A simple means of doing this is to adopt the write-through policy in the LI 
cache in this case the write through is to the 1.2 cache and not to the memory. The 

write-through policy forces any modification to an LI line out to the L2 cache 
and therefore makes it visible lo Other L2 caches, The use of the L1 write-through 
policy requires that the Ll content must he a subset of the 1 2 content, 'Ellis in turn 
suggests that the associativity of the L2 cache should be equal to or greater than that 
of the Li associa tivity. The LE write-through policy is used in the IBM SI390 SMP. 

If the Ll cache has a write-baek  the relationship between the two 
caches is more complex. There are several approaches to maintzlining coherence. For 
example, the approach used on the Pentium It is described in detail in ISHAN:W I. 

18.4 CLUSTERS •••-•:cr: 
-SreCr  aVrrgt:'r:fe,:r7 - 

efrP,-af,—  

One of the hottest new areas in computer systein design is elt.r.tering, C u!,toring is an 
alternalive. lo symmetric multiprocessing as an approach to providing high perfc».- 
Illartce and high availability and is particularly attractive for server applications. We. 
can define a cluster as a group of interconnected, whole computers working together 
as a unified computing resource that can create the illusion of Facing one machine. 
'( he term whole computer means a system that can run on its own, apart from the 
cluster; in the li lcraturc, each computer in a cluster is typically referred to as a node. 

[BREW97] lists four be.nefits that can be achieved with clustering, 'T'hese can 
a1s0 he thought of as objectives or design requirements: 

• Absolute sealsithilityi It is possible to create large clusters that far surpass the 
power of even the largest standalone machines. A cluster can have dozens of 
machines, each of which is a multiproccssor. 

• Incremental scalability: A cluster is configured in such a way that it is possible 
10 add new systems to the cluster in small increments. Thus. a user can start 
out with a modest system and expand it as needs grow. wi I hoot having to go 
through a major upgrade, in which an existing small system is replaced with a 
larger :iysLarri, 

■ High availability: Because each node in a cluster i ri s1;inda Ione comptiler, !he 
failure of one node does not mean loss of service, In many products, fault 101- 
el-arl1N. is handled automatically in software. 
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• Superior price/performancet By using oommodily building blocks, it is pos-
sible to put together a cluster with equal or greater computing power than 
singic large, machine. Ed much lower cost. 

Cluster Configurations 

In the literature, dusters are claAlied in a number of different ways. Perhaps the 
simplest classification is based on whether the computers in a duster share access to 
the s.ame disks. Figure 18,9a shows a two-node chimer in which the only inteteuri• 
nection is by means of a high-speed link that can he used for mesmige exchange to 
coordinate cluster activity. 'Hie link can be a LAN that .is shared with other non-
cluster computers or it can he a dedical et! interconnection facility. In the Latter case, 
one or more of the computers in the cluster will have x link to a / .A N or WAN so 
that there is .a connection between the. server cluster and remote elicni Nntc. 
that in the figure, each computer is depicted as being a multiprocessor, This is not 
nccessary but does enhance both performance and nv2iilallilifv. 

Figure 18.9 Cluster Configuration; 
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In the simple classification depicted in Figure L8.9. the other alternative is a 
shared-disk cluster. In this case, there generally is still a message link between 
nodes. In addition, there is a disk subsystem that is directly linked to multiple com-
puters within the cluster. In this figure, the common disk subsystem is a RAID sys-
tem, The use of RAID or some similar redundant disk technology is common in 
clusters so that the high availability achieved by the presence of multiple computers 
is not compromised by a shared disk that is a single point of failure. 

A clearer picture of the range of cluster options can be gained by looking at 
functional alternatives. Table 18.3 provide,,, a useful classification along functional 
lines, which we now discuss. 

A .001111/1011_ older method, known as passive standby. is simply to have one 
computer handle all of the processing load while the other computer remains in-
active, s Lind i n g by to take over in the event uf a failure: or the primary. To coordi-
nate the machines, the active, or primary. system periodically sends a "heartbeat" 
message to the standby machine, Should these messages stop arriving, the standby 
assumes that the primary server has failed and puts itself into operation. This 
approach increases availabilit!,. ,  but does not improve performance, Further, if the 
only information that is exchanged between the two systems is a heartbeat message, 
and if the two systems do not share common disks. then the standby provides a func-
tional backup Frut has no access to the databases managed by the primary 

futile 18.3  Clustering Mk:thuds: Benefits and Limitation.; 

Clustering Method I Description 13kluelit ,  Limitations 

Pamsive Standby I igh cost becansc the 
secondary Server is 
unavailable. for other 
processing tasks. 

A NeConduy wrwr 
takes over in case of 
primary server railurc..... 

busy to implement. 

Active Secondary The secondary server 
is ago used for 
Fyn rrehsing tasks. 

Reduced ecW. bct:Cd uSc  
secolidaty servers can he 
used fin processing. 

Increased complcxity. 

Separate Servers High nelv...ork and server 
li) 1..! I Tying 

operation-, 

High availability. Seporate servers have 
their own disks, Data 
are corninuouslv copied 
from primary to 
seoiridary server. 

Servers Connected 
to Disks 

.Servers are cabled 10 
I he same disks, but 
each server owns its 
disks. if one server 
fails, its disks arc taken 
over by the ocher 
serve r. 

Reduced network and 
server overhead due Li, 

elimination of copying 
operations, 

Usually. requires disk 
mirrorin or RAID 
toehnologs...  to compen• 
salt for risk of disk 
FAUN:. 

Servers Share Disks Muliiplc servers 
simultaneously share 
access to disks. 

Low network and server Requires 1.ork ruanagor 
overhead. Reduced risk software. Usually used 
of downtime caused by with disk mirroring ul 

disk failure. RAID technology. 
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The. passive standby is generally not referred to as a cluster, The term ciuvrer 
reserved for multiple interconnected computers that are all actively doing proces-
ing while maintaining the image of a single system to the outside world. The term 
active secondary is often used in referring to this configuration. Thrce classifications 
of clustering can be identified: separate servers, shared nothing, and shared memory, 

In one approach to clustering, each computer is a separate server with its 
own disks ,rind there are no disks shared between systems (Figure 18,9a). This ar.. 
ranement provides high performance as well as high 4.0V4ii4i  lil y. In this C41SL'. Sorno 

type of management or scheduling software k needed to assign incoming client 
requcsis tei servers so that the load is balanced and high utilization is achieved. It 
is desirable to have a failover capability, which means that if a computer fails while 
executing an application, anothcr computer in the elusler can pick up and com-
plete the application. For this to happen, data must constantly be copied among 
systems so lint each system has access to the current data of the other systems. 
The overhead of this data exchange ensures high availability at the cost of a perfor-
mance penalty. 

To reduce the communications overhead, most clusters now consist of servers 
connected to common disks (Figure 18.9by In variation on this approach, called 
shared nothing. the common disks arc parlitioned into volumes, and each volume in 
owned by a single computer. If that computer fails, the cluster must be reconfigured 
so that some other computer has ownership of the volumes of the failed computer. 

It is also possible to have multiple computers share the same disks at the same 
ti me (called the shared disk approAch), so that each computer has access to all of 
1hc volumes on all of the disks. This approach requires the use of some type of lock-
ing facility to ensure that data can only be accessed by one computer at a tune. 

Operating System Design Issues 

1- ul I exploitation of a cluster hardware configuration requires some enhancements 
to a singlc-systern operating system. 

Failure Management 
How failures are managed by a cluster depends on the clustering method used 

(I able 16,3). In general. two approaches can be taken to dealing with failures: highly 
available clusters and fault-tolerant clusters. A highly available cluster offers a high 
probability that all resources will he in service. If a failure does occur, such as a sys-
tem goes down or a disk volume is lost then the queries in progress are lost Any 
lost query, if retried, will be serviced by a different computer in the cluster. How-
ever, the cluster operaiing system makes no guarantee aboul the state of partially 
executed transactions. This would need to be handled al the application level. 

A fault-tolerant cluster ensures that all resources are always available. This is 
achieved by the use of redundant shared disks and mechanisms for backing out 
uncommitted transactions and cOrnuniting conitp[c.Eed 

The function of switching applications and data resources over front a failed 
system 10 an alternative system in the cluster is referred to as !allover. A related 
function is the restoration of applications and daia resources i n  the original systeni 
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one it has been fixed; this is referred to iv; fallback. Failback can be automated, but 
this is desirable only if the problem is truly fixed  unlikely to recur. If not, auto-
matic failback can cause subsequently failed resources to bounce back and forth 
between computers. resulting in performance and recovery problems. 

Load Balancing 

A cluster requires an effective capability for balancing the load among avail-
able computers. This includes the requirement that the cluster be incrementally 
scalable. When a new computer is added to the cluster, the load-balancing facility 
should aulomalically include this computer in scheduling applieations. Middleware 
mechanisms need lo recognize that services can appear on different mcmilcrs of the 
cluster and may migrate from one member to another. 

Paralleliziag Computation 

In some cases. effective LLSie of a cluster requires executing 'software from a sin-
gle application in parallel. [KAPPOO] lists three general approaches to the problem: 

* compiler; A parallelizing compiler dCitn-Mirke:i, al compile lime, 
which parts or an application can be executed in parallel. These are that split 
off to be assigned to different computers in the chaster. Performance depends 
on the nature of the problem and how well the compiler is designed. 

■ Parallelized upplication: In this approach, the programmer writes the applica-
tion from the. outset to run On a clits.1{;.;r, and uses message passing to move.clata. 
as required. between duster nodes. This places Li high burden on the program-
mer but may be t he best. approach for exploiting clusters for some applications. 

• Parametric computing: This approach eLi n be used if essence of the appli- 
Ca Li on is En algorithm or program that must be executed a large number or 
firnes.., inch lime with a different set of starting conditions or parameters. A 
good example is a siniula Lion model, which will run a large. number of differ-
ent scenarios and then develop statistical summaries of the results. For this 
approach to he effective, parametric processing tools arc needed to organi4e, 
run, and manage the jobs in an orderly manner, 

Cluster Computer Architecture 

Figure 18.10 shows a typical cluster architecture. The individual computers are con-
nected by some high-speed LAN or Switch hardware. Each computer is capable of 
operating independently. In addition, a rniddleware. layer of software is installed 
in each computer to enable cluster operation. The cluster middieware provides a 
unified Nvstern i mage to the user, known as a single•.system image. The midclleware 
is also responsible for providing high availability, by means of load balancing and 
responding to failures in individual components. I I-1 WA N991 lixl the. following as 
desirable cluster raiddlcware Services and functions: 

■ Single entry point; A user logs onto the cluster rather than to an individual 
cotnputer. 
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• Single rile hierarchy: The user sees a single hierarchy of file directories under 
die same root directory. 

I  Single control point: There is a default workstation used for cluster ]nanage-
ment and control. 

• Single virtual networking: Any node can access any other point in the cluster, 
even though the actual cluster configuration may consist of multiple intercon-
nected networks. I here is a single virtual network operation. 

• Single memory space; Distributed shared memory enables programs to share 
variables. 

• Single job-management systemt Under a cluster job scheduler. a user can sub-
mit a job wilhout specifying the host computer to execute the job. 

* Single user interllice: A common graphic interface supports al/ users, rci.lard-
less of the workstation from which Ihey enter the cluster. 

• Single 11/0 space: Any nodc can remotely 2ccESS. any 110 peripheral or disk 
device without know/edge of its physical location. 

■ Single process Npaee: A uniform process-identification scheme is used. A 
process on aliy node can create or communicate with any other process on a 
remote node. 

• Checkpointing: This function periodically saves the process state and inter-
mediate computing results. to allow rte] [hack recovery of a failure, 

• Process, migration: This function enahle's load ha[ancini. 

The East four items on the preceding list enhance the availability of the dus-
ter, The remaining items are concerned with providing a single system image. 

urning to Figure Hi 0, a cluster will also include software tools for en-
abEi ng the efficient execution of programs that arc capable of parallel execution. 

Clusters versus SMP 

Both clusters and symmetric multiprocessors provide a configuration with multiple 
processors to support high-demand applications, Both soEutions are commercially 
available, although SMP schemes have been around far longer, 

The main streno.h or the SMP approach is that an SMP is easier to manage 
and configure than a cluster, The SNP is much closer lo the original single.-processor 
model for which nearly ad applications are wrii cn. '1 .he principal change required 
in going from a uniprocessor to an SMP is ro the scheduler function. Another ben-
efit of the SMP is thin it usually takes up less physical space and draws Icy.; power 
than a comparable cluster, A fi nal important benefit is that the SMP products are 
well established and stabEe. 

Over the long run. however, the advantages of the cluster approach likely 
to result in clusters dominating lhe high-performance server market. Clusters are far 
superior to SMPs in terms of incremental 4ind ;i hsoluie swihbility. Clusters are also 
superior in terms of availability, because. all components of the system can readily 
he made highly redundant, 
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in ierms of commercial products, the two common approaches to providing a mul-
tiple-processor system to support applications are SMPs and clusters, For some 
years. another approach. known as nonttniCorm memory access (NUMA), has been 
the sahjeci  research and commercial NEJMA products are now available. 

Before prr ceedina. we should define some terms often found in I he NUMA 
literature. 

• Uniform memory access (UMA): Ali processors have access to all pares of 
main memor!,. ,  using loads and stores. The memory access time of a processor 
to all regions of memory is the same- 'I'hc access times experienced by differ-
ent prE)eessors are the same. The SNIP organization discussed in Sections lE..2 
and 1.S3 is UMA. 

■ Nonuniform memory access (NUMA); All processors have access to all parts 
of main rnerro using loads and stores. The memory access time of a proces- 
sor differs depending on which region of main memory is accessed. The last 
statement is true for all processors; however, for differeni proces!,ors. which 
memory regions are slower and which are faster differ, 

• Cache -coherent N LAI (CC -NU MA): A NUMA system in which cache co-
herence is maintained among the caches of the various processors. 

A NI:MA s:...sicrn wilitiouL cache coherence is more .  or less equivalent to a 
cluster. The commerciai products that have received much attention reeenlly arc 
CC - NUMA systems. which are quite distinct from bolh SVP:s and clusters. 
hue unfortunately not always, such systems are in fact referred to in the commercial 
literature as  M A systems. This section is concerned onl!, . ,  with CC-NUMA 
systems. 

Motivation 

With an MP system, there is practical hrnil Lo the number of processors that can 
be used. An effective cache scheme. reduces the bus traffic between any one proces-
sor and main memory, As the number of processors increases, this bus traffic also 
increases, Also, the bus is used to exchange ciiche coherence signals, further adding 
to the burden. At some point, the bus becomes it performance bottleneck. Perfor-
mance degradation seems to limit the number of processors in an SNIP configura-
tion to somewhere between l6 and 64 processors, For example, Silicon G raphics  
Power Challenge S Pis li mited to 64 R10000 processors in a single system; beyond 
this number performance degrades substantially. 

The processor limit in an SMP is one of the driving motivations behind die 
development of cluster sy:.4tEins. However, with a cluster, each node has its own 
private main momory: :11 P pliCiLl iortg do not see a large global memory. In effect, 
coherency is maintained in software rather than hardware, This memory granularity 
a [feels performance and, lo achieve maximum performance, software must be tai-
lored 10 I 11is environmene. One approach to achieving large-scale multiprocessing 
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while retaining the flavor of SM P is NUMA. For example. the Silicon Graphics 
Origin NUMA system is designed to support up to 1024 MIPS RI0000 processors 
I WH IT971 and the Sequent NUMA-O system is designed to support up to 252 Pen-
tium II processors. [LOVE96]. 

The objective with NUMA is to maintain a transparent systemwide memory 
while permitting multiple multiprocessor nodes_ each with its own bus or other inter-
nal interconnect system. 

Organization 
Figure 18.11 depicts a typical CC'-NUMA organization. There are multiple inde-
pendent nodes, each of which is, in effect, an SMP organization, Thus, each node 
contains multiple processors, each with its own Ll and L2 caches, plus main mem-
ory, The node is the basic building block of the overall CC-NUMA organization. 
For example. each Silicon Graphics Origin node includes two MIPS R111000 proces-
sors; each Sequent NUMA-0 node includes four Pentium II processors. The nodes 
are interconnected by means of some communications facility, which could be a 
switching mechanism, a ring, or some other networking facility. 

Each node in the CC-N LAM system includes some main memory. From the 
point. of view of the processors, however, there is. only a single addressable memory, 
with each location having a unique systemwide address, When a processor initiates 
a memory access, if the requested memory location is not in lhat processor's cache. 
then the L.2 cache initiates a fetch operation. 11' the desired line is in the local por-
tion of the main memory, the line is fetched across the local bus. if the desired line 
is in a remote portion of the main memory, then an automatic request is sent oil lo 
fetch that line across the interconnection network, deliver it to the local bus, and 
then deliver it to the requesting cache on that bus, All of this activity is automatic 
and transparent to the processor and its cache. 

In this configuration, cache coherence is a central concern. Although imple-
mentations differ as to details, in general terms we can say that each node must 
maintain some sort of directory that gives it an indication of the location of various 
portions of memory and also cache status information. To see how this scheme 
works, we give an example taken from (1 3 11S)8]_ Suppose that processor 3 on node 
2 (P2-3) requests a memory location 798, which is in the memory of node 1, The fol-
lowing sequence occurs: 

P2-3 issues a read request on the snoopy bus of node 2 for location 798, 
2. The directory on node 2 sees the request and recognizes that the location is in 

nude I. 
3, Node 2's directory sends a request to node 1. which is picked up by node l's 

directory. 
4, Node I 's directory, acting as a surrogate of P2-3, requests the contents of 798, 

as if it were a processor. 
5. Node 1's main memory responds by putting the requested data on the bus, 
h. Node l's directory picks up the data from the bus. 
7. The value is transferred back to node 2's directory, 
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8. Node 2's directory places the data back on node 2's bus, acting as a surrogate 
for the memory that originally held it. 

9. The value. is picked up and placed in P2-3's cache and delivered to 1 32-3. 

The preceding sequence explains how data are read from a remote memory 
using hardware mechanisms that make the transaction transparent to the processor. 
On top of these mechanisms, some form of cache coherence protocol is needed. 
Various systems differ on exactly how this is done. Vire make only a few general 
remarks here. First, as part of the preceding sequence, node l's directory keeps a 
record that some remote cache has a copy of the line containing location 79S. Then, 
there needs to he a cooperative protocol to take care of modifications. For exam-
ple. if a modification is done in a cache, this fact can he broadcast to other nodes. 
Each node's directory that receives such a broadcast can then determine it 4i ny local 
cache has that line and. if so, cause it to be purged. If the actual memory location is 
at the node receiving the broadcast notification, then that node's directory needs to 
maintain an entry indicating that that line of memory is invalid and remains so until 
a write back occurs. If another processor (local or remote) requests the invalid line. 
then the local directory must force a write hack to update memory before provid-
ing the data. 

NUMA Pros and Cons 
The main advantage of a CC-NU MA system is that it can deliver effective perfor-
mance at higher levels of parallelism than SMP, without requiring major sofmare 
changes. With multiple NUMA nodes, the bus traffic on any individual node is lim-
ited to a demand that the bus can handle. However, if many of the memory accesses 
arc to remote nodes. performance begins to break down. There is reason to believe 
that this performance breakdown can be avoided. First, the use of Ll and L2 caches 
is designed to minimize all memory accesses, including remote ones. if much of the 
software has good temporal locality, then remote memory accesses should not be 
excessive. Second. if the software has good spatial locality, and if Orillal memory is 
in use, then the data needed for an application will reside. on a limited number of 
frequently used pages that can be initially loaded into the memory local to I he run-
ning application. The Sequent designers report that such spatial locality does appear 
in representative applications [LOVE96]. PinaIly, the virtual memory scheme can 
be enhanced by including in the operating system a page migration mechanism that 
will move a virtual memory page to a node that is frequently using it; the Silicon 
Graphics designers report success with this approach [WHIT97]. 

There are disadvantages to the CC-N MA approach as well. Two in particu-
lar are discussed in detail in [PHS981. First, a CC-NUMA does not transparently 
look like an SNIP: software changes will be required to move an operating system 
and applications from an SIV1P to a CC-NUMA system. These include page alloca-
tion, already mentioned, process allocation, and load balancing by the operating sys-
lem, A second concern is that of availability. This is a rather complex issue and 
depends on the exact implementation of the CC-NUMA system: the interested 
reader is referred to IPF1S98]. 
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18.6 VECTOR COMPUTATION ?4, 

Although the performance of mainframe general-purpose computers continues to 
improve relentlessly, there continue to be applications that are beyond the reach of 
the contemporary mainframe. There is a need for computers to solve mathematical 
problems of physical processes. such as occur in disciplines including aerodynamics, 
seismology, meteorology, and atomic, nuclear. and plasma physics. 

Typically, these problems are charaelerized by the need for high precision 
and a program that repetitively performs floating-point arithmetic operations on 
large arrays of numbers. Most of these problems fall into the category known as 
contimfous-field r/n u  In essence, a physical situation can he described by a 
surface or region in three dimensions (e,g., the flow of air adjacent to the surface of 
a rocket). This surface is approximated by a grid of points. A set of differential equa-
tions defines the physical behavior of the surface at each point.. The equations are 
represented as an array of values and coefficients and the solution involves re-
peated arithmetic operations on the arrays of data. 

Supercomputers were developed to handle these types of problems. These 
machines arc typicaliv capable of hundreds of millions of floating-point operations 
per second and cost in the 10 to 15 million dollar range. In contrast to mainframes, 
which are designed for multiprogramming and intensive  the supercomputer is 
optimized for the type of numerical calculation just described. 

The supercomputer has limited use and, because of its price tag, a limited mar-
ket, Comparatively few Of these machines arc operational. mostly at research cen-
ters and some government agencies with scientific. or engineering functions. As with 
other areas of computer technology, there is a constant demand to increase the per-
formance of the supercomputer. Thus. the technology and performance of the 
supercomputer continues to evolve, 

't here is another type of system that has been designed to address the need for 
vector computation, referred to as the array processor. Although a supercomputer 
is optimized for vector computation, it is a general-purpose computer, capable of 
handling scalar processing and general data processing tasks. Array processors do 
nut include scalar processing; they are configured as peripheral devices by both 
mainframe and minicomputer users to run the vectorized portions of programs. 

Approaches to Vector Computation 

The key to the design of a supercomputer or array processor is to recognize that the 
main task is to perform aril hmetic'operations on arrays or vectors of floating-point 
numbers. In a general-purpose computer, this will require iteration through each 
element of the array, For example, consider two vectors (one-dimensional arrays) 
of numbers. A and If. We would like to add these and place the result in C. In the 
example of Figure 18,12, this requires six separate additions. Mow could we speed 
up this computation? The answer is to introduce some form of parallelism. 

Several approaches have been taken to achieving parallelism in vector computa-
tion. We illustrate this with an example. Consider the vector multiplication C = A x B. 
where A, 13, and C are N X N matrices. The formula for each element of C is 
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[ 1.5 3.5 
7.1 39.7 46, -8 

6.9 1.000.003 1{106.903 

100.5 11 111.5 

0 21.1 21.1 

59.7 19- 7 79.4 

A + 8 C 

Figure 18.12 Example of Vector Addition 

where .4, ./.?, and C have elements and C i i , respe.ctively. Figure 18.13a shows 
a FORTRAN program for 1.his eompiii ;ition Ihai can he run on an ordinary scour 
processor. 

One approach to improving performance can be referred to as vector process - 
Lux,  assumes Thal i1 is posM.ble to operate on a one-dimeasionak vector of data. 
Figure 18.1311 is Li FOR . 1•1-Z. AN program with a ricw Corm cif inkdruction Lh1l aliow; ,::, 

DO 100 — I, N 
DO 100J = 1,N 
CO, = 01.0 
DO 100 K = I, N 
C.7 0,.1) — Atl, K} 

100 CONTINUE 

fa) Scalar procLising 

1)0 MO I = 1, N 
Ca„.1)= 0.00 = 1,N) 
DO Et10 = 1, 
CU. 31 = 3) + Ad, K) + 13(K, 3) 13 = I, 1'0 

IOU CON'T [NUE 

(b) Yottor piocessing 

DO 50,1 — 1, N — 

FORK 100 
5t)  CONTINUE 

N 
I of/  DO 200 I = I N 

.11 ).  = 0.0 
DO NO K = I, N 

.1) = .C(1 : 1) I AO :  IQ • BA, .1) 
2010  CONTINUE 

(c)Parki1.14,71 

Figure l8,13 Matrix N1uI plicatioir (C = A [3) 
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vector computation to 17FC pcc ifi c 1 . The notation = 1, M indicale.s ihal. opera. 
tions on a]] indices .1 in the given interval are to he carried out as a single operation. 
How this can be achieved is addressed shortly. 

]'he program in Figure J.& f 3h indicates that a]] the elements of the 11). row are 
to he computed in parallel. Mach clement in the row is a summation, and the sum-
mations (across K) are done serialiy rather than in parallel. Even so, only A2 vec-
1or mullipiications are .required for this algorithm as compared with • 3 scalar 
multiplications for the scalar shgurirhtn. 

Another approach, pundit.' processirex, is illustrated in Figure 18.13c. This 
approach assumes that we have N independent processors that can function in par-
allel. '1 .0 utilin processors effcel ivety, we must somehow parcel ;Jul. the computa-
tion to the wirions processors. '1'wo prinliti e arc LiScd. 'che primitive FORK n 
causes an independent process to be started at location .}2. In the meantime, the oriv-
inal process continues execution al the instruction immediately following the 
FORK. Every exi2eution of a FORK ipawns 4t new process - 'I he JOIN instruction is 
essentially the,  inverse of the. FORK. The statement JOIN N causes N independeni 
procesK:s to he merged into one that continues execution at the instruction ['allow-
ing the JOIN. 'I'he operating system must coordinate this merger, and so the execu-
tion does not continue until ati N processes have reached the JOIN instruction. 

The program in Figure 18.13c is written to mimic the behavior of the vector 
processing program. In the parallel processing program. each column of C com• 
puted by a separate process. Thus, the elements in a given row of C are computed 
in parallel. 

The preceding discussion describes approaches to vector compul alion is logi• 
Cal or irehiteetur'aI tcrms. Let us [urn now lo a consideration Of types of processor 
organization that can be used to implement these approaches. A wide variety of 
organizalions have been and are being pursued. Three main categories stand caul: 

• Pire[inCd ALU 

• Parallel ALUs 
• Parallel processors 

Figure 1 8.14 rat es the first two or inese approaches. We have already dis- 
cussed pipelining in Chapter 12. Here the concept is extended to the operation of 
the ALA'. Because floating-point operations are rather complex, there is oppotw-
nity for decomposing a limning-point opera! n  sUiges %  so [hat diIYercnL slaps 
can operate on differcin sets of data concurrently. 'Ellis is illustrated in Figure 
1 & [5a. Fioating-point addition is broken up into four stages (see Figure 9.22): corn- 

s hi ft, add, and normalize, A vector of numbers is presented sequentialiy to the 
first stage. .2.k!, lIie processing proceeds, four different sets of numbers will he oper-
ated on concur' entl!,.y in the pipeiinc. 

It should be clear that this organization is suitable. for vector processing. To 
see this. consider the insirnoion pipelining described in Chapter 31 The processor 
goes throualt a repetitive cycle of fetching and processing instructions. In the. 
absence of branches, the processor is continuous)}' fetching instructions from 
sequential locations. Consec.pcniiy. Itie. pipeline is kepi full and a savings in time i. 
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Figure 18.141 Approa4:14Cs io Vcctor Computation 

achieved. Similarly, a pipelined ALLJ will save time only if it is fed a stream of data 
from sequential locations. A single, isolated floating-point operation is not weeded 
up by tit pipeline, The speedup k achieved when a vector of operands is prewn W(1 
to the A1,I.J. The control unit cycles the dni a through the ALU until the entire vec-
tor is processed. 

The pipeline operation nin he further enhanced if the vector elerncn Es arc 
available in regisiQrs rather than from main memm'y.'fhiS is in fact suggested by Fig-
ure 18.14a. The elcrnents of each vector operand arc londcd as a block info ci vector 



ISOM 
BONES 
MEM 

'In 

678 CI LAPTFR iSZ1«RALLE1 

C 

PROCESSING 

A N 

Compare Shift Add Normalize 
y  exponent signifitand Fignificands 

•  
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1+!.. C 5 A N 
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5 ,  Y11 C A N 
52 ,  YI: C S A N 

(h) Four parallul ALILls 

Figiirc 18.15 Piplined Processing 

register, which is simply a larE.e bank 4D identical registers. The result is also placed 
in a vector register. Thus, rnost operations involve only the use of registers. and on1 
load and store operations arid the beginning and cnd of a vectoroperation require 
ateCess Ito ramory. 

The mechanism illustrated in Figure [8,15  and be referred to as pipuking 
within an opertaion, That is, we have a single arithmetic operation (e.g,. C — A+ B) 
I  hat is to be applied to vector operands, and vipelining flows mulliple VeeiOr Cle- 
ments to be processed in paratlel. This mechanism can be au. mented with 22e- 

ing rossoprcaions. In this latter ease. 1herc is a sequenceof arithmetic vector 



1$il VECTOR COMPUTATION 679 

operations, and instruction pipelining is used to speed up processing. One approach 
to this, referred to as chaining. is found on the Cray supercomputers. The basic rule 
for chaining is this: A vector operation may start as soon as the first clement of the 
operand vector(s) is available and the functional unit (e.g., add, subtract, multiply, 
divide) is free. Essentially, chaining C41 ust: results -  issuine from one functional unit 
to he fed immediately into another functional unit and so on, If vector registers are 
used, intermediate results do not have to be stored into memory and can be used 
even before the vector operation that created them runs to completion. 

For example, when computing C  x A) - B. where A. B, and Care vec-
tors and s is a scalar, the Cray may execute three instructions at once. Elements 
fetched for a load immediately enter a pipelined multiplier, the products are .sent 
a pipelined adder, and the sums are placed in a vector register as soon as the adder 
completes them: 

1. Vector load A Vector Register (VR1) 
2. Vector load B VR2 
3. Vector multiply s  VR1 VR3 
4. Vector add VR3 + VR2 V1 4. 
5. Vector store VR4 ---> C 

Instructions 2 and 3 can be chained (pipelined) because they involve dilf 2.ereriL mem-
ory locations and registers. Instruction 4 needs the results of instructions 2 and 3, 
but it can he chained with them as well. As soon as the first elements of vector reg-
isters 2 and 3 are available. the operation in instruction 4 can begin. 

Another way to achieve vector processing is by the use of multiple ALIA in a 
single processor, under the control of a single control unit_ In this case. the control 
unit routes data io ALLIs so that they can function in parallel. It is also possible to 
use pipelining on each of the parallel ALUs. This is illustrated in Figure 18. I:rib. The 
example shows a case in which four ALUs operate in parallel. 

As with pipelined organization, a parallel ALU organization is suitable for 
vector processing, The control unit routes vector elements to A I.Us in a round-robin 
fashion until all elements are processed. This type of organization is more complex 
than a single-ALU CP1. 

Finally, vector processing can be achieved by using multiple parallel proces-
sors. In this case, it is necessary to break the task up into multiple processes to be 
executed in parallel. This organization is effective only if the software and hardware 
for effective coordination of parallel processors is available. 

We can expand our taxonomy of Section 18.1 to reflect these new structures, 
as shown in Figure l8.16. Computer organizations can be distinguished by the pres-
ence of one or more control units. Multiple control units imply multiple processors. 
Following our previous discussion. if the multiple processors can function coopera-
tively on a given task, they are termed parallel procemrs. 

The reader should he aware of some unfortunate terminology likely to be 
encountered in the literature. The term veciur proces.vor is often equated with a 
pipelined ALL organization. although a parallel ALL; organization is also designed 
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Single control unit Multiple control unit 

Uniprooessor Pip2lined ALU Parallet ALU Multiprocessor Parallpl proces306 

Figure 18.16 A TaKonorni.... of Computer Organizations 

for vector processing, and, as we have diseusscd,.a parallel proCessor organization 
rmiv ailso be designed for vector processing. Array proceNsing ins sometimes ascii 
to refer to a parallel  although, a4ain, any of the three organizations is optim-
ized for the processing of i.rrays. To make matters worse, array processor usually 
refers tO an auxiliary processor attached to a gencral-purpose processor and and 
to perform veclor computation, An array processor may use. either the pipelined or 
parallel ALU approach, 

At present, the pipelined ALU organisation dominate* the marketplace. 
Pipt:lined systems are less complex than the other two approaches. Their control 
unit and operating system design are well developed to achieve efficient resource 
allocation and Itigh performance, 'l'he remainder of this section is devoted to a more 
detailed examination of this approach, using a specific example, 

IBM 3090 Vector Facility 

A good example of a pipolined ALU organization for vector processing is the Kc-
tor faeility developed for the IBM 370 architecture and implemented on the Net-
end 3090 series [PADE88, .I .UCK87].`Ubis facility is an optional add-on to the basic 
system but is highly integrated with i1. II resembles vector facilities found on super-
computers. such as the Cray famil!,. , . 

The IBM facility makes use of a number of vector registers. Each tegicter is 
actually a hank of : ,:.aar registers, To compute the vector sum C — A — B, the vec-
tors A and B are loaded into two vector regisLers- The data from these registers are 
passed through the ALU as fast as possible, and the results are Mired in a third vec-
tor register, 'Mc compulation overlap. and the loading of the input data into the reg-
islers in a block, results in a significant speeding up over an ordinary ALU operation. 

Organization 
The IBM vector architecture, and si milar pipelined vector ALUs, provides 

increased performance over loops of scalar arithmetic instruct ions in three ways: 

• The fixed and predelermined structure of vector data permits housekeeping 
instructions inside the loop to he rcpInced by faster internal (hardware or 
microcoded) machine operations. 

■ Data-access and arithmetic oper;t0ons on several successive vector elements 
can proceed concurrently by overlapping such operation,., in pipelined dcsiUn 
or by performing multiple-element operations in parallel, 
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Figure 18.17 IBM 3090 with Vector Facility 

■ The use of vector registers for intermediate results avoids additional storage 
reference, 

Figure 18.17 shows the general organization of the vector facility. Although the 
vector facility is seen to be a physically separate add-on to the processor, its Eirchi-
t lt urc!, is an extension of the System/370 architecture and is compatible will, it, '1 -ic 
vector facility is integrated into the Systern131{1. archilccturc in the following ways! 

a Existing SystemI370 instructions are used for all scalar operations. 
• Arithmetic operations on individuai vector elements produce exactly the same 

result ;is do corresponding System/370 scalar instructions, For example., one 
design decision ccaneerricd the dufiniiit101 of the rcsull in a floating-point 
DIVIDE operation. Should the result be exact, as it is for scalar floating-point 
division, or should an approximation be allowed that would permit higher-
speed implementation but could sometimes introduce an error in oar or more 
low-order bit positions? The decision W i S made to uphold complete compati-
bility with the System/37C) rchitecturL. 2Lt the expense of a miner performance 
degradation. 

• Vector instructions are interruptible. and their execution can be resumed from 
the point of int erruption after appropriate action has been iaken, in a manner 
compatible with the System/370 program-interruption scheme. 

• Arithmelic cxceptions are the mme as, or cxtcnsions cif, exceptions. for the 
scalar ri t h m et ic instructions of the System/370, and si milar fix-up routines can 
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be used. To accommodate this, a vector iEtterruption index is employed that 
indicates the location in a vector register that is affected by an exception (e.g., 
ovcrliow, Thus. when execution of the vector instruction resumes, the proper 
place in a vector rcgkter is wxcsbcd• 

• Vector data reside in virlua] storage, with page faults being hanclicd in a stan-
dard manner. 

.1 . his level of - integration provides a number of beuctitii. Existing operating sys-
tems can .support the •eettpr faeitity with minter extcrNions. Hxisting application pro-
grams, language compilers, and other software can he run unchanged. Software that 
could lake advantage of the vector facility can be modified as desired. 

ItegiNters 

A key issue in the design of a vector facility is whether operands are located 
in registers or memory. 'He I BM Organizalion is referred lo ax re, isler -o -register, 
because the vector operands, both input and output, can be staged in vector regis-
ters. This approach is also used on the Cray supercomputer. An alternative 
approach, used on Control Data machines, is to obtain operands directly from mem-
ory. The main disadvantage of the use of vector register. ,, b. dial the programmer or 
compiler must take them into account for good performance. For example, suppose 
that the length of the vector registers is K and the length of the vectors to be 
processed is N  K, In this case, a vector loop must be performed, in which the oper-
ation is performed on 1.< elements al a time and the loop is repealed  timm The 
main advantage of the vector register approach is that the operation is decoupled 
from slower main memory and instead takes place primaril!.. ,  with registers. 

The speedup that can be achieved using regislcrs is clemtnistralci in Figure 
MD.; IPADE881, The FORTRAN routine multiplies  1 VC.C. Or A by vector B to pro-
duce vector C, where each vector has a real part .( AR, BR. CR) and an imaginary 
part (AI, 131, CI). The 3(190 can perform one main-storage access per processor, or 
clock, cycle (either read or write), has register that can sus1ain two acceNses fot 
reading and one for writing per cycle, and produeus one re ell per cycle in its arith-
metic unit. Let us assume the use of instructions that can specify two source 
operands and a result: Part a of the figure shows that, with memory-to-memory 
instructions, each iteration of the compirlotion requires a total of 18 cycles. With a 
pure register-to-register architecture (part b). this time is reduced to 12 cycles. Of 
course, with togisler-lo-register operation, the vector quantities must he loaded into 
the vector registers prior to comp Llt ation ]nd stored in memory rtcrviird. rt,r large 
vectors, this fixed penalty is relativel!, . ,  small. Figure 18,18c shows that the ability to 
specify both storage and register operands in one instruction further reduces the 
ti me to 10 cycles per iteration. This latter type of instruction is included in the vec-
tor architecture? 

'For die 370390 arLII L OMA-C., the only three-opernnd inSLTLI.13LiOrLS rcizisler and stcir i tor taucocmr. ,  R5) 
specify iwo 45prrands in registers :Ind one in memory. pan a of the txrimpte, we aNsuine ihe cx:51etice 
of three-144:1am] inaructions in which kilt operands are in main memory. This it done for puiposes of 
compari:46n rind, in fact. such an itutruccii. :511 format could have been clioseu for the vector archticcturc. 
K r2orrspoulicl iimtructions, discussed subsucluen ly, airford u furtEsex reductiDri. 
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FORTRAN ROI.JTINEz 

Do [00 J 1,50 
CR(.1) = ARCO A1(.1 j 4  B.1(.1) 

100 C:10i = ARO)* BRIJ i Afib*BRtJ I  

Figure MIS Alternative Programs for Vector 

Figure 18. t9 iiiustrates the registers that are part of the IBM .;()90 vector facil-
ity. There arc sixteen 32-bit vector registers. The vector registers can ako he cou-
pled to form eighi 64-bit reets -Jr registers. Any register clement can hold an inivor 

or Ilu1iting-point value. Thus, the vector registers may be used for 32-bit and 64-bit 
integer values, and 32-bit and (54-bit floating -point values. 

The architecture specifies ihat each register contains from S to 512 scalar cie-

MetIA- The choice of actual length involves a design trade-off. The time to do a vec-
tor operation consists essentially of the overhead for pipeline startup and register 
filling plus one cycle per vector ulernual, Thus, the use of a large number of register 
elements reduces the relative start tii time Cor a computation. However, this efficiency 
must he balanced aaainst the added time required for saving and restoring vector reg- 
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inters on a proeuss swiwti and the practical cost space limits. Thcse considerations 
led to the use of J.28 elements per register in the curl -cp.!, 3090 implementation. 

Three additional registers arc needed by the vector faeility. The. vector-mask 
register contains mask bits that may he used to select which eletricrits in the vector 
registers are to he processed for a particular operation. The Arrector-status register 
conlains control fields, sueh as the vector count, that determine how many elements 
in the vector registers are to be processed, The vector-activity counl keeps track of 
the time spent executing vector instructions, 

Compound lnstructi m 

As was discussed previously, instruction execul ion can be overlapped usiq 

chaining to improve performance. The designers of the vector facility chose 
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not to include this capubny for several reasons. The Systeni1370 architecture would 
have to be extended to handle complex interruptions (including their effect on vir-
tual memory management). and corresponding changes would he needed in 
software. A more basic ismie was the cost of including the additional controls and 
register access paths in the ,L•ector facility for generalized chaining. 

Inslead, three operations are provided that combine inter one instruction (one 
opcode) the most common sequences in vector computation, namely multiplica-
tion followed by addition, subtraction, or summation. The storage-to-register 
MULTIPLY-AND-ADD instruction. for example., fetches a vector from stor-
age. muttiplies it by a vector from a'register. and adds the produci Lo a third vector 
in a register. By use of the compound instructions MULTIPLY-AND-ADD and 
MULTIPLY-AND-SUBTRACT in the example of Figure 18.18, the total time for 
the iteration is reduced from 10 to 8 cycles. 

Unlike chaining, compound instruelions do not require. the use of additional 
registers for temporary storage of .  intermediate results, and they require one less 
register access. For example, consider the following chain: 

A. —5. '„FR. 

\TRi - VR2 

In this case, two stores to the vector register VR1 are required, In the. IBM archi-
tecture there is a slorage-to-register ADD instruct ion. With this instruetion. only the 
sum is placed iri VR1. 'The compound instruction ;i1 ,..0  Ihu 'iced LO reflect in 
the machine-state description the concurrent execution of a number of instnictions, 
which simplifies status saving and restoring by the operating system and i ihe han-
dling of interrupts. 

The Instruction Set 

Table EK.Lt summarii.es the aril hmetic and logical operations that are defined 
for the vector architecture. In addition, there are memory-to-register load and 
register-to-memory store instructions. Note that many of the instructions use a 
three-operand formal. Also, many instructions have a number of variants, depend-
ing on the location of Lhc operands. A source operand may be a vector register (V). 
storage (S). or a scalar register (Q). The target is always a vector register, except for 
comparison, ihe result of which goes MI° the ,...ector-mask register_ With all Lhesc 
variants, the total number of ()Nodes (distinct instructions) is 171. This rather large 
number. however. is not as expensive to implement as might be imagined. Once the 
machine provides the arithmetic units and the data paths to feed operands from 
storage_ scalar rvgisl UN, and wool-  regis ters tU the vector pipelines, the major hard-
ware cost has been incurred. The architecture eau. with little difference in cost. pro-
vide a rich set of variants on the use of those registers and pipelines. 

Most of the instructions in Table l&4 are self-explanatory. The two summa-
tion instructions warrant further exphiMilion. The Liecuniulate operation adds 
together the elements of a single vector (ACCUMULATE) or the elements of the 
product of two vectors (MULTIPLY-AND-ACCUMULATE). These instructions 
present an interesting design problem. We would like to perform this operation as 
rapidly as possible. taking full advantage of the ALU pipeline. The difficulty is that 
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Data Types 

Instruct i onS 

Floating Pcsiu1. 

Binary or Operation Long Short Logical Operand Lociino 

A (Id FL FS B1 V + V —5 v V + R —2 V Q , V V Q - S •V 
S LibtTHC I H. FS 1711 V - V v V • S —s V 0 V • V 0 - S ,V 
Isetatipiy Ft FS Fil V ...< V eV v x v . V 0 x v >V 0 x 5 —s V 
Divide FL FS V ; V .V 0 1 V —5 V 01 S —5. V 
(...oinpave FL FS DT V • V > V V • S. —.5. V 0 • V —5. V 0 • S —). V 
Muliiply arid Add FL FR V+VxS —2V V ! OxV-2.V V I QxS-0/ 
Mulnply and Sub[ruct FL FS V - VxS —> V V QxV-2'V V QxS•-sV 
hvfuliirly and AccimilihiLe Pl. FS — P 4- • V —> V F . • S • V 
Coi El pEC muni FT. FS Y-11 .V —2 V 
Positive Abscrlutc FL FS RI i V 5 V 
Nr.gatve likbsolu(e FL FS 131 -IVI > V 
Maximum FL ES 0 - V 0 
Maximum Absoluie FL FR Q - V —2 0 
Minimum 14. FS - 0 - V ->0 
Swami  RIAcal C O - V —> V 
Shift RiOL 1. ..ogical 1.0 - V —2 V 
And LO V & V —2 V V & 5' ) V 0 et V -.> V 0 & S V 

tA..Z. DO v 1 v -... V v I S --5 V 0 i V—> V OIS —> V 

1-. 1; C.Itr51Ve-OR LO v ED V >V V (X;  5 —2 V 0 '‘y‘ils,l —2 v Q .3-
.) S —, V 

ExpEraufwn: Petit Types 
FL Lnrip, ,q puio I 
1•S  km , k puio I 

Ri 112.  171 MAT 

LO 1.(.9.1C;b1 

Optracid1.1.1ilirions 
✓ V:L:11u rt.pster 

▪ SL ,  lar OCCICT21 Or fib i I r ,,Lut registor) 
P w111:,<_ in _ .• 
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[11C Sum ;if two numl-re.:TN pul indo Ih4 pipeline is obi wail ahlc until se sera[ cycles 
12iler. Thus. the third element in the vector cannot he added to the sum of the first 
t wo elements until those two elements have gone through the entire pipeline. To 
overcome this problem, the elements of the vector are added in such a way as to 
produce four partial sums. In partictilm. elenicribt 0. 4, 8, 12.... , 124 are added in 
that order to produce partial sum () elements  5, 9, 13   L25 to partial sum 1: 
elements 2. 6, 111, 14 ........  126 to partial sum 2; and eterner& 3, 7, 1 I, 13 ........  127 to 
pm- LiA I sum 4. Fach cal'  partial sums can proceed through the pipeline at top 
speed. because the delay in the pipeline is roughl ,.t.

,  four cycles. A separate vector 
register is used to hold the partial sums. When all elements of the original vector 
have 1-34.:T: n proeu:ssed, the lour partial sums arc added togelher to produce the final 
result. The performance of .  this second pHs': is not critical. because only four vec-
tor elements are involved. 

18.7 RECOMMENDED READING erekrere- e..r_Feett. 
..r.".„ 

ICATAN-I sury.:.ys the orinicipls of mulliproeessors and examines SPARC• based S7' . ,r1Ps in 
detail. Shi,IPs Are. MS() covered some detail 01 [STON911 and I HWAN93]. 

[ M1LELIttl is an overview of cache coherence algorithms and techniques for multi-
processors, with an emphasis on performance. issues. Another survey of the issues relating to 
cube coherence in multiprocessors is 11-11,193 .1. [TOMA931 contains rcprints of many of the 
key papers on the subject. 

[PFIS98] ki.ksential reading for anyone interested in chimer": 1114 .: 1) 0k 00 the hard- 
ware and soliwairc desip] issues and conirasts clusiors 4ti I Ia SM ;old Elie boot also 
eohtains a solid technical description of SNIP and N I !VI A 1,1 W-,1R11 1 ,N11...! , ..  A ihorough treat- 
ment of cliasers can' he fouitd in 1131.2(Y99A/ Ices technical 

or entsiers. with gated commentary cm .....niicatN ficJilltnefehl prOcilletS. 
GOOLI discussions of vector computation can he found in I STONC31 

BUTY99it IlLtyva. nigh PerPralancT (Mater ArchitecLarvs and Sysiems. 
Upper Sadc,11.L. 1 3rentie2: Hall 1999. 

ittriY99h Buyyti, R. High Pc.t.pm.n.ancci. C uvret Gokiipuriri.s.... Programming and Appliev-
r io ns. Upper Saddle River, NJ: Prentice 999. 

CATA94 Cala nw..aro, Mu friprocessor System A rchitnenws. unutin View, CA: Sun- 
soft Press, 1994, 

11WA.N193 1.1wting, K. Advanced Computer Art . 17/76.c.refre ., Ne..Av York: MeGiraw-Hill, 1993. 
J. M193 i,ilja, I). "Cache (..tihere.nce. in LariN -Seale. Shat red - Memory Multipreeessors: 

Issues and Comparisons," 4e.41 (.'on paireg ,ti, rmy.s, September t 99'3. 
M11-1-E00 Mileukovie r  A, - Aellieving High PO'ocmanee in Bus-Based Shared-Mernory 

Multiprocessors.' irEr .J uly--September 2000., 
PFIS914 Pfister, G. In Seafeli of Ousters. Upper Saddle River, NJ: Prentice Hall, 1.998. 
STON93 Stone :  H. If igh- Per fonnance Completer Arc hifecaere. Reading, MA: Addison- 

Wesley. 
T1)NIA9 .3 Tonutsevie, M... and Miluiinovic, V. The Cache Coherence Problem irE ShOrd'i 

MetIWY 
,
112.4111PrOCZTSOn: Hardware. Solutions. Leas Alairsit‘N. WEE Computer 

St kits}' Pe ess, E 993. 
Weptant. P. Cleturts for High Apedlar,fay. Upper Saddle River, Prentice 

Hall :  2001.. 

and [HWAN .:}31. 
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18,8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 

Key Terms 

Review Q uestions 
18.1  Lis( rlrltl briefly define three types of computer system organization. 
18.2 What are the chief characteristics of an SMP? 
11L3 What are game of the potential advantages of an SMP compared with a uniprocesser7 
18.4 What are some of the k ey OS design iisties for an sm 
18.5 lvVhwt i4 the difference between software and hardwire cache 4 . 0111.:R!Ill Nc-

P1l • lik057 

18.6 What the Meaning (31 each of ale four states in the M !Will trt:i I? 
18.7 What are some of the benefits of clustering! 
181 Whal. is the difference between lailover and failbackl 
18. {1  What are the differences among U.MA. NUMA. and CC-NUMA? 

Problems 
181 Let a he the percentage of program code that can be executed simultaneously by G 

processors in a computer system. Assume that the remaining code must he executed 
sequentially by  processor. Each processor has an execution rate of MIPS. 
a. Derive an expression for the effective MIPS rate when using the system for exclu-

sive execution of Ibis 11441)41;1in, in terms of o. re, and x. 
b. If x — l(t and x — 4 i11 value of a that will yield a system per- 

formance of 40 MIPS. 
18,2 A mulliprocessor with eight processors has 20 attached tape drives. Them are A Earge 

number of jobs submitted to the system that each require a inasim um of lour tape 
drives to complete execution. Assume that each job stasis running with only three 
tape drives for a Long period before requiring the fourth tape drive for a short period 
toward the end of it (Pwation. Also assume an endless supply of such jobs. 
a. Assume the scheduler in the OS will not start a job unless there are four tape 

drives available. When as jo1w is started, four drives are assigned immediately and 
are not released until die job ftnishes. What is the maximum number of john that 
can he in progress at once? 'What arc the waximuin and minimum number - of tape 
drives that may be left idle as a result of 111k policy . ? 

b. Suggest an alternative policy to improve Ea lie drive milintion and at the same time 
avoid system deadlock. What is the ma kunum number of jobs that can be in 
progress at once? What are the bounds 4)11 the number of tape drives.? 

18-3 Can you toresee any problem with the write-once cache approach on bus-based mul-
tiprocessors'i III so. 'LLiggc.gt a soimion, 

18.4 Consider a situation in which two processor5 in an SMP configuration. over time, 
require access to the same line of data from main inerrioq. Both processors have a 
cache and use the 'IES] .  protocol. Initially, both cachoti have an invalid copy oldie line. 
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Main 
memory 

Figure 18.20 MEM 'Example: Processor E Rads Line x 

figure 18.20 depicts the consequence of a real of line x by Processor Pl. If this is the 
start or a sentience of aecessei. draw the. qubsequeni figures for the following sequence; 

1. P2 reads x. 

2. PI writes to x (for clarity, label the line in F1's cache x'). 

3. PI writes to x (label the line in Pl cache 

4. P2 reads x. 
18.5 Figure 18.2 I shows the state diagrams of two possible cache cohercnce protocols. 

Deduce and explain each prolocol, and compare each to MESA. 

18.6 Consider an SNIP with both Li and L2 caches using the MESI protocol. A4 42A.P .1;:iiiit.hl 

i n Section 183, one of flour states is associated with each line in the L2 cache- Are all 
four stales also needed for each line in Ihc. LI cache? ff sea, why? If  explain which 
state or states can he elitninalcd. 

18.7 table 18.1 show c. ih1 ire lotruanee of a three-level cache arrangement for the IBM 
The purpose of his problem is to determine whether the inclusion of the third 

level of cache seems woriliwhile. Determine the access penalty (average number of 
PLT cycles) for a system with only an LI cache, and normalize that value to 1,0. 'then 
deiermi I1Q the normalised access penally when both an LI and L2 cache are used. and 
the access penalty when all three caches are used. Note the amount of improvement 
in each case and state your opinion on the value of the L3 cache. 

18.8 The following code segment needs to he executed 64 tiIne.s for ilic.1.1.....valtimion Of the 
vector arithmetic expression; D(I) = A(I) -F B(I) x 1.:(1) for 0 I 63. 

RI :  Brn .(= + I)/ 
:..ad R2, 

-p.ry;.L.jr„.1.,. 
Crn 
P1 P2 . 1 X 

43.  4- I)/ 

Inad , /23 Eeraory I :I 

IRS. iR3 (R3I F :9.11/ 
1,-..ad DI, R3 /mencry (0 (R3)/ 



R(i) 

W(i) 7_.? 0 Zij) 

Rti 1 W t i) 
Ry) 

W(rj= Write to line by processor o" 
R(i) = Read line by processor i 
Zia = Displace line by cache i 
14I1,0= Write Lo line by processor] (j1‘ 
R(/) = Read line by processor j 
Zij) = Displace line by cache j Co 

Note: State diagrams are fur a 
given line in cache i 

Figure 18.21 Two Cache Coherence Protocols 
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where R. R2, and R3 arc processor registers, .;ind a, u, -y, (.1 arc the starting main 
memory addresses of arrays B(I), C.J). A(I), and D(I), respectively. Assume four 
clock cycles for each Load or Store. two cycles for the Add. and eight cycles for the 
Multiplier on either a uniprocessor or a single processor in an SIMD machine. 
▪ Calculaid lcilayl n umber or processort:yeles needed to execute this code se ment 

repel-0.21.1[y r:14 li mes (5 11 SISD uaiprocessor computer sequentially, ignoring 
other time delays. 

b. Consider the use of an SIMD computer with 64 processing elements to execute the 
vector OperaLions in six synchronized vector instructions over 64.cornponent 
tor data and both driven by the same-speed dock. Calculate the total execution 
time on the SIMD machine. ignoring instruction broadcast and other delays. 

▪ Wliat  11ic speedup gain of the Sl corn:puler over the SISD eoropuler? 
18.9 Produce a vectorized version of the follawing program: 

20 _ 1 
1 , 1: 3 

D3 10 J - 1, A 
At:t = MI; + 

7: 3 C.3:9'17/.17.:E 
= FAT.: + Al.T) 

2 3 ;-...3:..7.11.17.:E. 

18.10 AJ1 application program is executed an a nine-computer cluster. A benchmark pro. 
grant took time T on this cluster. Further, it was found that 25% of T was time in 
which the application was running simultaneously cm all nine computers. The remain- 
ing time. the application had to run an a single computer. 
▪ Calculate the efleutiv4.: speedup under the aforementioned condition as compared 

with exec:ming the program on a single computer. Also calculate u. the percentage 
of code i bat  liiiI A1.1..tlizod (programmed or copripiled so .a410 use ilk clus-
ter mode) in the precedi rig program. 

b. Suppose that we are able to effectively use 18 computers rather than computers 
on the parallelizcd portion of the code. Calculate the effective speedup that is 
achieved. 

18.11 The following FC1 E TR AN program is to he executed on a cimputer, ark] a parallel 
versIou is to he ONL•Ci.11124.1 011 cluster. 

: DO LC I = I, 132C 
: I = 

L3 no 2C. .2 1, 
L4 20 SUM ;1} - 1:  : .1 _ 
L :  10 commun 

Suppose lines 2 and 4- each take two machine cycle times, including all processor and 
rneroury-aecess activities. Ignore the overhead caused by the software loop control 
statements (lines I, 3 :  5) and all other system overhead and resource conflicts, 
a. What is the total execution ti me (in .111aelli n cycle times) of the program on a sin-

gle computer? 
b. Divide the 1-loop iterations among the 32 computers as follows: Computer I exe-

cutes the first 32 iterations (I I to 32), processor 2 executes the next 32 iterations. 
and so on. What are the execution time and speedup factor compared with part 
(all (Note that the computational workload, dictated by the J-loop, is unbalanced 
aiming the computers.) 

c. Explain how to modify the parallelizing to facilitate a balanced parallel execution 
of all the computational workload Mier 32 computers. By a balanced load is meant 
an equal number of additions assigned Lo each computer with respect to both loops. 

EL What is the minimum execution time resuicinig from the parallel execution an 32 
computers? What is the resulting speedup over a single computer? 

.7) x :..r) 
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T he operation of the digital computer is based on the stora ge and processing 
of binary data. Throughout this book, we have assumed the existence of 
storage elements that can exist in one of two stable states and of circuits that 

can operate on binary data under the control of control signals to implement the 
various computer functions. In this appendix, we suggest how these storage ele-
ments and circuits can be implemented in digital logic, specifically with combina-
tional and sequential circuits. The appendix begins with a brief review of Boolean 
algebra, which is the mathematical foundation of digital logic. Net  the concept of 
a gate is introduced. Finally, combinational and sequential circuits, which are con-
structed frinn gales, are described_ 

A.1 BOOLEAN ALGEBRA 

The digital circuitry in digital computers and other digital systems is designed. and 
its behavior is analyzed, with the use of a mathematical discipline known as Boolean 
algebra. The name is in honor of an English mathematician George Book, who pro-
posed the basic principles of this algebra in 1854 in his treatise. An Investigation of 
the Laws of Thought rvci Which to Found the Mathematical Theories of Logic and 
Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical Engi-
neering Department at Mi  suggested that Boolean algebra could he used to 
solve problems in relav-switching circuit design [SHAN38]. Shannon's techniques 
were subsequently used in the analySis and design of electronic digital circuits. 
Boolean algebra turns out to he a convenient tool in two areas: 

• Analysis: It is an economical way of describing the function of digital circuitry. 
• Design; Given a desired function, Boolean algebra can be applied to develop 

a simplified implementation of that function. 

As with any algebra, Boolean algebra makes use of variables and operations. 
In this case, the variables and operations are logical variables and operations. Thus, 
a variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical oper-
ations are AND. OR, and WYE which are symbolically represented by dot, plus 
sign, and overbar: 

A AND B — A • B 
AORB=At li  

NOT A = A 

The operation AND yields true (binary value 1) if and only if both of its operands 
are true, The operation OR yields true if either or both of its operands are true. 
The. unary operation NOT inverts the value of its operand_ For example, consider the 
equation 

— A -I- (ri • C) 

D is equal to 1 it' A is 1 or if both B = 1) and C — 1. Otherwise D is equal to 0_ 
Several points concerning the notation are needed. In the absence of paren-

theses, the AND operation takes precedence over the OR operation. Also, when no 
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Table A.1 BooIvan Opt raters 

P Q NOT P p AND o i oft Q P XOR Q P NAM) 41 P NOR Q 

Li 0 1 0 0 0 1 L 
Li 1 1 0 1 I 1 0 

I 0 0 0 1 1 1 0 

1 1 0 1 1 0 0 0 

ambiguily will occur, i he AND operation is represented by simple concatenation 
instead of .  the dot operator. Thus, 

A -F R • C = A -F (B — A I- BC 

all mean 'Take the AND of l and C: then take the OR of the result and 
fable A.1 defines the basic logical operations in a form known as a !mat ?able. 

which simply Lists the value of an operation for every possible combination of vat-
ties of operands. The table also lisls three othcr useful operators: XOR, NAND, and 
NOR, 'The exclusive-or (X0R) of two logical operands is 1 if and only if cmictEv one 
of the operands has the value 1. The NAND function is tilt:. complement (NOT) of 
the AND function, and the NOR is the complement of OR: 

A NAND B = NOT(A AND B) = AB 

A NOR B — NOT(A OR B) = A+ B 

/V; we wh ill see, these three new operations can be useful in impiementing certain 
digital circuits. 

Table A ..2 summarizes key identifies Dr Boolean algebra. The equations have 
been arranged in two columns to show the complementary. or dual, nature of the 
AND and OR operitions. Thieve are two classes of idenlities: basic rules (or pi mu-
kiwi. ), which are stated without proof, and other identifies that can be derived from 

Table A.,2 Basjc Identititlsof Boolean Aber bra 

Bahie Postulates 

A .13 = 13 • A A • B B I A (.:41011nutatilio tag s 

A . (B + C) = B) + (A A — (B•r.) = (A I 13) • (A + Distributi',0 laws 
l•A=A + A = A Ide.n(itle eterneuts 
A • A- 0 A— A= 1 Invursu elements 

Other Identities 

  

   

0 • A = 0 
A • A = A 
A • (B • C) — (A • B) • C 
A•B — A 1 B 

- A —  
A — = A 
A — (B C) (A I B) C Associative taws 
A — B = A• Fi DeivimTan's theorem 
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the basic postulates. The postulates define the way in which Boolean expressions 
are interpreted, One of the two distributive laws is worth noting because it differs 
from what we would find in ordinary algebra: 

A - (B • C.)  (A + B) • (A + C) 

't he two bottommost expressions are referred to as DcMorgan's theorem. We can 
restate them as follows: 

A NOR B = A AND B 

A NAND B = A OR B 

The reader is invited to verify the expressions in Table A.2 by substituting actual 
values (Is and Os) for the variables A. B, and C. 

A.2 GATES 

'lite fundamental building block of all digital logic circuits is the gate. Logical runt: 
lions are implemented by the interconnection of gates. 

A gate is an electronic circuit that produces an output signal that is a simple 
Boolean operation on its input signals. The basic gates used in digital logic are 
AND, OR, NOT, NAND, and NOR. Figure A.I depicts these five gates, Each gate 
is defined in three ways: graphic symbol, algebraic notation, and truth table. The 
symbology used here and throughout the appendix is the IEEE standard, IEEE Std 
91. Note that the inversion (NOT) operation is indicated by a circle. 

Each gate has one or two inputs and one output. When the values at the input 
are changed, the correct output signal appears almost instantaneously, delayed only 
by the propagation time of signals through the gate (known as the gate ticiay)..l .he 
significance of this is discussed in Section A.3. 

In addition to the gates depicted in Figure A.1, gates with three, four, or more 
inputs can be used. Thus, X +  + Z can be implemented with a single OR Eate 
with three inputs. 

Typically, not all gate types are used in implementation. Design and fabrica-
tion are simpler if only one or two types of gates are used. 'thus, it is important to 
identify func:imwtiv complete sets of gates. ' Ms means that any Boolean function 
can be implemented using only the gates in the set. The following are functionally 
complete sets: 

• AND, OR, NOT 
• AND, NOT 
• OR. NOT 
• NAND 
• NOR 

It should be clear that AND, OR, and NOT gates constitute a functionally 
complete set, because they represent the three operations of Boolean algebra. For 
the AND and NOT gates to form a functionally complete set, there must be a wri!,, 
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Name Graphic Syrnbr.) 

AlgebraLc 
Function Truth Table 

AND 

( )1Z 

F = A *1.1. 
or 

AB F 

------\\ 

I:5  

0 0 0 
D L 0 
1 0 0 
1 1 1 

F= A + R 

A 

-
  -

 

C
. C

D
 

---\\ 
I :1—F' 

3 --/ 

NOT A 

F =7 
lir 

F A .  

N..... Ni;. I ' A ki ■ 

A B F -.. 

...\\ 

Al 
0— F 

— _--) 

0 0 
0 1 
:I 0 
] 1 

1 
1 
1 
0 

N-OR 

\- — _,... 
A—k, 

I 

I 

F – tA .F 13) 

A 8 
.:1 11 
il I 
1 0 
11 

F 
1 
I) 
0 
0 B 

Figure A.1 Basic 1..o& Ciati2s 

to synthesize the OR operation from [he AND and NOT p gan&1 6 can be 
done by applying DoMorgan's theorem: 

A —  A 

A OR B = Nur(NOT A) AND .  (NOT B)) 

Sintil;D-Iv,11-te. OR and NOT operations lei  nctionally complete because they can 
be used to syntheMze. thc A N I) operation. 

Figure A.2 shows how the AND, OR. and NOT functions on he implemented 
solely  m NAND gates, and Figure A.3 shows the same thin2 for NOR gates. For 
this reiMon,  ciretrils can be. and frequently are. implemented solely with 
NAND gates or soleiy with NOR gates, 

With gates. we have reached the most primitive level of computer science and 
engineering. An examination of ti-ic transisior combinaliorts med Lo construct gates 
departs from that realm and enters there6molelectrical engineering. For our 
purpows, however. we are content to describe how gates can be used as building 
N ocks [0 implement the essential logicalcircuits ot a digitai computer. 
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Figure A.3 The Ilse of NOR Gates 
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Figure A.2 The 1.4.c. of NAND Goau.s 
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COMBINATIgNAL„c1BWIS, 05,e,4"0- ferr'r  

 

A combinational circuit is an interconnected set of gates whose output at any time 
is a fund:ion only of the input at that time. As with a single gate, the appearance of 
the input is followed almost immediately by the appearance of the output, with only 
gate delays. 

In general terms, a combinational circuit consists of n binary inputs and 
binary outputs. As with a gate. a combinational circuit can be defined in 1M -cc ways: 

■ Truth table: For each of the 2' possible eon il)i nations of input signals, the 
binary value of.each of the. m oinpul signaEs is listed. 

• Graphical symbols:The interconnected layoui of gates is depicted, 

• Bonleuri equaltinns: ouipui signal is expressed as a Boolean function of 
its input signals. 

Implementation of Boolean Function; 

Any Boolean function can be implemented in e]eetronie form as a network of 
gates. For any given function. there are a number of alternative realizations. 
Consider the Boolean funel ion represenied by the truth table in Table A.3. We 
can cxptcss this function by simply itemising the combinations of values of A, B. 
and C that cause F to be 1: 

ABC+ ABC — ABC (A-I) 

There are three combinations of inpul values That cause F to be 1, and if any 
one of these combinations occurs, the result is 1. This form of expression, for sell-
evidQni reasons, is known as the S1OR2 of preVillen (SOP) form. Figure. A.4 shows a 
straightforward implementation with AND. OR. and NOT gaits-  

Another form can also be derived from the 1ri.all The SOP form 
expresses that the output is 1 if any of ihe input combinations that produce ] is true., 

'rabic A.3 Boolean Function or Three Variables 

A. 

o 0 0 o 
U o 1 0 
o 1 o 1 
o 1 1 1 
t 0 1) 0 
1 0 I [I 
I 1 0 1 
1 1 1 {) 
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C 

Figure A.4 Sain-nr-PrOLLUCLS limpleincinatiun of rabic A.3 

We can also say that the output is l if none of the input combinations that produce 
0 is true. Thus 

F = (ABC) • (A1-3C) • (ABC) • (ABC) • (ABC) 

This can be rewritten using a generalization of DeMorpn's theorem: 

(X •T• Z) = X -F y I z 

F = (A - B + C) • (A +  + C) - (A r B + C) • (A - B + C) • (A + B - C) 
(A,2) 

= (A B C) • (A + B + C) • (A + + C) - (A - B C) • (A + B 

This is in th.c. product of sums (POS) form, which is iliustratEA in Figure A.5, For 
clarity, NOT gates are not shown. Rather. it is assumed that each input signal and 
its complement are available.  si mplifies the logic diagram and makes the inputs 
to the gates more readily apparent. 

Thus, a Boolean function Cart be realized in either SOP or POS .  form, At this 
point, it would seem that the choice would depend on %teaselr the truth nlble con-
[Bins. more Is or Os for the output function: The SOP ha ,; one term for each I, and 
the POS has uric [erne for each 0. However, there are other cOnNidcn) [ions: 

* It is generally possible to derive a simpler Boolean expression front the truth 
table than either SOP or POS. 
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s It ma!•, ,  be preferable to implemen1 the Function with singie mate type (NAND 
or NOR). 

The significance of the first point is that, with a simpier .1 -3(..iolean expression, 
fewer gates will be needed to implement the funei ion. Three methods that can be 
used to Liehievc-.simpli fic2ii ioa are as follows: 

• Algebraic; simplificalion 
• Kan-Laugh maps 
• Quine—tvfcKluskey tables 

AlgebraicSimplification 

Algebriic .sirnplirimlin involves the application of the identities of Table A.2 
to reduce the Boolean expression to one with fewer elements.. For example :  eon-
skier again Equation (Al).,  Some thought shouid convince the reader that an equiv-
alcut cxpressdon 

= AB. -h HC (A.3) 

Or, even simpler, 

F — B(A 

A  

A 
B -1  

A 
B 

Figure A.5 Pmduci-M-Surns Impleinentation of Milk. A.3 
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rigurc A.6 Siitsplirie.!ij linplernentatinn of Table A.3 

This expression can be implemented as shown in Figure A,6, Thu simplifi-
cation of Equation (A.1) was done essentially by ob.servation. For more complex 
expression, some more syslemalic approach is needed, 

Karnaugh 

For purposes of simplification, the karnaugh map is a eonvenimt way of rep- 
reseni ing a Boolean rum:lion of ;I small number (Lip to four to six) of variables. The 

of 2 .9  stin.nres :  representing the possible combinations of values oaf n 
binary variables. Figure A,7a shows the map of four squares for a fund ion of ['o/c) 
variables. It is convenient for later purposes to List the combinw ions in the order 
00,01,11,10. Because the squares. corresponding to the combinations are to be used 

 

BC 

00 01 I I 10 

   

1 

  

      

        

F + TNI3C ABC' 

CD C 
(10 01 I I 10 
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AB 

           

11 

          

 

10 

 

1 

         

             

              

F=TIJTICD+Afit.D +ABZ".15 
D 

:,i) Simplitied labeling of map 

Figure A.7 The Usc. cal Karnaugh Maps to Represent liooleart Functions 
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for recording miormation, the combinations are customarily written abuvc the 
squares. In the case of three variables, the representation is an arr ffigemcul of edit 
sq rC (figure A,7h), with th e values rot arse of the variables to the left and fur the 
other two variab]es aloe the squares. For tour variables, 16 squares are needed, 
with the arrangement indicated in Figure A.7c, 

rue map clan he used tt) repi-  senl any HooIean tunctioa iai the following way. 
Each square eos'respcaiqds to a unique product in the suns-oil-products Foria. with L 1 
value corresponding to the variable and at) vt1lue correspunc]ing lu the; NO`I of that 
varutplc-'['hus, l hc: p, cuiuct A13 co rresponds Lo the fourth square in figure A.7a. For 
each such product in the i'unction. I is placed in the corresponding square, Thus, for 
the two-variable example, the. map corresponds to AB 4 AB. Given the truth [able 
of a Boolean function, it is an Easy 1natter to Construct the map' h r each co rn h irl a 
tiun f v:il ue:s of rarabies that produce rwoilt trl' 1 its the truth Lah]c. Id] in the eOr-
responding square of the map with 1, Figure. A.7b shows the result for the truth 
table of Tah[e Al To convert from a Boolean expression lO a map, it is first nCC-
C:axbo t 1puL the xprc n in  whaL is rckrred It a uaWwmcaI tort; Each tcrns 
in t]ie expression rrtusL contain each variable. So, for example, if we ]lave nehiuLtion 
( A3), we must first expand it into the lull [01111 of Equation A. I } and Ihen eonvi:rl 

this to a map, 
[}rc l:ffbeuag used in Figure: A-7d cmphxsi/es the relationship between vari-

ables and the rows and colurntis of the. map. Here the two rows embraced by the 
symbol A are those in which the v{triable A has the value [; the rows not mhraecd 
by the symbol A are those in which A is l); si milarly I'or H, C. and D- 

Once the map of function is crested, we Girl often write a Simple alghraic 
expression for it by noting the arrangement of the is on the map-'l he principle is as 
follows, Any Lwcr syu;lres than L are adjncea I. dil'fgr in or]]} time of the variables, It two 
2d pace rut squares both have an cniry of one. then the corresponding product terms 
differ in only one variable. In such a case, the two terms can he nlerged by C Iirni-
nating t]iat variable. For_exa_mp]e, in Figure A,f+a, the two iid .jxcnt so^u.ires cc^r'rL-
sprnd Lu the two terms ABCL) and Af3C'ii'I hus, the functdrrr expressed is 

AF3CI)—.Al3Cf)—.A BD 

This process can be extended in several ways. First, the concept of adj acency 
can be extended to include wrapping around the edge of the map- Thin, the top 
SgLU'IFC LI I a 00]umrr is :idj aecnt to the bottom square, and the leftmost square of 
a row is adjacent to the rightorost square. These conditions are illustrated in Figures 
A,tlh and c. Second, we can group not just 2 squares but " adjacent sgmares 1,1 h 1t is, 
4, . etc,}. The next three examples in Figure A. show groupings of 4 sq ures- Note 
thaL in this ca se, [WO of the variahkcs can he ell ninated, The last three examples 
show groupings of t3 squares, which allow three variables to be eliminated. 

We c in summarize the rules for simp]iIicaliorr as follows= 

1. Among the marked sgLrares (squares with a 111, find those that belong lu a 
unique largest block of either I. 2, 4, or S and circle those hlcacks- 

2. Se]ect additional blocks of marked squares that are as 3arge as possible and as 
few in nLimber as possible, but include every marked square at icasl once. I he 
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117.  
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1 

(a) ikBD 

CD 
00 01 n 10 

[d) AB 

CD 
LX) 01 11 10 

CD 
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CO 
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00 01 11  10 

CD 
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{f) SD 

CD 
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DO 

01 
r Ii AB 

lz 11 

1.6 10 

00 

AB 
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00 

AH 
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AB 
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Tc:!iu.11,s may not bc. unique in some. f.r.ase. roe C.X2ruple, if a rn.irked :iquarc com-
bines with exactly two other squares, and there is no fourth [narked square to 
complete a larger group, then there is a choice to he made as two which of the 
two groupings to choose. When you are circling groups, you arc. 4iLlowed  u.sc 
the same I valui: more [han once. 

3. Continue to draw loops around single marked squares, or pairs of atipiccut 
markci mium .es, or group or lour, eigh I, H ind so on, in such a way that even. 
marked square belong!, to at least one loop: then use as few of these blocks as 
possible to include all marked squares. 

Fiaure A.9a. based on Table. A.3, i I I us.111iii2.S Lhe process. If any isolated Is 
remain after. the groupings, then each of these is circled as a group of ls. Finally, 
before going from the map to a simplified Boolean expression. any group of Is that 

{OA {h) 

ngure A.8 Tha (Jse of Karnaugh Maps 

(i) C 
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ac 

00  01 11 10 

tEi )  = .7%IR -F NT" 

CD 

00 DI 11  10 

     

     

  

  

.10 

  

   

(b)  BE:b -ACD 

Fiore 4,9 OWfiappillt Groups 

is completely overlapped by other groups can be eliminated. This is shown in Fig-
ure A.9b. In this case.. the horizontal group is redundant and may be ignored in cre-
ating the Boolean expression. 

One additional feature of K.rnaugh arnaps needs to he mentioned. in some 
cases, certain combinations of values of variables never occur. and therefore the cor-
responding output never occurs. These are referred to as "don't care" conditions. 
)''arr each such condition, the letter "d" is cnlere(' into corresponding synire of 
the map. In doing t he grouping and simplifieaiitin, C;JT1 lac ireuted as a 1 or 
0, whichever leads to the. simplest expression. 

An example, presented in [HAYE94 illustrates the pi.sints we have been dis-
cussing. We would like to develop the Boolean expre:isions for a circuit that adds 1 
to a packed decimal digit. Recall from Section 9.2 that with packed decimal, each 
decimal digit is represented by a 4-hit code, in the obvious way. Thus. 0 = 0000, 

-- 0(101. . , 8 = 1000, and 9 = 1001e The remaining 4-fait vaiIues, from 1010 to 
1111, are not used. This code is also referred to as Binary Coded Decimal (BCD). 

Table A.4 shows the truth table for producing a 4-bit result that is one more 
than a 4-bit BCD input, The addition is modulo W. Thus, 9  J = 0. Also, note 1.114i1 
si>z of the input codes prod = ' 4don .'1 care" results, because those ,1 -e not valid BCD 
inputs. Figure A.10 shows the resulting Karnaugh maps for each of the output vari-
ables. The d squares are used to achieve the best possible groupings, 

The Onine—rtickluskev Method 

For more than four variables. the Karnaugh map method becomes increasingly 
cumbersome. With five wiriables, two 16 1fi mar!, are needed, with one map con- 
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Table 4.4 Troll Table ror the One-Digit l'i-ickdd 1)(3einwil InentunAli.2r 

0 (1 0 0 1) 1 0 .  1) 0 1 
I. (1 0 0 1 .-1 0 1.1 1 0 

2 1) 0 1 0 3 (1 0 1 1 

.3 0 0 1 1 , 1 0 1 0 0 

4 0 1 0 0 5 (1 1 0 1 

5 0 1 0 1 6 (1 1 1 U 
e.p 0 1 1 0 7 0 1 1 1 

7 0 1 1 1 8 L 0 0 .  G. 

8 1 0 0 0 9 L O O. 1 

9 1 0 0 1 0 0. 0 0 0 

1 0 1 0 d d d d 

Dint 1 1 0 1 1 d d d d 

Cate 1 1 0 0 LI cl LI il 
4 

CLM- 

ditiorl 
1 1 0 1 LI 41 L.I L I 
1 1 I 0 kl d LI L1 

1 I. I 1 41 d LI LI 

sidereci to be on top of the oihcr in Ihrce diniciisions if) 4LCIlieVi;: Udi4JCCriCy. Si% 
variables requires the use of four 16  16 tables in four dimensions! An alternative 
approach is a tabular technique, referred to as the Quine—McKluskey method. The 
method is suitable for programming on a computer to give an automatic tool for 
'producing minimized Booiean QxprcsRions. 

The method is best explained by means of an example. Consider the follow-
ing expression: 

ABCD ABCD + ABCD + ABCD -F ABCD + ABCD + ABCD — ABCD 

Let us assume. ihn1 this c.xprt:N;71ion was derived from a truth table. We would like, to 
produce a minimal cxpi .csNion xuiia,hlu for implcincrna Lion with ga1cs. 

The first step into construct a table in which ach row eorrespornis to one of 
the product terms of the expression. The terms arc grouped according to the num-
ber occorriplemenlc'd variables. That is, we start with the term with no complemenIA. 
if it exists, then all terms with one complemem, and so on. Table A.5 shows the list 
f(1, 1" our example expression, with horizontal lines used to indicate the grouping. For 
clarity, each term is rcprcs.cnied by a  for.each uncomplcinenied variab.14.2 and a 
for each complemented variable. Thus, we group terms according to the number of 
Is they contain. The index column is simply the decimal equivalent and is useful in 
%vhat follows, 
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Figure A.10 kArnaiigli Maps lor hicrimorokIr 

The next stcy is to find VIII p.Nir.s, of terms That differ in 1,nly one variable. that 
hi, an pairs of terms that are the same except that one ,... 21riable is 0 in one of the 
terms and 1 in the other. Because of the way in which we have grouped the terms, 
we can do this by starling with the first group and comparing each term of the first 
group with every turn or the soeond goup..111V1 compare each perm it Lh,,ecoriti 

group with all of the terms of the third group, and so on. Whenever a match is found, 

Table A.5 First Stage of Quine••McKluskey Method 
(for AR fir)  I ARO) - All( :13 AI3CD AHCI) Alici) I A BCH) 

Product Tern] Index A 

A BCD I (1 0 1] I ✓ 

A BC D 5 0 1 n I V 
iii3C15 6 (1 I I (1 V 

ABC'I) 12 ] 1. 0 II V 

A BcD 7 0 I ] I ✓ 

A13CD II 1 0 1 1 V 

ABCD 13 1 1 0 i V 
ABCD 15 I 1 i I V 
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Table A.( Last Stage of Quinn.—MeKluske7i Method 
for F = 4 ARC]) 4 Al-WD 4..Aij.CD i..I=3CD i. idscr3 - A.Bn) - Afif'D) 

. ABCD I  ABCD ABCD AECD Ai.BCD. ALBC17.) . TkEPTD AE CD 

AD . X X X X 

ACD X ---.... ex .%--, 

ABC E.  0 

AFJ( Fill r.D. 

Acr) z. 

place a check next to each term, combine, the pair by eliminating Ihe variable that 
differs in the two turns, and add thal to a new list. 'I'huas, ror example, the terms 
ABCD and ABCD are combined to produce ABC. This process continues until the 
entire original table has been examined. The result is a new table with the follow-
ing entries: 

ACD ABC AB D 
HCI) ACD 
ABC' BCD 
AB D 

The new table is Organized into groups, as indicated, in the same fit.s.hion as th e 
fiat lahlc. The second table is then processed in the same manner as the first. That is, 
terms that differ in only one variable are checked and a new term produced for a third 
table. In this example. the third table that is produced contains only one term BD. 

In general, the process would proceed through successive tallies until a table 
with no matches was produced. In this case. this ha;,linvolved ihree tables. 

Once the process just described is completed, we have eliminated many of the 
possible terms of the expression. Those terms that have not been eliminated are used 
lo mrist LI et a ma trix, as illustralcd in Fable A.& Each row of 1 he matrix corresponds 
10 one of the terms that has not been eliminated (has no check) in any of the tables 
used so far. Each column corresponds to one of the terms in the original expression. 
An X is placed at each intersection of a row and a column such that the row element 
is "compatible -  with the column c.lcrocnt.  vxri411,Ics present in the row 
clement have the same value as the variables present in the column element. Next,. 
circle each X that is alone in a column. Then place a square around each X in any 
row in which there is a circled X. If every column now has either a squared or a cir-
cled X, then we are done, and those row elements whose Xs have been marked con-
stitute the minimal expression. Thus. in our example, the final expression is 

ABC -F ACD + ABC + ACD 

In cases in which some columns have neither a circle nor a square. Eiddilional 
processing is required. Essentially, we keep adding row elements unlit all columns 
are covered, 
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Let us summarize the Cluine—McKluskey method to try lo justify intuitively 
why it works, 'fhe first phase of the operation is reasonably sir4lightforward. 
proCc c[imimile unneeded vitrivAb[es in product lcrnis. Thus., the expression ABC 
+ ABC:is equivalent to AB. because 

ABC: + ABC — -F  = AB 

Alter l he elimination of variablcs, we arcieft with an 1,2 Xiii .csMon that is clearly 
equivalent to the original OxriteSSiOn. I JOV02.VCr, there may he redundant terms in 
this expression, lust as we found redundant groupins in Karnaugh maps. The 
matrix layout assures that each term in the original expression iw covcre41 and does 
s..0 in  wily 1hal mininliZe . ;71  1[1Q number of terms in the final QX1)1"C!..S1011. 

NAND and NOR Implementations 

AnoE her considEni Lion in I hu implemenialion Boolean func[ions, concerns 
the types of gates used It is on en desirable to implement a Boolean function sole]y 
with NAND gates or solely with NOR gates. Although this may not be the mini-
rnum-ga Le implementation, it has the advantage of regularily, which can impIify the 
manufacturing process. Consider again 1 2.quotion (A.3): 

F = B(A — C) 

Because the complement of the complement of a value is just the original value, 

F = B(A C) = (AB) + (BC) 

Applying DeMorgan's iheorern, 

( AB) - (BC). 

which has three NAND forms, as illustrated in Figure A.11, 

Multiplexers. 

The multiplexer connects multiple inputs to a single outpw. Al any time, one of the 
inputs is selected to be passed lo the output_ A general Mork diagram rqreSCrita- 

Tk  
b  

13  L --- 
0_1, 

1 I  
-. 1 (13. 1 

--/ 

Figure A.11 NAND linplcinentation of Tablc. A.3 
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N1LIX 

D3  

52 el 

Figure A.12 vtultiploxer Representation 

lion is shown in Figure A.12. This represents a 4-b0-1 mulEiplexer. '[here are four 
input lines, labeled DO, D1, D2, and DI One of these Lines is selected to provide 
the output signal F. To select one of the four possible inputs, a 2-bit selection code 
is needed, and this is implemented as two select lines labeled Si and S2. 

An example 4-Lo-] multiplexer is defined by the truth table in 'Palle A.7. This 
is a simplified form of a truth table. lristekid of showing all possible combinations 
of input variables. it shows the output as data from line DO, D1, D2, or D3. Figure 
A.13 shows an implementation using AND, OR, and NOT gates. Sa and S2 are con-
nected to [ht. ANT) g;w2..s in .,;ueh a way th4it, for any cornhinalion  Si and 82, three 
of the AND gates will output 0. The fourth AND gate will output the value of the 
selected line. which is either 0 or t. Thus, three of the inputs to the OR gate are 
iakvays 0. and the output of the OR gate will equal [he value of the selected input 

gate. Using this regular organiz;ition, it iS easy “) construct inuiliplexe.r.s of size 
16-to-1, and so on. 

Multiplexers are used in digital circuits to control signal and data routing. An 
example is the loading of the program counter (PC). The value to be loaded into the 
program counter may CI}TT1{,2: Irodri one of several different sources; 

• A binary counter, I he PC is lo he incremented for the nexl. imLruction 

• The instruction register, if a branch instruction using a direct address has just 
hecn e xecuted 

• The. output of the ALL!, if the branch instruction specifics the address using a 
displacement mode 

Taile A.7 4-1.0-1. Multiple.xt2r Truth Table. 

52 SI 

0 0 DO' 
0 I DI 
1. 
1 I D3 

DO 

Dl 

1)2 
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S2 Si 

I x1 

1 )1 

N  

Figure A.13 MultipEcxer Intplurnontation 

. 1'hes.e various; inputs couEd be connected to the input lines of nItiEtiplexer, with the 
PC." connected to the output line. The select lines. &tern-Line which value is loaded 
into the PC. Because the PC conwins rnohiple hits, multiple multiplexers. Tc used, 
one per bit Figure A.14 illusimics this for 16-bit addresses. 

Decoders 

A clue.odur is 8 co mbinational circuit with a number of output lines, only one of 
which is asserted at any time. dependent on i Fi e pattern of input lines. In general, 
decoder has n inputs and 2 outputs.. figure Al. 5 shows a decoder with three inputs 
and eight outputs. 

C, JR, ALL'', C 15  1R 35  ALL:„ 

I i  

sz 4„0_1 s2 —1 4-to-1 
di I' 

51 1 •- • Mt'  X .5] ■! Mie:X 

     

   

PC,5 

 

Figure A-14 Multiple= Input c Frowner Counter 
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C 

D., 

s11 1 •■•• 

Figure A.15 Deonder with 3 Inputs and 2 3  — 8 Outputs 

Decoders find many uses in digital computers. One example is address decod-
ing. Suppose we wish to construct a I K-hyte memory using four 256 x 8—bit RAM 
chips, We want a single unified address space, which can be broken down as follows: 

.4dt/re4ih. Chip 

0000-0017 
011_10 01FF 
020(.1-02FF  2 
(1300 03FF 

Each chip requires 8 address lines, and these arc supplied by the lower-order 
8 bits of the address. The higher-order 2 bits of the 10-bit address arc used to select 
one cif the four RAM chips. For this purpose, a 2-to-4 decoder is used whose out-
put enables one of the four chips, as shown in Figure A.16. 

With an additional input line, a decoder can be used as a demultiplexcr. The 
&multiplexer performs the inverse function of a multiplexer, it connects a single 
input to one of several outputs. This is shown in Figure A.1•7. As before. n inputs are 
decoded to produce a single one of r outputs. All of the 2' output lines are ANDed 
with a data input line. Thus. the n inputs act as an address to select a particular out-
put line, and the value on the data input line (0 or 11 is routed to that output line. 
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AO 

A? 

256 x 9 
RAM 

256 .54 8 
RANI 

256 x 8 
RAM 

256x 8  
RAM 

2-to-4 
Decoder 

Enable 'Triable Enable Finable 

Figiorc. N.16 ALIcIross Decoding 

The configuration in Figure A.17 can be. viewed in another way. Change the 
label on the new line from Dora Input to Enabfe. This allows for the conlrol of 
the ti ming of the decider. I'he decoded outpul appears only when the eneoc.kd 
input is present (Ind the enahle I i ne has a value of 1. 

Programmable Logic Array 
Thus far, we have treated individual gates as building blocks, from which arbitrary 
functions can be realized. The designer could pursue a strategy of minimizing the 
number of gates k be used by manipulating the corresponding Ka olcan expressions. 

As the level of integration provided by integrated circuits increases, other con-
siderations apply. Early integrated circuits, using small-scale integration (SSI), pro-
vided from one to ten gates on a chip. Each gate is treated independently, in the 
hui [ding-block approach described 50 far. Figure A,]K is art LANI -nrIc  .onie ssi 
chips. To construct a Logic function, a numher of these chips are Laid out on a printed 
circuit board and the appropriate pin interconnections are made. 

nereasing levels of integration made it pc ible to put more gaLeN on N chip 
and to make gate interconnections on the chip as u ell. 'Ails yields the advantages of 

N-bit 
destinatinn 
address 

Data input 

Figure A.17 Implementation 1.4 a Demultiplexer Using a DtTeckr 

• 
2." outputs 

decoder • 
• 
• 
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IA 113 LY 2A 213 2Y GND 

Figure A.IS Some SST Chips. Pin layouts from The TT1. Dam .  Bonk for Design Etigiourers, 
copyright 0 1975 Tcrias In:strum:v. Incorporated. 
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decreased cost. decreased size, and increased speed (because on-chip delays arc. (.4 
shorter duration than off-chip delays). A design problem arises. however. For each 
particular logic function or set of functions, the layout of gates and interconnections 
on 1 he chip mu st he designed. 'rho east and Liffic involved in such custom chip design 
is high. Thus, it becomes attractive to develop a genera]-purpose chip Ihail can be 
readily adapted to specific purposes. This is I hc intent of the pri3Krammethic logic 
array (13 1,A). 

The PLA is based on the fact that any Boolean function (truth table) can be 
expressed in a sum-of-products (SOP) form, as we have seen. ' l'he PLA consists of 
a regular arrangement (.4 NOT, AND, and OR gate. tin a chip. Each chip input is 
pasNed through a NOT gate so that each input and its complement are available to 
each AND gate. The output of each AND gate is available to each OR gate. and 
the output of each OR gate is a chip output- By making the appropriate connections, 
irilitrary SOP expressions can he implemented. 

Figure A.1')a shows a PLA with three inputs, eight gates. and two outputs. 
Most larger PLAs contain several hundred gates.. I S to 25 inputs, and 5 to 1.fi out-
puts, 'i'he c(mneetions from the inputs to the AND gates, and from the AND gates 
to the OR gates, are not specified. 

PLAs are manufactured in two different ways to allow easy programming 
(making of connections). In the first. every possible connection is made through 
a ruse at every intersection point. The undesired connections can then be later re-
moved by blowing the fuses. This type of PLA is referred to as a fieid -pmgranunable 
logic array. Alternatively, the proper connections can he made during chip fabri-
cation by using an appropriate mask supplied for a particular interconnection pat-
tern. in either case, the PLA provides a flexible, inexpensive way of implementing 
digital logic functions. 

Figure A. 19b shows a design that realizes two Boolean expressions. 

Read-Only Memory 

Combinational circuits are often referred to as 'memoryless".ei rcui1s, because their 
output depends only on I heir current input and no history of prior inputs is retained. 
I h owever, there is one sort of memory that is implemented with combinational cir-
cuits. namely read -only mearvrk• (ROM). 

Recall that a ROM is a memory unit that performs only the read Operation. 
This implies that the hinary information stored in a ROM is permanent and was cre• 
ated during the fabrication process. Thus, a given input to the ROM (address li nes) 
always produces the same output data lines). Because the outputs are a function 
only of the present inputs. the HON1 is in fact a combinational circuit. 

A ROM can he implemented with a decoder and a set of OR gates. As an 
example, consider Table. A,8. This can be viewed as a truth table with four inputs 
and four outputs. For each of the 16 possible input values, the corresponding set of 
values of the outputs is shown. lt can also be viewed as defining the contents of a 
64-bit ROM consisting of let words of 4 bits each. The four inputs sped ry  an address, 
and the four outputs specify the- contents of the location 2,pCeified by the address. 
Figure A.2[1 shows how this memory could be implemented using a 4-to- L6 decoder 
and four OR gates. As with the PLA, a regular organization is used, and the inter-
connections are made to reflect the desired result. 
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Input Output 

0 0 0 0 0 
0 0 0 1 0 (1 CF I. 
(F 0 1 0 0 0 1 1 
II 0 1 1 0 I) I CI 

0 1 0 (1 0 1 1 0 
0 1 0 0 1 1 1 

1 1 0 0 ] (1 1 
0 1 1 I 

 
(I 0 

1 (1 0 0 1 I 0 0 
1 11 0 1 L 0 1 
1 1 1 1 1 
I 0 I L 1 0 

0 1 0 t 0 
1 1 0 1 1 I 
1 3 1 0 

1 11 0 

Adders 

So far, We have seen how interconnected gates erm Inc used to i mplement such lune-
tions as the routing of signals, decoding, and ROM. One ussentW are4A not yet 
addressed is that of aril hmetic. In this brief overview, we will content ourselves with 
looking at the addition function. 

Binary addition differs from Boolean algebra iri lhat the result includes a carry 
term. ThIls. 

0 
. L 

(1 

1.11 
+1 

1  L 

1 
+Q 

I 
J 

1 
-1 

I 1 10 

However, addition can sii I I be dealt with in Boolean terms. In Table A,9a, we show 
the logic for adding two input hill t.o produce a 1-hit sum and a carry hit. This truth 
table could easily be implemented in digiial logic. However, we are not interested 
in performing 4iddiiion on just a single pair of hits, Radii:F ., we wish to add two tr-bit 
numbers. This can be tituie by putting together _a set of adders so that the carry front 
one ;Elder is provided as input to the next- A 4-bit adder is depicted in Figure A.21. 

For a muhiple-hi adder to work, each of the single-bit adders muss linve ihrce 
inputs, including the carry f min the next-lower-order adder. The revised truth table 
appear in 'Fable A.9b, The. two outpuis can he expressed= 

Sum = ABC ABC + ABC + ABC' 
Cirry = AB - AC + BC 
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Figure A.20 A 64-Bit ROM 

Pigui -e. A.22 ix ;i n i mplcmcithilion wing AN1), OR 4iTLCI Ncyr gates. 
Thins we have the neces pi logic to impiement a multiple-bit adder such s 

shown in Figure A.23. Note [hat because the output from each adder dc:perids 
the carry from the. previous adder, there is an increasing delay from thc leasi signir-
ieant 10 the mod significant Each lriyle hit. .1cicii,;,. experiences a certain amount 

THbit Biiairy Addititin 'Fruit) l'aiblc 

.in) Singly-13it Addition Mt Addition with Carry Input 

A 10. Sinn Carry C 1  B Sum C,„„ 

0 0 0 0 0 0 0 0 0 
(1 1 1 0 0 0 1 I 0 
l 0 1 0 0 1 0 1 0 

1 1 0 1 0 1 1 0 1 

1 0 0 l 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 I 1 
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Overflow 

A, B-. 

c, 

A, B, 

C, Cm  c o  {-1 

5
:I 

Figure A.21 4-11it Athlor 

of gate delay, and ihil.; gate delay accumulates. For larger adders, the accumulated 
delay can become unacceptably high. 

lf the carry values could be tletermincd without having to ripple through all 
the previous suige: ,1, !hen each single-bit adder could function indupencluntry, and 
do lay would not Li Ccuin atcQ, ThiN can be achieved with an approaal known as cam. 
lothicalreeodr Let us look again at the 4-bit adder lo explain this approach. 

We would like to come up with an cvi.c.sion thal P;pecifies the carry input to 
an!,. ,  stage of the adder without reference to previous carry %lilies, We have 

x— 

C — 

   

Sun 

   

   

rry 

Figure A.22 I mplQinentatiois.of an Adder 
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... A, B, A„ B„...A„ B„ A.. B„ ,-. A, 13, A, U.. -.- 13 :. 

II IL . I1 IL I _LL 

kidder 7 LIdd ET ; eider

9-bit  
ri der I 

8-bit I C, • S-bit 

Figure 4.23 Construction of a 32-Bit Adder Using 8-Bit Adders 

AH.E3 D (A.4) 

C A 1 8 1  + + ( AS) 

Folttwing procedure, we gut 

C. = A,13„ I A i.A.B, .1- .A,,A,A,,B ;)  -L A :3 A„B,, + B,A,B, -I- B,A,A, • B„ - A„B„ 

This process can be repeated for arhiirarily long adder! ,..  Each carry term can he 
expressed in SOP form as a function on]} of the original inputs. with no depen-
dence on the carries, Thus, only two levels of gate delay occur regardless of the 
iength of thc ad&r. 

For long numbers. this approach becomes excessively complicated .. Evaluating 
the expression for the most significant bit of an to-hit adder requires an OR gate with 

— 1 inputs and it ANI7 gatcs with from 2 lo n - 1 inputs. Accordingly, full carry 
lookahead is typically done only 4 to bits at a time. Figure. A.2 .3 shows how a 32-bit 
adder can be constructed out of four s-bit adders. In this case, the carry must rip-
ple ihrough the four K-bil ;Rider& bui this will be substantially quick er than a ripple 
through thirty-two 1-bit adders, 

A.4 SEQUENTIAL CIRCUITS 
--•••••• 

4rAs'e  •••• 

 

circuits implement the Lnisential functions of a digital computer. 
However. except for the special case of ROM, they provide no montory or stake 
inforrruition. elements also essential to the operation of a digital compul cr. For t h e 
latter purposes. a more oDmplex form of digital 'ugly. C.TCLE  i  used: the seilueninil 
circuit. The current output of a sequential circuit depends not only on the current 
input, but also on the past history of inputs. Another and generally more useful way 
to vicw it k that the current output of a sequential circuit depends on 11w currcn I 
input and the current 4I- t{ or That circuit- 

1n this section, we exainine some simple but useful examples of sequential en . - 
euiV., As will be .wen, the sequential circuit makes use of combinalional circuits. 

Flip-Hops 
The s.impiest form ,,r tic l U llli44l eircail is the ' Dm:. are a variety of flip- 
flops, all of which share two properties: 

1 
S3: SU. S, S„ 5, S 7 S„ 
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'T  The flip-flop is a !listable deviee- IL exists in one of two states and, in the 
absence of input, renmins in that state. Thus. the flip-flop can function as a 
I-hit memory. 
The nip-rit)r) has two outputs, which are always the complements Of each 
other. These are generally labeled 0 and 0, 

The S—R Latch 
Figure A.24 shows a common coil figuration known as the S—R flip-flop or S—R 

latch, The circuit has two inputs, S (Sel) and R (Reset). and Iwo outputs. C> and 0, 
and consists of two NOR gales hooked together in ;1 feedback arrar4?,ement, 

First, let us show that the circuit is bistable, Assume that both S and R are 
and l hat Q is tr The inputs to the lower NOR gate are Q — 0 and S — 0. Thus, the 
outpui Q — I mean , tha1 the inputs Io the upper NOR gate are  = 1 and R = 0, 
which has the output Q = 0. Thus :  the state of the circuit is internally consistent and 
remains stable. as long as S — R — O. A similar line of reasoning shows that . the state 
0 = 1, C = is also  h)r R = S = 0, 

Thus, this circuit can function as ;1 I -bit memory. We can view I he output 
0 

 as 
the 'value" of the bit. The. inputs S and R serve to write the v .alues 1 and 0, respec-
lively, into memory. To see this, consider the state O — O. 0— 1. S —  — 0. Sup-
pose that S changes lc the value I. Now the inputs to the lower NOIt gale are 
S  = O. After some time delay at, the output (}1' the lower NOR gate will 
he Q = 0 {see Figure A.25). So, at this point in time, the inputs to the upper NOR 
gate become R = 0, = O. After another gate delay of At. the output.  becomes I, 
This is again a stable state, The inputs. to the lower gate arc now ,  S — 1, Q = 1,1Nhich 
maintain the output Q — O. As long as S = 1 and R = 0, the outputs will remain O = 1, 
Q . = 0, kiriherrnorc, S returns to O. the outputs will remain unchanged, 

The R output performs the opposite function. When I goes 1.0 1, it rorces  = 0, 
1 regardless of the previous state of Q and Q .. Again, a time delav of 2As occurs 

before stability is re-established (Figure A.25). 
The S. R latch can be defined with a table similar to a truth table, called a char-

acteristic iethie, which shows thc next state or states of Li SCLILLCIliial circuit as .LL rune.- 
tion of current states and inputs. In the case of the S—R latch, the state can be 
defined by the value of 0. Table A.lOa shows the restrlling ch41raeteristic iable. 
Observe that the inputs S  1. R — 1 are not allowed, 11.C.C.NLLSe the.e %VOL] Id produce 
an inconsistent output (both 0 and p equal 0), The table C@11 be expressed more 

S 

Figure A.24 Thu. S R Latch linplemenn....(.1. with NOR Gates 
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0  
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t) 

0 
Fignre A.25 NOR S-R Latch tinting Diiigain 

compactly_ as in . 1 able .A.1.011. An illuz‘lriiiion 01 the behiivior or the S....R latch is 
shown in Table A.1 Oc. 

Clocked S-R 
The output of the S-R latch changes, Lifter a brief time delay. in response to a 

change in the input. This is referred to as asynchronous operation. :Vlore typically, 
events in the digilal computer are synchronized to zM clock pulse, so chat changes 
occur only when a clock pulse occurs. Figure A.2624rows this arrangement. This 
device is referred to as a clocked S-R flip -flop. Note that the R and S inputs are 
passuil 10 [ hi NOR gulcs only during the clock pulse. 

D 
Onu problem with S-R flip-flop is that the condition R - S = I must be 

avoided. One way to do this is to allow jub,t u 7.,  i ngic input. The. D flip-flop accom-
plishes this. Figure A,27 shows a gate implinnentation and the characteristic table 
of 1ht D [lip-Flop. By using an inverter. the nonclock inputs to the two AND gates 
MC' guaranteed [o  oppo,silc of each, other. 

The D flip-flop is sometimes referred to as the data flip-flop because it is, in 
cliect, storage for one bit of data. The output of the D flip-flop is always equal to 
the most recent value  to 1111,i input, Hence. it Tiftnemberii and produces the 

last input. It is also referred to as the delay flip-flop. •ccausc it delays a 0 or I 
applied to its input for a single clock pulse. 



Table A.10 The S—R Latch 
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f a) Characteristic Table (10 Simplified Uhanicteristie Table 

Current 
Inputs 

Current 
State 

Next 
State S K On - I 

SR (),, Om - 1 0 0 Q.:  
00 0 0 0 1 0 

00 1 1 1 0 1 

01 0 0 1 1 

01 1 0 
10 0 ] 
10 I 1 
1 1 0 
11 I 

(c) Response to Series of Inputs 

1 ii 1 2 3 4 S 6 7 g - 9 

S I 0 0 0 0 0 0 0 l 0 
R 0 0 0 1 0 0 1 0 0 0 

Q,. , ] I 1 0 0 0 0 0 1 ' 1 

.11 —K Ilip-Flnp 

Another useful flip-flop is the J—K flip-flop. Like the S—R it has two 
inputs. However, in this case all possible combinations of input values are valid. 
Figure A-2X shows a gate implementation of the I .K flip-flop, and Figure A.29 
shows its characteristic table (along with those for the S—R and D flip-flops). Note 
that the first three combinations are the same as for the S—R flip-flop. With no input, 
the output is stable, The J input alone performs a set function, causing the output 

     

Clock 

    

    

     

 

S 

   

    

Figure A.24 Clocked S—R Flip-Hop 
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Figure A-27 D 

to tw. E; the K input alone performs a reset function. causing the output to be 0. 
When both .1 and K  1. lbc function performed is reicri -cd to as the log& func-
tion: the output is reversed. Thus, if Q i 1 and 1 is applied to .1  rind K. then Q 
becomes O. The reader should verify that the impiementation of Figure A.28 pro-
duces Ibis. characteristic function, 

Registers 

As 21n exarnpie of the usc of nip- Nops, let us first examine' orR,I. or the csscnthrI elc- 
ments of the CPU! the register. As we kmrw. regiKlcr ix,i circuit used within 

N 

I 

w-9 Pure A,2.8 3-.K I lip-Flop 
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Figure A.29 Basic Rip-Flops 

the (71-1 1,i lo siorc one or mere hie tiaW. Two bask types of registers are.corn- 
monly used parallel registers and shift registers. 

Parallel Registers 
A parullel eonsists of a set of I -hit memories that can be read or writ- 

ten simultaneously, It is used to store data. The registers that we have discusscd 
throughout this hook are parallel registers. 

.1 'he 8• register of Figure A30 illustrates the operalion of a parallel register. 
S—R latches are used. A control signal, labeled input dale strobe. contr(6 writing 
into the register from signal lines. D1 1 through D1.8. 'Ihwse lines might be the out-
put of multiplexers, so [hat data from a variety of sources can be loaded into the reg-
ister. Output is controlled in a similar fashion. As an extra feature, a ree1 line is 
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Figure .4.30 &Bit Para I fel Register 
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I)  U U 

> 
Q Serial ilk --- 0 

Clk 

Serial Ma 

Clock  

Figure A,31 Shill Register 

available that allows the register to be easily set to 0. Note Thal ibis could not be 
accomplished as easily with a register constructed from D  flip [lops- 

Shift Register 

A shift register accepts and/or transfers information serially. Consider, for 
example, Figure A,31, which shows a 5-hit shift register constructed from clocked 
ID flip-flops. Data are input only io the leftmost flip-flop. With each clock pulse, data 
arts shifted I the right one position, and the rightmost hil is Lrunsierred out. 

Shift registers can be used to interface to serial I/O devices; In addition, they can 
be used within the ALU to perform logical shift and rotate functions. In this latter 
capacity, they need to be equipped with parallel read/write circuitry as well :is 

Counters 

Another useful category of sequential circuit is the counter. A counter is a register 
whose value is easily incremented by 1 modulo the.capaeity of the register. Thus, a 
register made up of n flip-flops can count up to .2'4 When the counter is incre-
mented beyond its maximum value, LL IS set to 0. An example of a counter in the 
CPU is the program counter. 

Counters can be designated as asynchronous or synchronous, depending on 
the way in which they operate. Asynehrc.mous counters are relatively slow because 
the output of one flip-flop triggers a change in the status of the next flip-flop. In a 
synchronous counter, a]] of the flip-flops change state at the same time Because the 
latter type is much faster, it is the kind used in  However. it is useful to begin 
the discussion with a description of an asynchronous counter. 

Ripple Counter 

An asynchronous counter is also recon'ed to as a ripple counter. because the 
change that occurs to increment the counter starts at one end and '`ripples" through 
to the other end. Figure. A.32 shows an implementation of a 4-bit counter using .1-1‹.. 
flip-flops. together with ai timing diagram that illustrates its behavior. '11-w timing 
diagram is idealii.ed in that it does not show the propagation delay I hat occurs as the 
signals tnovc down the series of flip-flops, The output of the leftmost flip-flop (1.4) 
is the least significant hit. The design could clearly be extended to an arbitrary num-
ber of bits by cascading more flip-flops. 
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In the illustrated implementation, the counter is incremented with each dock 
pulse. Thc J and K inputs to each flip-flop are held at a constant L. This means that, 
when there is a clock FNE., the ciutpul al Q will be inverted {] 10 0; 0 lo L. Note 
that the change in state is shown as occurring with the  edgc of the clod pulse.: 
this is known as an edge-triggered flip-tlop. Using flip-flops that respond to the tran-
sition in a clock put c nil her than the pulse itsetf provides better timing control in 
complex circuits. If one looks at patterns of cyuipiii for this counter, it can he seen 
that it cyctes through 0000, 0001   111.0, 111 L. 0000, and so on. 

Synchronous Counters 

The ripple counter has the disadvantage of the delay involved in changing 
value, which is. proportional to the length of the counter. To overcome this disad-
vantage., CPUs make use of synchronous couniers, in which all of the flip-flops of 
the counter change at the same time. In this subsection, we present a design for a 
3-bit synchronous coun ter, In doing so, we. illustrate some basic concepts in the 
design of a synchronous circuit. 

For a 3-bit counter, three flip-flops will Inc needed. 1,c1 us use J-K. 
Label the uncomplemented output of the three flip-flops A, B, C, respectively, 
with C representing the least significant hit. The first step is to construct a truth tabte 

(b) inning diagram 

Figure A.32 Ripple Gaunter 
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Figure A..33 Design or a Synchronous Cnunter 

that relates the J—K inputs and outputs, to allow us to design the overall circuit. Such a 
I r ah table i shown. in Figure A.33H. 'file first three columns show the possible 
combinations of outputs A. B, and C. They are listed in the order that they will ap-
pear as the counter is incremented. Each row lims ihe current value of A :  B, C and the 
inputs lo the three nip-Lops thm will be required to reach the next value of A, B.C. 
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To understand the way in which the truth table of Figure A.33a is constructed, 
it may be helpful to recast the characterisric table for the i-K flip-flop. Recall that 
this table was presented as follows: 

J Q.:,  I 

0... 

_ 1 
0., 

In this form, the table. shows the effect that the J and K inputs have on the output. 
Now consider the following organization of the sante information: 

0 
1 

In this form, the table provides the value of ihe next output when the inputs and the 
present output arc known. This is exactl!,. ,  the information needed to design the 
counter or, indeed, any sequential circuit. In this form, the table is referred to as an 
excitation table. 

Lei us return to Figure A. 3m- Consider the First row. We wani the value of A 
to remain Il. I he value of B to remain 0, and the value of C to go from IF to 1 wi h thy: 
next application of a (Jock pulse, excitation table shows th at to maintain an out- 
put of 0, we must have inputs of 0 and don'I care for K, To effect a transition 
from IJ to 1, lie inputs must be J = I and K = d. These values are shown in the first 
row of the table. By similar reasoning, the remainder of the table can he filled in. 

Having constructed I he truth table of Figure A.33a, we see that the table 
shows the required values of all of the J and K inputs as functions of the current val-
ues of A, B, and C. With the aid of Karnaugh imps, We con Eirvulop Roolc:in expres-
sions for thef,..e si74 functions, This is shown in part h of the figure. For example, the 
Karnaugh map for the variable Ja ,Ohc. J input to the flip-flop that produces the A 
ouipui .) yields the expression -la - 13C. When all six expressions are derived. it is a 
straightforward limiter to design the actual circuit, as shown in part c of the figure. 

A.5 PROBLEMS 

 

--e ,r,reMErerrifrr6 '' 

A, I  (.4,1e1 aI.ruth table for th.c. following Boolean expressions: 
a. ABC: .1 I.SC.: _ c. A(B' -Ff3C) 
b. ABC -F - Aisc. d. (A .1- 11)(A -F (.) ,(1-71. — 

A.2 Simplify the fk-i11(iwing exprenioris according ihc commutative. law: 
41.  A-B— B•A I C•D.E • C•D•1 ..... + h. - D 
h. A-I3 +A•C— B•A 
v..  4 L • NI - N), ( A• B)(C • D • F.)( Nei • N • L) 
d, F - (K. R) S • V - VI/ • )7c I v s x • %v. — ( R K...) • F 
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A. Apply Dehelorgan's  theorem to the following equations; 
a. F  V - A — L 
h. F =  + 13 + + 

AA Simplify the following expressions: 
a. A - S•T— V•W+R•S•T 
h.A=T•t:•V.. X.Y I Y 
c. A — F • fE 1- F + G) 
d.A =(P•Q — k —S•T)T•S 

e. A=D•D•E 

ti  A — Y • (W + X -F  + ) • Z 

g. A = (B • E — C + E') • C 
4,5 Construct the operation XOR from the basic Boolean operad ions AND, OR, and 

NOT. 
A.6 Given a NOR gate alai NOT gales, draw a logic diagram (hal will perform the three-

input AND function- 
4.7 Write the Boolean expression kit a four-input NAND gate, 
4.8 A combinational circuit is Iti Sed ci. 10(rol  sei.rtm-segrrient display of decimal 

as shown in Figure A,34. The li:ix lour inputs, which provide the four-bit nude 
used in packed decimal repres4Ailatioti  I„ - 0004)   9, 1  = 1001). The seven out-
puts define which segment' ,  will be. naivalc!Li to display a L,ven decimal digit- Note 
that some corribinaliOnS of inputs and outputs are not needed. 

Develop a truth table for this circuit. 
h. Express the truth table in SOP form. 
c. Express the truth table in PCS foun- 
d. Provide a simplified xpressii-Fn. 

4,9 Design an 8-to-1 multiplexer. 
4.10 Add an additional line to Figure A.15 so Clot it functions as a demultiplexcr. 

K.  C) 
digit 

x, 
Combinational 
circuit 

x i  

{a) 

Z. 
-Z, 
7, 
7, 

Z „ 
7, 

1 1 I 1 1 1 L 1_ 1 1 11 1 
1 1 1 1 1 1 1 1 1 

(b) 

Figure 4.34 Seven Segment LED Display Example. 

Z. 
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A.11 '1 he Gray Lxide is binayy 4:11d e.  for inItz,gcni, it differs from tho ordinary binary YE:p-
T esc. ritati ori in that [li me jug a single it change between tloc re present all ions. c' 
any two numbers_ 'Itis is LIS42.1u1 for applkations s uch as counters or ana14-to-digital 
converters where a sequetiLv„ nt numbers is gunerated. Because only one bit changes 
at a time., th,2r‘.. is never any arithiguir• ditir to 41 ight tiinirtg differt.ncs..11be. rink eight 
elements of the code are as follows.. 

Binary Code Gray Code 

000 
001 

I lit 
II t 
IOI 

01X) 
001 
01.;1 
011 
100 
101.  
110 
111 

Design a circuit that converts from binary to Cray code, 
A...12 Design a 5  32 decoder using four 3 X 8 decoders (with ,2natile inputs) and one 2 4 

decoder. 
A,13 lulpInient the fun adder of Figure A,22 with just five gates, ( Hint:Somc (rf the gatcs are 

01:t gates.) 
A.14 Consider Figure A.22. Assume. tha each produues a delay' tri li) ns- Thus, the 

sum output k valid afier 30 ns and the carry output alter I) W1Du. is the rill al add 
ti me for a 1..2-11it adder: 
a. Implemented without carry lookohead, as in Figure A.21? 
b. I mplemented with carry lookahcad and using 8.bit adders. as in Figure A.23? 



Converting Between Binary and Decimal 

Inttgers 
F ractions 

The Decimal System 
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B.1 THE DECIMAL SYSTEM 

   

+feleerarSee.1:51.;:.-  

  

 

0 

   

I n everyday life we use a sNy.stcm based on decin -m I 4.1igils (0. 1. 2, 3. 4..5.. 6,7, H.q.) 
to repri,: ,kmt numbers and refer to the system as the decimal slistera. Consider 
whkit the number 83 means. It means eight tens plus three. 

83 = (8 X 10) - 3. 

The number 4728 rneans lour ltkluNmids. seven hundred", [WO tens , plus eight '  

4728 = (4 x 1000) + (7 x 100) + (2 X 10) -F 

The decimal system is said to have a base, or radix. of 10. This means that each di-
git in the number is muhiplied by 10 raised to a power corresponding to that digit's 
position: 

83=(8 X 10') -F (3 10") 

4728 — (4 X 10 1 ) — (7 X 101 + (2 x it)') — (8 X 10") 

The same principle holds for decimal fractions but ne2ative powers of 10 are 
used. Thus, the decimal fraction 0.2515 stands for 2 tenths plus 5 hundredths plus 6 
thousandths: 

0.256 — (2 X 10 ') -F (5 x 10") -F (6 X 101 

A number with both an integer and fractional part has digits raised to both 
positive and riegativ4 powers {Fl 1i}: 

472.256 = (4 x 102) + (7 X WI) — (2 x 101 — (2 X l0 (5 X 10 + (fi X 1Cr') 

In general, for the decimal representation of X . . the 
value of X is 

X — x 10' 

B. CE BINARY SYSTEM 

in the decimal system, 11) different digits ;ill. used Iii represent numbers with a base 
of 10. In the binary system, we have only two digits. 1 and (1, Thus. numbers in the 
binary system are rcpresen Led iolhe base 2, 

To avoid confusion, we will sometimes put suhscript nurnhcr to indicate 
11;11W, For example, 83,, and 4728,,, are numbers represented in decimal notation 

or. more hricrly, decimal numbers, The digits and 0 in binary notation have the 
same meaning as in decimal noiaLion: 
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0, = 
I , RI 

To !represent urger ri Uiribc , as with dconnal notation, each digit in a binary num-
ber has a value depending on its position: 

I [1, =(l x2') + (11 2'') = 2 

II, = (I x 2') +{1 x = 3.,, 

100 2 (1 x 2 2 ) + (fi x 2 1 ) —(@X 2 n) = 4 th  

and so on. Again, fractional values are represented with negative powers of the radix: 

1001.101 = 2 - 2  = 

In general, for the binairy rcresuniriLicin — , 

value of Y is 

Y= ‘K 2' 

4:3 601iVERTING :AM5 ijECTMAL 

I I  1.5  !,,i mple matter t0,.onv4:1 -1 a number ['EOM binary 11014 .1.1,i on Lc) decinml notation. 
In fact, we showed sevciai examplef, in the previous subsection. All that is required 
is to multiply each binary digit by the. appropriate power of 2 and add the results. 

To convert from decimal to binary, the integer and fractional parts are han-
dled scparalely. 

Integers 

For the integer part, recall that in binary notation, an integer represented by 

= or 1 

has the value 

2''' (b 2''' 2 )  F . . . X 2 1 ) 1 -  

Suppose it is required to convert a decimal integer N into binary form. If we 
divide N by 2, in the decimal system, and obtain a quotient N, and a remainder R„.. 
we may write 

N- 2 x N I  I R,, 001. 

Next, dividt.? 1he cluotient N ;  by Assume lhat the new quolit ......nt is .Nr, and the. 
neW Then 
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so that 

N = 242N,. + R.) + R5 = x + (R, x 2') + R„ 

If next 

rV,= 2N, — R2  

wc have 

= (N 4  X ) - ( R, X 2 •
.1 I (R, X 2 - ) I R,, 

BecnLISC N > N, > N, ... continuing this sequence will eventually produce a quo- 
tient N, , — 1 (except the decimal integers 0 and 1, whose binary equivalents 
are 0 and 1. respectivel!,..) and a remainder which is 0 or 1, Then 

— (I 2,'"'  ') '  X 2''' -.) 4 „ 4. (R, x 2• — (R i x 2') 1  R r , 

which is the binar!, ,  form of N. I fence, we convcri from I -34i e 10 Lc) base 2 by repeated 
divisions by 2. The remainders and the final quotient, I, give us. i rt order of increas-
ing significance, t he binary digits of N'. Figure B. I shows two examples. 

Fractions 

For Lhc (rad ional part, recall Elia' in binary notation, a number with a value between 
0 and 1 is teprescnted hy 

0.b h ,b b ; () or 1. 

and ha7,1 the value 

(b. i  x 2 I ) -F (17 x 2 2) t (b x 2 ') 

This can he rewritLcri 4:".; 

2 x (h. , + ' (.0) ,- 2 I  X (b.., -h 

This exprcmion s.uggcsts a kxhnique for conversion. Suppose we want to con-
vert the number F (0 <: F < I ) from decimal to binary notation. W know lhai F 
con be expressed in the form 

F x (h -h 2 (/)  + 2 I  x (h  + 

11 we multiply Jr: hy 2, we obtain: 

2xf=h • x(11,-F2 
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Quotient Remainder 

1 
2 

5 2 
2 

2 1 0 
2 

2 
1 0 1 1 1 = 11  

(a) 1.1„ 

21 
2 

5 
2 

2 
2 

fS 

2 
= 1 

1 010  1. 2 = 21,, 

(b) 21 1 , !  

10  
2  

Figure B.1 Examples cif Convvrtinp, from Decimal 
Notation to Binary Notation For Integral Nurnhcrs 

From this crd•uzition, we see that the integer part of (2 X F), which must be 
either 0 or 1 because C) •.:: F < 1, is sireplv h. ,. So arc con so} (2 F) = + F1 . 
where 0 <1 and where 

F, — 2 (b i•  2 X (b — 2 .1   x (. 1) . 4  + 

To find b 2 ,  we re1- ,2411. the procesq. Therefore :  the conversion idgorithm involves 
repeated multiplication by 2. At each step, the frictional part of the number from 
the previous step is multiplied by 2. the digit to the left of the decimal point in the 
product will hy 0 or I and contributes to the binary representation, starting with the 
nicawl ,,i gnificant digit. The fractional part of the product 6 tied tio ,  the multiplicand 
in the next step. Figure B.2 shows two c.mirrIples, 

This process is not rtc•ccy.:.xrily exact; that is, a decimal fraction with a finite 
number or digiLs may requirc binary fraction with an iofinito number of digits. In 
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Product 'Integral FilII .1  I ',I 

0.EI1 x 2 =1.62 
0.62 54 2 = 124 
0.24 x 2 = (1.48 
048 x 2 = 

x 2 = 1.92 
1).92 2 m. 1.84 

(3)  81,,,.= 0,110411. (approximate) 

015 x 2 = 45 
03 x 2 = 1.0 

4.25„= (1,01 2  (exact) 

ilgtire 13.2  E.r....uniples of Converting from Decinui1 
Nototioo to Bits ily NOUitiun for Fraciiional Numbers 

such cash;, conversion Eilgorithin is usually hafted after21prespcei net] number tit 
steps, depending on the desired accuracy. 

13.4 HEXADECIMAL NOTATION 

Because of the inherent binary nature. of digital 424)mputor components, 21 11 Corm ,,. of 
data  hin computers are represented by various binary codes. I I ivtvevur, no niat-
ter how convenient the binary system is for computers, it is exceedingly cumbersome 
for human beings. Consequently, most computer professionals who must spend time 
working with the actual raw data in the Computer prefer a more compel ntitMiori. 

What nolation to use? One possibility is the decimal Rotation. This is certainly 
more compact t h an binary notation, huh it is awkward because of the tediousness of 
converting between base 2 ar[ti 

i m1e[E1.4[ notation known as hexadecimal has been adoptcd. Binary digits.are 
grouped into sets of four. Hach possible combination of four binary digits is given a 
symbol, Eis follows; 

00110 =11 11100 = 
0001 = 1 11101 - 9 
(11110 -= 2 .1 411.) A 
00 = 1011 - ti 

0100 = 4 1 100 - C 

0101 - 5 .1 101 --- D 
0110 - 11111-= 
0111 - 7 111[==F 

; 

   

    

    

1 
1 

   

   

   

fieQuum: I fi symbols are used, the notation is called hexadecimal, ;ind the I 6 sym-
bols W- L!: the hexadecimal digits. 
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A sequence of hexaticeim I digits can be thought of as representing ra n intcgrr 
in bm 16. Thus. 

.2C.„ — (2,„ x• 16') — (C, — 1(i") 

= 1(2.D  x 16 1 ) — (12 10  x 16 1 ) = 44 

Hexadecimal rotation is used not for representing integers. It is also 
used as a concise notation for representing any sequence of llimiry digits, whether 
they represent text, numbers, or some other type of data. The reasons for using hexa-
decimal notation are as follows! 

1. IL is more compact than binary notation. 

2. In most computers, binary data OCE.: LI py some mu l ti ple of 4 bits, and hence some 
multiple of a 'single hexadecimal digit. 

3. It is extremely easy to convert between binary and hexadecimal. 

As an CA arripic or the list point, consider the binary string L10.111.10100l. This is 
eq ivaient to 

1101 1110 01101 — DE1 i „ 

D E. 

This process is performed so naturally that an experienced programmer can 
mentally convert visual representations of binary ‘bta to their nexadecimA equiva-
lent without written effort, 

13.5 PROnitMg 
arr; 

Oyer 
..oroyrt airy +P. yra:-...‘":01C -,Yer:f1W.P.' yerre, rert:YrIk- arrrayar". er.rrnr-yre:r.W5P.re. 

ard'er". 

B.1 C:cinvert the following binary numbers to [heir decimal equivalents: 
▪ 001100 b. .000011 c. 011100 d. 111100 e. 101010 

13.2  Convert the following binary iiiinihers to their decimal equivalents: 

▪ 111.0(.A)1 I b. 11001.1.10011 c. 1010101010J 
B.3 Convert the followinEt decimal numbers to their lrin .my 

a. 64 b. 100 c. 111 d. 14-5 e. 255 
11.4 Converl the following decimal numbers. to their binry .  equivalents; 

u. 34..75 I. 25,25 c, 27.1875 
111. Express the following )ct I. numbers in hexadecimal notation: 

11. 12 h. 5655 v. 2550276 d, 76545 .-336. e. 3726755 

B.6 Convert the following hexadecimal numbers to their decimal equivalents; 
h. 9F c. D50 d. 67E c. ABCD 

B.7 C'onvert the following hexadecimal numbers to their decimal equivalents: 
a- FA b. D3.E e. 1111,1 d.811,8_8 e. EBA,C 

[1.8  Con.vc,...rt the following decimal numbers to their hexadecimal emuivalorits: 
11- 16 h, 80 e. 2560 d. 3000 e. 62,500 

R.9 Convert the following decimal numbers (c.Pthvir decini ii equivalents: 

a- 204.125 b. 255,875 tr.. 631.25 d. ] 00(10.00390625 
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11,1111  ConvE:rt the ibllowing hi:xndecinial numbers to their binary equivalents; 
a, E b, IC v. A(-14 • d. 1F.0 e.239.1 

11.11  Convert the tollowina binary ritinihels iii lheir iltieirmil ircitlivalonts: 
a. 1001.1111 b. 110101.011001 v. 10100111.1111)11 

ti-n Prove that every real number with a terminating binary representation (finite num-
ber of digits 10 the right Of the binary point) also has H terminating decimal repre-
sentation (Finite number of digits to the right of tho cicuirnal point). 
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M any instructors believe that research or implementation projects are cru- 
cial to the clear understanding of the concepts of computer organisation 
and architecture. Without projects, it may be difficult for students to grasp 

some of the basic concepts and interactions among components. Projects reinforce 
the concepts introduced in the book, give students a greater appreciation of the 
inner workings of a processor. and can motivate students and give them confidence 
that they have mastered the material, 

In 1his text. I have tried to present the concepts as clearly as possible and have 
provided numerous homework problems to reinforce those concepts. "...Ian>. instruc-
tors will wish to .supplement this material with projects. This appendix provides 
some guidance in that regard and describes support material available in the instruc-
tor's manual. The support material covers three types of 'projects: 

• Research projects 
• Simulation projects 
• Readingireport assignments 

RESEARCH PROJECTS 

An effective way Of reinforcing basic concepts from the course and for teaching stu-
dents research skills is to assign a research project, Such a project could involve a 
literature search as well as a Web search of vendor products, research lab activities, 
and standardization efforts. Projects could be assigned to teams or, for smaller pro-
jects, to individuals. In any case, it is best to require some sort of project proposal 
early in the term, giving the instructor time to evaluate the proposal for appropri-
ate topic and appropriate level of effort. Student handouts for research projects 
should include the following: 

• A format for the proposal 
• A formal for the final report 
• A schedule with intermediate and final deadlines 
• A list of possible project topics 

The students can select one of the listed topics or devise their own compara-
ble project. The instructor's manual includes a suggested format for the proposal 
and final report as well as a list of possible research topics. 

C.2 SIMULATION PROJECTS 

An excellent way to obtain a grasp of the internal operation of a processor and to 
study and appreciate some of the design trade-offs and performance implications is 
by simulating key elements of the processor. Two useful tools that are useful for this 
purpose arc SimpleScalar and SMPCache. 
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Compared with actual hardware implementation, simulation provides two 
advantages for both research and educational use: 

• With si mulation, it is easy to modify various elements of an organizalion. to 
vary the performance characteristics of various components, and then to ana-
lyze the effects of such modifications, 

• simulation provides for detailed performance statistics collection, which can 
be used to understand performance trade-offs, 

SimpleScalar 

SimpleScalar [BURCi97, MANJO.la, NIANJO1b] is. Li set of tools that can be used to 
simulate real programs on a range of modern processors and systems. The tool set 
includes compiler :  assembler, linker, and simulation and visuaiization tools. Simple-
Scalar provides processor simulators that range from an extremely fast functional 
simulator to a detailed out-of-order issue, superscaiar processor simulator that sup-
ports noriblocking caches and speculative execution. The instruction set architecture 
and organizational parameters may be modified to create a Variety t P experiments. 

The instructor's manual for this hook includes ii concise introduction to 
SimpleScalar for students, with instructions on how to load and get started with 
SimpleScalar, The manual also includes some suggested project assignments. 

SimpleScalar is a portable software package the mans on most UNIX plat-
forms. The SimpleScalar software  he clown loadci from the SimpleScalar Web 
site. It is iyai[able at no cost for noncqpininercial use. 

SMPeache 

StvtPC4ic:ht: i a trace-driven simulator for the analysis and teaching of cache mem-
racy systems on symmetric multiprocessors [RODROn. 'The simul;ilion is based on 
a model built according to the architectural basic principles of these systems. The 
siniulalor has a full graphic and friendly interface_ Some of the parameters that they 
can be studied with the sim ulator are program locaiity; influence of the number 
of processors, cache coherence protocols, schemes for bus arbitration, mapping. 
replacement policies, cache size (blocks in cache). numilur of cache sets (for set 
associalive caches), number of words by Hock (memory block size) 

The instructor's manual for this book includes a concise introduction 
to SimpleScalar for students, with instruciions on how to load and get started 
with SimpleScalar, The manual salsa includes some suggested project assignments. 

SimpleScalar is a portable software package the tuns on PC systems with 
Windows. The SimpleScalar software can be downloaded from the SimpleScalar 
Web site. It is available at no cast for noncommercial use 

C.3 READING/REPQRT ASSWNIVWINTS 

Another excel lc ni way to reinforce concepts from the course and to give students 
research experience is to assign papers from the literature to he read and analyzed. 
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The instructor's nuinual includes a2.,u.ggQ4tQd list or popers_ {rc or two per chapWt, 
Lc) be assigned. All of the papers are readiby available either via the Internet or in 
miy good college iechnical library. The manual also includes a suggested assign-
ment wording, 



GLOSSARY 

s one of the terms in this glossary are front the Aincriam Neiiirmal Dic-
tio)rary for Informarion Systems (1990. These are indicated in the glos-
miry by an asicrisk, 

Ahsolute Address* An address in a computer language that identifies 
a storage Location or a device without the use of any intermediate ref-
erence. 

Accumulator The name of the CPU register in a single-address instruction 
format. The accumulator. or AC, is implicitly one of the twd operands 
for the instruction. 

Address Bus That portion of a system bus used for the transfer of an ad-
dress. Typically, the dcidre:ss hic.ntifics a  main munory location or 4111. 

I /O device. 

Address Space The range or addresses (memory, I10) that.can be rEerenced. 

Arithmetic and Logic Unit (A LU)* A part of a computer that performs 
arithmetic operations, logic operations. and related operations. 

ASCII American Standard Code for Information Interchange.. ASCII is a 
7-bit code used to represent numeric, alphabetic, and special printable 
characters, II also includes codes for corilroi characters, which are nol 
printed or diTlaycd bin sperify 7.:.orrie control funciion. 

Assembly Language A Coniputer-orienlcd language whose instructions tire. . 
usually in one-to-one correspondence with computer instructions and 
that may provide facilities such as the use of macroinstructions. Synon-
ymous with compare r-ilepentlem. fanguage. 

Asgoriative Memory* A memory whose storage locations WI - G identified by 
their conlimts, or by a part or 1hcir cons cars, rat her ihan by their names 
or positions. 

Asynchronous Timing A technique in which the occurrence of one event 
on a bus follows and depends on the occurrence of a previous event. 

Autoindexing A form of indexed addressing in which the index register is 
automatically incremenicd or Lluercni ell led with L{,2 h memory reference. 

Base In the numeration system commonly used in scientific papers, the 
number Olaf is raised to the power denoted by the exponent and then 
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multiplied by the maniissa Lo determine the real number represented (c.g., the 
number 10 in the expression 23 x 10' —.270). 

Rase Address* A numeric value that is used as a reference in the calculation of 
addresses in the execution of a computer program. 

Binary Operator* An operator that represents an operation on two and only two 
operands. 

Bit* In the pure binary numeration 'System, either of the digits 0 and 1, 

Block Multiplexor Channel A multiplexer channel that interleaves blocks of data. 
Sec also byte rnultiplextir channel, Contrast with selector channel. 

Branch Prediction A mechanism used by the processor to predict the outcome of 
a program branch prior to its execution. 

Buffer* Storage used to compensate for a di 1'1 .0nrice in rate of flow of data, or time 
omurrenee of events. when transferring data from one device to another. 

Bus A shared communications path consisting of oar or a collection of lines. In 
some computer systcrns, CPU, memory, and I/O components are connected 
by a Common bus. Since the lines are shared by all components, only one corn-
ponent at a time can successfully transmit. 

Bus Arbitration The process of•detcrrnining which competing bus master will he 
permitted access to the bus. 

Ilk's Master A device attached to a bus that is capable of initiating and controlling 
communication on the bus. 

Byte Right }rill- Also referred to as an octet. 

Byte Multiplexor Channel* A multiplexer channel that interleaves bytes of data, 
See also Meek MI leipleX r r to arenrff- Contrast with selector ehonne/ 

Cache Coherence Protocol A mechanism to maintain, data validity among multiple 
caches so 'hal every data access will always acquire the most recenl version of 
the contents of a main memory word. 

Cache Line A block of dui associated with a cache tag and the unit of Iransfer 
between cache and memory. 

Cache Memory* A special buffer storage, smaller and faster than main slorage, 
that is used to hold a copy of instructions and data in main storage that are 
likely to be needed next by the processor and thal have been obtained auto-
malically from main storage. 

CD-ROM Compact Disk Read-Only Memory. A nonerasable disk used for storing 
computer data. Thc standard system LLSCN 12-em disks and can hold more lawn 
5M Mbytes. 

Central Processing Unit (CPU) That portion of a computer that fetches and exe-
cutes instructions. It consists of an arithmetic and logic unil (ALLY), a control 
unit, and registers. Often simply referred lo as a procc.v.vor. 
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Cluster A group of inLereonnQctc.d, whole computers workinR together as a unified 
computing resource that can create the ill usion of being one machine. The term 
whole computer means a system that can run on  own, Bran from are elusier. 

Combinational Circuit* A Logic device whose output values. at any given ingtani, 
depend only on the input alucs at that time. A combinational circuit is a 
special case of a 5equeatiat circuit that does not have a storage capability. 
Synonymous with cornhInatoria 

Compact 'Disk (CD) A nonerasable disk that stores digitized audio information. 

Computer Instructive An instruction that can he recognized by the processing 
unit of the computcl l'or which it is designed. Synonymous with machine 
inszruclifJn. 

Computer Instruction See A complete set of the operators of the instructions of 
a computer together with a description of the types of meanings that can be 
attributed to their operands, Synonymous with mac-Nue inslruction set. 

Conditional Jump* A jump that Lakes place only when the instruction that speci-
fies it is executed and specified conditions are satisfied - Con tra i with uncon-
difional 

Condition Code A code that reflects the result of a previous operation (e.g., arith-
metic). A CPU may include one or more condilion codes, which may be stored 
separately within the CPU or as Nil of a larger controf rcgister. Also known 

Control thal portion of a system bus used for the transfer of control signals. 

Control Registers CPU registers employed to control CPU operation. Most of 
these registers are not user visible. 

Control Storage A portion of storage that contains microcode. 

Control [.;nit That part of the CPU that controls CPt ; operations, including A IA.! 
olpera00a ,,, the movement of data within the CPU, and the exchange of data 
and control signals across  WI-mil interfaces (c -g., the system bus). 

Daisy Chain* A method of device inLei -conneciion for determining interrupt pri-
ority hy connecting the interrupt sources serially. 

Data litoi Th4i I portion of a system bus used for the transfer of data. 

Data Communication Data transfer between devices. The term generally excludes 
1/0. 

Decoder* A device that has a number of input lines of which any number may 
carry signals and a number of output lines of which not more than one may 
carry a signal. therc being a one-to-one correspondence between the outputs 
and the combinations of input signak. 

Demand Pagine The transfer of a page from auxiliary storage to real storage al 
the moment of need. 
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Direct Access* The capability to oblain data from a storage device or to enter data 
into a storage device in a sequence independent of their relativc position, by 
means of addresses that indicate the physical location of the data. 

Direct Address* An address that designates the storage lunation of an item of data 
to be treated as operand. Synonymous with acre-level address. 

Direct Memory Access ( WO A) A forth of I/0 in which a special module, called a 
.ou.iiiturc, controls the exchange of data between main mentorY and an 

110 module.. The CPU sends request for the transfer of a block of data to the 
DMA module and is interrupted only 4i1Ler the entire block has been iranw.
ft:fled. 

Disahled Interrupt. A condition, usually created by the CPU, during which the 
CPU will ignore interrupt request signals of fl specified class. 

Diskette* A flexible magnetic disk enclosed in a protective container. Synonymous 
with fie.v.th/c  disk. 

INA Yuck* An assembly of magnetic disks that can be removed YS a whole from 
a disk drive, together with a container from which the assembly must he sep-
arated when operating, 

Disk Stripping A 1ypc of click array mapping in which logically contiguous hlocks 
of data, or strips, are mapped round-robin to consecutive array members. A 
set of togicall!,. ,  consecutive strips that maps exactly one strip to each array 
member is referred to as a stripe. 

Dynamic RAM A RA Nil whose cells are implemented using capacitor ,— A dynamic 
RAM will gradually lose its data unless it is periodically refreshed. 

Emulation* The imitation of all or part of one system by another, primarily by 
hardware, so that the imitating sys.tum accepts the satne data. executes the 
same programs. and achieves the same results as the imitated system. 

Enabled Interrupt A condition, usually created by the CPI:, during which the 
CPU will respond to interrupt request signals of a specified class. 

Erasable Optical Disk A disk that uses optical technology but that can be easily 
erased and rewritten. Both 3.25-inch and 5.25-inch disks ;ire in use. .A t!,.pical 
capacity is 65Ct Mbytes. 

Error-Correcting Code* A code in which each character or signal conforms to spe-
cific rules of construction so that deviations from these rules indicate the pres-
ence of an error and in which some or all of the detected errors can be 
corrected MI i0111 aticaEly. 

Error-Detecting Code* A code in which each character or signal conforms to spe-
cific rules of construction so that deviations from these rules indicate the pres-
ence of an error. 

Execute Cycle That portion of the instruction cycle during which the CPU per-
forms the operation specified by the instruction opcode. 



GLOSSARY 749 

Fetch Cycle That portion of the instruction cycle during which the CPU fetches 
from memory the instruction to he executed. 

Firmware' Micr000de stored in read-only memory- 

Fixed-Point Representation System* A radix numeration sy5tern in which the 
radix point is implicilly fixed in Ilse :series. of digit places by some convention 
upon which agreement has been reached. 

Flip-Flor A circuit or device connlining active elements, capable of assuming either 
one of two stable states at a given time. Synonymous with bistabk circuit. toggle. 

Floating-Point Representation System* A numeration sy .stem in which a real num-
ber is represented by a pair of distinct numerals, the real number being the 
product of the fixed -point part, one of the numeral*, and a VALIQ obtained by 
raising the implicit floating-point base to -a powur denoted by the exponent in 
the floating-point representation. indicated by the second numeral. 

G Prefix ineanin2 

Gate Art electronic circuit that produces an output signa] that is a simple Boolean 
operation on its input signals. 

General.•Purpose Register* A register, usually explicitly addressable, within a set 
of registers, that can be used for different purposes, for example. as an accu-
mulator, as all index register, or as a special handier of data, 

Global Variable A variable (lathed in one porlion or a vienputer RT0141-071 and 
used in at least one other portion of that computer program. 

High-Performance Computing (I-IPC) A research area dealing with super- 
computers and the software that runs on supercomputers. The emphasis is on 
scientific applications, which may involve heavy use of vector and matrix cum-
pination, and parallel algorithms. 

I mmediate Address* The contents of an address part that con1ains the value of an 
operand rather than an address- Synonymous with :cm - level eznetrr.saa. 

Indexed Address* An address that is modified by the content of an index register 
prior to or during the execution of a computer instruction. 

Indexing A technique of address modification by means of index registers. 

Index Register* A register whose contents can be used to modify an operand 
address during the execution of computer instructions; it can also be used as a 
counter. An index register may be used to control the execution of a loop. to 
control the use Of all array, as a switch, Cur !able 104 kup, or as a pointer. 

Indirect Addrese An address or a storage locnlion thaI corilam.:. an address. 

Indirect Cycle That portion of thc instruction cycle during which the CPU performs 
a memory access to convert an indirect.address into a direct address. 

Input-Output (I/O) Pertaining to either input or output, or both. Refers to the 
movement of data between a computer and a directly attached peripheral. 
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Instructilm Address's Register* A special-purpose register used to hold the address 
of the next instruction to be executed, 

lustructiou Cycle The processing Ferrol -mei 
by, 

 a CPU to execute a single instruc-
tion. 

Instruction Format The ia..■,. ,out of a computer instruction as a sequence of bits. The 
format divides the instniction into fields, corresponding to the constituent ele-
ments of the instruction (e,g., opcode, operands). 

lus-trudion Registe0 A register t hat is used to hold an instruction for inlerpretation. 

integrated Circuit (IC) A tiny piece of solid material, such as upon which 
is etched or imprinted a collection of electronic components and their inter-
connections. 

Interrupt* A :sus ension of a process :  such as the execution of a computer pro-
gram, caused by an event external to that process, and performed in such a 
way that the process can be resumed. Synonymous with itnerrupth»?. 

Interrupt Cycle That portion of the instruction cycle during which the CPU checks 
for interrupts, If an enabled interrupt is pending, the CPU saves the current 
program state and resumes processing at an interrupt-handler routine. 

Interrupt-Driven 1/0 A form of 1/0. The CPU issues an 110 command, continues 
to execute subsequent instructions, and is interrupted by the I/O module when 
the latter has complcicd its work. 

110 Channel A relatively complex I/O module that relieves the CPL I of the details 
of 1.0 operations. An 1/0 channel will execute a sequence of I/0 cornmanc.N 
from main memory without 111e need for CPU involvement. 

1/0 Controller A reiatively moduie that requires detailed control from 
the nit.) or an 1/0 channel Synonymous with device confrolle r. 

1/0 Module One of the major component types of a computer_ It is responsible for 
the control of one or more external devices (peripherais) and for the exchange 
or data between th e devices and main memory and/or CPU registers. 

I/O Processor An I/O module with its own processor. capable of executing its own 
specialized 1.0 instructions or, in scorns eaScf, general-purpose machine 
instructions. 

Isolated I/O A method of addressing I/O modules and externai devices, 'The 1/0 
address space is treated separately from main memory address space. Specific 
110 machine instructions must be used. Compare 077(-: nu) ry - rna pp e d 

K Prefix meaning = Thus., 2 kb = 2048 bits, 

Local Variable A variable that is defined and used °rib ,  in one specified portion 
of a computer program. 

Locality of Reference The tendency a processor to access the same set of mem-
ory locations repetitively over a short period of time. 
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M Prefix meaning 2'" = 1,048,576. Thus. 2 Mb — 2097,152 bits_ 

Magnetic Disk* A flat circular plate with a magnetizable surface layer, on one or 
both sides of which data can be stored. 

Magnetic Tape A tape with a magnetizable surface layer on which data can be 
stored by magnetic recording. 

Mainframe A term originally referring to the cabinet containing the central pro-
cessor unit or "main framc" of a large batch machine. After the emergence of 
smaller minicomputer designs in the early 19705, the traditional larger machines 
were described as mainframe computers, mainframes. Typical characteristics 
of a mainframe are that it supports a large database, has elaborate 1/0 hard-
ware, and is used in a central data processing facility. 

Main Memory* Program-addressable storage from which instructions and other data 
can be loaded directly into registers for subsequent execution or processing. 

Memory Address Register (MAR)' A register, in a processing unit, that contains 
the address of the storage location being accessed, 

Prlemory Buffer Register (MRR) A register that contains data read from memory 
or data to he written to memory. 

Memory Cycle Time The inverse of the rate at which memory can he accessed. 11 
is the minimum time between the response to one access request (read or 
write) and the response to the next access request. 

Memory-Mapped 1/0 A method of addressing I/O modules and external devices. A 
single, address space is used for both main memory and 110 addresses, and the 
same machine instructions arc used both for memory readlwrite and for W. 

Microcomputer* A computer system whose processing unit is a microprocessor. 
A basic microcomputer includes a microprocessor, storage, and an input./ 
output facility, which may Or may not be on one chip. 

Prlicroinstructiote An instruction that controls data flow and sequencing in a 
processor at a more fundamental level than machine instructions. Individual 
machine instructions and perhaps other functions may be implemented by 
microprograms. 

Micro-Operation An elementary CPU operation, performed during one clock 
pulse. 

Microprocessor* A processor Ve.  11 ONG elements have been miniaturized into one or 
a few integrated circuits. 

Microprogram ,'  A sequence of microinstructions that are in special storage where 
they can he dynamically accessed to perform various functions. 

Microprogrammed CPU A CPU whose control unit is implemented using micro-
programming. 

Microprogramming Language An instruction set used to specify microprogram. 
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Multiplexer A combinational circuit that connects multiple inputs to ti single output. 
AE any time, only one of the inputs is selected to he passed to the output. 

Multiplexor Channel A channel designed to operate with a number of 1/0 devices 
simultaneously. Several [10 devices can transfer records at the !-.di me ti me by 
interleavino, items of data. See also lyre tmlltiplexor channel, block multiplexor 
cheatttel, 

Multipromisorw A computer that has two or more processors that havexammon 
access Loa main storage. 

Multiprogramming* A mode of operation that provides; for the interleaved execu-
tion of two or more computer programs by a single processor. 

31oltitaskine A mode of operation that provides for the concurrent periotmanec 
or interleaved execution of two or more computer lase. The same as multi-
programming, using different terminology, 

N41111111W1111111 Memory Access ( NUMA) Multiprocessor A shared-memory multi-
processor in which the access time from a given processor to a word in memory 
varies with the. location of the memory word. 

Nonvolatile Memory Nlelnory whow will Lilts Lire stable and do not require a con-
stand power source- 

Nucleus That portion of an operating system that conlain ,; its basic and most fre-
quently used functions. Often, the nucleus remains resident in main memory. 

Ones Complement Representation Used to represent binary integers. A positive 
integer is represented as in sign magnitude. A negative integer is represented 
by reversing each bit in the representation of a pOS ir ive integer of the same 
magnitude. 

Opeode Abbreviated form. for operation code. 

Operand* An entity on which an operation is performed. 

Operating System* Software that controls the execution of programs and that pro-
ides services such as resource allocation. scheduling, input/output control, 

and data management. 

Operation Coder. A code used to represent the opera inn; of a computer. Usually 
abbreviated to opcode. 

Orthogonality A principle by which Iwo variables or dimensions are independent 
or one LinoLlicr. In the CE3ElLeX1 of an instruction set, the term is gencLully used 
to indicate that other elements of an instruction (address mode, number of 
operands. length of operand) are independent of (not determined by opcode. 

Page In a virtual storage system, a fixed-length block that has a virtual address 
and that is transferred as a unit between real storage and auxiliary storage. 

Page Fault Occurs when the page containing a referenced word is not in main 
memory, ' rhis causes an interrupt and requires the operating system to bring 
in the needed page. 
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Page Frame* An area of main storage used to hold a page. 

Parity Bit* A binary digit appended to a group of binary digits to make, the sum 
of all the digits either always odd (odd parity) or always even (even parity}, 

Peripheral Equipment (IBM) In a computer system, with respect to a particular 
processing unit. any equipment that provides the .processing unit with outside 
communication. Synonymous with periphcrof devitv. 

Pipeline A processor organization in which the processor consiss oi a number of 
slages, allowing multiple instructions to he executed concurrently, 

Predicated Lxecution A. mechanism that supports the conditional execution of 
individual instructionli. This makes it possible to execute speculatively both 
branches of a branch instruction and retain the results or the branch [hat  ix uui-
m`utely token. 

Process A program in execution. A process is controlled and scheduled by the 
operating system. 

Process Control Block The manifestation of a process in an operating sysiern. ft 
is a date xlrucl ure containing information about the characteristics and state 
of the process. 

Processor* In a computer, a functional unit that interprets and ewcalLe!.3 inslruc-
tims. A processor consists of at least an instruction control unit and an arith-
metic unit. 

Processor Cycle Time The ti me required for the shortest well-defined ( ' micro- 
operation. II is the basic unit of time for measuring all CPU actions. Synony-
mous with ynachine cycle rime, 

Program Counier Instruction address register, 

Programmable. Logic Array (PIA)* An array of gates whose intereomneei itms c4in 
he programmed to perform a specific logical function. 

Programmable Read-Only rit9emory (PROM) Semiconductor memory whose.con-
tents may be set only once. The writing process is performed eleel rically and 
may be performed by the user at a time later than original chip fabrication.  4 

Programmed 1/0 A form of I/O in which the CPU issues an I/O command to an 
I/O module and Inwi then wait fur the opera lion to he compfeie before pro-
ceeding. 

Program Status Ward (PSW) An area in storage used to indicate the order in 
which instruetiOns are eNecutecl. and to hol d  and indicate the status of the com-
puter system. Synonymous with proce.v.vor Alatu.s: word. 

Random-Access Memory (RAM) Memory in which each addressable location has 
a unique addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior aeces ,;. 

Read-Only Memory (ROM) Semiconductor memory whose contents cannot be 
altered, except by destroying the storage unit. Nonerasable memory. 
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Redundant Array of Independent Disks (RATD) A disk array in which part of the 
phvsical storage capacity is used to store redundant informalion allow arts 
data stored on the remainder of the storage capacity. The redundant informa 
tion enables regeneration of user data in the event that one of the array's 
member disks or the access path itF it fails. 

Registers High-speed memory internal to the CPU. Some registers are user visi-
ble: that  available to the programmer via the machine instruction set. Other 
registers are used only by the C1-1.), for control purposes, 

Scalar* A quantity characterized by a single value. 

Secondary Memory Memory located outside the computer system itself, including 
disk and tape. 

Selector Channel Art 110 channel designed to (Terme uiih only one I/O devick• 
a time, Once the 1/0 device is selected, a complete record is transferred one 
byte at a Lime ,  Contras!. with MK* mithiple.vor channel, prouldpleror channel. 

Semiconductor A solid crystallinc substance, such as silicon or germanium. whose 
electrical conductivity is intermediate between insulators and good conduc-
tors, Used to fabricate transistors and solid-state components. 

Sequential Circuit A digital logic circuit whose output depends on the current 
input plus the state of the circuit: Sequential circuits lhtm possess the attribuic 
of memory. 

Sign - Magnitude Representation Used to represent binary integers. In an N-hit 
word, the leftmost bit is the7.,ign (0 = positive, J = ncgalive) and the remain-
ing N  I bits comprise the magnitude of the number, 

Solid -State Component* A component .  whose operation depends on the control 
of electric or magne1ic phenomena in solids (e.g., transistor crystal diode., fer-
rite core). 

Speculative Execution The execution of instructions along one patio of a branch. 
If it Cater 1w -ris out that ib is branch was not taken, then the results of the spec-
uLitive execution are discarded. 

Stack* A list that is constructed and ma.n.a.ncd so that the next item to be 
retrieved is I he most recently stored item in the list last-in-first-out (LIFO). 

Stalk RAM A RAM whose cells are implemented using flip-flops. A static RAM 
will hold its data as long as power is supplied to it; no periodic refresh is 
required. 

Superpipelined Processor A processor design in which the instruction pipeline 
consists of many very small stages. so that more than one pipeline stage can he 
executed during one clock cycle and so that a largc number of instructions nu!). 
he in the pipeline al the same time.. 

Superscalar Processor A processor design I hat includes multiple-instruction 
pipelines, so that more than one instruction can he executing in the same 
pipeline stage simultaneous/v. 
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Symmetric Multiprocessing (SMP) A form of multiprocessing that allows the 
operating system h execute on any available' processor or on several available 
processors simultaneously. 

Synchronous Timing A technique in which the oceunrence of events on a bus is 
del ermined by a dock. The clock defines equai-width time stots, .und events 
begin only at the beginning of a time skit. 

Spaeth Bus A bus used to interconnect major computer components (CPU, Tr)  - 
ory, I10), 

Truth Table* A table [hal cla scri bes a logic function by listing all possible combi-
nations of input values And indicating, for each combination, the output value. 

Twos Complement Representation geed to represent binary integers. A positive 
integer is represented as in sign magnitude. A negative number is represented by 
taking the Boolean complement of each bit of the corresponding positive, num-
ber, then adding 1 to the resulting bit pattern viewed as an unsigned integer. 

Unary Operator* An operatc.lr that represents an operation on one and only one 
operand. 

Unconditional Jump* A jump thit lakes place whenever the instruction that spec-
ified it is executed. 

Uniprocessing Sequential execution of iristrucLions by a processing unit. or inde-
pendent use of a processing unit in a multiprocessing system. 

User-Visible Registers CPU registers that may be referenced by the progrAininer, 
The instruction-set forrmil a,Ilows one or more registers to be specified as 
operands or addresses of ope 11 TiLk. 

Vector* A quantity usually Oun -nicrized by an ordered set of scalars. 

Very Long Instruction Word Refers to the USC of instructions that contain multi-
ple operations. In effect, mulliple insunicrium are contained in a single word, 
'I'ypica Fly, a VLIW is constructed by the compiler, which ptaces operations that 
may be executed in parallel in the same word. 

Virtual Storage* 'Flit,: storage space that may be regarded as addressable main 
storage by the user of a computer sy ,:d ern in which virtual addresses are 
mapped into real•addresses. The size of vi itruil Ntoragc.  limiled by the ad-
dressing scheme t.-pi the computer system and by the amount of auxiliary tor-
age available, and not by the actual number of main storage locations. 

Volatile Memory A memory in which a constant e]ectrica[ power source is 
required to maintain the contents of memory. if the power is switched off, the 
shored information is lost 
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service 
I rocess. 253 

WR11 E. 59, 03 
Called 

ealI insiructiii.ns, 351 
Call instructions 

invked, 351 
nesting of procedures, 351 
Pentium interrupl proecssor, 448 
win:cc/11re, 35]--+54. 466 
registers, 351 
star[ tit called proeadura, 
top of iitaelt., 35E 

.Call procedure 
al location X 

insttuelii.m.s. 
Call return 

behilvior example, 1 31 

Pantium instructions. 35'5. 
Canonical form 

13rFolean function, 703 
Capacily, 97 

cAlcrmil metro.-Fry, 97, 164- 191 
11.1 . 11 data iransier 

RAID 0, HO 
marriory, 41 4)— [ 

CAR, 603, 611. 614 
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CcIrEy 

C01113110IL fields or Flags, 417 
lookahead. 719 

{';lily iii 
8832, 634 

CAS, 144. 147. 156 
CASE rtia.hinu ihstruclitni, 464 
Causo•and-effect dependencies 

bluing diagram, 93 
{'AY, 166, 167, 185 
C.'.:13.E lines 

PCI huh data transfer, 85 
CC-NUMA :  670-673 
CD. See Compact disk (CD) 
CD-R, 187 
C.'1?1 A.3,1, 154, 159 
CD-RON1.. See Compact disk read only mcin• 

(try (CD-ROM) 
1:144, 1.S7 

d L'scn.pI ]otl, 184 
CE :  146 :  156 
Central control unit 

SNIP, 652 
['antral pnicesi‘iiig unit (CPI„:), 9, 11. 25 

Into Center 
web 14 

Intel 8085. 591 
ini‘truction set. 330 
interconnection :  9 
with internal bus, 588 
ioralBaal ructuro, 414 
register, 373 

rritiLline instruction, 331-332 
scructure and function, 4.12-457 
syslem bus, 413 
transigiir counl 

growth, 30 
Cr‘1, See Current frame marker (CFM) 
{:FrAiisiitg, 679 
Channel architecture 

inpullouiput (I,'O), 222 
Characters 

I RA 
LC WI I MI, ZOO 
encoded. 1{19. 

machine instruction, 333 
inosri q instruction., 479 
unpack. 340 

ctor-slring tioning 
big-endian processor :  37S 

Charles Babbage Institute 
web sites, 45 

Cheek hit calculation :  153 

Check bits 
1.51 

Checking instruction 
I A-04, 554 

Ch&.k pointing 
dusters. 069 

Chip 
description, 29 

Chip enable (CE) 
pin 

chip oackag.,ing, 146 
signals 

RDRAM, t56 
Chip logic 

serniamduct.or memory, 143-144 
Chip piickiving :  144-148 
Circular buffer 

organizalion 
overlapped windows, 470 

Pentium 4 instruction•level parallelism, 526 
Circular 

SPARC. 4W 
CISC. See Complex instruction set compuler 

.( C1SC) 
Clock 

bus control lines, 71 
c tell, 75 
li ne 

sytern bits. 93 
processor control. 585 
signal 

Inning tlitiguarn,q3 
Clocked S-R 

sequential circuit, 722 
Ctuster, 663-669 

memory :  1192 
parallel processing, 663-669 
v.s. S M 
superior pric•iperformanee, 664 

Chisic CT .3TC: hiic:ci LITE, 667, 668 
Chu:Ler Coniigur L [OILS. 664-666 
Cluster methods 

active seeondary, 665-666 
heik.rits ariLl limitations, 665 
passive standby, 665-666 
512pafaiit WA'S, 665-666 
servers connected to disks, 665-666 

shirt: diisks... 665-666 
shared disk, 060 
shared rit5thing. 666 

C1N 
RD, 185 

Code example 
conditional branch 
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llowe r 533 
Code segment pointo - 

PCnliuln inli:Trupt proi:essor. 448 
Code si  reliniye 

RISC I,475 
Color Plane Reprt.serilabern 

image compositing. 362 
Ciilumn address selcct (CAS). 1% 

pins, [47 
signals, 144 

jowl 1,:irc 'Ails %  699-700 
Command decoding, 

110.202 
Connie( Ciai CS I nip art;es, 22-24 
Committing 

itNiruction, 
Common bus 

SMP. 610 
Communication, 197 

pathway, 69 
ti ming diagrams %  92 

C:OMMUtatiVe I 2.W$ 
B ocilioan algebra, 695 

C:c Full) 

I A-04 architecture :  5411 
Compact disk (CD), 184 

dt.scription, 184 
operation. 185 

ComplE1 disk read-only memory (CD-ROM), 
1g4-1S6 

advantages :  185 
block formai, 186 
description. 1g4 
disadvantages. [86 
storage illosimitpd, 188 

Compact disk reeardable [CD-k), 187 
Compiiction. 
Comp.arch 

USENET'. 14 

USENE:F. 14 
Comp.arch.storage 

1,.:SENFT, 14 
Comparison 

MMX inslruction and description. 360 
Compatible cl.anputers 

family characteristics. 3] 32 
Compiler-based coherence mechanisms. 

657 
CLimpiler-based register optimization, 

473474 
Completeness 

pi)p- 3c111. 
Completion queue entry (a)Iii). 231 

Complex instruction sct computer (C1SC). 
474-476 

architectures. 465-466 
characteristics, 463 
instructions 

motivation. 543-544 
rilicr4Ipel =NS. iT, 653 

✓S. RISC characteristics, 479 46] 
Compound instruction 

[ WM yectoi facility., 684-685 
vector computation. 683 

Corrip.para]lel 
USENET, [4 

C'fimputer 
iiLquire and appivcidlion, 11 
evolution and performance, [5. 45 
fri rnidy characteristics, 31-32 
history. 16-36 

Computer architecture 
definition, 4 
studying :  U-13 

Computer arithmetic, 284-325 
web sites, 324 

Computer components, 50.53 
i.op-level view.. 53 

C:ornputer elements :  28 
Computer function, 53-67 

gmymii4)319, 24 
Computer instructions. St.  Machine instruc-

tions 
.C.:C1111plik2( r11e111ilry N'Y'S LCIF1 

oyurvicw, 9(1.• 103 
Comptur modules. 68 
t:oinputer opera t 
Computer organization. 647 

definition :  4 

taxonomy. 68t) 
CcUTIp43Lcr Sci(!ticc Student RUtiCRIEGC Site 

web site, [3 
Computer system 

lave' ..i and views.. 239 
Computer technology, 4-5 
Como] E.! na tcd asynchronous subaction.s. 228 
C.ondit ional branch 

code e.:tamplc 
I'Llwei.1 1C. 533 

l AS computer, 22 
(161TUCL 

transfer of control operation. 349 
instniet jou pipeline operation, 427 
inicroseql.tencer. 632 

Conditional jump 
Pentium conditions, 359 
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Condition codes 
Pentium. 357 
registers, 416 

(.‘ondit i on register 
PowerPC 

interpretation (Fr bits, 454 
processor, 450 

Consistent order 
big-endian processor, 378 

Constant angular velocity (CAV), 160 
illustrated, 167 
RD. 185 

Constant linear velocity (C11V ) 
RD. 185 

Context data 
process control block. 252 

Continuous-field simulation 
vector computation, 674 

C1ONTROI. 
keyboard-handling, 216 

Control, 6-7 
buffer register, 603 
functions. 7 
instruction type. 333 
1:0, 205 
I R, 54 
microelectriirtics, 
Pentium processor, 441 
of pr(icessor, 583-.594 
status registers. 412, 414, 416-419 

Control address register ((AR). 603 
ITINf 3033, 61.1 
microinstruction, ti l 

Concri rl characters 
E RA, 2(s) 
machine instruction, 338 

(.1ontrollcd access to files 
OS, 24(1 

Controller 
1/0 channels. 221 

Control lines, 70 
Control logic 

1.'0, 198 
Control memory, 602, 603 

organization, 602 
Control registers, 412, 414, 416-419, 603 

Pentium, 444 
C:•ntrol signals, 587 

active control signals. 587 
data paths, 5 8n 
example, 586 
PO, 198 
micro-operations. 587 
processor. 576. 585  

processor control, 584-586 
ft-4.ml control hus, 585 
co control bus, 58.5 

read, 594 
system bus, 586 

Control spe culation  
T A -64, 553-554 
1 A -64 instruction. 542 

Control transfer 
Pentium instruct ii in and description, 356 

Control unit, 9, 12 
CPU, 413 
decoded inputs, 596 
i mplementing technique. 576 
inputs, 594 
logic. 595 
microarchilecture. 603 
'nodal, .58.5. 
operation, 575- 597 

hardwired implementation, 591-597 
micfo-operations, 577--583 
of processor, 583. 594 

organization, 616 
proecssot , 576 

Conversion 
binary and du.cirnal, 735-738 
CPU actions. 343 

instruction and description, 360 
operation name and description, 347-348 

Coprocessor instructions 
V1IPS, 487 

Cores, 138 
Cost 

En ern ory, 99-1(13 
si milar or identical 

family members, 32 
vs. size 

two level memories. 133, 134 

PowerPC processor. 450 
transistor 

E1P11.: growth, 30 
Counters. See also Program counter (PC} 

disables read born time stamp instruction. 
444 

microprogram 
TI 8800, 630 

register 
Ti 8800. 630 

ripple 
sequential circuits, 727 

sequential circuits, 727-730 
synchronous, 728 730 

CPU, See Central processing unit (CPU) 
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CQE, 231 
(.'ray supereouiputers,6.79 
Cross-hatching, 473 
CorRml frame. mark., r (cfm) 

I A-64 architeourc, 568 
rugiswr, 566,5H 

E A-6,4 iiistruction set, 5C3 
( ..:11.u .rnt wind OW pointer (C'WP) 

poinls, 469 
SPARC!, 495 

( WV., 469,495 
Cyclu!•Lii221ing 

DMA. 219 
Cyclic shift operalions, 347 
Cyhnders.370 

I) 
Daisy chain, 212 
Daia 

CD-ROM, 186 
EA), 198,202 
inovum4:n1slora.gc Incl processing :  240.242 

Data bits 
layout. 151 

Fiala bits, 70 
width :  7.I.) 

Data each): first 
MIPS :  494 

Data cache second 
MIPS, 494 

Dar. ebannels, 
Data communications, 7 
Data Flow, .17'..?123 

2 Ethly3i 
processors, 38 

fuich cycle, 422 
indirect cycle, 423 
inlc•rrttpi LyLl12. 423 

Data formatting. 165• 167 
Data lincs, 
Dala marrying 

P.A1[)le\'CI () array, 179 
Data movement, t5-7 

insiructitm Iypu., 333 
tnicroeloctronies. 28 
Penriorn And deSCripti011 :  356 

na LA operation 
instruction state , 

Datil urganjAilitlith, 165-167 
Dam paths. 587 

control sigmils, 
Dalai pins 

signal lines, F!.1.82 
Data proccssing, .f1-7 

itimruLtion type. ".%33 
I R. 54 
ruicroolc.ctrouies, 

DATA REALlY ]inc, 216 
Data registers, 415 
Data .'"ignals 

1ntel 591 
Data lq) : 1 
D:11; 

1 A-64, :-o•si • 
I A-O4 insiruction. 542 

Data storage. 0.7 
mstruction 3713 
microel I nn [CS :  28 

Data Storage. Magazin' 
siies, 191 

Data stream. (45.-647 
parallel processing, 646. 

Data throughput rates. 231 
nat4 transfor 

CPE; actions, 343 
l AS computer, 22 
MN1X instruclion and de.seription, 2.60 
operalion name.  Jrld description, 343-344 
PC'] bus :  85 
type 

bus design. 7t 
D17R-81.)RAM, 156 
Debugging exteiisions 

Pentium control rcgisler, 446 
DEC. See Digital Equipment Corporatidn 

( DEC) 
Decimal and binary 

conYcl:SiOn. 
Decirnal+AS(.11 dumps 

big-Indian processor, 37g 
Dccirnal sys[4:m :  734 
De&.odi instruction 

pipelining, 425 
D........c.o(11,! N, 605 

co inNnattonal circuit, 711-712 
four inputs and sixieen out puts, 595 
3 inputs 8 outputs :  712 

IDeo-de stagL 
Intel..9,4)48(1, 43'9 

DeLoile .-itage 2 
Intel 8W% 439 

Deco& unit 
Pentium 4 cache organizarion :  121. 

Decremcni 
.i rithinc:tic operations, 344 

Decrementer address [tub 
lutwl 8116:7 . 5:59-5194 

1)1.7,1) Lode, 352 
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D elav  branch. 43738, 4M 
striveR 

MSC' rntichine. 
superscalar 518 

Delay ski t, 4 4 
Demand paging, 263-264 
1)eMorgiin'5 theorQM, 697 

applying, 709 
Rook an algebra, 695 

implementation. 713 
Denormalized numbers. 322 

IEEE:. 754, 323 
Density. 167 
Depgrideneies 

effect, 510 

Boolean aigebro, 6(11 
microinstruction :  611) 

Dem 
I A-64 archireeture, 549 

Destination register 
TI 8832, 634 

Device controller, 204 
E)E1\ SEL 

PC'[ bus data tran$fer, 85 
D flip-flop 

S424.[L1124111}11 circuit., 722 
Digital Equipment Corptiridion (DEC), 2.5. 

See also PDP-8.; PD1u-10., PDP-11 
Digital 693-730 

Eloolean algebra, 65./4-696 
combination circuits. 699-72i) 
gates, 496-698 
sequential circuits, 720-734) 

Digital ver5alile disk. See Digital video disk 
( D VD) 

Digilal video disk (I)VD), 187-188 
description, 14.::4 

Digital video disk recordable (DVI)-R) 
dewrip t ion, 184 

Digital video clik rewricable (DVD-RW) 
description, 184 

Digital video disk ROM (DVD- ROM) 
storage illustrated, 1f 4,g 

Dijk$1.ra's algorithms. 374 
Direct-mxes,,i device, 190 
Direct addressing :  3/4,-1-385 

PDP- 10. 3co 
Direct eneciding :  62() 

microinstruction, 616, 619 
Dircciiim nag 

Ei•I_A(3S registei: :  442  

Direct mapping 
1:84114, 1. 07 
cache organization, 
4.! xumplo. 111 
1.12ClirlitiLlt, 1 1 1 -112 

Direct memory access (DMA). 67. 69.9 ,, 
1 %, 204.216-220 

block diagram, 219 
configurations, 220 
fienctiim. 217 
input, 206 

Directory prillocols. 658 
Disabled i merrupt, 64 
Disa hies. read from time stamp counter 

RDTS(') inslructiOri, 444 
Discrete component, 25 
Disk. See inrso Compact disk (CD); Digital 

video disk (DVD); Rahintlani Array 
of Indeimrsden Disks ( I)) 

cache. 103. 129 
data layout. 166 
doubie sided. 169 

166 
floppy. 171) 
formatting 

exarnple, 167, 168 
'Winchester, 168 

Iransfkl.r liming, 172 
layout methods 

comparison. 167 
rmignciic, 164-17.1 
movable-head, 16[ 
nonremovable, 169 
optical, 96 

products, 184 
port a bilily 

disk system, 169 
removable, 169 
shared 

cluster method description, 666 
'Singh; large cripensive, 175 
single-sided. 169 
types :  170 
Wind:sc.:4 cr. 170 

track format, 1448 
writes, 103 

Disk di itig. 201 
components. 161,4  
pa rtimel ers: 171 

Disk perforiiiiinee 
access time. 171 
pirromieb.irs, 171-174 
rotational delay, 171-.173 
rotational latency. 171 
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5121  li me. 171-17? 
sequential organization, 173 
timing comparison. 173 
rrollsfer time, 173 

Disk system 
hcad. mcchanis.rns :  164 ) 
head motion. 169 
physical characteristic. 169 
plsileoi, 1.69 
sides, 169 

Dispatch unit 
Pinsier PC: 6(11..523-531 

Displacemenr 
ii.ii..1re55irtg, 336-387 
Pentium, 406 

mode. 391 
Distribuiive laws 

Boolean algebra, 695 
DIV 

opcndes, 332 
Division 

nmiing-po in .!, 317-320 
integers. 304.313 

DLTapc 
web sites, 1911 

1)1.:L'ape drives. 189 
DMA. 

Sf,i, 
 Dircot memory acCi2 ,

ti I DMA) 
Double data rate SDRAM WDR-SDRAM), 

156 
Double-ertor-deie.ding (171= D) code, 

152.-153 
Double sidcd disk, 169 
Do LI 11 L' word 

packed 
MMX, 359 

unsigned 
PowerPC'. 341 

Doughnui-shar2d lerromagneric loops. 138 
DRAM, 33 
DRA pn rlti 

'1 9 ] MOO, 630 
D1t11 ports 

TI MOO, 630 
Dual Address Cycle 

PC] command. 8547 
DVD, 184, 187-188 
DVD-R, [34 
DVD-ROM 

storage illustrmed, 
DVD•RW. 184 
Dynnmic 

defined, 139 
Dynamic branch strategks, 

435  

Dynamic parlitioning. 
effect. 260 

Dynamic percittage 
operands, 466 

Dynamic RAM (DRAM). 38. 96. 138 
cell, 141 
chanteteriNticx, 139-142 
controll er 

PC:I, 79 
Gyolluii(in. 39 
organizations 

advanced. 154-15'9 
bends, 40 

EBCDIC 
machine.. inslruction. 338 

EDP, 35.5 
Eck ert-Mauchly Computer Corroralion, 22 
1 ..- DVAC, L7 
REPROM, 140, 143 
Effective. address. 384 

PowcrPC memory management. 275 277 
FE-AC iS register., 442 
8048(2.. also 1nte 80486 

pipeline, 439 
8-bit parallel register, 726 
82C59A inixrrupi cii ntrolltm.. 213*, 214 
8847 ]loafing-paint 

1 . 1 .88CO. 629 
8818 m ic ros4,!qutpno.::t. .Vve edisfy Texas 

Instruments Kg 8 
`11. 8&X1 629 

Eigin Queens Problem :  556 
3832 registered ALL:. See al5r) Texas lnslru-

mcnis 8832 
T1 88W. 62 91 

881)1) 5D.B. See aisr? -1 -1.n.w... f ri4trurrieo s 13800 
eomponenk, 627 

Electrically erasable PROM (EEPROM) 
descriplion. 143 
memory tyiv characteristics, 140 

Etectronic Discrete Variable Compuler 
(EDVAC), 17 

Electronic Numerical integrator and Com-
puter (ENIAC). 16 

Eike pHi,b 
A-6,4 architecture. 550, 553 

EV1M.5. 446 
Frurny MM X State (EMMS)„ 
Ern LliiIL  51 1 (137 

Pentium control resister, 444 
Endinn Triaps 

example- 378 
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Endiuniress 
concept, 377 .380 
property, 377 

EN1AC, 16 
ENTER instruction, 355 
EPIC 

544 
Epilog phase 

1A-64 pipelining, 561 
EPROM. . 140, 143, 146 

logical functions, 345 
Equal 

C{,1111111. Hi 1 . 1321 Cl; 1)T Nag,. 417 
I.'.clti.tl sip  partitions. 2,59 

progrtimmable rcac•only incinory 
(EPROM) 

description, 143 
memory iype characteristics, 140 
package 146 

Error-oorrecting code, 149 
function., 149 
web site. 159 

Error correction 
increase word length, 151 
techniques. 138. 148...153 

Error detedion rc.sponsc. 
OS, 240 

Error rr:porling pins 
1'C.1. signal lines, 31,X32 

ESP. 355 
Pc.mium infcrrupl. profxssor, 448 

Events 
5 ,,‘,,‘(11.1c.n.ces, 92 

Except ion 
Pentium, 447-.449. 
register 

oriicesrior, 450 
Exclusive 

NIES( proinc-„l, 
write hit, 662 

Exclusiw-OR (X03.1.) 
logical funciions...145 

Execute instruction. 54-55 
Fu.ciition 

CPU's insiluetion 420 
cycle, 54 

data llow. 422-423 
description. 57 
rnicr45-Clpera t ions, 581 

uction 
pipelining. 425 

Intcl 8006. 439 
inicroin si.ruct ion. 61)3 
processor control, 584 

suEuencing 
RISC advociies, 464 

units 
Pafilom l Carlv:.. organization. 1.?...1 

Ex pi-men t over 11  43
r•  

amiting-poin t. 3 1 5 
17.xporsnE undc3 . 11cpw 

floating-point. 3]5 
Exponent value 

Roating-oonn. noiriber, 3178 
Expression evaluation, '374 
17 xtqm.3cd. Codtg.3 DI2cirrpo.1 nil:AN:ham:42 

(:ode 
machine instruction, 338 
Sf1.2.1I1cd. Ni.2 Lk pH jill v21' S p) 
Pentium interrupt processor, 448 

Pentium' control register, 444 
External cache, 120 
EN1C1- 11;11] cicti iixs. 197-201 

block diagram. 198 
External interracc. 223-23.2 
External mentor,. C.; I paCi V, 97, I 64-1 9 1 
External memory ivsteins 

;val. Sites, 1)1 
External nonvolatile memory:, 102 

Fa ilback 
667 

E i i r, 666 

Failure management 
clusiers, 666-667 

Fairchild. 34 
Fairness intervals, 266 
Family e.oraxpi. 462 

computer characteristics, 31 32 
Roil] 'okra nce 

SNIP, 653 
]etch, 53 

CP1.r9 imirtiction cycle.. 42f) 
and execute in ri, 54-58 

Fetch cycle, 21 
dala Ilow, 422 
micro-operations. 5?24 SEA 
scgmncc or events. 57 ')  

Fetch, 
CPI. -- 413 

Foch 
ltanium. 568 

Fetch instruction 
CPU, 412 
pipelining, 425 

Fetch operand 
425 
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Fetal overlap. 424 
rclai utl i l  

4 cache organization. 121 
Fic Id-programmable logic array, 715 
FIFO 

cache, 117 
FireWire, 1.96. 224-228 

configuration :  225 
protocol stack. 266 
wrial 1-Pus, 224 
subactions, 22 
web sites, 233 

Firmw2Ire..601 
First-in-first-out (FIFO) 

cache. L1.7 
Firsi time unit 

fetch cycle, 579 
Fivu-Itagc pipeline 

80486, 439 
Five.•state process model. 252 
Fixtal-head disk, 168 
Fixed partitioning 

example:, 259 
represcrodlion. 290 

Fixed-size partitions :  257 
Flag control 

Penfiuni dexcripiion :  35? 
Flags. 416 

Pc nlittirk-proc.;:Nbi ir, 441 
processor con LE a 5&5 

Flash memory 
duscripiiiin, 143. 
memory type characteristics, 140 

SM.P, 6.50 
Flip•tiops 

sequential circuits. 720-721. 725 
clocked S-R, 722 
0, 722 
J-K, 723-724 

Floating-point 
addition and subtraction. 316 
division. 319 
execution units 

Nrilium 4 inslroc(ion-]cvel 
527 

multiplication. 31 8  
allle rati., 315 
Protium data types, 339 
PowerPC 

description, 363 
instructions. 3153. 531-532 

regiswoi 
IA-64 instruction set. 563 
8847, 629  

unit. 528 
Pentium processor :  441 

Ploating-point 313-324 
binsry .  

IEEE standard, 322 
norrnalizolion. 317 

i nilicaiisd aligniwilt, 317 
subaction„ x 1 5  
web Rites, 324 
era eltb2k, 317 

Floating-point numbers, 284 
aril hrn l is 9per rs L I L1 rts, 315 
biased representation. 308 
density, 311 
c.s.rionent v,Ilue, 308 
IEEE 754, 314 
mantissa. 308 
signifleiincl, 308 

Floating-point repreFR nta lion. 284.307-313 
IEEE 754, 312 

binary, 312 
principles. 307-312 

Flop t Tit .51H Ws Ant]  .LOrit i't11. register 
(FE/SCR) 

PowerPC processor. 450. 
Floppy disk. 170 
Haw dependency,:509-511 
FORK, 676 
Format, 382-408. Set aho Instruction format 

2P4 
block 

.C1-)-R1013,4 :  
data, 165-167 
disk cxamplu...167-168 
expressible, 3l0 
1A-64 architecture 

assembly language, 5418-S50 
instruction, 
registc.r. 5:66 

lEtNel base-16, 331 
IEEE 754, 31.2. 313 
IRA conirol, 200 
memory-management 

l AS computer. 19 
Pentium', 271 
PowerPC, 2.75-277 

micn,inxl ruclirin 
horizontal. 62] 
1BNil 3033, 626 
I.-SI-11 :  624-625 
'texas 1 nstnanticnts  8800. 628-629 

filint2ric dsta, 340 
PowerPC register. 453 

exprussihle. .110 

• * 
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Fcrrn iat rcemi.:( 

floating-point. .308 
vriTinbic 

brailch control logic, 613 
VLSI. implementation 

RISC. 177 
Winchemei disk track, 168 

Forward branch 
transfer-nl-ciinirpl instruction, 350 

4-hit adder. 719 
4-bit int.'egcrs 

al Ler n Ei Ve. ioprLsmtaI iin S,, 8 
 

Four. way pipelined timiltig, 4#i 3  
FPSCR 

PowerPC proccLisor, 450 
Fractions 

convert from GIVOMal 03 binary.. 736-738 
Fram, 261 

PCI his data transfer. 85 
pointer, 3.5.5 

Free frames 
allocation, 261 

Fully associaLi've Lathe 511;i1111V.}1( I C in, I 13 

Fully nested 
interrupt-drive 1.'0, 213 
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Motivation 
1 A-64,543.544 
memory. 670-671 
Pentium, 543.-544 

Motorola 6800,465 
Movahle-head disk, 168 
Move Characters (NI VC) instruction. 479 
Move data, 'Y 
Move instruction, 343 
MP 

Pentium control register, 444 
MPC 

r l 8800.630 
MPY 

opcodes, 332 
MSR, 379 

PowerPC. 454-456 
Multilevel caches 

cache design. 119- I 2.1) 
hicrarL111 ,

2:, , 72 
N•tultiple execution units 

1 A-.6‘1 
huge numbers, 544 

Multiple. instruction milllle data (MIMI)) 
parallel processing. 64ii 
stream. 645 -647 

Multiple instruction single data (MISD) 
stream. 6477-647 

Multiple interrupts. 64-66 
lines. 212 

Multiple processor. 462 
organization, 645-017 

Multiple SI ri,•arris 

pipeline: branches, 431-433 
Multiplexer 

digital logic, 709.. 71] 
implementation. 711 
input 

to program counter. 711 
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representation 
4-10-1, 710 

truth table 
4-in-1. 710 

Multiplexor. 25 
block. 722  
byte, 222 .  
channel 222 

Multiple zone recording 
cl seription, 167 
illustrated, 167 

Multiplication 
fl ukiiin-pc.iiht. 31?-320 
twos compleirwilt„ 294-304 

Multiplier quotient, 21 
MU1.T] P1 ,Y-A ND-ACC LI NIL: LA'l E, 685 
MULTIPLY-AN 13-A 1 D instruction, 68,5 
MULTIPLY-AND•SUBTRAU1 -  instruction, 

685 
Multiply/divide instructions 

MIPS, :187 
configufations, 224 

Multipart memory. 652 
SMP, 6.51 

Multiproot2ssor, 648 
operating system design corisideratiiins, 6:52. 
tightly coupled, 649 

Multiprogrammed hatch systems, 246-248 
Multiprogramming. fa4,s1 

defined. 246 
example, 247 
OS, 242 

elements, 255 
resource utilization, 2411, 

249 
Multitasking 

&fined, 246 
M-unit 

LA•64 architecture, 545 
TL;K2-M U f1 
micro sequencer, 632 

MVC instruction, 479 

N 
NAND 698 
NAND implementations, 7(19 
NaT hit 

1 A-64, .554 
Near pointer 

K odium data Il yiy2s, 339 
Negation 

arithmetic operations, 344 
integer, 7(11 
t wos coniplemot, 287  

Negative overflow, 309 
Negative unkkriflow :  
Nested interrupt processing, 66 

promdiircs, 352 
Nested task flag 

EFLAGS register, 442 
Ncriting of proccdurcs 

call instructions, 3:51 
Network 

huff-swiiching tidoipi4'T 
SM.1 3 , 654 

1o.ym.L1 protocol architecture, 231 
Ica i] ;I nd area, 72 
sineli: virtual clusters. 669 

New 
process state, 252 

Next operand reference 
11104:hi m: instruction, 331 

No sequential address 
LSI-II. b14 

Nticonned pin, 147 
Nonbranching l as[ructions 

ulilizalion. 335 
NoneitChablt.toeinory  

cache! design, 1.19 
Nonmask interrupts 

Pentium, 447 • 
NonrcntovithIc disk. 169 
Non L1111 1 .01111 17112nm ry ac-ce M 

ir70 4r73 

lieseripEton. 646 
pm; ;Jud Loris :  673 
systern3. 644 

NOOP, 484-485 
NOR gales 

use, 698 
NOR irripkrmnlalions, 709 
Normal branch, 4.0,4: 
Normalization, 320 

Floating-point 4rithanelir, 3;17 
Normalized number, 3[19 
NOR S-R latch liming diagram. 722 
Not a 'Filing (NOT) hit 

L A-64. 554 
NOT orriLriiiion 

logical functions. 345 
Not write through 

1e..11(iUrri control register., 444 
Nucleus. 24] 
NtlMA. See Nonuniform memory Hco.....s!, 

(NtlMA) 
Numbers. See also Floaiingpoint numbers 

A(:, 334 
address 
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Numbers rcont.j. 
machine instruction, 334 -336 

addressing mode,. 3% 
binary system, 285, 734-735 
&normalized, 32.2 

IEEE 754, 323 
large Multiple eXeL aim units 

1 A-64, 544 
machine inslruerion, 337-336 
iiiictrands :  396 
Pentium Ii segmentation, 270 

set 4,1197 
Number systems, 734 .739 

binary system. 2#S. 734-735 
vOnv4.!rling bels.vcerl binary ,r rid decimal, 

735..73 
decimal system, 734 

mai notation, 7311-739 
Number word, 1.9 
Numeric 

Perlt i um processor, 441 
NIUMeriC error 

Pe.ni roister, 444 

0 
On-chip each e. 12.0 
One-digit packed decimal incrementer 

truth table, 706 
126-hit bundle 

1 A44 architecture,. 546 
One instruction per eyel., 476-47 7  
One Icvel memory, 12g.•129 
1-11,4 byte. memory organization, ig 

.cre OrwrallOn code 
Operand. 331) 

address calculation 
inStruLtiOli cyCle. SL@Les, 57 

retch 
i nsi roc ti nil c--,s.. C14 stare, 58 

instruction ,a.xecution. 466 
number, 396 
reference, 3g2 
.1-k I :SC advocates, 464 
sire 

Pentium. 404 
store 

restriction 42y1;142 state, 
types, 337- 339 

Off rating 
CP1.1 aetions, 343 
environment, 6-1 
instrueliin exoeutinii, 464-466 
types, 7. 3A1-354 

Operating system (OS). 238-276  

defined...238 
Design issoes, 
objectives and functions, 238-241 
sched til in  251) 
tiirnilar or identical 

fornily incmbers, 32 
support, 638 
c!,. pes, 241-250 
.o..eti sites, 277 

Orieraling System Resource Centel. 
well sites, 278 

Operation chug. 330 
machine insli uct [on, 331. 332, 332 
mapping 

LS[-i1. 614 
Pentium, 414 

0 perations .performud 
RISC advocioes, 464 

Optical disk, 96 
products. 184 

rnernonr. 1 64 
Optical storage 

field 
w4,!1-

3 6iics, 191 
technology, 1(14 

Optical Storage Teelinology Association 
wt. h'ites, 191 

Optimization task, 473 
Optimized deliiyed branch, 484 
OR 

logical runctions, 345 
Ordinal 

Pent ium data types, 339 
0 rganiza lion 

CC-NUM A, 671.-673 
design issue. 99 
IBM vector AniliteLLL.Lfe. 661)-662 

0 rill ngOil Lily 

3'L P-1  399 
pDP-11, 401) 

os..S:e,? Operating system (OS) 

Mil.: I"( FiL.qui2 neer, 632 
C1  Wel) 

1).:.',!1". sites, 2711 
Out-of-order 

execution logic 
P ii turn 4.cache organization. 121 

issue with out-of-order corn p I L.Lion . 
515-516 

Output- Sti• rfirgr) Input/output { KO 
controls 

ruicro.542qt.LNICtlf. 632 
dependency. 513 
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enable pins. 144 
select 

rnicrriscquencer. 632 
outs 

SPARC..494 .500 
Cuts 3tgi s LV IS 

495 

Overflow 
common fields or Ilags, 417 

)verlIcive Wile, 293 
twos complement :  257 

Overlapping 
groups 

combination circuit;, 705 
multiprogramming, 648. 
register windows, 469 

Packed BCD 
Pei-Ilium data types. 119 

Packed d(publcwrird 
NINIX, 359 

Packodlitupacked 
microillStruciiiim, 61.6. 619 

Packed word 
N.11v'E X. 359 

Packet byte 
l4.1 MX, 359 

Packet 1rall}i1111!-.!, Oil 

link layer. 227 
PA DDII. insinmicsrs, 361 

Pentium control register, 446 
Page. 26] 

directory eritly 
Peniturn memory inanagement. 271-273 

fault, 263 
fra nies. 261 

Page !11.11-5s14, :inable..(PCrE.) 
Pentium corstrc pl. re.gis(tyr, 446 

Pagc extensions (PSE), 273 
] ' I2 El I il-1111 eonlrol rcgi.str, 446 

2r1.11- %.. 2.71-277 
memory inanagernent 

Pentium, 262, 271-273 
Power PC, 275-277 

structure :  264-266 
Paging, 2.6[ 

operaiing. 267 
Pentium control register, 44-4 
Pntium II segmentation., 270-273 

Parallelism 

ALL; 
vector computation, 676-675 

clusters 
application. 667 
compiler. 667 
coin p a lion :  6.67 

1A-64 :  560 
and hi NI X instruction set, 361 
organi/ation, 646 
recording. 1S) 
and st.,rial I.10, 223 

Parallel processing, 643-657 
architectures 

1.:LX{}(14 )1TLy, (}et) 
c-ache coherence and FA p rotowl :  

656-663 
clusters, 663-669 
definition. 679 
mullipie processor organizations. 041-t47 
t10111.111itbrrIl ITI MT11.1 ry awess, 670-673 
symmetric niultiprocessors..C47 656 
sysinins LyTic, 04.5-647 
✓ector compuiation, 674-687 

Parallel registers 
80quential circuits, 725 

Parametric computing 

cluster5 :  667 
PA-RISC architecture :  542 
Puha] rcinainder. 304 
Partitioning, 257-261 
PaSSiVt. scand1-5y. 665 

duster method descriplion. 665-666 
Patterson prograins 61:100, -165 
Patlerson study. 466 
N7. Sep Prognmi uouriter (pc .  
pch 

Punlit311.1 control register, 446 
PC I. See. Pe1'iphcr iI component inlerci 11CCI. 

( PC1) 
I'D 32-33, 397-399 

bus structure., 33 
evolution, 33 
instriicifon formai, 398 

['DE' -III. 1...14.)-14X 
eOmpletviiess. 3 1,19 
direct addressing, 399 
instruction format. 399 
orthogoinalily, 399 

PDP-11, 465, 614 
family, 622 
instrucLitin, 400-402 

example, 56..57 
imitruciion format, 401 
o rthopmality, 400 
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Pcc 
...irchitc4cLure,.., 568 

R2.1111LI n1 
ddru.ssia 1711(PdC, ..  389-392 
calculation, 390 

addruss sire:, 404 
y progrm-ri. 556 

base mode. 391 
c.ii1Prourn instructions, 35t% 
conditiou codes :  357 :  3:71l. 
control registers, 444 
displacement, 406 
displacement Irk di 391 

btise, 391 
based sC2E.2d lade N :  397  

base with index, 392 
SCHIV-'d irklex, 392 

evolu tit)] t, 41-43 
exception, 447 

table, 449 
i mMediate, 406 

mode, 389 
instruction prefixes, 404 
interrupts, 447. See Aro Pentium interrupt 

processor, 
maskable, 447 
nonmaskable, 447 
vector cable, 449 

memory management, 357 
ModRim, -104 
opcode, 404 
operand sin, 4U4 
rcgigi.! Opi.!EAT1(1 IM rick, 389 
register organization. 44(t.-141 
rotative addressing. 392. 
segment override, 404 
SIB, 406 
wch .5itcs, 44 

Pent hill' itioris 
cvnditional jump, 359 
ST4.Tcc iitstructions, 359 

Pentium oryntrol register 
alignment mask, 444 
CiICE1C disable., 444 
debugging extensions, 4415 

extcruion type. 444 
MC L. 446 
MP, 444 
not write through :  
numeric error, ...144 
PA H, 446 
paging. 444 
PCE, 446  

PE, 444 
PGE, 446 
physical address extension, 446 
PSE. 446 
PV.1, 444 
task switched. 444 
VMP., 444 
WI) :  444 

Pentium data lypes, 339-341 
RC!) :  339 
bit field. 339 
byti.lswirs.e, .339 
Floating point. 3 '5 14 
I1 teger. 339 
nLtkir iloirtio' :  339 
ordinal. 339 
purled BCD, 339 
unpacked 1-SC!). 339 

Pentium 4. 520-527 
block diagram, 122, :521 
13:1:13, 524 
cache. 

I race, 524-525 
cache operating modes, 123 
cache opera Licit) 

modes, 123 
cache organization, [21-123 

do;ode Unil, ]21 
execution units, 121 

utrit, 121 
fetch unit, 121 
MC1110.11' subsystem, 121 

-(11-01Nkr 1.:NU'L ninon Logic, 
121 

unit execution, 121 
drive, .525 
front end. 521• 525 
generation 4.51 micro-0[1s, 521-524 
instruct inii-level parallelism 

register, 520 
alloed E e..525-526 
chrcular buffer :  526 
!loafing-point CM:CUL n ti 52.7 
inlegcr rcgi4LC r ritu.s, 527 
memory address- 526 
micro-operallions, 526 
irlicro -operations queuing, 52.6 
register renaming. 326 
ROB, 526 
scheduling and dispatching, 52A 
state. 526 

:7}43-544 
out-of-order execution logic, 525 
trace. cache: fetch. 525 
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rracv cache next instruction pointer, 
524-525 

I'eti tiuttr II 
addressing modes, 
addrChN Space:, 269 
control registels, 445 
EFTA GS register, 443 

management 
hardware. 269-273 
parameters, 272 

motivation...54'3-544 
:iegment t ion, 269-270 

paging. 270-273 
RI'L. 270 
segment number, 270 
tube indicator, 274) 

Iranslation lookaside buffer. 273 
Pentium instruction and duscriptic.th 

arithmetic. 356 
cache nianagernitt, 357 
c warn] transfer, 35I 
data movement, 356 
nag E(PEICTOL 357 

FILL suppCirl, 356-357 
logical, 356. 
] roti.tulion. 357 
scgment I.02,i4Lur, 35? 

siring OpQralionl, 356 
1 31231Linin inNiruclion format, 404-406 

illustrated, 405 
Pentium interrupt procesiir 

CALL_ r 448 
code segment (CS) pointer. 448 
ESP, 448 
interrupt thg. 448 
interrupt handling. 448 
inrerrupt vcctor table, 448 
1P. 4-48 
procu.i.sor-det ected exceptiiHiN, 448 
programmed eweptions. 448 
trap flag, 448 

P'211tiiim memory inanagorne•ni 
address linear, 271-273 
ti ddress translation, 274 
addre:ih i nInN]ation mechanisms, 274 
formats. 271 
linenr address. 271 273 
page directory entry. 271.273 
page !able 0111try. 2.71-273 

segmen1 descriptor, 271-273 
segment suleciim 271-273 

Peislium 
instruetions„35.q 
instruction set, 36(1  

rtigiSters 
Lordrcil, 446 

ppin 447 
tecliliologli.. 358 

PentiuM rILLISIbE fOrirldtS 

Pentium data iypes, 341) 
Pentium op:..!ralioli 355• 36:1 
Pentium pipeline operation, 522-523 
Pnlitim Pro 

MCA i Vr1 tiOn. 543-54.1 
Pentium processor, 156 

Lonirck1,441 

flags :  441 
floating-point unit. 441 
instruction pointer, 441 
integer unir, 44] 
numeric. 441 
registers, 441 
segment, 441 
status. 442 
tag word :  442 

Pcrforniance 
balarii :  38-41 
designing :  37 
riterrign14., 
monitor data register 

I A-1y4 instruction set :  563 
RAID, 182 

Performance Counter eila (PC'E). 
Pemtit1111 Control register. 446 

Peripheral, 7,11)7 
device. 197 

Peripheral component interconnect We]). 

bus arbiter. 87 
bei weem iwn masters, 88 

bus dam transfei 
MWSEL. 85 
FRA riet1-7., 85 
1 RDY. 85 
lurnarnund cycle. 84-85 

commands, 81-85 
conliguratiMIS 

emimpl.Q. 811 
read commandit 

intLrpre teLioll, 85 
read ors2ralion. 16 
signal hoes 

....i ddress and data pins. 8/.82 
arbitration pins :  SI L  82 
64-bil extension pins. 81,83 
data bins , 131, g2 
error reporting pins. 1 , 82 
in(urCacx control pins, 81, 82 
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Pori ph era! L4)11111311 ent interet311nect (conl..1 

interrupt pins, 81. 83 
JrAGIlti-}und[;Iry sc>In pills, 81,83 
mandator)., 82 
system pins, 31, 82 

web site:, 89 
Pfra 

I A-64 archilccturti... 568 
PFS' 

architecture., 568 
uppli.4,7H rcgistet, 566 

PC1E. 
Ventiurn control rogimur. 446 

Physica1 address, 261, 262 
Physical address extension (PA E) 

pcndiurr, qintroll rctimer, 446 
Physical characteristics 

data storage, 99 
rnagrietie disks, 168 

Physical dedication. 75 
tisicit I layer 

\V ire, 225-227 
Physical layered protocol architticturc.; 231 
Ph ysiou I records, 189 
f 3 h  icai types 

or rne mon!, 99 
P u ele rise Ili, 359 
Pin layouts, 714 
Pipcline, 462, SKr,. egisn iris( ruci ion pipeline 

A I.L.1  
vector computation, 676-678 

L11(.1.11T110.1iC register remain; iv, 561 
branch 

multiple streams. cI3 I -433 
[12. c Fpenantis, 425 

decode instruction, 425 
d  in, 42 4 ] 
description, 424 
effects, 483 
cnli rici rig, 49 I 
epilog phase, 561 
execution instruction. 42.5 
fetch instruction, 425 
fetch operands, 425 
1 A-64 ...Li-allied lire, 546-563 

Fel 80486, 439 
kernel phase, 561 
rnachi hi;lnch pte.dietion. 518-5 [9 

•13 perati on 
acrii i..6 .M-679 
.eoriditiona1 branch, 427 
Pentium, 522-5n 
wilt., in, fi71--679 

[^ Li1tliz.atitto. 484-486  

pc Homan Lc., 430 
Pc Pir 60 I, 529 530 
10000, 492 
rogular iiistfiretiorts, 
RISC:, 482.486 

Ian 510 
six-strict C . P1 I instruction. 428 
stage, 492 
strategy, 424.3[1 
wrire o.perand, 425 

Pixel, 359 
PLA, 711-7]6 
flatters 

sysitml, I(19 
P1.1 CO Ithlpiral. ions, 224 
POP operation 

371, 372 
Ptirt, 68 
PC}S 

fi ar m, 700 
intplententation, 701 

PosiriVV4.iverIltiw, 309 
Positive underilow. 309 
Postritt notation, 374 
p(55lisIdxing , 388 
1'clkke a VC:, "12 -1 534 

addres6irig modes, 3q2-395 
cache organization. 123-125 
data types, 341 
cvohilia0,41 -43 
Ian Lily. 43 
floating-1311in1 sLit us and cuilDIO1 register, 

452 
inscruction formmts, 

iltustra1tA, 407 
internal caches, 123 
interrupt table, 455 
michiric. state register, 456 
Ilse MOP!: management 

parn Inc wrs, 277 
me rtioky-in ariagemen 

hardware. 273-27 
memory operkiiiki iiddriassing niodes, 394 
oper:ition type.s. 364 

mple Dr upctralxsnS, 363 
processor, 450-457 
processor summary. 43 
register formals, 4.53 
1.1741„tr-V regisLers, 451 
web sites, 44, 45 

Power PC 60 I, 527-531 
kilo& diagram, 528 
pipeline. 530 

51.rili:thrc, 529 
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PowcrPC. 620, 532-534 
Power.  PC 32-WE 

translalion, 276 
Inc wiry - rnima gemuni formats. 275-277 

PowerPC 04 
hlock diagnirn. 124 

Ppl 
A. 6 1 architecture, 5.1.s.4 

code, 
C A•r-1. 

Predic:.ied execution 
[ A-64 

architecture, 550.•553 
Mil ruction. 542 

Predicate: regisrers 
1.4 -64 instruction set, 563 

Pi eilication 
1A•o4, 546 .563 

ratitcvture example, 552 
pipelining, 561. 

Prefolch branch target, 433 
1'142142Feb engine 

Itaniuln, Sir' 
PMincicx.ing,1-45F5 
Previous fundion suit41 (PFS) 

I A-64 architecture, 56,4 
kill! I i ca I ion register, 566 

Priority 
process control block. 252 

Privileged iroiltticticiry,, 
hatch OS, 245 

Prncialitra I dependencies, 311 
Pt ileedury ry 41111LMI., 467 

Procedure call 
instruction execution, 466 
instructions. 351-354 

Process control block. 252 253 
Process data, 7,1% 

CPU, 4L3 
Processing unit ( pu) 

parallel proceqsing, 646 
SMP, (153 

Prou:s5 migration 
clustets, 669 

ProceSSOT 
-ACCOSs 

t wo level memories, 129 
tirchitecture 

superscalai iirtpluTrIentkition, 506 
cache sizes, 101..4 
categurize,..1, :330 
characteristics, 41U 

evolution, 39 
detected exLivo ins 

Pentium interrupt proi:EtiMa. 444; 
functional requirements, 5Th 
idon Li ficTs 

[ A-64 instruction set, 365 
interconnection, 69 

EaconisecLioir :it mauve transfers 
to 110. 6 1)' 
Co rig:TT-wry. 6') 

1k 
110. 54 
itiOnor:.... 

organization. 412 414 
Processor status register (PSP.) 

SPARC, 495 
Process states 

}4}1{31- 11. -(1.1.1-71 'Wheal IL; r, 2.5t 
Product of sum (POS) 

form, 700 
i mplemen IN Li Or) , 701 

in 
Program, 

hardwire, 52 
interrupt class, 
in softwaN. 52 
timing 

host 110 wait, 62-63 
with interrupts. 6263 
lime, ITO wait, 63 
without interrupts. 62 63 

Progrtim LC }L1111 N 9 ) 7'0. 53. 9*,7 
data Flow, 422 
instruction cxceution. 410 
micto-ormyalioN, 
multipiexci .  input, 711 
multiplexers. 710 
process control block, 252 

Program creation 
OS. 2-40 

Program execution 
attributes, 249 
.C(FrE,Iil U.2 rSt elein unl.s, 577 
example. 56 
05, 240 

Pr{tigrant inahle Ionic ;1r (Pl.A ). 715 
combinadon circuits, 713...715 
cs.artip[e, 716 

Programmable HOM (Pl-l.t)M) 
ds, NCHI ition, 142-143 
inerthir y 1y pt characietisLicS, '140 

Programmed exceptions 
Pentium interrupt processor, 448 

Progyammed [10. 196, 204-2C8 
drawbacks, 216-.220 
input, 206 

Prottrant status ward rPSW). 210. 412, 417 
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Program voltage (Vpp) 
chip packaging, 146 

Prolog phase 
1A-64 pipelining, 561 

PROM, 140 :  142-(43 
Protected. mode virtu Di interrupts (PV1) 

Punlium (anti ri .11 1-44il.c:r, 444 
Protection 

Pcntium instruction and description. 357 
PTIAE:12 L inn .1yin1.1112 

Pentium control revile r, 444 
PSF., 273 

rentiu Lli CO alto] regiqter, 446 
PSC. udoinsiniction, 365 
PS] J 'W insiruction 

MMX. 35 1,1  
PSR 

SPARC. 4415 
PSW. 210. 412. 417 
PU 

parallel procei...Aiii1. 646 
SMP. 65 .3 

PEJSPE 
stack operation, 371 

description. 372 
Pushdown list, 388 

stack, 371 
pv1 

Pentium control register, 444 
Pyramid computer. 464 

Q 
op 

I A-64 architecture :  549 
Queuing diagram representation 

proonsor sch4d tiling, 256 
Quiet and signaLing NaNs. 322 
Qi.kt NaN 

opera s, 323 
Quine-McKluskey method 

firs1 slags, 707 
last stage, 7(118. 

Quinc-McKluskey tables 
Boolean expression. 705-70 1,1' 

R3000 
pipeline enhancing. 491 
pipelim stages, 492, 
superpipelines :  4 1..6 

R41.11.10 
insiruclions, 488 
MIPS, 4F.k..41 4 
5uperpipelines. 493  

Radix 
rn. 734 

point, 285, 2% 
RAID. See Rudundaril Array ill lmicpcndord. 

Disl,:s (RA ED) 
RAM. See Random access rrwrnnry (RAM) 
RFirribils. DRAM (RDRAM), 154. 156-161 

structure. 158 
web sites. IN 

Rrthdorn access memory RAM ): 9t5 
Characteristics :  139 
rricmury lype chArricieristics, 140 
semiconductor, 138 

sites, 160 
Range 

Lwos complement. 
RAS. 144, 147, 1% 
RCA 

'1'1 6?.0 
RC B 

'11 630 
RC2-RC{) 

rrlicros(24.[LmErcbr, 632 
RDIZAM, 154. 161 
RDTSC instruction. 444 
Read 

assignments 
reinforce .vonccpts :  743-744 

commands 
PCI iiiturprciation. 85 

control signal. 594. 
cycle 

bus systmi. 77 
depe.adeney. 515 -51.6 
110, 205 

E MS. comr4)1 Iinus. 71) 
e F11 0 Pr' 
bits control linos, 71) 
P(.'[ ill 15d, 84 

microinstruction. 
Open! ( CH1 

PC1 . g6 
signals 

RDRA M. 156 

SDRAM, 157 
Read-after-write, 79 
Read hit 

paralld. processing, 662 
Read miss 

local cache, 660-662 
R4.1.[I-modify-write. operation. 79  
Read-only memory (ROM) 

;ombinational circuils. 715 
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rTh2rnory lypc characteristics. 
{r4-bit. 71g 
truth tablc. 71? 
types., 142-1 ,11 

Ready 
prucess statc. 252 

Re 81l7.i1 Li on of corripuiers, 6a7 
Runl. memory, 2i3 
RECEIVE operation. 211 
Recording technoiogy 

web sites, 191 
Rcducod instruction set architecture, 474-481 

character iinics, 476-479 
Reduced instruction set computer (RISC), 5 :  

461-501 
approach 

Uti  Li on, 54.-544 
based superpipeline architecture, 489 
characteristics, 4f3 

CISC, 500-501 
machine, 473 

delayed branch stra Leo. 51g 
pipelining, 482-186 
processors, 506 
8 .ti pc:rscalar machines :  547 

Redundant Array [3  ]ndcpendent Disks 
(RAM). 16-4 :  174-183 

ronfigura lion. [75 
disk. technolog.. 16.1 
level 1, [76, 180 181 
Icv0 2. 176, IN I 
level 3, 176, 181-182 
level 4, 176, 182-1 N3 
levl 5 :  176. 183 
level 6 :  176, 183 
level O. 175 

high. stata !Nosier capacity, 1Kii 
high. 1 0 request rate., 180 

I n.els, 176 
illustrated. 177- I 

web site, 191 
Recnlrunl procedures, 352 
!Register, 9, 19. .Sec c21.5:0 Address register; 

Control address register (CAR); 
Inputhitttpul (1.0): lostructiou regis• 
ter Memory 3ddle7,.S. r gislcr { MAR); 
Ytemory buffer register (M..131Z): Pen-
tium control rogisier 

addressing, 385..386 
alias, 526 
application. 565 
k I In 1.0i aii.!x. 
branch 

1 A•64 instruction set, 563  

call ini-tructions. 351. 
GEM 

I A-41 it rchri Wet ure. 566, 568 
Condition 

codes, 41.6 
Pc riverP(:, 450, 454 

controls, 412.. 414, 416-419, 603 
inicrosequeneer, 632 

&Ft:nit:Tx, 6:3(1 
'1'1 8800, 630 

CPU, 331-332, 373, 413 
data, 415 
destination 

'11 8832, 6341 
Fi...PLACis, 442 
8- hit parallel. 726 
exception 

Powerl)C processor. 450 
floating-point 

1A-64 instruction Kt, 563 
Power Pt, 450. 

formal 
I A-6-4 a rchi tecturc., 566 

gencral-purpose, 415 
I A-64 

iimtruction set, 56.3 
lar  numbers, 544 

indem., 3138, 415 
indirect addressing, 386 
instruction buffer. 20 
1 10 address, .52 
link 

PovicrPC proccssor..450 
machine: state, 379 
mapping 

Protium A iMC, 447 
r.v. memory, 397 
operand mode 

PUTI 1.101, 

organization, 414-419 
Pentium. q ,10-441 
PipherPC pr{ 5.D2,ViC!.1", 4:7! R. I S2 

outs 
SPARC, 495 

parallel 
sequential circuits, 725 

pre.dicate 
I A -n4 instructi on set. S6.3 

processor x44 1115 

SPA RC, 495 
rcicrcn cc, 398 
to regi s cr, 477, 474, 682 

vector computation, 683 
rcnaming. 516-517 
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Rcgis inr (rural. ) 
has;a valuer . 5hh 
L--64 pipclinirsg, 51. 1 
['eI1Lium 4. 5 2 6 

sequential circoit5, 7?1=727 
shi[L 

sequential circuits, ']27 
source 

TI S32, 634 
stack 

1A-64 iastnlclirfn . L f^7-56i 
ti-v1Lh]C.4]2 
FLC(OF I'icilit}', &[2 

Rc'gixlcrc'd Al 
]'[ [st332, 620, 63, 

I{€istcr tilt 
gh,Ei i1 ]•i  E, IC;. 47]E 
E A-64 arehitec[L1re, 545 
1[1 [eger 

I': riliu4?1 4, 527 
1.11E}5, 494 
wir 1 4.1 b^LSCCI 

i1]ui.trated, 472 
ke istcr wiltdows.468--464 

era'er[apYJ1rLg.4i ] 
SP•R(:, 4{l{^ 

Relatiti' LLddreMing.3[7 
PenG1.ilr: {17 
PQwoiPC. Y^3 - 39 

Re]ativt' dv[amic frcc{u {'.rfct' 

high 1^ve] Es, L'  iiage peratiorus, 1 30 
Ro[al['e Sii!c 

lw i lcvwl mcmc^rics, [33-135 
H L'I iahi]IC\' 

ti 3e. ;50, 653 
Rernnvah[e disk. ifs{} 

Regi ova hlo Lnfidia, 96 
Rc. irdcr hui6 r (R0 .] 

Pentium 4 instructing-[eve I }nrohclism, 526 
Replacement algorithms 

e[ementS o f cache ciLSigrr. 1 ] 5 
RL]o-uri fLS3li on 1 Li 

reigt'orce concept:, 743-7+1 
Rtic[ucs1, S7-89 
I equcsted priitegc k eI (RPL) 

Eentiurn 11 egmL:oto[ion27U 
Rerearch prujecis. 742 
l^eset 

hur c{^nlral] liries, 7] 
Re.sideJl mulutar.24.E 

memory lu Vii u1, 2+1 
H4sule;II Cu iii ]1i1, #,14 

1fcseauroo conl1[cl, 511 
R l7UF04 Ct1c-L1diug  

inicrcinstrucuan- 620 
1]Cc Inaltiag€'r 

OS. 240 
Re:;u€t i^frerand r^Ferencc 

machine inslr]cticfri, 33 t 
R^5UrL' tlag 

h LACiSregisle.r,442 
12cttring 

inIruCL , . 5 ]ck 
Rover Polish, 374 
1  I gpitt 

'IF S s 12, 634 
Rippic counter 

`:i'4] I li. n l i iii ciftu itS, 727 
RIB{:..Szr Rt'duced instruction tt computer 

{ RCSC 
ROE 

E'cr'itium 4 instnictitin -level l at:aIk1i m, 52G 
ROh'1- &e Rca1- L1n1} rnernnry (ROM) 
Rnl,llt: 

intcrropt•dri\'c 1.0. 2I3 
aperiticrs, 346, 347 

R[oiitirto ] delay 
disk pertormanco, [71, 172-]73 

Rot Lit lonal ]^stcTLCy 
L3isl 1^^]fnr]itance, 171 

Rc^ugdirig„ 3211-322 
10 Iii ilrCSt, 321 
to plus ind minus infinit y. 32 I 

1o'. and . ro 322 
RI L LLE L. r 

I nlin11 and, 230 
Row address ieILt1 {RASI. 150 

chip 1L^gic packag]ng, 144 
p]rlS- 147 

RP L 
PeotiuLrr 1] scgmcnh€iiin, 270 

Running 
pre' u4; iii ate, 252 

5 
Sr360. , er [Ii 1 Sr'360 
S?370. Sec IBM 5;370 
S?390. See IBM S. - 90 
Sage and Restore registers (SRR ) 

FaworPC 601, 7^? 
5e-a ]i 1i]C Prfi1Giss0r ArchitecttJID tS.PAItC), 

469,494-500 

;sddresislg rnudOl 

syff]ttLwrizing other ucarwsx]F ax0c]e5. 498 
ig[ruction t&Sr[[npl['i, 494 
irvlrLJcfiOra'let, 497 
caixtcr set. 4945()') 

R '. gii,I4 r \^4`lf{]L,fir Lavou^, 495 
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Scalar 
pipeline :  510 
processing 

k•
4.N;11 Or computation. %  675-676 

referencing. 472 
8/v1P, 649 

Sc;Ateil inden with displacement mode 
Pentium. 392 

Scale index hit tS113) 
Pe:Ilium :  .106 

Scheduling. :  254/-256 
example. 254 
OS probieins %  24.2: 
SNIP. 653. 
icehniciLls!;-;, 253 
types. 250 

&CS! 
72 

SD13. SeT S1ilh4alL abVdOprnerl.1131.:111rd 

{ S11.}E4) 

8.800 SD11, Se'r LS; 19 Texas losiruments 
components, 627 

..SDR ANI. 154-157 
SEE: code, 152-1.1 
.Sc condaiy or auxiliary memory,..102 
Se..Ltind generation 

of compLiteN, 24 
Second time unit 

fetich cycles. 579 
Sectors. 166 
Seek time 

disk peirottnanee. 171% 172 
Segment, 266-26S 

descriptor 
Pentium n142171411-2; rMiring4..!Mc.:111, 271-273 

DICUIDOry view 

Patgv.1  memory, 269 
unpaeed memory, 2.69 

number %  2711 
trio 1'r  kit 

Pentium, 404 
Pentium II. 269--270 
Perstinin prucxrisor, 441 
pointers, 415 
register 

Pentium iits[ructim and desuipflon, 357 
st.lcotor 

NiitiLLM irtorriury management. 271-273 
table entry 

Row4jrPc memory management. 277 
Sided. DR bus 

microsequencer, 632 
Selectt 51 Chi! nnul. c:(3  riA, 221 

regiistei .  Lilo data, source  

832. 633 
Semantic gap. 464 
Setnipunductor memory. 34, 102 :  138-148 

organization, 138. 139 
RAM. 138 
technologies 

web sites, 159 
lypes, 140 

SEND operation, 231 
Separate servers 

cluster TMI IVO tiC5.LTI pi, ion., 665-666 
Sequence. 

arbitration 
link laver, 227 

events, 92 
4'r ee1Jl.in , .1 83 

RISC' adviicaLes, 464 
11334 3(133..1 . ,2(1 
interrupt proc..es!..,ing. 66 
rnicroinsii .uction, 609-615 

Lechnique. 610-612 

click performance. 173 
prrIc'iNCIT conlrol% 584 

Sryucirtial LiLeess 
devioe. 190 .  
memory. 98 

Sequential circuits, 720-730 
clocked S-k flip flop, 722 
colioicrs. 
D flip-flop, 722 
digital logic, 720-730 

720-722. 725 
input data strobe, 725 
parallel regislers, 725 
ripple COURtel :  727 
shift register s  727 
S-R latch, 721 

Serial U0 ooncro1 
Inlel 8(85, 589-594 

Scrial vt2curdits. 1€:9 
Serpentine recording, 189 
Servers connceled to disks 

cluster meth det...cription, 665-666 
Servers share dish 

[1 11.1TI, 665-6.66 
Service call 

proces. 253 
Set associative rnappiii.. 1]2-113 
SE'rec instructions 

Penti um cum Li icons, 359 
SElli] instruction, 500 
Setup Lime 

problern, 243 
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Shading, 473 
Shannon's techniques 

Boolean BIgcbra, 694 
Shared 

disk 
cluster method description, 666 

12 caches 
SNIP. 655.-65 

NIESI prc5locol. 659 
nothing 

cluster method description, 666 
write 10..662 

Shift 
keyboard-hnndling, 21.6 
M MX instruction and description, 360 
operation examples, 347 
(ilaura ion& 346 
register 

sequential circuits, 727 
Shift instrucii45u 

MI FS, 4..17 
modificr 

FE 8K32, 634 
SIJARC, 497 

Short-t kitteric 
proces.!... 255 

Short...term scheduling. 250. 251• 25- 5 
SEJ3 

Pentium, 41J6 
Sides 

clinic 5:.e!•51.1=371., 169 
Sign, 308 

common rilZidS . 01 flags, 417 
extension, 364 
extension rule, 290 
magnitude reprcsentalion, 286 

Signals. See ids.r) Control signals; Peripheral 
component interconnect (3'C1). signal 

address selection 
microinstruction, 611 

Al  586 
CAS. 144 
clock 

tinting diagram, 93 
data, 591 
i2N1t2rilk. 11., 591 
function or time 

ti m ing  diagram, 93 
grant, 87-89 
Intel 8085, 591 
interrupt relaft'.(1. 591 
interrupt request. 59 
RDRAM 

CE., 156 
read, 156 
write, 156 

Cutting diagram :  92 
Signed haifword 

PowerPC, 341 
Signed . word 

Power PC. 341 
Sigoificand 

tioating•point, 308 
•alignment. 31 7  
overflow. 315 
undcrfltry, 31.5 

SI KID :  35.5, 645-647 
Simple:Scalar 

analysis KO ietwhing, 743 
Simplicity 

SNIP. 650 
Simulalion proiects, 742-743 
Simultaneous concurrent pnx•esses 

&MP, 653 
Single adtlress field 

brimeli control logic. 612 
microinstruction, 611 

Single-bus detached DMA., 220 
Single-bus integrates DMA-1;0, 220 
Single control poinl 

clusters, 669 
Single data stream 

parallel processing. #A5-647 
Single entry point 

clusters. 667 
Single-error-eorrecliog tS.EC.) rodb, 152-151 
Single file hierarchy 

clusters. 669 
Single ixIruction, 5incly data {SISD} 

stream. 643 •647 
Single inslru::iican rnul(iplu. &Pia (5]1 D) 

rohion, .158 
stream. 645 647 

Single 110 grace 
Ousters. 669 

Suenlc joh-manngerncnt system 
chiSicTS. 669 

Single large expensive disk (SLED). 175 
Single memory space 

clusters. 669 
Single-processor system 

PC], 79 
Single process space 

cluswrs, 669 
Sirsgle-proi ant, 248 
Single sided disk. 169 
Single .-systcm i mage 
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clusters. 667 
Single um interface 

clusters, 6fi9 
Single virtual networking 

669 
S input 

TI 8832. 634 
SIM) 

stream, 645-647 
Six-siage CPU instruction pipeline :  42S 
16 magabil DRAM 

illustration, 145 

pins 
Pet signal lines, Al. 83 

ROM, 718 
Skip inscructions 

branch 
lranAcr-of-ceinlrol instruction. 350 

SLED: 175 
Small computer system. interface (S -.S 1) 

system has. 72. 
inregration (SSI) 

chips. 714 
description, 29-30 

SMP, See Symmetric multi] rocesSUT SMP) 
SMPCaehe 

analysis and teachin, 743 
Snoopy protocols, 658 659 
Soft 

error, I4. 
I A-64 architecture, 36I 
tilicrirprogramming microinstruction. 616. 

619 
Software, 51 

approaches. 52 
pipelining 

example, 560 
1 A-644. 559-563 
LA-N4 instruction, 542 

poll, 212 
solutions 

cache coherence, 657 
Software Development Board (51)3), 627. 

See also Texas Instruments &IOC! 
Sal 

I A•64 architeciure, 568 
Solid-stale device, 24 
SOP, 699, 700 
SOT 

T A-64 archilecture. 508 
Source operand reference 

machine instruction, 331 
Source register 

TI 8232. 634 
SP. RC.Se.F.. Scalable Processor Archiz cetera 

(SPA RC) 
Spatial locality,  

two level memories, 130 
Special Cycle 

PC.1 command, 84 
Special loop termin L I ng instructions 

pipelmin 561 
Special rrikl'Sk 

interrupt-drive Ii(), 213 
Special-purpose devices, 638 
SpecelaLitin arid predication 

I A-64. 557 
SpeculHtiVC execution 

processors :  31S 
Speculative. load 

LA-44. 551. 554 
Specula t b..ely execute insiruci ions 

PowerPC, 533 
Speed 

microprocessor. :;7.-38 

Si Millar or identi cal 
(nernbers, 

Speedup factors 
instruction pipelining. 432 
machine orgk. inizations, 5 1 ii 1  

Split cache 
u.y. 11 n ificd cache, 12C1-121 

SRAM. Sur Static RAM 
Srcs 

A -64 ;-1 rCil I ittLi u 549. 
S-R latch 

cliiiracturistie table, 723 
i rripl ern criLeti, 72 t 
sequential circuits. 721 

SWRs 
PowerP(' 601, 532 

S2-S0 
in IXOCI UCI1 LCT, 632 

551 : :19. 7] 4 
Slack ,  I -376 

irdc,1(C}iS.131g :  
base. 373 
0111 rok; 

microsequencer,.63'2 
description, 371 
frame. 354 
implementation ;  372 
limb!. 373 
operation. 372 
organization example. 373 
poi rilOr, 37ti, 373, 4177 

T1 8,./100. 639 
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Sari of e tl[ed pro-cedure 
call i[u truct]ons, 3M 

SlrEtc, 2 i i 
iI[s[ruction cyeie. -  c92 

man ag rncnl 
MFt< lr[struction and description, 360 

['entiunr 4 instruction-1cvcl parailu[i.En. 526 
process control block, 25?. 

S1xlie RAM (SRAM ), [38, [40 142, [54, ]5i 
ce[1. 1 41 

LRAM, 142 
Status 

Pentium I;roc c1Y, 442 
Stalu4 ra:i,i,lirs 

eontro[, 412, 414, 416-419 
St8t[[S rcportln! 

[? , 202 
Sratus signals 

iO, [98 
)tack trd1rLC growt]t, 334 
Stock to imp[e[n&n[ ncStciJ MuhrcFUlinL , 353 

Si(Ft1 
] A-64 instruction format, 547 

510  
Ifp^(F4]eh, 332 

Siorae.e [QcLILions 

CPU, 413 
St,arrrgc ELI rcgiter 

vector computation, 6#33 
•Storagc to tiloragc 

vector computation, 683 
Stare 

c1aLN, 7 
instruriions, 364 

MI PS. 487 
S FA R{;. 497 

I'owerl'C, 363 
arehilcelurc, 392 

pr«gra[n cLocept, L7 
•5trin8 operations 

PunliLFm ifStruLtit.1n arir] descriprion, 3561 
Strii- e 

RAID [e c[, [76 
.Sl nJCEUr}II  CL1IT]] [tnC1i[S, ]{i 
Structure, 5-ill 

C PL', 4J2-457   
c]efir3itioii. 5 

dcSC.IEptLon, 7 -LO 
51 . 1 3 

opoudes, 332 
Suhactiun 

ascmchrorious, 228 
concatenated. as'nchrorbou , 228  

FicC ' ire, 22.!i 
17oating-pditit ari[hmelic, 315 

g^P 
link layer, 227 

i sac h rono u& 228 
Su11nc1 

]11iiniliand,2311 
Subroutine [t[ciliIv 

LSI - ]1.614 
Suhtractiolti 

block diagram ihardware, 26 
tu'^as ulo1^[}lement, 21 2-244 

ruli , 2R7 
un,ign4sl into t(x, 305 

Suiti of products SOP) 
Morro, h$J 
illlpiCFF L III,I tiOil. 7{H1 

Ours [ A]1C architcclurc- Sre Scrr[ab1L 
['rL.ecs5or ArcliiitecturC (M'AkC) 

Superu) ]11 11 utrYS 

1_ra\:- 1]79 

}'c&tor cnrnpul.aLihrti, f74 
ksCh sites, 45 

Su^reriar pricclper[r^rmane 
cl[FSterF', 664 

S uJLSFne,h [ l r 
approach 

lin'IirtIrioIln, .5(18 51 1 
detinitLon, 511 
cx culicrn, Si') 
x 

 
[ A-M Irchitecturc, 543 

im pie  Ininlation 
inbtrue[iom - lcvcl p Lra]lekr,m, 520--527 

m. hiries 
delaycd branch.'trali gy, 51!1 

VrganixH O(1. 541? 
processtng 

conccplu:al clLTFict11FO, 5]u 
pYti^usxtli, 5{^ 

ch&acteristics, i63 
s, sup&r NhFIe, 507-50ts 

Sup rvinc^ r 
corn[n m fickls ter hags. 41 7  

Swapping, 57 
258 

Swappinji [Lineiiim, 251 
SwiLcliCd ir5terennneCtion 

S tyli'. 654-655 
Svllohlca 

[ A-64 drehitecturc, 546 
Svmboli;; priigrnrn, 365, 366 

Syrnholit rL^preSent3ti0r[ 

lnac[tiinc instruc.ti0n, 332 
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Symmetric multiprocessor (R W1. 644. 
647-657 

addressing, 650 
ion. 650 

availabilit5. :  649 
1351, 654 
cache 

analysis and reaching. 743 
cohercricc. 651 

character isrim 647-648 
clusters. 6(1L) 

descripticiri, 645 
fault tolerance, 653 
inemmental growth. 649 
1,2 cache, 654 
12,  cache. 656 
Inc inory Card, 654 
memory management, 653 
muiliport me mory. 631 
nr t i on, 44 9i-ti52 
performance. 646 
M.: 653 
reliability, 650, 653 
scaling. 649 
scheduling, 653 
S•390 cm figural ion 

c•Ache hil rale, 656 
shared 1.2 caches, 655-656 
switched interconnection, 654 655 

650 
Sync 

CD-ROM. 186 
Sy rich PO 

SNP, 65.1. 
Synchri.)ni.m, bus.Operalions 

ti ming. 76 
Synchronous counters. 72.I1...730 

design, 72(1 
Synchronous DRAM (SDRAM), 

154-1.57 
illusuatcd, 155 
read timing, 157 

Synchronoti9 timing 
bus design :  

Syndrome word. 150-151 
•Sysrern 

interconnection. 9 
05, 242 
pins 

PC1. signal lines, 81, 82 
EcFfLiwaiv., 25 

System access 
()S. 240  

System bus, 69 
control sign als. 586 
read cycle, 77 
write cycle. 77 

SIoLcir3136{1.1;iiiiily. Svc. I]i!v1 8fl60 
Sys tcm137(1. family. See llitM S'3 70 

I em1390 

Bahl indicator 
Pentium II segmentation :  270 

'lag. 101 
Tag died 

MIPS. ,N4 
'Lig won] 

Pentium processor, 442 
TkInuitmum'24 Andy, 466 
Tape. L16 

magnetic, 189 -190 
Turgr..i1 Inc1 acldr r aCA) 

diniband, 229 
'Frisk swiichcd 

Pentium control regisrer, 444 
'1‘C A 

Tn Fin 224 
Teaching computer organization architecture 

prolecls. 741-744 
Teinplaie field encoding 

] A.64 architecture. 548 
Temptmil 

two level imimories, 1.30-131 
lest 

inslructiiins. 
11, 0, 205 

Texas trislrurrien14 627-637 
Nock diagrain. 627 
DR: ports, 630 
DRF3 purls.. 630 
8847 lloating-point, 6.29 
inic ger procesing chip, 62%1 

h30 
microinstruction format. 626. 629 
mieroprogrJimmcd control. 62 7-637 
MP(', n30 
itCA, 630 
RCM, 630 
register counters :  630 
8632 re..isle red ALUL 623) 

c.x.) mpoitents, 627 
stacks, 630 
WCS data fi4141,62() 

1)0JiLrol ;tare data field :  629 
output multiplcur. 630 
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Texas Instruments 8818 
IlliCR)91..A11112DC.U1, 631 

microinstruction biLs. 033 
Texas Enstruments 8-U2 

A LILT 
eontigtuat ion mod°, 634 

carry in, 634 
des.tininion. i.gister, 634 
registered ALL 629. b33 
registered AI _ 11; fiLd.d, 634-636 
R 
Wle4:1 Tegiq ,.• r c,L11,}1 s.ouree, 633 
shift ins], 'Action modifier, 634 
S inpui, 634 
antra! register, 634 
wE iEe enable, 633 

Then path 
J A -f4 rirNihileaure., 550, 553 

4enerattoiI  
computers, 2-5-33 

Third Eirrie unit 
fetch cycle, 579 

32-11i1 adder 
construction :  720 

32-hit flouting-poinl forrmit, 308 
.32 - hil formal.; 

expressible, 
Thrashing, 112, 263 
36i} archi[.ecture. See 113.2y1 SI360 
370 architecture. See I BM 81370 
390 ki  [12c1 Lirc. S Ere NW S139.0 
] hree-operand instructions. 682 
Three-way pipe lined timing, 483 
Time. 

bus design, 75 
disk 1 5,2:31:01111,1r50.2. 171-175 

comparison, [73 
memory 98-103 
Mearitli y etch.•, 25 
multiplexing, 
OS problems, 243 .  
r1.1 1.L O 

two level memorixs, 129 
sequence, 577 

multi* interrupts example. b7 
sharing 

US. 1 .5....uch multiprogramming, 250 
systems, 248 

6:91) 
Tinter 

batch OS. 245 
interrupt Glass;, 511 

Time stamp disable {'IS11)).„ 444 
Timing diagrams, 92-93 

instruction pipeline operation, 426 
. Timing signals 

ince! 80FIS :  5'111 
1 9 1,11, 266.-268. 273 
Top-down rlppruach, 5-h 
'VE T-level structure., 
'l .op of stack 

inStrin.:1ions. 35] 
Trace-driyen. simulator 

analysis and. leaching, 743 
Tracks, 1165 :  ]70 
frailing eago, 92 
TraDSUClii311 1:1y4.;1 .  

fire ire. 225 
•1..ransduccr 

1.98 
. Transfer ACK 

bus control linezi, 70 
Tri-inq ter cif conrrol 

CPI; actions, 343 
with mulliple inremrupts, 66 
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NUM A Nonuniform Memory Access 
OS Operating System 
PC Program Counter 
PCI Peripheral Component lmeroinneet 
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SCSI Small Computer System Interface 
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551 Small-Scale Integration 
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